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Abstract

We study the corruption-robustness of in-context reinforcement learning (ICRL),
focusing on the Decision-Pretrained Transformer (DPT, Lee et al., 2023). To
address the challenge of reward poisoning attacks targeting the DPT, we propose
a novel adversarial training framework, called Adversarially Trained Decision-
Pretrained Transformer (AT-DPT). Our method simultaneously trains an attacker
to minimize the true reward of the DPT by poisoning environment rewards, and
a DPT model to infer optimal actions from the poisoned data. We evaluate the
effectiveness of our approach against standard bandit algorithms, including robust
baselines designed to handle reward contamination. Our results show that the
proposed method significantly outperforms these baselines in bandit settings, under
a learned attacker. We additionally evaluate AT-DPT on an adaptive attacker, and
observe similar results. Furthermore, we extend our evaluation to the MDP setting,
confirming that the robustness observed in bandit scenarios generalizes to more
complex environments.

1 Introduction

Recent years have shown the impressive capabilities of transformer-based models on a range of
tasks (Vaswani et al., 2017; Raffel et al., 2020). The community has been shifting from single-task
learning, to multi-task learning, and even multi-domain learning (Reed et al., 2022). This has been
made possible in part due to in-context learning, also called few-shot learning (Brown et al., 2020),
which allows a model to adapt to new tasks simply by reading a handful of examples in the prompt,
rather than requiring parameter updates or retraining. Recently, transformers and in-context learning
have found growing use in decision-making tasks, particularly in reinforcement learning (RL), where
interactions with the environment replace traditional text-based examples (Chen et al., 2021a; Xu
et al., 2022; Laskin et al., 2022; Lee et al., 2023). In this paper, we focus on the robustness of
in-context RL to reward poisoning attacks – one of the major security threats for safe deployment of
RL agents.

Reward poisoning attacks have been extensively explored in recent RL literature (Lin et al., 2017; Ma
et al., 2019; Zhang et al., 2020b; Wu et al., 2023; Nika et al., 2023). This line of work predominantly
focuses on the canonical RL setting, modeling reward poisoning attacks as an attacker that corrupts
the reward of a learning agent during training. In contrast to test-time adversarial attacks, poisoning
attacks influence the policy that the agent adopts at test time; i.e., they are training-time attacks. This
is perhaps not surprising, given that this line of work typically focuses on Markov stationary policies,
implying that the agent’s behavior is independent of the rewards at test time.

However, an in-context RL agent can implement a learning algorithm in-context, using approaches
such as Algorithm Distillation (Laskin et al., 2022) or the Decision-Pretrained Transformer (Lee

∗This work was done as a part of an internship project at the Max Planck Institute for Software Systems.

Preprint.

https://arxiv.org/abs/2506.06891v1


Update θ: minimize prediction loss

AT-DPT θa∗

squery

Dataset D†

Environment Mi

Attacker ϕi

Dataset D̄

clean rewards

corrupted
rewards

Update ϕi

with RL

Figure 1: The training procedure of AT-DPT. We use adversarial training to optimize the parameters θ
of a transformer model, which is our learning agent. In each round, we first collect data by deploying
the agent in m environments. In environment i ∈ 0, . . . ,m, the agent observes rewards corrupted by
an adversary defined by parameters ϕi. We collect clean (D̄) and corrupted (D†) datasets containing
trajectories with clean and corrupted rewards, respectively. The agent is trained to predict an optimal
action for a query state given a context sampled from a corrupted dataset. The adversary is trained to
minimize the agent’s return under a soft budget constraint, expressed as a penalty term. During the
test phase, the agent is deployed in a new corrupted environment.

et al., 2023). In this case, contextual information encodes past interactions between the environment
and the agent, including past rewards. By corrupting the agent’s rewards at test time, an adversary
can still influence the agent’s behavior. Simply put, such test-time reward poisoning schemes attack
the learning algorithm implemented in-context.

In this work, we aim to develop a training protocol for in-context RL that enables models to be
robust against test-time reward poisoning attacks targeting in-context learners. We focus on using
the Decision-Pretrained Transformer (DPT) as a base approach. At a high level, the novel training
protocol should implement a corruption-robust learning algorithm in-context. This differs from
corruption-robust RL approaches typically studied in the literature (Lin et al., 2017; Ma et al., 2019;
Zhang et al., 2020b; Sun et al., 2021; Wu et al., 2023; Nika et al., 2023): in our setting, rewards are
corrupted only at test time, meaning the corruption does not affect the training process of the agent’s
policy. Our contributions are as follows.

Framework. We introduce and formalize a novel attack modality predicated on reward poisoning. In
this attack modality, the attacker influences the context that the agent’s policy is conditioned on by
corrupting the agent’s rewards. More specifically, the attacker aims to minimize the agent’s return by
perturbing the underlying reward function under a soft budget constraint encoded via a penalty term.

Method. We combine in-context learning with adversarial training to develop an agent that is robust
against reward poisoning. Specifically, we introduce the Adversarially Trained Decision-Pretrained
Transformer (AT-DPT), which is trained by simultaneous optimization: an adversary tries to minimize
the environment’s reward, while DPT learns to infer optimal actions from the corrupted data. An
overview of the training procedure can be seen in Figure 1.

Experiments. We conduct a systematic evaluation of the proposed method, comparing its corruption-
robustness capabilities to various baselines, including robust baselines designed to handle reward
contamination, under various levels of poisoning. Our results show that AT-DPT can recover from a
wide range of reward poisoning attacks and overall yields better performance under corruption than
the baselines considered.

We believe that the results presented in the work show potential of transformer-based policies in
implementing algorithms that are robust against data contamination.

2 Related work

Adversarial ML. Adversarial ML is a line of work with the goal of understanding the effects of
adversaries on models, also studying methods to defend against such adversaries. These adversaries
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have been extensively studied in computer vision, and more recently, several attacks have been
proposed in RL. These include test-time attacks on observations (Biggio et al., 2013; Szegedy et al.,
2013; Goodfellow et al., 2015; Papernot et al., 2017), (training-time) poisoning attacks (Mei and
Zhu, 2015; Li et al., 2016), and backdoor attacks Chen et al. (2017); Gu et al. (2017); Salem et al.
(2022). Closest to our work are poisoning attacks on RL (Huang et al., 2017; Sun et al., 2021; Zhang
et al., 2021), which have considered different poisoning aims, including transitions (Ma et al., 2019;
Rakhsha et al., 2020), rewards (Lin et al., 2017; Zhang et al., 2020b; Sun et al., 2020; Wu et al.,
2023; Nika et al., 2023), states (Zhang et al., 2020a), and actions (Rangi et al., 2022). Prior work has
also considered poisoning attacks in multi-agent RL (Mohammadi et al., 2023; Wu et al., 2024). We
contribute to this line of work by studying the robustness of in-context RL under test-time poisoning
attacks.

Corruption robustness in RL. Our work is closest to the literature on corruption-robust bandits, RL,
and multi-agent RL (Lykouris et al., 2018; Rakhsha et al., 2020; Niss and Tewari, 2020; Chen et al.,
2021b; Lee et al., 2021; Wei et al., 2022; Ding et al., 2022; Nika et al., 2023; Xu et al., 2024). These
works often establish guarantees for the suboptimality gap in terms of the level of corruption. Rather
than focusing on theory, we contribute a practical method for training corruption robust in-context RL.
As explained in the introduction, this approach is conceptually different: corruption robust learning is
implemented in-context. We experimentally compare the efficacy of our approach to bandit and RL
algorithms robust to reward contamination, such as corruption robust UCB (Niss and Tewari, 2020;
Ding et al., 2022) and Natural Policy Gradient (NPG, Kakade, 2001; Zhang et al., 2021).

Our work is also tied to the literature on robust offline RL (Yang et al., 2022; Panaganti et al., 2022;
Ye et al., 2023; Yang et al., 2023; Yang and Xu, 2024). Prior work DeFog (Hu et al., 2023), or
concurrent work LHF (Chen et al., 2025) rely on filtering the learning histories during training. We
note that both of these works are developed for robustness against random or noisy perturbations.
For adversarial corruption robustness, another concurrent work (Xu et al., 2025) studies several
improvements for the Decision Transformer. However, this method focuses on the single-task setting,
compared to ours.

