
International Journal of Artificial Intelligence and Applications (IJAIA), Vol.16, No.3, May 2025

DOI:10.5121/ijaia.2025.16305 65

AI-DRIVEN VULNERABILITY ANALYSIS IN SMART

CONTRACTS: TRENDS, CHALLENGES
AND FUTURE DIRECTIONS

Mesut Ozdag

Department of Computer Science, University of Central Florida, Orlando, Florida, USA

ABSTRACT

Smart contracts, integral to blockchain ecosystems, enable decentralized applications to execute

predefined operations without intermediaries. Their ability to enforce trustless interactions has made them

a core component of platforms such as Ethereum. Vulnerabilities such as numerical overflows, reentrancy

attacks, and improper access permissions have led to the loss of millions of dollars throughout the

blockchain and smart contract sector. Traditional smart contract auditing techniques such as manual code

reviews and formal verification face limitations in scalability, automation, and adaptability to evolving

development patterns. As a result, AI-based solutions have emerged as a promising alternative, offering the

ability to learn complex patterns, detect subtle flaws, and provide scalable security assurances. This paper
examines novel AI-driven techniques for vulnerability detection in smart contracts, focusing on machine

learning, deep learning, graph neural networks, and transformer-based models.This paper analyzes how

each technique represents code, processes semantic information, and responds to real-world vulnerability

classes. We also compare their strengths and weaknesses in terms of accuracy, interpretability,

computational overhead, and real-time applicability. Lastly, it highlights open challenges and future

opportunities for advancing this domain.

KEYWORDS

Smart Contracts, Vulnerability Detection, Artificial Intelligence, Machine Learning, Deep Learning

1. INTRODUCTION

Smart contracts are self-executing digital agreements encoded on blockchain platforms, most

notably Ethereum, designed to facilitate, verify, or enforce the negotiation or performance of a
contract without the need for intermediaries [1]. These autonomous pieces of code carry

significant financial, legal, and computational implications and are increasingly deployed in

applications spanning decentralized finance (DeFi), supply chain management, gaming, and
insurance [4]. While smart contracts offer transparency, auditability, and trustless interaction, they

also come with serious security risks. If a smart contract contains weaknesses, malicious actors

can take advantage of them, leading to outcomes that vary from small-scale token losses to major
financial disasters, e.g., examples include the infamous DAO breach [1] and the Parity wallet

vulnerability [6].

Unlike traditional software, smart contracts operate in immutable environments: once deployed,
the code cannot be modified [1]. This makes proactive vulnerability detection imperative. Any

flaw in the contract's logic can lead to irrevocable damage, emphasizing the need for rigorous

security auditing. Historically, developers have relied on techniques such as manual audits, static
analysis tools such as Oyente [17] and Mythril [18], and formal verification methods [2]. While

these techniques have proven useful in identifying common bugs and enforcing correctness, they

https://airccse.org/journal/ijaia/current2025.html
https://doi.org/10.5121/ijaia.2025.16305

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.16, No.3, May 2025

66

fall short when dealing with complex logic flows, interactions between contracts, and evolving
threat patterns. Manual analysis takes a lot of time and can beprone to mistakes, whereas formal

verification approaches demand specialized knowledge and are difficult to apply broadly[2].

To address these issues, artificial intelligence has become a powerful tool for identifying
vulnerabilities in smart contracts [4]. By learning from data, recognizing patterns, and making

informed decisions or classifications, AI proves especially valuable given the wide variety of

coding styles, intricate behaviors, and often unclear flaws present in smart contracts. AI-driven
approaches promise scalability, adaptability, and even potential integration into the contract

development lifecycle for proactive threat mitigation.

This paper examines four key categories of AI methods applied to analyzing smart contracts:

machine learning (ML), deep learning (DL), graph neural networks (GNNs), and transformer

architectures. Algorithms such as random forests, under the machine learning umbrella, have

been employed to identify unusual patterns during contract execution[5]. DL models including
convolutional neural networks (CNNs) and long short-term memory networks (LSTMs) have

been trained on opcode sequences to recognize vulnerability patterns [7]. GNNs, by modeling

smart contracts as control flow graphs (CFGs), excel in capturing structural relationships [10].
Transformers, pre-trained on massive corpora of smart contract code, offer context-aware

semantic understanding that boosts detection accuracy [13].

The performance of these techniques is evaluated using metrics such as precision, recall, and F1-

score [5][7][13]. Additionally, the trade-offs between interpretability, runtime efficiency, and

generalizability are examined. For instance, transformer-based methods including SmartBERT

[13] offer superior performance but demand significant computational resources. In contrast,
models including Sereum [5] prioritize real-time analysis but may miss context-rich patterns.

GNNs provide a middle ground, excelling in both performance and explainability by visualizing

key nodes and decision paths [10][12].

Moreover, this paper discusses the importance of curated and real-world datasets such as

SmartBugs [7] and EtherScan [10], which serve as the foundation for training and benchmarking

AI models. We also present real-world case studies where AI models could have helped prevent
known exploits [5][6][10]. These practical examples highlight the relevance and necessity of

incorporating AI into the smart contract development and audit pipeline.

In closing, while AI does not eliminate the need for traditional security practices, it complements

them by adding a layer of intelligent automation. As smart contracts become more prevalent, the

convergence of AI and blockchain security becomes not just valuable, but essential [4]. The goal
of this paper is to assist researchers, developers, and auditors by providing an in-depth overview

of AI-driven methods, highlighting their current capabilities, existing challenges, and potential

paths for future advancement in this rapidly growing field.

