
ar
X

iv
:2

50
6.

06
59

7v
1 

 [
cs

.C
R

] 
 7

 J
un

 2
02

5

Stochastic Training for Side-Channel Resilient AI
Anuj Dubey∗, Aydin Aysu∗†

∗Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, USA
Email: aanujdu@ncsu.edu, aaysu@ncsu.edu

†mithrilAI Corp., Cary, NC, USA
Email: mithrilai@gmail.com

Abstract—The confidentiality of trained AI models on edge
devices is at risk from side-channel attacks exploiting power and
electromagnetic emissions. This paper proposes a novel training
methodology to enhance resilience against such threats by in-
troducing randomized and interchangeable model configurations
during inference. Experimental results on Google Coral Edge
TPU show a reduction in side-channel leakage and a slower
increase in t-scores over 20,000 traces, demonstrating robustness
against adversarial observations. The defense maintains high
accuracy, with about 1% degradation in most configurations, and
requires no additional hardware or software changes, making it
the only applicable solution for existing Edge TPUs.

I. INTRODUCTION

Trained AI models have become invaluable assets, pow-
ering applications ranging from healthcare diagnostics and
autonomous vehicles to personalized recommendations and
financial forecasting [1]. These models represent significant
investments of time, computational resources, and expertise.
As a result, the confidentiality of trained AI models is critical
not only to protect intellectual property but also to maintain
the competitive advantage of organizations [2]. The leakage
of trained AI models has implications beyond intellectual
property theft. Stolen models can expose systems to other
forms of attacks, such as adversarial learning, where attackers
manipulate inputs to produce incorrect outputs, or fault injec-
tion attacks, which cause the system to behave unpredictably
[3], [4]. These vulnerabilities undermine trust, compromise
safety-critical applications, and weaken AI system reliability,
making model protection essential for AI security [5].

Side-channel attacks pose a unique and increasingly relevant
threat to AI model confidentiality, particularly for Edge AI
devices deployed in uncontrolled environments [6]. Unlike
centralized data centers, Edge AI devices operate closer to end
users, providing real-time insights by running inferences on
locally stored models. This accessibility makes them suscepti-
ble to side-channel attacks, where adversaries exploit physical
emissions such as power consumption or electromagnetic
(EM) signals to infer sensitive information [7]. The risk is
especially pronounced in edge scenarios because these devices
often lack the physical and software protections afforded
to their cloud-based counterparts, amplifying the urgency of
addressing this threat [8].

In recent years, significant efforts have been made to
mitigate side-channel attacks targeting machine learning (ML)
systems. Notably, some works have explored hardware-based
defenses. MaskedNet introduces a hardware inference engine
that employs secure hardware gadgets to protect against power

Fig. 1. The figure depicts regular neural network training on the left (a), and
the proposed multi-model training for side-channel resistance on the right (b).

side-channel attacks, necessitating specialized hardware design
and implementation [9]. BoMaNet and ModuloNET extend
these concepts to entire neural networks, further emphasizing
the need for custom hardware solutions [10]–[12]. Conversely,
others have focused on software-level countermeasures, pur-
suing the adaptation and implementation of such defenses
through complex algorithmic transformations [13], [14]. How-
ever, these approaches are applicable exclusively to general-
purpose processors or need custom instruction extensions as
they require executing arithmetic/boolean operations not sup-
ported by native instructions of common edge AI accelerators.

Therefore, a research gap remains in developing defenses
that do not rely on specialized hardware or complex software
instructions. This gap is particularly critical for existing edge
AI devices, which already operate in the field and cannot
leverage any of the prior defenses. Enhancing side-channel re-
silience on such devices represents a significant advancement,
even if the achieved improvements may not offer the robust
defenses seen in earlier works.

To counter these challenges, we propose a novel machine-
learning training framework that can be retrofitted into existing
Edge Tensor Processing Units (TPUs) and that makes side-
channel attacks harder. Figure 1 outlines our approach. This
figure compares the baseline machine learning (ML) training
and inference pipeline (Part (a)) with our proposed defense
mechanism (Part (b)). In the baseline configuration, a sin-
gle ML model is trained, and the trained weights—denoted
as W0,W1,W2—are subsequently used for inference. Each
weight Wi corresponds to a specific layer in the neural
network, and the same trained model is consistently deployed

1

https://arxiv.org/abs/2506.06597v1


during inference. While effective for traditional use cases,
this approach is vulnerable to side-channel attacks, as the
deterministic behavior of the model enables adversaries to
infer sensitive information through power or EM emissions.