In-context reinforcement learning. In terms of RL paradigms, the closest to our work is in-context
RL. We have already explained the connection to the Decision-Pretrained Transformer Lee et al.
(2023), which we build upon. A similar work, Algorithm Distillation, trained with episodic trajectories
from learning algorithm histories distills a policy which implicitly produces actions imitating policy
improvement (Laskin et al., 2022). An extension of this involves injecting noise in the curriculum
to allow generating learning histories without the need for optimal actions (Zisman et al., 2024).
Both this and another (Dong et al., 2024) prior work show that ICRL is sensitive to perturbations the
pretraining dataset. We also mention the work of Tang et al. (2024), who study the Adversarially
Robust Decision Transformer (ARDT) – a method robust against an adaptive adversary within a
Markov game framework, capable of choosing actions which minimize the victim’s rewards. This
framework, translated to ours, would correspond to an adversary modifying transition probabilities
and the victim observing the action the adversary took. In contrast, instead of adversarial transition
probabilities, we consider adversarial rewards generated by the attacker, and the victim only observes
the realized reward, without knowledge of whether an attacker is interfering, nor knowledge of their
algorithm. For an in-depth discussion on in-context RL, we refer to Moeini et al. (2025).

Meta-RL. Our work is broadly related to meta-RL, since we consider a multi-task setting. Within
decision-making and RL, meta-RL has been used in a variety of ways – optimizing a policy condi-
tioned on histories of past transitions via an RNN (Duan et al., 2016), similarly, utilizing a Structured
State Space Sequence model replacing the RNN (Lu et al., 2023), learning good ‘starting point’
parameters that make learning in tasks faster (Finn et al., 2017), learning a dynamics model shared
across tasks (Nagabandi et al., 2018). Transformers have also been utilized in prior work in learning
multi-task policies (Reed et al., 2022; Lee et al., 2022). For a more in-depth discussion on meta-RL,
we refer to the survey by Beck et al. (2023).

Other. Recently there have been many works studying various different attacks on large language
models (LLMs) to provoke an unsafe response (Zhao et al., 2024; He et al., 2024; Cheng et al., 2024,
and many others), also called red-teaming (Ganguli et al., 2022). The increasing use of LLMs within
decision-making systems provoke the need to study robustness. Therefore, we advocate for the study
of robust decision-making algorithms and hope our method contributes to this body of knowledge.
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3 Setup

Notation. We will use ∆(A) to refer to the probability distribution over A, and ∥ · ∥2 denotes the
Euclidean norm. We will use notation similar to Lee et al. (2023).

3.1 In-context sequential decision-making

Environment. We consider a multi-task sequential decision making setting, where we denote T
as the distribution of tasks. Each taskM ∼ T is formalized as an episodic finite-horizon Markov
decision process (MDP)M = ⟨S,A, R, T,H, ρ⟩, where S is the state space, A is the action space,
R : S × A → ∆(R) is the reward function, T : S × A → ∆(S) is the transition function, H ∈ N
is the horizon, and ρ ∈ ∆(S) is the starting state distribution. We denote realized states, actions,
and rewards at timestep h by sh, ah, and rh, respectively. We distinguish between the clean and
corrupted settings and use r̄h to denote the true rewards, and r†h to denote the rewards produced by an
attacker. The attack model is introduced in the next subsection. Let µR̄(s, a) denote the mean of the
underlying environment reward for the state-action pair (s, a). For a stochastic policy π : S → ∆(A),
the value function is defined as V π(ρ) = Es∼ρ

[∑H
h=1 r̄h | π, s0 = s

]
, where the expectation is w.r.t.

the randomness of the underlying rewards when rolling out policy π inM. The solution to taskM is
an optimal policy π⋆

M that maximizes the value function, i.e., V π⋆
M(ρ) = maxπ V

π(ρ).

Agent. We model a learning agent as a context-dependent policy parameterized by a transformer with
parameters θ which maps the history of interactions D and a query state squery to a distribution over
actions. We denote this policy by πθ(ah | D, sh) and D = {(si, ai, ri, si+1)}H−1

i=0 is the in-context
dataset consisting of a set of previous interactions. To implement an efficient learner, we can train
πθ( · | D, sh) to predict optimal actions a⋆h ∼ π⋆

M( · | sh) for a taskM sampled from a given task
distribution – this approach is the backbone of the Decision-Pretrained Transformer (DPT, Lee et al.,
2023).

3.2 Attack model

We consider bounded reward poisoning attacks applied to a fraction of tasks at test-time. We employ
Huber’s ε-contamination model (Huber, 1964) and assume that the agent observes the corrupted
reward in ε-fraction of timesteps. We model the attacker π†

ϕ : S×A×R×(S×A×R×S)C → ∆(R)
as a function of the state, action and reward of the last timestep along with an in-context dataset
D̄ ∈ (S ×A× R× S)C consisting of C tuples of agent’s interactions. Formally, at timestep h, the
environment generates r̄h ∼ R(sh, ah), and the agent observes

r̃h =

{
r†h ∼ π

†
ϕ( · | sh, ah, r̄h, D̄) with probability ε,

r̄h otherwise.

The attacker observes the underlying environment reward r̄h to generate r†h, but the victim πθ only
observes the realized reward r̃h. We call an attacker adaptive if C > 0, meaning it leverages
the agent’s past interactions, and non-adaptive if C = 0. In the non-adaptive case (C = 0) we
simplify π†

ϕ( · | sh, ah, r̄h, D̄) = π†
ϕ( · | sh, ah, r̄h). In both cases the attacker aims to minimize the

agent’s expected return inM under a soft budget constraint, without forcing a specific policy for the
agent. We denote the mean and variance of corrupted rewards by µϕ(s, a) = Er†∼π†

ϕ( ·|s,a)
[r†] and

σϕ(s, a) = Varr†∼π†
ϕ( ·|s,a)

[r†]. Formally, the attacker’s objective is

L(M, ϕ, θ) = E

[
H∑

h=1

−r̄h | πθ, π†
ϕ

]
− λ · cµ

(
∥µϕ − µR̄∥2

)
− λ · cσ

(
∥σϕ∥2

)
, (1)

where we take the expectation over the stochasticity of the environment, the agent’s policy, and the
contamination model. cµ, cσ are penalty functions for exceeding budget B and Bσ respectively, and
λ > 0 controls the strength.
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3.3 In-context RL with corrupted rewards

To account for the change induced by the attacker, we set the agent’s objective to U(M, θ, ϕ) =

E
[∑H

h r̄h | πθ, π†
ϕ

]
, where the expectation is taken over the randomness of the realized rewards

when running the policy πθ inM, while corrupting its context D† using the ε-contamination model
with the attack policy π†

ϕ.

We search for a Nash equilibrium (θ⋆, {ϕ⋆M}M∈T ) such that θ⋆ ∈ argmaxθ EM∈T [U(M, θ, ϕ⋆M)]
and ϕ⋆M ∈ argmaxϕ L(M, θ⋆, ϕ) for allM ∈ T . Our goal is to devise a training procedure for
approximating this equilibrium. We do this by sampling M tasks, and for every task i training a
separate attacker π†

ϕMi
. Along with the attackers we simultaneously train the agent πθ. This provokes

our adversarial training approach.

4 Method

We extend DPT (Lee et al., 2023) with adversarial training. We follow a similar approach as in the
original work. The setup consists of three phases.

Pretraining. Lee et al. (2023) use GPT-2 as the underlying transformer model, and we adopt the
same architecture. The model πθ is initialized from scratch and trained via supervised learning by
predicting an optimal action from context Dpre and query state sq. During the pretraining phase,
the model observes a dataset Dpre ∼ Dpre, which consists of tuples (s, a, r, s′) sampled from a set
of M tasks {Mi ∼ T }Mi=1. This dataset can be collected in various ways, such as through random
interactions with the environments. Alongside these interactions, we also sample a query state
sq ∼ Dquery and its corresponding optimal action a⋆ ∼ π⋆

M( · | sq). The model is then trained to
minimize minθ EDpre∼Dpre,sq∼Dqueryℓ(πθ( · |Dpre, sq), a

⋆), where ℓ is the NLL loss.

In-context learning. During the test phase πθ is deployed inM∼ T with an empty context D = {}.
The original work updated the context D with the entire trajectory {(sh, ah, rh, sh+1)}Hh=1 only after
the entire episode (Lee et al., 2023). Whereas, in our method we update context D from interacting
with the environment, with transitions (sh, ah, rh, sh+1) after every timestep h, to support robustness
against adaptive attacks.

Adversarial training. Before testing, we include an additional phase for adversarial training. An
illustration of this training process is shown in Figure 1. In the adversarial setting πθ is deployed in
M under an attacker π†

ϕ, contaminating the victim’s dataset D† as specified in the previous section.
We account for this by introducing an additional adversarial training stage between the original
pretraining and in-context learning. To train the agent and the attacker, recall that we use two different
contexts – a context with poisoned rewardsD† for the agent, and a context with underlying rewards D̄
for the attacker. We repeat this process for N rounds, updating θ and ϕ after each round. Parameters
θ are updated as in the original DPT setting, with sq sampled from the environment, and a⋆ provided
by an oracle.2 The pseudocode of this method can be found in Algorithm 1.