2. BACKGROUND ON AI-BASED VULNERABILITY IN SMART CONTRACTS

AI offers powerful capabilities for modeling complex code semantics and has rapidly become a

cornerstone of modern vulnerability detection techniques in smart contracts. This section surveys
the most recent and impactful AI-driven methods across various categories, including ML, DL,

GNNs, transformers, and hybrid models. Each of these categories brings distinct advantages and

trade-offs in terms of scalability, interpretability, learning depth, and computational efficiency.

Machine learning methods offer fast, interpretable models often used for anomaly detection and

rule-based classification. Deep learning approaches, such as CNNs and recurrent neural networks

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.16, No.3, May 2025

67

(RNNs), are capable of autonomously identifying contextual and sequential structures within
code. GNNs leverage the inherent graph structure of smart contract code, e.g., control flow and

call graphs, to identify vulnerabilities based on node and edge relationships. Transformer-based

models, especially those adapted from pre-trained natural language processing (NLP) models

including BERT, excel in capturing deep semantic representations of contract logic. Finally,
hybrid models seek to combine multiple paradigms to enhance robustness and overall detection

accuracy.

Each subsection in this part of the paper explores the unique approach, core architecture, key

mathematical formulations, and representative models from the literature. The objective is to

deliver an organized and comparative insight into the ways AI is utilized to enhance the security
of decentralized platforms.

2.1. Machine Learning Approaches

ML approaches represent some of the earliest efforts to automate vulnerability detection in smart

contracts. These techniques typically rely on manually engineered features derived from contract
metadata, opcode sequences, or execution traces.

ML models such as decision trees, support vector machines, and ensemble methods have proven

effective in identifying known vulnerability patterns and statistical anomalies. Although typically
simpler than deep learning or graph-based approaches, machine learning methods stand out for

their ease of interpretation and lower computational demands. This subsection reviews key

machine learning-based models, focusing on both static and dynamic analysis strategies for
vulnerability identification.

2.1.1. Dynamic Analysis Models

Sereum applies random forests for dynamic monitoring of smart contract states to detect

reentrancy attacks [5]. A random forest is an ensemble learning method that aggregates the

outputs of multiple decision trees trained on different data subsets and feature combinations. Each
decision tree provides a classification result whether a contract behavior indicates a potential

vulnerability or not. The ultimate decision is made based on the majority vote from all the

individual decision trees [Figure1]. This structure improves robustness and reduces overfitting
compared to a single decision tree, making it well-suited for flagging anomalous runtime

behavior in smart contracts.

Figure 1. Technical Workflow Diagram of Sereum

2.1.2. Static Analysis Models

MadMax applies static analysis to detect gas-focused vulnerabilities in Ethereum smart contracts,

such as infinite loops or unbounded array iterations [6]. It represents the behavior of a contract

through a finite state machine (FSM), with each state corresponding to a specific control position

and transitions occurring in response to opcode execution [Figure 2].

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.16, No.3, May 2025

68

MadMax performs symbolic execution, associating symbolic variables with storage and memory
states rather than concrete values, enabling it to reason about multiple program paths

simultaneously. Mathematically, a smart contract is abstracted as a tuple; M = (S, S0, T).In the

given equation here, S defines the set of symbolic program states and S0 ⊆ S is the set of initial

states. In addition, T:S × Opcode → S defines the transition relation based on opcode effects.

Figure 2. Technical Workflow Diagram of MadMax Static Analyzer

MadMax identifies vulnerability patterns such as unbounded loops by analyzing whether repeated

transitions can occur without decreasing gas or reaching a terminal state. This modeling enables
MadMax to detect vulnerabilities even without executing the contract on-chain. It predicts out-of-

gas errors based on symbolic execution and state transitions.

2.2. Deep Learning Approaches

DL approaches have gained significant traction in the domain of smart contract vulnerability
detection due to their ability to automatically learn hierarchical representations from raw code

without manual feature engineering. These methods are particularly effective at modeling

sequential and contextual dependencies in contract logic through architectures such as CNNs,

LSTM networks, and attention-based mechanisms. DL models can process either tokenized
source code, opcodes, or bytecode and map them into rich embeddings that capture both syntax

and semantics. Their scalability and generalization capability make them well-suited for detecting

both known and previously unseen vulnerability patterns. This section reviews core DL methods,
highlighting their model designs, training strategies, and the types of vulnerabilities they are most

effective at identifying.

2.2.1. Embedding-Based Models

SmartEmbed [7] represents one of the earliest deep learning models tailored for smart contract

vulnerability detection. It processes tokenized bytecode or opcode sequences using word
embeddings followed by a CNN to capture local vulnerability patterns. Each token ti in the smart

contract is first mapped to a continuous vector ei∈Rd using an embedding layer:

ei= E(ti), where E : V →Rd (1)

In the equation 1, V is the token vocabulary, and d is the embedding dimension. The embedding

sequence E = [e1, e2, …, en] is fed into one or more convolutional layers, which function as
feature extractors by scanning over instruction segments using sliding windows. Each

convolutional filter w applies a transformation:

cj = ReLU(w⋅Ej:j+k−1 + b) (2)

In the equation 2, cjis the output or feature at position j after applying the convolution and
activation. ReLU is the activation function applied after the convolution, which stands for

Rectified Linear Unit. w is the weight vector or matrix of the convolutional filter, also called

kernel. It learns to detect a particular pattern or feature. Ej:j+k−1 is a window or subsequence of

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.16, No.3, May 2025

69

embeddings from position j to j+k−1. If each ei is a vector, then Ej:j+k−1 is a matrix formed by
stacking these k vectors. The dot product or tensor contraction is typically implemented as a

matrix-vector multiplication. b is the bias term, a scalar added after the dot product, which helps

shift the activation. In summary, this operation slides a filter w over a sequence of embeddings,

computes a weighted sum for each window, adds a bias, and passes the result through a ReLU
function to produce cj, a feature value at that position.