By contrast, our proposed technique (Part (b)) introduces
a randomized obfuscation layer to enhance resilience against
side-channel threats. Instead of training a single model, mul-
tiple models are trained independently, with each producing
a unique set of weights (W i

0,W
i
1,W

i
2, where i indexes the

model). During inference, a randomizer dynamically selects
and combines weights from these models in a randomized
manner, creating interchangeable layers across different neural
network configurations. For instance, given three layers of
neurons and three independently trained models, our approach
enables 3 × 3 = 9 interchangeable layer combinations, sig-
nificantly increasing the attack complexity and rendering the
side-channel analysis less effective. This randomized, multi-
model strategy ensures that each inference execution utilizes
a unique configuration, thereby achieving robust obfuscation
and enhanced security against side-channel attacks.

Our approach incorporates tailored defenses into the training
process, creating models inherently resilient to information
leakage through side channels. By modifying the training
paradigm, our solution not only reduces the risk of side-
channel attacks for edge deployments where previous defenses
cannot be supported. Our contributions are as follows:

• We propose a novel training methodology that improves
resistance to power/EM side-channel attacks.

• We implement the proposed training method on the
Google Coral Edge TPU [15] and provide innovative
techniques to address the compute limitations of the Edge
TPU to retrofit our approach. The proposed method is
integrated into the TensorFlow Lite (TFLite) framework.

• We evaluate the effectiveness of our approach through
comprehensive experiments, demonstrating its resilience
under practical attack scenarios. The result shows reduc-
tion in side-channel leakage and a marginal (≈1-2%)
reduction of accuracy on an MNIST dataset.

II. BACKGROUND

A. Side-Channel Attacks and Current Defense Limitations
Side-channel attacks exploit unintended information leakage

from physical implementations of cryptographic systems, such
as variations in power consumption, EM emissions, or timing
information, to extract sensitive data [16]. These attacks pose a
significant threat to cybersecurity because they can circumvent
traditional cryptographic protections without needing to break
the underlying algorithms. Recent years have shown that such
attacks have spread to AI/ML systems to steal a trained
model [6], [9], [17].

Power and EM side-channel attacks are particularly con-
cerning for edge AI devices. In power analysis attacks, ad-
versaries measure the power consumption of a device during
operations to infer secret information. Similarly, EM attacks
involve capturing EM emissions from a device to extract
sensitive data. These attacks are feasible because computations
produce data-dependent power consumption and EM radiation

patterns, which can be analyzed to reveal secret information.
The threat model assumes that an attacker aims stealing a
trained AI model during inference and has physical proximity
to the device to measure power consumption or EM emis-
sions, making edge AI devices in uncontrolled environments
especially vulnerable.

Several countermeasures have been developed to mitigate
these techniques [9]–[11], [13], [14]. However, edge AI de-
vices such as TPUs cannot support them because the native
instructions readily available on such TPUs cannot implement
the intricate compute units needed for these countermeasures
relying on, e.g., hiding and shuffling. This calls for a fun-
damentally new approach to improve the security of existing
edge AI devices.

B. The Software Ecosystem for Edge TPUs

Edge TPUs in the current version primarily supports in-
ference, with small support for transfer learning only for the
final layer. Since we assume the trained model to be already
deployed on the device in our threat model, we will focus on
secure inferencing for the scope of this paper.

Currently, there exist many software frameworks for ML
model development. Tensorflow, and PyTorch are two lead-
ing ML frameworks to this end developed by Google, and
Facebook, respectively [18], [19]. Both frameworks have an
extension targeted specifically for low-end mobile/IoT devices
called PyTorch Mobile, and TFLite [20], [21]. The Google
Coral’s Edge TPU currently only supports TFLite, and thus,
we will limit our discussions to TFLite from hereon.