We consider attackers parameterized by ϕ (e.g., a neural network). To train the attacker we use
the REINFORCE algorithm (Williams, 1992) – after each episode we update ϕ with the objective
specified in Equation (1). Recall that while the victim πθ only observes the realized reward r̃h, the
attacker has to have access to the underlying environment reward r̄h. The attacker’s goal is to poison
a single algorithm, which we denote the attacker target. That is, a different policy might emerge
from an attacker targeting, for example, DPT versus an attacker targeting TS.

Bandit setting. In the bandit settings we consider a direct parameterization of a deterministic
attack, i.e., for an action a(i)h (choosing arm i) at timestep h the attack becomes π†

ϕ( · | a
(i)
h , r̄h) =

π†
ϕ(a

(i)
h , r̄h) = r̄h + ϕ(i), where ϕ ∈ R|A|.

Adaptive attacker. We also consider a context-dependent algorithm, e.g., a transformer, to enable the
attacker to adapt to the defenses of the victim. For this we utilize the same architecture (GPT-2) as

2In the algorithm and our experiments we require access to clean environments sampled from T at training
time, although offline trajectories could be used with simulated attacks and (near-)optimal actions.
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Algorithm 1 Adversarially Trained Decision Pretrained Transformer (AT-DPT)

1: input: victim πθ – DPT with pretrained params θ0
2: input: attacker π†

ϕ with initial params ϕ0, budget B, fraction of steps poisoned ε
3: Sample M tasks {Mi ∼ T }mi=1
4: for round n in 0 . . . N − 1, simultaneously in allM do
5: roll out πθn for H steps inMi poisoned by π†

ϕ with ε-contamination model and budget B,
6: where DPT collects corrupted dataset D†, and attacker collects dataset D̄
7: ϕn+1 ← train on D̄ with REINFORCE:
8: see Equation (1)
9: θn+1 ← train on D† via supervised learning:

10: minθ ℓ(πθ( · | D†, sq), a
⋆), a⋆ provided by oracle

11: end for

the victim. The interaction in the environment is then modified as follows. At the start of an episode
empty context D̄ = {} is initialized for the attacker. At every step h the attacker samples a reward
r†h ∼ π

†
ϕ( · | D̄, sh, ah, r̄h) for the victim and appends (sh, ah, r̄h) to the dataset D̄.

MDP Setting. In the MDP setting we also consider a direct parameterization of a deterministic
non-adaptive attack, similar to the bandit attacker, i.e., for a state-action pair (s(i), a(j)) the attack
becomes π†

ϕ( · | s(i), a(j), r̄) = π†
ϕ(s

(i), a(j), r̄) = r̄ + ϕ(i, j), where ϕ ∈ R|S|×|A|.

5 Experiments

We sample M = 200 tasks to run in parallel. For each round we train both the attacker and DPT
for multiple (e.g., 20) iterations on the same dataset. We set penalties for exceeding the budget
cµ(x;B) = max(0, x−B) and cσ(x;Bσ) = max(0, x−Bσ) with λ = 10.

5.1 Baseline algorithms
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Figure 2: Comparison of the cumulative regret
per round (lower is better) of different methods
throughout 20 rounds of adversarial training (si-
multaneously learning AT-DPT and an attacker) in
the bandit setting. Within one round we perform
H = 500 steps. The y axis indicates cumulative
regret for that round. Mean and 95% confidence
interval (2×SEM) over 10 experiment replications.
Attack budget B = 3, ε = 0.4. DPT F indicates
DPT with frozen parameters.

To evaluate our method’s performance in the
bandit setting we compare it with widely used
baseline bandit algorithms, and choose several
corruption robust algorithms: Thompson sam-
pling (TS, Thompson, 1933), upper confidence
bound (UCB, Auer et al., 2002), robust Thomp-
son sampling (RTS, Xu et al., 2024) – a Thomp-
son sampling based algorithm robust to adversar-
ial reward poisoning, which features an added
term to the bonus term in TS, and corruption-
robust upper confidence bound (crUCB, Niss
and Tewari, 2020) – a UCB style algorithm ro-
bust to ε-contamination, where we chose the
trimmed mean variant, while the mean is esti-
mated with a fraction of smallest and largest
observed values removed for every arm, oth-
erwise being very similar to UCB. For linear
bandits we compare our method to LinUCB (Li
et al., 2010), and a corruption robust variant –
CRLinUCB (Ding et al., 2022, Section 4).

For the MDP baselines we choose a policy-gradient based method – Natural policy gradient (NPG,
Kakade, 2001); and a value-based method – Q-learning (Watkins and Dayan, 1992). Additionally,
we include DPT with frozen parameters (indicated as DPT F) as a baseline to observe the effect of
adversarial training. More details about the baselines can be found in the Appendix.

In addition to algorithm baselines, we also consider two baselines for evaluation – we show perfor-
mance of the algorithms in the clean environment, and we also consider a uniform random attack
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Table 1: Comparison of cumulative regret (lower is better) of different algorithms under different
attackers trained for 20 rounds, with ε = 0.4 steps poisoned. For ε = 0.1 and 0.2 see the Appendix.
Mean and 95% confidence interval (2×SEM) over 10 experiment replications. Attack budget B = 3.
∗ We use tuned versions of RTS and crUCB which outperform the base versions; full comparisons
including base versions are given in the Appendix.

Algorithm Attacker Target Unif. Rand.
Attack Clean Env.

AT-DPT DPT TS RTS∗ UCB1.0 crUCB∗

AT-DPT 24.2 ± 1.2 24.8 ± 1.4 29.8 ± 3.0 28.3 ± 1.9 24.5 ± 0.8 23.8 ± 1.4 45.4 ± 5.5 13.0 ± 0.9
DPT F 63.6 ± 8.6 59.4 ± 5.2 62.0 ± 8.6 59.1 ± 7.3 55.4 ± 8.1 58.8 ± 7.8 27.2 ± 2.9 11.5 ± 0.5
TS 106.3 ± 3.8 97.7 ± 4.9 94.3 ± 3.8 93.1 ± 6.0 89.6 ± 1.8 92.6 ± 4.8 19.1 ± 0.8 8.7 ± 0.6
RTS∗ 102.9 ± 4.5 97.0 ± 4.2 90.4 ± 4.4 92.5 ± 5.0 89.2 ± 3.4 89.0 ± 3.0 16.2 ± 1.4 10.2 ± 0.4
UCB1.0 104.1 ± 3.6 95.8 ± 4.9 90.6 ± 4.1 90.0 ± 5.2 88.1 ± 3.4 91.2 ± 3.4 17.6 ± 0.8 16.0 ± 0.5
crUCB∗ 86.0 ± 4.4 85.0 ± 2.3 82.0 ± 4.4 82.4 ± 3.3 79.4 ± 3.0 82.5 ± 5.1 17.9 ± 0.6 15.8 ± 0.5

– the poisoned reward for timestep h is r†h = r̄h + ϕ(i), where ϕ ∈ R|A| is generated once at the
start of evaluation by sampling from a uniform random distribution, and later clipped by the budget
constraint ∥ϕ∥2 < B.

5.2 Bandit setting

Environment. We begin with empirical results in a simple scenario – the multi-armed bandit problem.
We follow a similar bandit setup to that presented in the original DPT paper (Lee et al., 2023).
We sample 5-armed bandits (|A| = 5), each arm’s reward function being a normal distribution
R( · | s, a) = N (µ(a), σ2), where µ(a) ∼ Unif[0, 1] independently and σ = 0.3. The optimal policy
in this environment is to always choose the arm with the largest mean: a⋆ = argmaxa µ

(a). We
follow the same pretraining scheme as the original work. For evaluation, we present the empirical
cumulative regret:

∑
h r̄(a

⋆)− r̄(ah). Low regret indicates the policy is close to optimal.

Hyperparameters To pretrain DPT in the bandit setting we use the following architecture and
hyperparameters. The Transformer has 4 layers, 4 attention heads per layer, embedding dimension –
32, no dropout. We set the context length equal to episode length H = 500, learning rate η = 0.001
and train for 400 epochs. We pretrain DPT in the same way as the original, see the work by Lee et al.
(2023) for more details. For adversarial training we use the learning rate η = 0.0001 for the victim
and ηattacker = 0.03. We consider attackers with a diagonal covariance matrix, and set Bσ = 1.