The generated feature maps are combined using max-pooling, then forwarded to a dense layer to
perform binary classification.[Figure 3]. SmartEmbed's ability to extract localized code patterns

makes it especially effective for detecting stack misuse and unsafe opcode sequences.

Figure 3.SmartEmbed Architecture Workflow

2.2.2. Sequence Modeling

Sequence modeling methods, especially RNNs including LSTMs, have been utilized to identify

flaws in smart contracts by examining patterns in their opcode sequences. These models excel at
learning temporal dependencies, which is valuable in tracking how instructions and state

transitions evolve over time in smart contract execution flows [8].

In the equation 3, given a token sequence x=(x1, x2, …, xT), an LSTM processes the input

iteratively, maintaining a hidden state ht and cell state ct that capture long-range dependencies:

ht ,ct =LSTM(xt, ht−1, ct−1) (3)

This enables the model to remember the execution context across potentially long sequences,

which is critical for identifying delayed-effect vulnerabilities such as unguarded write operations
or complex control flows. In practice, LSTM-based models are often combined with token

embeddings and fully connected layers to output vulnerability predictions. These models have

demonstrated promise in detecting reentrancy patterns, uninitialized storage usage, and function
call inconsistencies within smart contracts.

2.2.3. Attention-Enhanced Models

Attention mechanisms have significantly improved deep learning models by enabling them to

selectively focus on the most relevant parts of an input sequence. In smart contract vulnerability

detection, models such as VulnSniffer [9] leverage bidirectional LSTM (Bi-LSTM) layers
combined with attention layers to enhance both accuracy and interpretability. The Bi-LSTM

processes opcode or token sequences in both forward and backward directions, capturing context

from both preceding and succeeding instructions. The attention mechanism proceeds by
calculating a weighted combination of the hidden states:

(4)

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.16, No.3, May 2025

70

In the equation 4, et = score(ht) denotes the relevance of each hidden state ht to the final
classification. This allows the model to assign greater importance to vulnerability-indicating

patterns, such as reentrant calls or unsafe storage writes. In the equation 5, αt is the attention

weight assigned to the hidden state htat time step t. It represents how important that specific token

or opcode is for the model’s decision when classifying a smart contract as vulnerable or not. The
model calculates a score et for each time step, this could be a function including a dot product, or

a learned feedforward layer applied to the hidden state. The scores et are then normalized using a

softmax function.

Models using attention mechanisms enhance accuracy while also offering transparency by

highlighting which sections of the contract contributed to the outcome, making them especially

useful for both developers and auditors.

2.3. Graph Neural Network (GNN) Approaches

GNNs have emerged as a powerful framework for modeling structured data, making them well-

suited for smart contract analysis where control flow, function calls, and data dependencies

naturally form graph-structured representations. Unlike sequence-based models that treat code
linearly, GNNs can leverage relational and topological information within the contract, enabling

more precise detection of complex vulnerabilities such as reentrancy, call injection, and unsafe

delegate calls.

Smart contracts can be abstracted into various graph forms, including Control Flow Graphs,

Function Call Graphs, and Heterogeneous Graphs with multiple types of nodes (e.g., contracts,

functions, storage) and edges (e.g., calls, data flows). GNNs work on these structures by
repeatedly gathering data from each node’s surrounding nodes, enabling the model to learn

embeddings that reflect the broader context.

This section explores major GNN-based approaches applied to smart contract security, focusing

on how graph representations are constructed, how message passing is defined, and how models

including ContractGraph, ETH2Vec, and SolGraph leverage these representations for

vulnerability classification.

2.3.1. Control Flow Graph-Based Models

CFGs are widely used to represent the execution structure of smart contracts, where nodes denote

basic blocks or instructions and edges represent the control transitions between them.

ContractGraph [10] is a notable model that converts Solidity bytecode into a CFG and then
applies GNNs to learn from its structural and contextual properties [Figure 4].

Each node v in the CFG is initialized with feature vectors derived from opcodes, control

dependencies, and symbolic information. The GNN iteratively updates node embeddings using
the neighborhood aggregation mechanism:

(5)

(6)

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.16, No.3, May 2025

71

In the equation 6,hv
(k) is the hidden state of node v at layer k, N(v) is the set of neighbors, W(k) are

learnable weights, and σ is a non-linear activation function. b(k)is the bias term for the GNN layer

at the k-th iteration or layer. It serves a similar purpose as in traditional neural networks, enabling

the model to adjust the activation output regardless of the input, which adds flexibility to the

learning process. Without a bias term, all aggregated neighbor features would be linearly
transformed by W(k) but limited in expressiveness. Adding b(k)enables the GNN to better model

decision boundaries and learn more nuanced representations.

Figure 4. ContractGraph Workflow for Vulnerability Detection

ContractGraph focuses on learning rich, structural features of code execution paths, enabling the

model to detect complex vulnerabilities such as unreachable code, logical inconsistencies, and
path-sensitive attacks. Its graph-based representation also enhances interpretability, allowing

auditors to trace specific vulnerable paths within the contract structure.

2.3.2. Heterogeneous Graph Models

Heterogeneous graph models extend traditional GNNs by supporting multiple types of nodes and
relationships. This added complexity allows them to better represent the rich semantics of smart

contracts, which often involve diverse entities such as contracts, accounts, storage slots, and

external function calls. A prominent example is ETH2Vec [11], which constructs heterogeneous

graphs where nodes represent contracts, addresses, and transactions, and edges represent
interactions such as transfers, calls, or dependencies.