1) Tensorflow and TFLite
TensorFlow is a versatile open-source library designed for

developing high-performance machine learning (ML) appli-
cations. Its architecture separates the frontend, where devel-
opers can write code in languages such as Python, C, or
JavaScript, from the backend, which is implemented in highly
optimized C++. This backend leverages specialized libraries
like Eigen and cuDNN to accelerate numerical computations
across diverse hardware platforms, including CPUs, GPUs, and
TPUs. These optimizations make TensorFlow suitable for a
wide range of ML tasks, from training to inference, in various
computing environments.

TFLite is a lightweight extension of TensorFlow, specifically
designed for mobile and embedded platforms with limited
memory and computational resources. It optimizes models
for inference by supporting specific data types such as 32-
bit floating-point and 8-bit signed or unsigned integers, while
excluding 16-bit floating-point numbers, ensuring compatibil-
ity with constrained devices. TFLite also supports hardware
acceleration through its Delegate API, enabling integration
with accelerators like Qualcomm, NVIDIA, and Google’s
Edge TPU. Additionally, it incorporates quantization to re-
duce model precision from 32- or 64-bit floating-point to
lower-precision formats, significantly reducing computational
demands while maintaining accuracy. For deployment on Edge
TPUs, TFLite models require additional compilation using
Google’s Edge TPU Compiler, ensuring efficient execution
tailored to the hardware’s capabilities.

2



2) Edge TPU Compiler
The edgetpu-compiler is a command-line tool released by

Google to compile TFLite files for the Edge-TPU. It is
currently only supported on a Debian-based Linux operating
system and a 64-bit x86 processor. Users can also upload
their TFLite models on Google Colab, and use the web-based
edgetpu-compiler. Since the compiled model is supposed to
run on the Edge TPU, the compiler imposes further restrictions
on the type of operations and data types to be used in the
model to successfully map all the operations to the available
hardware resources on the Edge TPU. We list the major
restrictions below.

1) All tensors of the model should be quantized to 8 bits.
2) The sizes of tensors should be constant at compile-time.
3) The model should only use the supported operations listed

in the official documentation.
The compiler supports most of the traditional neural net-

work operations like matrix multiplication, ReLU, sigmoid,
etc., which makes it suitable to run any deep feed-forward,
or convolutional neural network efficiently. A critical aspect
is that it lacks support for instructions that change the control
flow, unlike a traditional processor. Thus, implementing con-
ditional constructs like the if-else is not possible in the Edge
TPU. This is because the design goal for the Edge TPU is
to perform high-performance neural network inference, which
does not have these complex constructs.

C. The Google Coral Edge TPU Hardware Architecture

The exact hardware architecture of our target edge TPU is
currently not public. However, it is speculated to follow the
same architecture as that of the cloud TPUs, with differences
in the number of multiply-accumulate units used in the systolic
array. The cloud TPU is mainly designed to parallelly execute
a large number of neural network-specific operations with low
latency. This is achieved by instantiating multiple compute
units like adders, multipliers, activation functions, etc., that
can simultaneously execute independent neural network op-
erations. Since the TPU is primarily an arithmetic unit, it
might lack the hardware support for complicated control flow
instructions such as branch, or jump instructions. Given that
the edge TPU is a scaled-down version of the cloud TPU,
there is an even higher chance for the control flow hardware
to be absent.

III. A SIDE-CHANNEL COUNTERMEASURE FOR TPUS

To align our research with the current ML ecosystem, we
tackle the challenge of providing side-channel security for
existing commercial accelerators for the first time. This is
a complex problem due to the constraints of commercial
accelerators and the proprietary nature of their software stacks,
which limit the implementation of traditional countermeasures.

As a case study, we select Google’s Edge TPU, a purpose-
built ASIC designed for high-performance inferencing on
mobile and IoT devices [15]. We perform an in-depth analysis
of its software ecosystem and on-chip hardware resources,
focusing on vulnerabilities to physical side-channel attacks.
Based on this analysis, we propose a novel countermeasure

that achieves side-channel resistance without requiring mod-
ifications to the hardware or the proprietary compiler stack.
Our approach leverages a fundamental property of machine
learning algorithms, absent in cryptographic implementations,
to serve as an entropy source for countermeasures. This under-
scores the potential of exploiting ML-specific characteristics
to develop efficient and practical side-channel defenses.