Adversarial training makes DPT robust to poisoning attacks. In Figure 2, we present the
training-time performance of DPT under adversarial training. The training curve shows the per-round
cumulative regret, averaged across M tasks seen during training. We observe the regret significantly
increase in the first rounds, but in further rounds DPT learns to recover from the attacks, and results
improve. In the figure we compare performance of TS and frozen DPT under the same attack, and
also show the performance of frozen DPT on the clean environment (no attack). We refer to the
adversarially trained DPT models as AT-DPT.

Evaluation. To evaluate AT-DPT on attacks trained for it, we cross-validate to prevent evaluation on
the same attack AT-DPT has seen during training – we evaluate one AT-DPT with an attacker which
is targeting AT-DPT for a different seed. We report the mean and 95% confidence interval (2×SEM)
across 10 different experiment replications. We run adversarial training for N = 20 rounds. Table 1
presents an extensive evaluation of AT-DPT and other method performance against attackers targeting
various different methods. We can clearly see AT-DPT outperforming all baselines in an adversarially
trained attacker setting. Given that AT-DPT displays robustness against attackers from different
algorithms illustrates that AT-DPT can successfully recover from attacks that are out-of-distribution.
Although, adversarial training seems to trade-off the performance in the clean and random attack
environment, where the frozen model (DPT F), or even a baseline algorithm like TS perform better.

Adaptive Attacks. For the adaptive attacker we utilize the same architecture as the victim, except
without pretraining. In this setting we use ηattacker = 0.00003. Table 2 shows a comparison of
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performance under both adaptive and non-adaptive attackers. The result shows low regret for AT-DPT,
displaying robustness against this type of attack as well.

5.3 Linear bandit setting

Environment. We follow a similar setup as in the original DPT work (Lee et al., 2023). We sample
d-armed linear bandits, where the reward is given by E[ r | a,Mi] = ⟨ωi, ψ(a)⟩, and ωi ∈ Rd is a
task-specific parameter vector, and ψ : A → Rd is a feature vector shared across all tasks. Both ωi

for every i and ψ are sampled from N (0, Id/d). In our experiments we chose d = 2 and |A| = 10,
same as in the original paper.

Results. From the results in Table 3 we see CRLinUCB performing only marginally better than all
other algorithms in the clean case and uniform random attack. Although, under a more complex
attack AT-DPT outperforms all other algorithms, and matches CRLinUCB in the clean case and
uniform random attack.

5.4 MDP setting

Environment. In the MDP setting we consider an extension of a sparse reward MDP considered in
prior work – the Dark Room environment (Lee et al., 2023; Laskin et al., 2022; Zintgraf et al., 2020)
– a 2D gridworld environment where the agent only observes its own state and gains a reward of 1
when at the goal state. The agent has 5 actions – A = {up, down, left, right, stay}. We consider a
modification of this environment – instead of having one goal, we consider two goals – one giving a
reward of 1, the other giving 2. To pretrain the DPT we supply optimal actions that lead to the goal
giving reward of 2. We refer to this environment as Darkroom2.

To conform to the sparse reward nature of this environment we constrain the attacker to only output
attacks in {−1, 0, 1}, having a softmax parameterization. This results in the observed reward being
one of {−1, 0, 1, 2, 3}. We do not perform any reward normalization or scaling. In the evaluations
we present the underlying episode reward

∑H
h r̄h as the performance metric.

Hyperparameters To pretrain DPT in the Darkroom2 setting we use the same model architecture as
for the bandit setting, the context length equal to episode length H = 200, learning rate is η = 0.0001
and train for 150 epochs. For adversarial training we use the learning rate η = 0.00003 for the victim
and ηattacker = 0.03.

Evaluation. To evaluate AT-DPT we perform cross-validation with different attackers same as in the
bandit setting. For evaluation, we present the total underlying episode reward

∑
h r̄h in the tables. We

report the mean and 95% confidence interval (2×SEM) across 10 different experiment replications.
We run adversarial training for N = 400 rounds. The results, seen in Table 4, show that AT-DPT is

Table 2: Comparison of the cumulative regret (lower is better) of adaptive and non-adaptive attackers.
Attackers trained for 400 rounds, with ε = 0.4 steps poisoned. For ε = 0.1 and 0.2 see the Appendix.
AT-DPT (A) means AT-DPT trained against the adaptive attacker, AT-DPT (n-A) means AT-DPT
trained against the non-adaptive attacker. Mean and 95% confidence interval (2×SEM) over 10
experiment replications. Attack budget B = 3.
∗ We use tuned versions of RTS and crUCB which outperform base versions; details in the Appendix.

Algorithm
Attacker Target

Unif. Rand.
Attack

Clean Env.Adaptive Non-adaptive
AT-DPT TS AT-DPT TS

AT-DPT (A) 37.1 ± 6.6 36.4 ± 9.4 38.0 ± 6.4 42.6 ± 6.7 35.1 ± 8.3 21.3 ± 9.0
AT-DPT (n-A) 88.1 ± 20.0 81.0 ± 11.2 22.8 ± 1.6 29.8 ± 2.2 47.0 ± 6.0 13.8 ± 1.2
DPT F 97.9 ± 18.6 82.1 ± 20.7 61.6 ± 8.0 61.6 ± 6.6 29.2 ± 2.5 12.1 ± 0.8
TS 90.2 ± 21.9 104.2 ± 26.7 106.3 ± 5.5 94.3 ± 4.8 19.6 ± 1.0 9.1 ± 0.7
RTS∗ 90.5 ± 21.3 103.6 ± 26.8 104.5 ± 5.5 90.9 ± 4.2 16.7 ± 0.9 10.5 ± 0.6
UCB 94.3 ± 22.4 103.9 ± 28.4 101.3 ± 5.0 87.8 ± 4.4 18.3 ± 0.7 16.0 ± 0.4
crUCB∗ 85.1 ± 23.5 79.6 ± 29.4 88.4 ± 4.4 79.9 ± 4.7 18.0 ± 0.6 15.8 ± 0.3
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Table 3: Comparison of the cumulative regret (lower is better) of the different algorithms under
different attackers in the linear bandit setting, with ε = 0.4 steps poisoned. Attack budget B = 3.
For ε = 0.1 and 0.2 see the Appendix. Mean and 95% confidence interval (2×SEM) over 10
experiment replications.
∗ We use a tuned version of CRLinUCB which outperforms the base version; details in the Appendix.

Algorithm Attacker Target Unif. Rand.
Attack Clean Env.

AT-DPT DPT F LinUCB CRLinUCB∗

AT-DPT 2.49 ± 1.06 2.50 ± 1.08 2.83 ± 1.10 1.79 ± 1.02 5.33 ± 1.16 3.89 ± 0.86
DPT F 70.29 ± 7.32 71.42 ± 7.46 70.83 ± 7.76 63.84 ± 7.18 6.62 ± 1.30 3.35 ± 0.84
LinUCB 37.69 ± 4.46 35.93 ± 3.86 35.22 ± 4.14 34.82 ± 4.36 5.21 ± 1.16 3.51 ± 0.88
CRLinUCB∗ 37.45 ± 4.76 33.03 ± 4.00 35.56 ± 4.26 35.36 ± 4.80 5.12 ± 1.48 2.94 ± 0.78

robust against different attackers, but only slightly better than NPG. Additional results can be found
in the Appendix.

The robustness displayed by NPG has been also observed by Zhang et al. (2021) – they find that NPG
can be robust against ε-contamination, if the rewards generated by the adversary are bounded. We
also observe that attacks with ε = 0.1 and ε = 0.2 are not very effective for NPG and Q-learning.

The main advantage of using AT-DPT over NPG or other RL methods in these types of scenarios is
that of generalization – DPT is a meta-learner, which infers the task from a few interactions with the
environment and follows an optimal policy almost immediately. Conversely, NPG and Q-learning are
task-specific ‘online’ learners, meaning they require interactions from the current environment to
improve their policies; although not to be confused with the standard definition of online learning
(Levine et al., 2020).

These algorithms require a few (tens/hundreds) of episodes before converging to a stable policy. In
our experiments we trained a different NPG and Q-learning policy for each environment, although
one could argue that it may be possible to use a universal task conditioned policy. In these settings
the agent is not aware what is the current task, therefore it is unclear what it needs to conditioned on.

6 Discussion

In our work we have presented AT-DPT – a method to adversarially train the DPT to robustify it
against reward poisoning attacks. This is done via simultaneously training the attacker, minimizing
the underlying environment rewards, and the victim, optimizing for the optimal actions from the
poisoned data. By showing extensive evaluations on the bandit and MDP setting we demonstrated
AT-DPT has the ability to recover optimal actions from the poisoned data.