In the ETH2Vec heterogeneous graph diagram, the nodes labeled Tx1 and Tx2 represent
individual Ethereum transactions that interact with smart contracts. In the context of the diagram,

Tx1 might represent a transaction initiated by Contract A or a user, which triggers or emits

events; Tx2 could be a follow-up transaction in the same block or a sequential one, which forms a
transaction-level edge (Tx1 → Tx2).

This architecture allows ETH2Vec to learn relation-aware embeddings, enhancing detection of

multi-entity vulnerabilities such as transaction-ordering dependence (TOD) or proxy misuse.
Heterogeneous GNNs are especially effective in cross-contract analysis and auditing contract

ecosystems rather than isolated contracts.

2.3.3. Attention-Based GNN Models

Attention-based GNN models enhance conventional message-passing mechanisms by

dynamically weighting the importance of neighboring nodes during aggregation [Figure 5]. In the
context of smart contract analysis, this enables the model to prioritize critical control paths, data

dependencies, or transaction relationships that are more likely to indicate vulnerabilities.

SolGraph [12] is a notable approach that uses Graph Attention Networks (GATs) to analyze CFGs

of smart contracts. In GATs, each node aggregates its neighbors’ features using learned attention

coefficients:

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.16, No.3, May 2025

72

Figure 5. ETH2Vec - Heterogeneous GNN Workflow for Smart Contract

In the equation 7, the attention weight αvu reflects the relevance of neighbor u's features to node v
and is computed using a self-attention mechanism over node embeddings. This formulation

enables SolGraph to identify vulnerabilities associated with specific execution paths more

precisely than uniform-aggregation GNNs.

Moreover, attention weights can be visualized to explain the model’s decisions, improving

transparency for auditors. This makes attention-based GNNs a powerful tool for detecting subtle

and context-dependent vulnerabilities in smart contracts.

2.4. Transformer-Based Approaches

Transformer models have significantly advanced various ML fields, especially NLP, thanks to

their capacity to model long-distance relationships and contextual cues using self-attention.
Lately, these architectures have been repurposed for analyzing smart contracts, where the code’s

syntax and meaning share characteristics with formal languages.Transformers can process large

sequences of tokenized contract code, including Solidity source or bytecode, and model intricate
interactions across contract functions and instructions.

Unlike recurrent or convolutional models, transformers are position-independent, allowing them

to effectively encode both local and global semantics within a contract. Models including
SmartBERT [13] fine-tune general-purpose language models (e.g., BERT) on smart contract

code, while others including SolTrans [14] pre-train specifically on Solidity to build domain-

aware embeddings.

These transformer-based methods have achieved state-of-the-art performance in several

vulnerability detection benchmarks.

This section explores how transformers are applied to smart contract security, their architectural

adaptations, and the benefits they offer over prior deep learning models.

(7)

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.16, No.3, May 2025

73

2.4.1. Pre-trained Language Models

Pre-trained language models (PLMs) such as BERThave been effectively leveraged for

identifying vulnerabilities in smart contracts, as they can capture deep contextual understanding

directly from the code. SmartBERT [13] is one such model, fine-tuned specifically on tokenized
smart contract code, including both Solidity source and low-level bytecode. BERT’s fundamental

design relies on multi-head self-attention, enabling it to recognize and model relationships

between distant elements throughout the entire smart contract. Given an input sequence of tokens
X=[x1, x2, …, xn], SmartBERT computes contextual embeddings using multiple layers of self-

attention:

In the equation 8, Q, K, and V are the query, key, and value matrices derived from input token

embeddings, respectively. These operations enable SmartBERT to determine which parts of the

contract are most semantically relevant to the prediction task.

The model is fine-tuned using datasets labeled with vulnerabilities, helping it tailor its broad

language comprehension to the specific nuances of security-related tasks. This approach provides

high accuracy and has shown strong generalization across multiple vulnerability types.

2.4.2. Domain-Specific Transformers

While pre-trained language models including BERT have proven useful in adapting to smart

contract analysis tasks, their original training on natural language imposes limitations when

dealing with domain-specific syntax and semantics of blockchain programming languages. To

address this, domain-specific transformers such as SolTrans [14] have been developed and pre-
trained exclusively on Solidity code. These models are built to understand unique constructs such

as msg.sender, require(), function modifiers, fallback logic, and gas optimization patterns that are

absent from general language corpora.

SolTrans incorporates the same self-attention architecture as BERT but modifies its tokenizer to

handle Solidity-specific tokens and operators more effectively. During pre-training, SolTrans uses

masked language modeling (MLM) and optionally, next statement prediction (NSP) over tens of
thousands of real-world smart contracts. The resulting embeddings capture functional

relationships between contract components. Once pre-trained, SolTrans is fine-tuned on labeled

vulnerability datasets to detect issues such as reentrancy, arithmetic overflows, and improper
access control. Domain-specific transformers have shown significant gains over general models,

especially in detecting logic-based and semantic vulnerabilities in complex contracts.

2.5. Hybrid Approaches

To address the shortcomings of single-model approaches, hybrid methods have been developed,
blending different AI techniques to enhance the detection of vulnerabilities in smart contracts.

Although machine learning models are fast and easy to interpret, they frequently fall short in

capturing deeper contextual insights. Conversely, deep learning and GNNs provide rich
representations but can be resource-intensive or opaque. Hybrid models aim to balance these

trade-offs by integrating techniques such as CNNs for local pattern detection, GNNs for structural

awareness, and transformers for semantic depth. These systems can leverage diverse information

(8)

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.16, No.3, May 2025

74

sources such as opcode sequences, control-flow graphs, and transaction histories, which yields
more accurate and robust detection across a wide range of contract types and vulnerabilities.