Traditional power and EM side-channel defenses in cryp-
tography rely on techniques like masking or hiding, which are
not feasible here. The Edge TPU hardware cannot be modified,
and its proprietary edgetpu-compiler generates executables
directly, offering no access to intermediate instructions for
countermeasures like instruction shuffling. Consequently, the
only controllable aspect is the source code of the neural
network deployed on the Edge TPU. To address this, we
propose a novel technique that reduces side-channel leakage
by working within these constraints, without requiring changes
to the hardware or software stack.

A. Deep-Dive into Neural Network Training

1) Loss Functions
The loss function quantifies how distant is the prediction of

the neural network from the correct prediction (also called
ground truth)–it is high when the model accuracy is low,
and low when the model accuracy is high. Mean squared
error (MSE), and categorical cross-entropy loss are commonly
used loss functions for regression, and classification tasks,
respectively. Since we mainly focus on classification, we will
discuss the categorical cross-entropy loss function L(·) next.
In the case of binary classification with just two labels 0 and
1, L(·) is defined as follows.

L(ŷi, yi) = −yi × log(ŷi) + (1− yi)× log(1− ŷi)

ŷi = model(xi,W,B)

yi is the correct label (either 0 or 1), and ŷi is the predicted
probability by the model for label 1 1. Note that L is designed
to be high if the model output ŷi is low (close to 0) for an input
corresponding to label 1 and vice versa. Due to the logarithmic
variation, the loss is much higher for incorrect predictions,
i.e., if the model predicts lower probabilities for label 1. The
overall loss for a training step is actually the average loss
1
m

∑m−1
i=0 L(ŷi, yi) over all the m training samples xi. For

multiple classes, L(·) can be generalized to the following
equation.

L(ŷi, yi) =
N−1∑
c=0

(−yic × log(ŷic))

where c represents the output class, ŷic is a function of the
input sample xi, and the model weights W and biases B 2.
W and B are randomly initialized at the start of the training
process. Training is essentially an optimization problem, where
the objective is to minimize the loss function, i.e., to find the
values of W and B such that the loss is minimized.

1The confidence scores at the output layer are often interpreted as proba-
bilities for the respective classes.

2Model weights and biases vary during training, but fixed during inference.

3



Algorithm 1 Neural Network Training
1: procedure GRADIENT DESCENT(X,N ,Y,α, Ep, n)

input: X,N ,Y,α,Ep,n
output: W, B

2: W ← random()
3: B ← random()
4: for i = 1 · · ·Ep do
5: Z0 ← X
6: for j = 1 · · ·n do
7: Zj+1 ← layerj(Zj ,Wj , Bj)

8: for j = 1 · · ·n do
9: Wj ←Wj − α∆WjL(Zn, Y )

a) Backpropagation
Algorithm 1 lists a typical sequence of steps executed during

training. All the training samples and their corresponding
labels are condensed into matrices X and Y , respectively. Each
step consists of a forward pass and a backward pass. Lines
6-7 perform the forward pass, which involves evaluating the
model function using the training samples X , weights W , and
biases B. The algorithm computes the cumulative loss L using
the evaluated output Zn from the model and true labels Y .

Differentiation, or finding the derivative, is a well-known
technique in calculus to identify the minimum or maximum
of a function. In this context, we use the term gradient instead
of derivative, as L is a multi-variable function. The gradient
of a function f with respect to an input variable v, denoted
as ∆vf , signifies the direction of the greatest change for that
function. The training algorithm computes the gradients ∆WL
and ∆BL. To minimize the loss L, the weights W and biases
B are updated as W − α×∆WL and B − α×∆BL, where
α, known as the learning rate, determines the magnitude of
the updates and requires initial tuning.