Table 4: Comparison of the average episode reward (higher is better) of the different algorithms under
different attackers trained for 300 rounds (5 rounds for Q-learning and NPG) in the Darkroom2 envi-
ronment (5×5 grid). Mean and 95% confidence interval (2×SEM) over 10 experiment replications,
with ε = 0.4 steps poisoned. For ε = 0.1 and 0.2 see the Appendix. Attack budget B = 10. § NPG
and Q-learning require multiple episodes of online learning to converge to a stable policy; we run
them for 100 episodes before evaluating their performance.

Algorithm Attacker Target Unif. Rand.
Attack Clean Env.

AT-DPT DPT F NPG Q-learning

AT-DPT 241.2 ± 9.1 268.7 ± 8.5 241.0 ± 12.7 239.1 ± 8.8 219.6 ± 14.9 266.4 ± 15.3
DPT F 214.8 ± 7.9 140.2 ± 10.4 206.1 ± 7.5 205.9 ± 7.8 123.9 ± 6.9 302.3 ± 6.3
NPG§ 237.2 ± 6.7 243.7 ± 7.9 228.9 ± 4.0 228.1 ± 8.1 230.3 ± 6.4 248.5 ± 6.0
Q-learning§ 198.3 ± 4.4 235.9 ± 4.8 112.5 ± 5.0 140.3 ± 9.2 249.7 ± 6.2 247.7 ± 6.3
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We see that by training the DPT with poisoned rewards in the context leads to behavior that is robust
against these perturbations. Similarly, within the text domain Cheng et al. (2024) find that pretraining
a transformer with noisy labels works well against that type of perturbation.

Limitations and future work. The main limitation of our method, also a limitation of DPT is the
need of actions provided by the oracle for training (Lee et al., 2023). The authors of DPT propose
relaxing this requirement by supplying actions generated by another RL agent which performs well
for the current task, although this might not be possible in an adversarial scenario. A different
approach, where training on offline trajectories with a simulated attacker could be viable.

We also observe in our results the capability of AT-DPT to generalize beyond the attack it has been
trained on (i.e., adversarially trained against its own specific attacker, generalizes to an attacker trained
for TS, for example). This suggests it may be possible to exploit this further by adversarially training
AT-DPT with multiple different contamination levels ε. Additionally in our results we only consider
a single attack specification per experiment. To make AT-DPT even more robust, and potentially
alleviate the trade-off observed in the clean and random attack environment it would be possible to
train AT-DPT with multiple different attack specifications (e.g., mixing in non-adaptive and adaptive
attacks), or diversify them, which we leave as a direction for future work.

Acknowledgments and Disclosure of Funding

This research was, in part, funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) – project number 467367360.

References
Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit

problem. Mach. Learn., 47(2–3):235–256, May 2002. ISSN 0885-6125. doi: 10.1023/A:
1013689704352. URL https://doi.org/10.1023/A:1013689704352.

Jacob Beck, Risto Vuorio, Evan Zheran Liu, Zheng Xiong, Luisa Zintgraf, Chelsea Finn, and Shimon
Whiteson. A survey of meta-reinforcement learning. arXiv preprint arXiv:2301.08028, 2023.

Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel Laskov, Giorgio
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A Baseline algorithms

A.1 Robust TS

Xu et al. (2024) provide the Robust TS algorithm. This algorithm relies on a corruption level
hyperparameter C̄. The recommendation given by the authors is to set this to

∑H
h ch ≤ C̄, where ch

is the corruption level (i.e., in our case, ch = rh − r̄h) for step h, if the corruption level is known. If

the corruption level is unknown, the authors suggest setting C̄ =
√
H ln |A|

|A| .

Following these recommendations, in an environment with H = 500, |A| = 5, ε = 0.4, our
preliminary findings are:

• assume corruption level is known: C̄ ≈ 120 – RTS performance is worse than TS; indicated
as RTS (C̄ known);

• assume corruption level is unknown: C̄ ≈ 12.7 – RTS performance is worse than TS;
indicated as RTS (C̄ unk.);

• tuned C̄ for our setup: C̄ = 0.5 – RTS performance is better than TS; indicated as RTS (C̄
tuned).

We report the best scores (obtained with the tuned variant) in the main text, giving the full three
variant comparison in Table 5.

A.2 crUCB

Niss and Tewari (2020) provide a few variants of the crUCB algorithm. We chose the α-trimmed
variant, which performs best empirically. We introduce a modification to the algorithm due to poor
original variant empirical performance. The modified variant is shown in Algorithm 2, where f –
α-trimmed mean function – if n is the number of rewards observed for that arm, removes ⌈αn⌉
lowest and ⌈αn⌉ highest rewards observed for that specific arm; removing 2 ⌈αn⌉ elements in total,
and x

(h)
a – list of observed rewards for arm a at step h.

Algorithm 2 crUCB (α-trimmed variant), modified

1: input: α – fraction of steps poisoned
2: input: σ0 – upper bound on sub-Gaussian constant (hyperparameter)
3: input: f – mean estimate function (α-trimmed mean)
4: for step h = 1, . . . ,H do
5: for each a ∈ A do
6: µ̂

(h)
a ← f(x

(h)
a ) (α-trimmed mean estimate of rewards)

7: N
(h)
a ← number of times action a has been played

8: end for

9: Choose action a = argmaxa∈A µ̂
(h)
a + σ0

(√
4 log(h)⌊

(1−2α)N
(h)
a

⌋
)

10: end for

The original bonus term in the algorithm is
σ0

1− 2α

(√
4 log(h)

N
(h)
a

)
.

Assume f(z) with n elements returns zero if z contains fewer than n− 2 ⌈αn⌉ elements. The failure
is observed when the assumption above is true – the estimated mean returns zero, whereas the bonus
is not infinity, leading to arms which have only been played one time have a very low score.

We report the best scores (obtained with the modified variant) in the main text, giving full results in
Table 5 comparing:

• the original variant, indicated as crUCB (orig.) or (o.);
• the original variant with σ0 scaled by

√
1− 2α, indicated as crUCB (low σ0) or (l. σ0);

• the modified variant, indicated as crUCB (mod.) or (m.).
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A.3 CRLinUCB

We source the CRLinUCB algorithm from Ding et al. (2022). The authors suggest setting the upper
bound of the budget C ′ to equal εBH . We found that the algorithm did not perform well when set to
this value. We then tuned this variant, and present a number of results in the tables:

• the original variant, denoted as CRLinUCBv1, where the hyperparameters are set to the
values suggested by Theorem 1 by Ding et al. (2022);

• the variant where the bound is divided by the time horizon H , denoted as CRLinUCBv2,
which approximately matches the values of the experiments of Ding et al. (2022);

• a third variant, CRLinUCBv3, where the hyperparameters are interpolated between v1 and
v2, they are within the same order of magnitude with the geometric mean of the values used
in v1 and v2.

In the main text we report the results from CRLinUCBv2, which seemed to work best in our case.
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B Additional results

B.1 Bandit setting

We present Table 5, which shows the full set of results from the bandit setting. Note, that RTS (C̄
unk.), RTS (C̄ known) did not perform well, as also noted in Appendix A.1. Similarly, crUCB (orig.)
did not perform well, as noted in Appendix A.2. The high values obtained in the case, where the
attacker is crUCB (o.) mean that the attacker trained against this algorithm was not performing well,
and therefore led to a weak attack. Recall that the setup has a dual objective, and simply judging by
the regret or reward of a single row or column is not enough.

Table 5: Comparison of the cumulative regret (lower is better) of the different algorithms under
different attackers trained for 20 rounds, in the bandit setting. Mean and 95% confidence interval
(2×SEM) over 10 experiment replications. Attack budget B = 3.

Algorithm Attacker Target Unif. Rand.
Attack Clean Env.

AT-DPT DPT TS RTS (C̄ t.) UCB1.0 crUCB (o.) crUCB (l. σ0) crUCB (m.)