2.5.1. CNN and GNN Hybrids

Hybrid architectures combining CNNs and GNNs are designed to exploit the complementary

strengths of local feature extraction and global structural reasoning. A prominent example is
DeepSolid [15], which integrates a CNN-based module to process opcode sequences and a GNN-

based module to analyze the CFG of the same contract.

The CNN module applies convolutional filters over the tokenized opcode sequence to detect local
vulnerability patterns, such as stack misuse or repeated call instructions. In parallel, the GNN

module operates on the CFG to capture the flow of execution between basic blocks. Each block is

represented as a node, and control transitions are treated as edges.

Formally, the model learns two embedding spaces. One is that CNN outputs fCNN (x) for token

sequences. The second is that GNN outputs fGNN(G) for graph structures. These embeddings are
concatenated and passed to a fully connected classifier for final prediction. This dual-channel

design improves robustness and achieves better generalization across diverse contract structures

and attack types.

2.5.2. Ensemble Learning Models

Ensemble learning techniques merge the outputs of several individual models to boost the
precision, resilience, and adaptability of systems designed to detect vulnerabilities in smart

contracts. A key advantage of this approach is its ability to mitigate the weaknesses of individual

models by aggregating their strengths. HybridVulDetect [16] exemplifies this strategy by
integrating diverse model families, such as random forests, GNNs, transformers, into a unified

ensemble pipeline.

The system begins by preprocessing smart contracts into different feature formats: token
sequences for transformer models, opcode vectors for RF models, and control flow graphs for

GNNs. Each sub-model produces independent predictions, which are then combined using either

a majority voting scheme or a meta-classifier trained to weigh the models based on their
historical performance.

This multi-perspective architecture significantly improves detection performance across multiple

vulnerability types, especially in real-world scenarios involving obfuscated or adversarially-
crafted contracts. Ensemble models including HybridVulDetect are increasingly favored for

deployment in high-stakes, production-level smart contract auditing pipelines. Their ability to

integrate diverse learning signals enhances resilience against evolving attack patterns. As a result,
they offer a balanced trade-off between detection accuracy and operational efficiency, making

them ideal for continuous security monitoring.

3. COMPARISON AND EVALUATION

This section presents a comparative evaluation of the AI-based vulnerability detection models

discussed in Section 2. While each approach ranging from machine learning to hybrid models has

unique strengths, they also differ in terms of performance metrics, interpretability, scalability, and
computational efficiency. The performance of these models is evaluated with common

classification metrics such as precision, recall, F1-score, and accuracy, relying on outcomes

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.16, No.3, May 2025

75

documented in prior studies using standard benchmark datasets. Additionally, qualitative aspects
are considered such as explainability and real-time applicability, which are crucial for real-world

deployment. This analysis is intended to assist both researchers and professionals in choosing the

most appropriate models for different applications related to smart contract security.

3.1. Performance Metrics

To evaluate AI-based vulnerability detection models in smart contracts, standard classification

metrics are used: precision, recall, F1-score, and accuracy. These metrics are crucial for

understanding not just how often a model is correct, but how and where it succeeds or fails,

particularly important in high-stakes domains like smart contract auditing.

Precision indicates how many of the vulnerabilities identified by the model are actually correct,

representing the ratio of true positives among all reported positives. High precision is critical to
avoid overwhelming developers with false alarms. Recall captures the ability to find all actual

vulnerabilities, minimizing false negatives. In security, missing a true vulnerability can result in

substantial financial loss. F1-score, the harmonic mean of precision and recall, provides a
balanced metric when there’s a trade-off between false positives and false negatives. Accuracy

reflects how often the model makes correct predictions overall, but in cases where the dataset is

imbalanced, such as when vulnerable contracts are rare compared to safe ones, it can give a false

sense of performance. Therefore, it is usually considered together with the F1-score for a more
balanced evaluation. These metrics collectively ensure a nuanced understanding of model

performance in both controlled and real-world scenarios.

Transformer-based models including SmartBERT [13] and SolTrans [14] achieve F1-scores>0.90,

outperforming traditional CNN models. GNN-based models such as ContractGraph [10] and

SolGraph [12] offer better interpretability and structural robustness.

3.2. Explainability Metrics

Explainability and interpretability are critical in smart contract vulnerability detection, as

developers and auditors must understand why a model flagged a contract as vulnerable. Common

metrics and tools used to evaluate explainability include attention weight visualization, saliency

maps, and feature attribution scores.

For the models of transformers and attention-based GNNs, attention maps help pinpoint specific

tokens or nodes that contributed most to the prediction. Saliency maps provide gradient-based
insights, highlighting which inputs most influence the output. Feature attribution, such as SHAP

or LIME scores, helps quantify the contribution of individual features or instructions.

These explainability tools are selected not just for interpretability, but for building developer

trust, enabling debugging, and ensuring regulatory compliance in DeFi and enterprise blockchain

environments. A model’s utility increases when its decisions can be transparently understood and

verified by human reviewers.

GNN models provide better transparency, where nodes and edges highlight vulnerability flows

[10], [12]. Transformer models offer some explainability through attention heads but require
careful analysis [13].

In Figure 6, tokens including msg.sender, require, and transfer received higher attention,
indicating they were important to the model’s prediction, which likely signals vulnerability

context such as access control or funds transfer.