ε = 0.1

AT-DPT 14.5 ± 0.9 13.9 ± 0.7 14.4 ± 0.8 14.6 ± 1.0 14.8 ± 0.8 14.4 ± 1.4 14.1 ± 0.6 14.2 ± 1.3 14.2 ± 1.2 12.4 ± 1.1
DPT F 24.2 ± 1.8 22.7 ± 2.0 22.1 ± 1.3 23.0 ± 1.6 22.2 ± 1.6 21.2 ± 1.8 22.6 ± 1.5 22.2 ± 1.8 15.2 ± 0.8 12.1 ± 0.5
TS 27.9 ± 1.1 26.6 ± 2.1 28.4 ± 1.8 27.2 ± 1.6 25.9 ± 1.6 22.4 ± 2.1 28.0 ± 1.8 28.6 ± 1.8 12.0 ± 1.0 8.9 ± 0.4
RTS (C̄ tuned) 27.1 ± 0.6 27.0 ± 1.4 26.9 ± 1.0 26.5 ± 2.0 24.2 ± 1.1 21.3 ± 1.4 26.2 ± 1.4 26.8 ± 1.2 13.0 ± 0.8 10.5 ± 0.3
RTS (C̄ unk.) 59.8 ± 0.5 59.4 ± 0.8 59.2 ± 0.6 59.7 ± 0.7 58.7 ± 0.6 55.7 ± 1.0 59.2 ± 1.0 59.1 ± 0.7 49.9 ± 0.8 49.3 ± 0.8
RTS (C̄ known) 94.9 ± 0.8 94.4 ± 0.9 94.5 ± 0.8 94.6 ± 1.2 94.0 ± 0.8 91.8 ± 1.1 93.8 ± 1.1 94.4 ± 1.0 84.7 ± 1.6 84.1 ± 1.7
UCB1.0 30.8 ± 1.5 28.5 ± 1.5 29.5 ± 0.8 28.5 ± 1.8 27.3 ± 1.5 24.5 ± 1.0 28.7 ± 1.5 29.4 ± 1.3 17.9 ± 0.4 16.1 ± 0.3
crUCB (orig.) 82.4 ± 0.8 81.9 ± 0.7 82.5 ± 0.9 81.9 ± 1.3 82.1 ± 0.7 81.3 ± 1.0 82.1 ± 0.8 81.9 ± 0.8 79.2 ± 1.4 79.3 ± 1.5
crUCB (low σ0) 19.5 ± 1.8 19.1 ± 1.2 20.0 ± 1.0 18.8 ± 2.1 20.1 ± 1.5 18.6 ± 1.7 19.9 ± 1.6 19.6 ± 2.0 11.1 ± 0.7 9.3 ± 0.5
crUCB (mod.) 19.4 ± 1.7 18.4 ± 1.2 20.5 ± 1.2 17.8 ± 1.6 19.7 ± 1.1 18.7 ± 1.6 19.5 ± 1.0 18.4 ± 1.6 11.0 ± 0.7 9.2 ± 0.3

ε = 0.2

AT-DPT 17.9 ± 1.4 17.1 ± 1.4 19.0 ± 1.5 18.4 ± 1.3 17.8 ± 1.4 17.4 ± 1.9 17.0 ± 0.9 16.9 ± 1.2 20.4 ± 2.0 14.5 ± 1.8
DPT F 35.2 ± 4.1 33.2 ± 3.5 37.1 ± 5.2 35.1 ± 3.1 33.0 ± 3.5 28.9 ± 3.1 35.1 ± 3.7 33.1 ± 3.9 22.3 ± 1.1 12.1 ± 0.5
TS 51.1 ± 3.2 48.6 ± 3.5 51.1 ± 3.1 50.1 ± 2.7 47.2 ± 2.4 33.7 ± 3.3 51.8 ± 1.7 49.9 ± 3.8 18.7 ± 1.1 8.9 ± 0.4
RTS (C̄ tuned) 49.8 ± 3.4 44.8 ± 2.7 48.1 ± 2.0 48.3 ± 3.1 44.3 ± 3.8 32.4 ± 2.5 47.6 ± 2.0 46.3 ± 1.7 19.1 ± 1.1 10.5 ± 0.3
RTS (C̄ unk.) 76.0 ± 2.1 73.2 ± 1.2 74.5 ± 1.7 74.2 ± 1.7 72.1 ± 1.3 63.5 ± 1.2 73.8 ± 1.2 73.7 ± 1.2 53.0 ± 0.9 49.3 ± 0.8
RTS (C̄ known) 131.7 ± 1.8 130.7 ± 1.5 131.3 ± 1.5 130.9 ± 1.5 130.6 ± 1.5 127.0 ± 1.6 130.4 ± 1.5 131.0 ± 1.6 116.4 ± 2.5 115.7 ± 2.6
UCB1.0 51.9 ± 2.5 46.7 ± 1.8 50.8 ± 1.9 47.3 ± 1.9 45.2 ± 2.7 34.2 ± 2.3 49.1 ± 1.8 48.1 ± 2.7 23.9 ± 0.8 16.1 ± 0.3
crUCB (orig.) 101.6 ± 1.2 100.8 ± 1.2 101.7 ± 1.3 100.5 ± 1.6 101.0 ± 1.0 98.8 ± 1.3 101.1 ± 1.1 101.3 ± 1.2 96.0 ± 2.0 95.6 ± 2.0
crUCB (low σ0) 34.7 ± 2.1 33.6 ± 2.1 34.4 ± 2.1 31.6 ± 2.8 32.9 ± 1.6 30.5 ± 3.0 32.9 ± 2.2 34.1 ± 1.9 15.2 ± 0.6 9.4 ± 0.6
crUCB (mod.) 33.7 ± 1.8 33.6 ± 1.7 33.9 ± 2.2 31.1 ± 2.3 31.8 ± 2.2 29.9 ± 3.0 33.4 ± 2.7 33.5 ± 1.5 15.1 ± 1.0 9.5 ± 0.3

ε = 0.4

AT-DPT 24.2 ± 1.2 24.8 ± 1.4 29.8 ± 3.0 28.3 ± 1.9 24.5 ± 0.8 23.4 ± 1.6 24.4 ± 1.3 23.8 ± 1.4 38.7 ± 1.7 17.8 ± 1.4
DPT F 63.6 ± 8.6 59.4 ± 5.2 62.0 ± 8.6 59.1 ± 7.3 55.4 ± 8.1 41.8 ± 6.2 58.5 ± 7.4 58.8 ± 7.8 37.2 ± 1.2 12.1 ± 0.5
TS 106.3 ± 3.8 97.7 ± 4.9 94.3 ± 3.8 93.1 ± 6.0 89.6 ± 1.8 48.0 ± 2.4 92.2 ± 6.0 92.6 ± 4.8 34.2 ± 1.6 8.9 ± 0.4
RTS (C̄ tuned) 102.9 ± 4.5 97.0 ± 4.2 90.4 ± 4.4 92.5 ± 5.0 89.2 ± 3.4 46.8 ± 2.9 90.6 ± 4.8 89.0 ± 3.0 33.9 ± 1.6 10.5 ± 0.3
RTS (C̄ unk.) 113.0 ± 2.6 108.3 ± 2.8 104.2 ± 2.9 104.5 ± 3.2 103.0 ± 2.4 73.9 ± 2.3 104.2 ± 2.7 105.0 ± 2.0 62.8 ± 1.5 49.3 ± 0.8
RTS (C̄ known) 156.4 ± 1.9 155.2 ± 1.9 154.6 ± 1.7 154.6 ± 2.0 154.6 ± 1.9 149.7 ± 2.0 154.9 ± 1.9 155.3 ± 2.0 139.5 ± 3.4 138.9 ± 3.4
UCB1.0 104.1 ± 3.6 95.8 ± 4.9 90.6 ± 4.1 90.0 ± 5.2 88.1 ± 3.4 46.8 ± 2.4 91.9 ± 3.6 91.2 ± 3.4 38.1 ± 2.2 16.1 ± 0.3
crUCB (orig.) 148.3 ± 1.9 147.8 ± 2.0 148.0 ± 2.0 147.1 ± 2.1 147.9 ± 1.7 145.0 ± 1.9 147.7 ± 1.7 148.1 ± 1.8 139.8 ± 3.4 139.8 ± 3.5
crUCB (low σ0) 85.9 ± 3.0 83.0 ± 3.7 82.8 ± 3.1 84.5 ± 3.5 80.9 ± 4.3 64.2 ± 3.6 82.4 ± 4.4 84.6 ± 4.6 31.4 ± 1.5 14.8 ± 0.4
crUCB (mod.) 86.0 ± 4.4 85.0 ± 2.3 82.0 ± 4.4 82.4 ± 3.3 79.4 ± 3.0 64.2 ± 2.4 80.2 ± 3.4 82.5 ± 5.1 31.8 ± 1.6 15.8 ± 0.3
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B.2 Bandit setting, adaptive attack

Table 6 presents the full set of results comparing adaptive and non-adaptive attacks. The adaptive
attacker columns in the table highlight, that these attacks work much better from the attacker’s
perspective, i.e., the attacks increase regret by a larger margin than in the non-adaptive case. We note
that in both cases the regret of AT-DPT is low, meaning it is working well.

Table 6: Comparison of the cumulative regret (lower is better) of adaptive and non-adaptive attackers
in the bandit setting. Attackers trained for 400 rounds. Mean and 95% confidence interval (2×SEM)
over 10 experiment replications. Attack budget B = 3. ∗ We use tuned versions of RTS and crUCB
which outperform the base versions – see Appendix A for details.

Algorithm
Attacker Target

Unif. Rand.
Attack

Clean Env.Adaptive Non-adaptive
AT-DPT TS AT-DPT TS

ε = 0.1

AT-DPT (against adaptive) 21.5 ± 4.2 22.6 ± 5.5 19.6 ± 3.8 19.6 ± 4.2 19.4 ± 4.6 16.7 ± 5.1
AT-DPT (against non-adaptive) 44.6 ± 17.7 39.7 ± 15.4 14.1 ± 0.7 14.2 ± 0.6 17.5 ± 1.4 11.8 ± 1.1
DPT F 60.2 ± 18.5 47.1 ± 10.1 22.2 ± 1.1 21.9 ± 1.5 16.9 ± 1.1 12.1 ± 0.8
TS 102.8 ± 27.1 91.0 ± 29.3 27.8 ± 1.7 27.4 ± 1.6 11.1 ± 0.7 9.1 ± 0.7
RTS (C̄ tuned) 101.5 ± 26.2 91.7 ± 29.0 26.1 ± 2.1 26.4 ± 2.1 11.5 ± 0.5 10.5 ± 0.6
UCB 103.9 ± 26.0 94.0 ± 27.2 28.8 ± 1.1 29.2 ± 1.1 15.9 ± 0.6 16.0 ± 0.4
crUCB (mod.) 67.2 ± 17.1 53.3 ± 15.8 18.9 ± 1.3 19.6 ± 1.5 9.8 ± 0.6 9.2 ± 0.3

ε = 0.2

AT-DPT (against adaptive) 26.6 ± 5.3 29.1 ± 8.5 25.9 ± 5.1 27.0 ± 4.5 25.3 ± 6.3 18.8 ± 7.6
AT-DPT (against non-adaptive) 54.7 ± 15.5 51.8 ± 11.8 17.5 ± 0.9 19.4 ± 1.3 24.9 ± 3.6 12.4 ± 1.3
DPT F 71.3 ± 20.4 61.6 ± 17.0 34.6 ± 3.6 35.1 ± 3.1 20.6 ± 1.2 12.1 ± 0.8
TS 74.9 ± 24.6 91.6 ± 35.0 51.6 ± 2.6 51.8 ± 3.6 13.3 ± 0.5 9.1 ± 0.7
RTS (C̄ tuned) 75.5 ± 24.6 92.2 ± 34.2 49.5 ± 2.9 49.3 ± 2.7 13.3 ± 0.6 10.5 ± 0.6
UCB 76.8 ± 22.4 92.4 ± 30.9 51.6 ± 2.7 49.4 ± 1.9 16.4 ± 0.7 16.0 ± 0.4
crUCB (mod.) 55.1 ± 16.5 61.8 ± 25.0 34.6 ± 1.8 34.4 ± 1.2 11.0 ± 0.5 9.5 ± 0.5

ε = 0.4

AT-DPT (against adaptive) 37.1 ± 6.6 36.4 ± 9.4 38.0 ± 6.4 42.6 ± 6.7 35.1 ± 8.3 21.3 ± 9.0
AT-DPT (against non-adaptive) 88.1 ± 20.0 81.0 ± 11.2 22.8 ± 1.6 29.8 ± 2.2 47.0 ± 6.0 13.8 ± 1.2
DPT F 97.9 ± 18.6 82.1 ± 20.7 61.6 ± 8.0 61.6 ± 6.6 29.2 ± 2.5 12.1 ± 0.8
TS 90.2 ± 21.9 104.2 ± 26.7 106.3 ± 5.5 94.3 ± 4.8 19.6 ± 1.0 9.1 ± 0.7
RTS (C̄ tuned) 90.5 ± 21.3 103.6 ± 26.8 104.5 ± 5.5 90.9 ± 4.2 16.7 ± 0.9 10.5 ± 0.6
UCB 94.3 ± 22.4 103.9 ± 28.4 101.3 ± 5.0 87.8 ± 4.4 18.3 ± 0.7 16.0 ± 0.4
crUCB (mod.) 85.1 ± 23.5 79.6 ± 29.4 88.4 ± 4.4 79.9 ± 4.7 18.0 ± 0.6 15.8 ± 0.3

19



B.3 Linear bandit setting

Table 7 presents the full results from the linear bandit setting. As described in Appendix A.3,
CRLinUCBv1 and CRLinUCBv3 performed worse than the tuned version CRLinUCBv2. This is
indicated by their poor performance on the clean and uniform random attack cases.

Table 7: Comparison of the cumulative regret (lower is better) of the different algorithms under
different attackers in the linear bandit setting. Mean and 95% confidence interval (2×SEM) over 10
experiment replications. Attack budget B = 3.

Algorithm Attacker Target Unif. Rand.
Attack Clean Env.

AT-DPT DPT F LinUCB CRLinUCBv1 CRLinUCBv2 CRLinUCBv3

ε = 0.1

AT-DPT 2.55 ± 0.88 2.02 ± 0.92 2.28 ± 0.90 2.44 ± 0.96 1.55 ± 0.98 1.85 ± 0.94 4.60 ± 0.98 3.89 ± 0.86
DPT F 14.50 ± 2.30 14.42 ± 2.48 14.62 ± 2.34 14.06 ± 2.72 14.02 ± 2.74 13.19 ± 2.36 5.23 ± 1.02 3.35 ± 0.84
LinUCB 10.57 ± 2.00 7.92 ± 1.24 7.56 ± 1.20 9.65 ± 1.78 8.04 ± 1.52 9.23 ± 1.72 4.18 ± 0.90 3.51 ± 0.88
CRLinUCBv1104.00 ± 7.06 103.24 ± 7.00 103.11 ± 7.04 103.03 ± 6.98 102.56 ± 7.02 102.97 ± 7.00 102.95 ± 7.00 110.85 ± 7.78
CRLinUCBv2 7.85 ± 1.58 7.99 ± 1.60 10.16 ± 2.00 10.94 ± 2.34 7.82 ± 1.92 9.07 ± 2.48 3.16 ± 0.96 2.94 ± 0.78
CRLinUCBv3 17.66 ± 1.18 17.34 ± 1.18 17.40 ± 1.24 17.86 ± 1.20 16.99 ± 1.14 16.58 ± 1.12 13.55 ± 0.96 34.08 ± 1.66

ε = 0.2

AT-DPT 1.37 ± 0.94 1.20 ± 0.92 1.67 ± 0.96 1.30 ± 0.96 2.42 ± 0.94 2.00 ± 0.92 4.80 ± 0.98 3.89 ± 0.86
DPT F 33.65 ± 4.14 35.49 ± 4.66 32.23 ± 3.96 35.29 ± 4.24 33.67 ± 4.02 33.15 ± 3.84 5.91 ± 1.12 3.35 ± 0.84
LinUCB 19.11 ± 2.56 15.79 ± 2.32 18.80 ± 2.62 21.31 ± 3.16 16.95 ± 2.68 19.52 ± 2.62 4.37 ± 0.98 3.51 ± 0.88
CRLinUCBv1100.19 ± 6.88 99.73 ± 6.74 99.35 ± 6.82 99.41 ± 6.88 100.48 ± 6.90 100.34 ± 6.88 107.34 ± 7.44 110.85 ± 7.78
CRLinUCBv2 16.42 ± 2.76 13.97 ± 2.46 16.56 ± 2.46 22.27 ± 3.66 16.02 ± 2.64 18.45 ± 2.78 3.41 ± 1.02 2.94 ± 0.78
CRLinUCBv3 31.53 ± 1.76 28.93 ± 1.62 28.66 ± 1.58 30.44 ± 1.80 30.02 ± 1.64 30.20 ± 1.74 19.42 ± 1.08 34.08 ± 1.66

ε = 0.4

AT-DPT 2.49 ± 1.06 2.50 ± 1.08 2.83 ± 1.10 2.93 ± 1.06 1.79 ± 1.02 2.16 ± 1.10 5.33 ± 1.16 3.89 ± 0.86
DPT F 70.29 ± 7.32 71.42 ± 7.46 70.83 ± 7.76 69.49 ± 6.88 63.84 ± 7.18 73.45 ± 6.82 6.62 ± 1.30 3.35 ± 0.84
LinUCB 37.69 ± 4.46 35.93 ± 3.86 35.22 ± 4.14 49.39 ± 5.12 34.82 ± 4.36 39.97 ± 4.50 5.21 ± 1.16 3.51 ± 0.88
CRLinUCBv1108.12 ± 6.96 107.54 ± 7.00 108.04 ± 6.98 107.84 ± 6.98 106.79 ± 6.98 107.13 ± 6.90 109.46 ± 7.64 110.85 ± 7.78
CRLinUCBv2 37.45 ± 4.76 33.03 ± 4.00 35.56 ± 4.26 46.23 ± 5.46 35.36 ± 4.80 37.75 ± 4.80 5.12 ± 1.48 2.94 ± 0.78
CRLinUCBv3 53.23 ± 3.02 51.76 ± 2.84 53.31 ± 2.98 54.45 ± 3.08 49.13 ± 2.66 51.43 ± 2.78 28.34 ± 1.56 34.08 ± 1.66
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B.4 MDP setting

In Table 8 we present the full set of results for the Darkroom2 environment.