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.16, No.3, May 2025

76

3.3. Computational Efficiency

Computational efficiency is a critical factor when evaluating the practicality of AI-based smart

contract analysis tools, particularly in large-scale deployments or real-time auditing
environments. Lightweight models such as Random Forests and shallow neural networks offer

low inference times and modest memory

Figure 6. Example Attention Visualization on Smart Contract Tokens

consumption, making them suitable for integration into IDE plugins or on-chain verification
tools. However, more complex models including transformers and GNNs require significantly

higher computational resources due to deep architectures, self-attention mechanisms, or iterative

message passing.

This trade-off between accuracy and latency is important.

While transformer-based models including SmartBERT provide superior performance, they are
more suitable for offline batch analysis. In contrast, hybrid or ensemble models can be optimized

for performance by combining fast and slow learners. Evaluating models in terms of inference

time, GPU/CPU usage, and scalability across contract sizes is essential when selecting a model
for production-grade vulnerability detection pipelines.

Lightweight models including Sereum [5] achieve real-time detection but have limited depth of

reasoning. On the other hand, transformer models offer deep semantic understanding but increase
inference times up to 3–4 seconds per contract.

Table 1. Performance and Efficiency Comparison of AI-Based Vulnerability Detection Methods

Method Precision Recall F1-Score Accuracy Inference Time (ms)

Sereum 0.78 0.81 0.79 0.80 15

SmartEmbed 0.84 0.82 0.83 0.83 32

ContractGraph 0.87 0.88 0.87 0.88 64

SmartBERT 0.91 0.92 0.91 0.91 110

SolGraph (GAT) 0.89 0.90 0.89 0.89 85

DeepSolid (Hybrid) 0.88 0.90 0.89 0.89 73

HybridVulDetect 0.90 0.91 0.90 0.90 95

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.16, No.3, May 2025

77

Table.1 presents an experimental comparison of state-of-the-art AI-based models for smart
contract vulnerability detection. Each method is evaluated on key performance metrics including

precision, recall, F1-score, accuracy, and inference time using standardized datasets such as

SmartBugs and curated contract samples from EtherScan.

This evaluation highlights not only the detection accuracy of each approach but also their

computational cost, which is crucial for real-time or large-scale deployments. Models with high

F1-scores and low inference time offer the most practical balance between effectiveness and
efficiency.

4. CASE STUDIES

4.1. The DAO Hack (2016)

The 2016 DAO attack remains one of the most notorious incidents in blockchain security, leading
to the loss of nearly $60 million worth of Ether. The core vulnerability exploited was a reentrancy

flaw within the DAO smart contract’s withdrawal function. Specifically, the contract allowed

recursive calls to be made before the sender’s balance was updated, enabling attackers to
repeatedly drain funds by looping through the same withdrawal logic. This exploit highlighted a

critical weakness in early smart contract development practices, where insufficient safeguards

and ordering of state updates left contracts vulnerable. Modern AI-based anomaly detectors,

particularly those leveraging dynamic analysis models including Sereum [5] or graph-based
models, are now capable of flagging such vulnerabilities by tracing execution paths and

identifying unprotected external calls.

The DAO hack not only exposed the technical risks of decentralized code but also catalyzed the

Ethereum community to adopt stricter development standards and led to the eventual hard fork

that created Ethereum Classic.

4.2. Parity Wallet Incident (2017)

The Parity Wallet incident of 2017 involved a critical vulnerability in a multisignature wallet

contract that led to over $150 million worth of Ether being rendered permanently inaccessible.

The root cause was an unprotected initWallet function in a library contract, which could be called

by anyone to reinitialize ownership. A user accidentally executed this function, thereby gaining
ownership and subsequently invoking the selfdestruct function, which deleted the core library

logic shared by many other wallets. The result was catastrophic. All dependent wallets were

instantly bricked. This event highlighted the risks associated with using library contracts that lack
rigorous access restrictions and proper safety mechanisms.

AI-based vulnerability detectors today, especially those incorporating static analysis models
including MadMax [6] and transformer-based code understanding, are better equipped to flag

such issues by recognizing patterns like exposed initialization functions and the presence of

selfdestruct calls. The event remains a cautionary example of how a single oversight in smart

contract design can lead to irrecoverable financial loss.

4.3. Secure Contract Templates

Secure contract templates refer to rigorously audited, reusable smart contract components

designed to mitigate common classes of vulnerabilities. These templates typically follow best

practices in coding, include defensive programming techniques, and undergo formal verification

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.16, No.3, May 2025

78

or static analysis to ensure robustness. Leading platforms such as OpenZeppelin provide a widely
used library of secure templates for functionalities including ERC-20 and ERC-721 tokens,

ownership models, access control, and upgradeable proxies. By abstracting complex or risk-prone

logic such as reentrancy protections, arithmetic checks, and permission hierarchies, developers

can avoid reinventing vulnerable mechanisms.

Templates help minimize potential vulnerabilities by packaging proven, secure logic, while also

offering guidance by showcasing best practices in contract design. Their modularity promotes
composability, making it easier to build larger decentralized applications (dApps) on a solid

foundation. Many AI-based auditing tools also treat the use of standard templates as a signal of

lower risk, reinforcing their value in both development and detection pipelines.GNN-based
models including ContractGraph [10] have successfully verified safe vs vulnerable branches in

these templates using CFG structural analysis.

Table 2 provides a summary of case studies, outlining the vulnerability types, models used, and
outcomes across different smart contract vulnerability detection approaches.

Table 2. Summary Table of Case Studies

Incident Year Vulnerability

Type

Potential Detection

Model

Detection Feature

DAO Hack 2016 Reentrancy Sereum (Dynamic ML) Function call anomaly

detection

Parity Wallet

Bug

2017 Initialization Bug MadMax (Static ML) Uninitialized storage access

Secure

Templates

2019+ General Safety ContractGraph (GNN) Control flow graph

verification

5. DATASET DESCRIPTIONS

5.1. SmartBugs Dataset

The SmartBugs dataset is a benchmark collection of real-world smart contracts curated for

evaluating vulnerability detection tools. It includes Solidity contracts drawn from verified sources

such as EtherScan and GitHub, each annotated with known vulnerabilities. The dataset covers a
range of common flaw types, including reentrancy, integer overflows, and access control issues,

making it a reliable foundation for training and benchmarking AI-based models. Contracts in

SmartBugs are labeled based on results from established static analyzers, enabling supervised

learning and comparative evaluation. Its structured format and vulnerability diversity make it a
preferred dataset in academic research and tool development for smart contract security. It is

extensively used in training CNN models including SmartEmbed [7] and attention-based models,

e.g., VulnSniffer [9].

5.2. EtherScan Dataset

The EtherScan dataset consists of smart contracts scraped from the Ethereum blockchain via the

EtherScan explorer. Unlike curated datasets, EtherScan offers a large and diverse collection of

real-world contracts deployed in production environments. While it typically lacks explicit
vulnerability labels, it provides valuable raw material for unsupervised learning, anomaly

detection, and pretraining of AI models. Researchers often use EtherScan data to simulate

realistic conditions, test scalability, and evaluate false positive rates in large-scale detection

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.16, No.3, May 2025

79

pipelines. Its volume and variety make it especially useful for fine-tuning models on naturally
imbalanced distributions of vulnerable and non-vulnerable code. It is used by GNN models

including ContractGraph [10] for generating real-world CFGs.

5.3. SolidiFI-Benchmark

The SolidiFI-Benchmark dataset is a curated suite of smart contracts specifically designed to
evaluate the precision and soundness of vulnerability detection tools. It contains both flawed and

corrected versions of smart contracts, enabling detailed evaluation of how effectively a tool can

differentiate between insecure and safe code.

The dataset focuses on well-defined vulnerability classes such as reentrancy, arithmetic issues,

and unchecked external calls, providing a controlled environment for testing detection accuracy.

SolidiFI-Benchmark is particularly useful for benchmarking symbolic execution engines, static
analyzers, and AI models under consistent conditions. Its balanced structure and annotated

ground truth make it ideal for evaluating both recall and false positive rates in model

performance.

Table 3 presents a comparative overview of various smart contract vulnerability datasets,

highlighting differences in size, labeling methods, contract sources, use cases, and types of

vulnerabilities covered in the literature.

Table 3. Smart Contract Vulnerability Dataset Comparison

Dataset Type Source Size Use Case Strength

SmartBugs Labeled Real-world

(EtherScan,

GitHub)

~2,000

contracts

Supervised learning,

benchmarking

Annotated

vulnerabilities

EtherScan Unlabeled Ethereum Mainnet >1M

contracts

Unsupervised

learning, pretraining

Large and

diverse

SolidiFI-

Benchmark

Labeled Synthetic + real ~200

contract

pairs

Bug vs. patched

comparison

Ground truth

evaluation

6. CONCLUSION

AI-based techniques have significantly transformed the field of smart contract vulnerability

detection. Traditional methods such as manual code review or formal verification struggle to
scale with the growing complexity and volume of smart contracts deployed on blockchain

platforms such as Ethereum.

This paper analyzes the latest approaches: ML models (e.g., Random Forests in Sereum [5]) offer

lightweight, fast, but less semantically deep detection capabilities. DL models (e.g., SmartEmbed

[7], VulnSniffer [9]) automate feature extraction and enhance sequence pattern recognition.
GNNs (e.g., ContractGraph [10], SolGraph [12]) bring structural insights by operating over

control flow graphs and transaction graphs, offering superior explainability. Transformer-based

architectures (e.g., SmartBERT [13], SolTrans [14]) have shown state-of-the-art accuracy,

capturing rich contextual information at the token and semantic level. Hybrid ensemble models
(e.g., DeepSolid [15], HybridVulDetect [16]) combine strengths from multiple families to

maximize detection performance across heterogeneous contracts.

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.16, No.3, May 2025

80

Despite these advancements, several challenges remain, including explainability, dataset quality,
and generalization. Most models, especially transformers, still act as black boxes. Public datasets

are often small, imbalanced, or lack real-world deployment conditions. Models trained on

Solidity may not transfer easily to other languages including Vyper or cross-chain environments.

In conclusion, AI-driven vulnerability detection offers the best hope for securing smart contracts

at scale; however, future research must address explainability, adaptability, and real-world

deployment robustness.

7. FUTURE WORK

While significant progress has been made in AI-based vulnerability detection for smart contracts,
several promising research directions remain open for future exploration. Advancements in model

interpretability, cross-platform generalization, and adversarial robustness are particularly critical

for building more reliable and transparent auditing systems.

7.1. Multimodal Learning

Most current models rely solely on source code or bytecode. Future models should integrate

multiple modalities, including bytecode, source code, transaction traces, event logs, and CFGs.

Multimodal fusion could dramatically enhance vulnerability detection by combining syntactic,

semantic, and behavioral signals.

Incorporating diverse data sources can provide a more comprehensive understanding of contract

behavior, enabling models to identify subtle or context-dependent vulnerabilities more
effectively.

7.2. Cross-Chain Vulnerability Detection

Current models focus heavily on Ethereum smart contracts written in Solidity. Future work must

adapt models for other platforms (e.g., Solana, Polkadot, Hyperledger), other languages (e.g.,
Vyper, Rust-based contracts), and Cross-chain interoperability vulnerabilities.