Table 8: Comparison of the average episode reward (higher is better) of the different algorithms under
different attackers trained for 300 rounds (5 rounds for Q-learning and NPG) in the Darkroom2
environment (5×5 grid). Mean and 95% confidence interval (2×SEM) over 10 experiment replica-
tions. Attack budget B = 10. § NPG and Q-learning require multiple episodes of online learning to
converge to a stable policy; we run them for 100 episodes before evaluating their performance.

Algorithm Attacker Target Unif. Rand.
Attack Clean Env.

AT-DPT DPT F NPG Q-learning

ε = 0.1

AT-DPT 266.4 ± 18.2 267.8 ± 20.7 262.5 ± 17.5 258.9 ± 20.2 236.0 ± 22.5 273.4 ± 17.8
DPT F 233.6 ± 8.6 198.1 ± 13.0 220.9 ± 10.1 222.6 ± 6.8 141.7 ± 9.9 305.4 ± 6.1
NPG§ 241.9 ± 6.6 248.1 ± 6.3 247.7 ± 7.1 243.3 ± 5.5 150.8 ± 2.1 151.5 ± 2.5
Q-learning§ 283.5 ± 3.9 280.2 ± 5.1 246.6 ± 38.4 264.3 ± 17.2 266.0 ± 15.7 263.4 ± 15.4

ε = 0.2

AT-DPT 263.1 ± 17.6 269.7 ± 15.1 258.0 ± 17.7 258.0 ± 19.3 245.6 ± 17.0 275.8 ± 16.4
DPT F 227.9 ± 9.5 169.9 ± 13.3 213.6 ± 6.8 217.4 ± 9.5 131.5 ± 8.4 305.4 ± 6.1
NPG§ 244.1 ± 7.5 244.4 ± 6.7 239.5 ± 9.4 241.2 ± 9.4 151.9 ± 2.1 151.5 ± 2.5
Q-learning§ 240.6 ± 3.6 254.1 ± 6.2 236.5 ± 6.1 246.1 ± 5.3 246.8 ± 5.1 243.3 ± 6.4

ε = 0.4

AT-DPT 241.2 ± 9.1 268.7 ± 8.5 241.0 ± 12.7 239.1 ± 8.8 219.6 ± 14.9 266.4 ± 15.3
DPT F 214.8 ± 7.9 140.2 ± 10.4 206.1 ± 7.5 205.9 ± 7.8 123.9 ± 6.9 302.3 ± 6.3
NPG§ 237.2 ± 6.7 243.7 ± 7.9 228.9 ± 4.0 228.1 ± 8.1 230.3 ± 6.4 248.5 ± 6.0
Q-learning§ 198.3 ± 4.4 235.9 ± 4.8 112.5 ± 5.0 140.3 ± 9.2 249.7 ± 6.2 247.7 ± 6.3
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B.5 Training curves
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Figure 3: Adversarial training curves for training the attacker in the bandit setting, for different values
of ε. Note, that in the case of AT-DPT it is trained along with the attackers. ∗ We use tuned versions
of RTS and crUCB, see Appendices A.1 and A.2 for more details.
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Figure 4: Adversarial training curves for training the adaptive attacker in the bandit setting, for
different values of ε. Note, that in the case of AT-DPT it is trained along with the attackers.
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Figure 5: Adversarial training curves for training the attacker in the Darkroom2 environment, for
different values of ε. Note, that in the case of AT-DPT it is trained along with the attackers. § NPG
and Q-learning require multiple episodes of online learning to converge to a stable policy; we run
them for 100 episodes before evaluating their performance.
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Figure 6: Adversarial training curves for training the attacker in the Miniworld environment, for
different values of ε. Note, that in the case of AT-DPT it is trained along with the attackers.
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C Further details

C.1 Compute resources

The experiments were run on a compute cluster with machines containing Nvidia A100 80GB PCIe
and Nvidia H100 94GB NVL GPUs.

Approximate GPU machine runtime of experiments, per run:

• Bandit Environment:
– Pretraining – 3.4 h
– Adversarial training – 0.4 h
– Evaluation – 0.6 h

• Bandit Environment, Adaptive Attacker:
– Adversarial training – 0.6 h
– Evaluation – 0.2 h

• Darkroom2 Environment:
– Pretraining – 1.4 h
– Adversarial training – 0.6 h
– Evaluation – 3.4 h§

• Miniworld Environment:
– Pretraining – 13.1 h
– Adversarial training – 2.7 h
– Evaluation – 0.9 h

§ NPG and Q-learning required multiple episodes of online learning before converging to a stable
policy, therefore leading to an increased evaluation run time.

C.2 Different budgets
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Figure 7: A study of the effect of the budget B on the regret in the bandit setting. We run the
experiments for B = 5 for more rounds to observe convergence. We observe that a larger budget
for the attacker leads to a higher regret for TS and DPT F, although adversarial training for AT-DPT
helps it learn to recover from the attack.
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C.3 Interpretation of attack in Darkroom2

We present an illustration of an example environment and attacker’s strategy in Figure 8, taken from
the middle of a sample AT-DPT adversarial training run. The attacker’s strategy observed in the
illustration shows the attack is not arbitrary – it is focusing on states nearby the goal. We can see an
attack of +1 on a goal which gives a reward of 2 – this would change the observed reward into 3. A
reward value of 3 was not seen during pretraining DPT, and in this round, upon encountering this it
provokes undesirable behavior (stay at a low-reward state), causing a low episode reward. During the
next round of training we find that the DPT has learned to recover from this mistake, and given the
same attacker’s strategy for that state successfully ignores this attack.

Goal +1 Goal +2 Agent

Round 4

+0 +0 +0 +0 +0

+0 +0 +0 +0 +0

+0 +1 +1 +1 +0

+0 +0 +1 +0 +0

+0 +0 +0 +0 +0

+0 +0 +0 +0 +0

+0 +0 +0 +0 +0

+1 +1 +1 +1 +0

+0 +0 +1 +0 +0

–1 +0 +0 +0 +0

Round 5

Figure 8: An illustration of the Darkroom2 environment with an attacker’s poisoning strategy during a
sample training run. Gray and blue numbers−1, +0, and +1 indicate the attacker’s current poisoning
strategy. Green path denotes trajectory taken by the agent for that round; green circle indicates the
state where the agent chose to stop and exploit the current reward by choosing the stay action.

C.4 AT-DPT test phase

During the test phase, AT-DPT uses the trained parameters θ, and ϕ for the attacker. The procedure
for this can be seen in Algorithm 3. We note, that the tables and plots show the performance based on
clean rewards, and not r̃.

Algorithm 3 AT-DPT test phase

1: input: victim πθ – AT-DPT with params θ
2: input: attacker π†

ϕ with params ϕ, budget B, fraction of steps poisoned ε
3: Sample M tasks {Mi ∼ T }mi=1 ▷ Differing from the tasks in adversarial training
4: for allMi simultaneously do
5: s0 ∼ ρMi

6: D† ← {}
7: for h = 0, . . . ,H − 1 do
8: select action ah ∼ πθn( · | D†, sh)

9: r̃h =

{
r†h ∼ π

†
ϕ( · | sh, ah, r̄h) with probability ε

r̄h ∼ R( · | sh, ah) otherwise
10: sh+1 ∼ T ( · | sh, ah)
11: append (sh, ah, r̃h, sh+1) to D†

12: end for
13: end for
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