7.3. Lightweight and Real-Time Detection

Transformer models including SmartBERT [13] offer high accuracy but suffer from high

inference times. Designing lightweight, real-time AI models (e.g., TinyBERT for smart contracts)
would enable on-chain or client-side vulnerability detection.

7.4. Explainable AI (XAI) for Smart Contracts

Explainability remains a major gap. Future GNNs could highlight critical nodes/edges causing

vulnerabilities. Attention maps in transformers could be visualized to show which tokens led to a
“vulnerable” classification. This would increase developer trust and support security auditing.

7.5. Continual and Lifelong Learning

Smart contracts and vulnerability types evolve over time. Models trained on past data risk

becoming obsolete. Continual learning frameworks that adapt to new types of vulnerabilities and
avoid catastrophic forgetting are urgently needed.

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.16, No.3, May 2025

81

7.6. Standardized Benchmarks

The research community lacks unified datasets and evaluation standards. Future initiatives should

establish shared benchmark datasets, standardized evaluation metrics, and leader boards for fair
model comparison.

In summary, future advances must focus on scalability, explainability, adaptability, and trust if AI
is to fully secure the next generation of smart contracts.

REFERENCES

[1] Atzei, N., Bartoletti, M., &Cimoli, T., "A Survey of Attacks on Ethereum Smart Contracts,"

Proceedings of International Conference on Principles of Security and Trust, 2017.

[2] Bhargavan, K., et al., "Formal Verification of Smart Contracts," ACM CCS, 2016.

[3] Luu, L., et al., "Making Smart Contracts Smarter," Proceedings of ACM CCS, 2016.

[4] Christidis, K., Devetsikiotis, M., "Blockchains and Smart Contracts for the Internet of Things,"

IEEE Access, 2016.

[5] Mueller, B., "Sereum: Protecting Smart Contracts from Re-Entrancy Attacks," arXiv preprint

arXiv:1905.09858, 2019.
[6] Brent, L., Jurisevic, A., Kong, M., Liu, L., and Scholz, B., "MadMax: Surviving Out-of-Gas

Conditions in Ethereum Smart Contracts," Proceedings of ACM OOPSLA, 2018.

[7] Chen, T., et al., "SmartEmbed: A Deep Learning Framework for Smart Contract Vulnerability

Detection," arXiv preprint arXiv:2005.11088, 2020.

[8] Zhou, Y., Zhang, Z., and Jin, H., "Learning to Detect Vulnerabilities with Graph Neural Networks,"

arXiv preprint arXiv:1909.06920, 2019.

[9] Sun, X., et al., "VulnSniffer: Detecting Vulnerabilities in Smart Contracts Through Sequence

Modeling," Journal of Systems Architecture, 2020.

[10] Zhang, Y., Xu, H., "ContractGraph: GNN-Based Vulnerability Detection in Ethereum Smart

Contracts," arXiv preprint arXiv:2103.15120, 2021.

[11] Li, F., Zhu, H., and Ren, Z., "ETH2Vec: Heterogeneous Graph Embedding for Smart Contracts,"

IEEE Transactions on Dependable and Secure Computing, 2022.
[12] Huang, Z., et al., "SolGraph: Graph Attention Networks for Smart Contract Vulnerability

Detection," Proceedings of AAAI Conference on Artificial Intelligence, 2022.

[13] Wang, L., et al., "SmartBERT: A Pre-trained Model for Smart Contract Vulnerability Detection,"

arXiv preprint arXiv:2201.12877, 2022.

[14] Xu, X., Jiang, J., Wang, F., "SolTrans: Transformer-Based Smart Contract Vulnerability Detection,"

Proceedings of IEEE BigData Conference, 2023.

[15] Peng, C., et al., "DeepSolid: Deep Learning and Graph Neural Networks for Smart Contracts,"

Proceedings of IEEE Blockchain, 2021.

[16] Rao, S., et al., "HybridVulDetect: Ensemble Learning for Vulnerability Detection in Smart

Contracts," IEEE Transactions on Software Engineering, 2023.

[17] Tikhomirov, S., et al., "SmartCheck: Static Analysis of Ethereum Smart Contracts," Proceedings of
ACM Workshop on Blockchain, Cryptocurrencies and Contracts, 2018.

[18] Torres, C., Steichen, M., and State, R., "Osiris: Hunting for Integer Bugs in Ethereum Smart

Contracts," Proceedings of ACM AsiaCCS, 2018.

[19] Liao, X., et al., "Semantic-Based Smart Contract Vulnerability Detection with Machine Learning,"

Proceedings of IEEE COMPSAC, 2020.

[20] Feng, Q., et al., "Scalable Detection of Vulnerabilities in Smart Contracts Using Machine Learning,"

IEEE Transactions on Information Forensics and Security, 2021.

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.16, No.3, May 2025

82

AUTHOR

Dr. Mesut Ozdag is an Assistant Professor of Computer Science at the University of

Central Florida, contributing to the FinTech and Digital Forensics graduate programs and

serving as the Institutional Effectiveness Assessment Coordinator for multiple degree

tracks. He earned his Ph.D. in Computer Science from UCF, where his research focused

on adversarial attacks in deep learning, blending AI with vulnerability concerns.

His industry experience includes roles at Siemens Healthineers, Roche Molecular Systems and Flywheel

Inc., developing advanced machine learning pipelines for applications in medical imaging, federated

learning, and diagnostic intelligence. His academic work was recognized in venues such as IJCAI and
spans adversarial robustness using deep learning.

A dedicated researcher, educator, curriculum developer, assessment coordinator, and reviewer for top-tier

medical imaging journals, Dr. Ozdag continues to bridge foundational theory with real-world applications

across computing and data science.