This iterative process, called backpropagation or the back-
ward pass, updates W and B (as shown in Lines 8-9) to
progressively reduce the loss. The training algorithm repeats
these steps across multiple epochs, with Ep defining the
total number of iterations. This overall process is popularly
known as gradient descent, as the model iteratively ”descends”
along the loss function curve toward its minimum, improving
accuracy with each epoch.

b) Stochastic Minibatch Gradient Descent
Performing the gradient descent over the entire dataset is

too expensive computationally, and thus, prior works suggest
an alternate approach called the stochastic minibatch gradient
descent. The training samples are divided into smaller batches,
with each step training on only one batch. While this intro-
duces higher variation in model updates—since a single batch
may not fully represent the dataset’s features—it offers signifi-
cant computational benefits with minimal impact on accuracy,
making it widely favored in the literature. The technique also
incorporates random sampling of batches, introducing stochas-
ticity to eliminate biases from dataset ordering. Additionally,
neural networks, as complex multivariable functions, can con-
verge to different minima based on initial parameter values
and sampled batches. Despite these variations, the resulting
weights and biases often achieve similar accuracy. Next, we
explore how this stochastic behavior in neural networks can
be leveraged to design an effective side-channel defense.

Algorithm 2 Randomized Backpropagation
1: procedure GRADIENT DESCENT(X,N ,Y,α, Ep, n, m)

input: X,N ,Y,α,Ep,n
output: W, B

2: for k = 1 · · ·m do
3: Wk ← random({1 · · ·m})
4: Bk ← random({1 · · ·m})
5: for i = 1 · · ·Ep do
6: Z0 ← X
7: for j = 1 · · ·n do
8: Zj+1 ← layerj(Zj ,W

rj
j , B

rj
j )

9: for j = 1 · · ·n do
10: W

rj
j ←W

rj
j − α∆

W
rj
j
L(Zn, Y )

11: B
rj
j ← B

rj
j − α∆

B
rj
j
L(Zn, Y )

B. Multi-Model Training
Figure 1 shows an overview of our defense. Figure 1 (a)

depicts a regular training and inference phase. The model
is trained over a dataset, and the trained model parameters
are used during inference. Figure 1 (b) depicts our alternate
proposal on training and inference, which can yield side-
channel benefits without losing significant accuracy. During
training, we propose to train multiple models with the same
training dataset. Due to the stochastic nature of training, the
trained model parameters will differ for each trained model.
Once we get multiple trained models with different parameters,
we propose two related solutions for the defense.

a) Secure forward pass
In the first solution, the model randomly selects the pa-

rameters of one trained model for each inference, akin to
the shuffling defense used in cryptographic applications [22].
Prior work suggests shuffling the order of state byte evalua-
tions in AES rounds to disrupt vertical side-channel attacks,
which rely on computations occurring at the same time across
measurements. Shuffling breaks this timing assumption, re-
ducing vulnerability. Similarly, our defense processes inputs
and intermediate values with a different parameter set for
each execution, enhancing side-channel resistance. Increasing
the number of trained models and random choices further
strengthens security during inference.

b) Secure forward and backward pass.
One limitation of the first approach is that the amount of

randomness during inference linearly depends on the number
of trained models. We will see how to improve this in the sec-
ond solution. The key difference in the second solution is that
the random choice of parameters happens at the granularity of
layers instead of models. Thus, during inference, the model
now chooses the parameters for each layer randomly from
the parameters of that layer from one of the trained models.
This increases the number of possibilities during inference
compared to the first solution. For instance, for a two-layer
neural network, and two trained models, the inference can now
create four model choices instead of two.

Our preliminary analysis showed that directly replacing the
layer weights between multiple models can result in a signif-
icant accuracy loss. This is because the parameters of each
layer in a trained model were trained only with respect to the
parameters of the other layers in the same model. Randomly

4



Fig. 2. The figure depicts how to construct an if condition using the ReLU
function. The algorithm feeds r and −r to two distinct ReLU units. The
outputs are respectively multiplied by x and y. The final result is the sum of
the products from the two branches.

altering parameters during inference can significantly deviate
the model’s behavior from its trained state. To address this,
we propose integrating information about the parameters from
other models into the training. Our new algorithm includes
random layer selection during backpropagation to maintain
consistency between training and inference stages.

Algorithm 2 outlines the randomized backpropagation pro-
cess. The number of parameter choices for each layer cor-
responds to the number of models, denoted by m. At the
start of each epoch, the algorithm uniformly and randomly
samples parameters for each layer from 1 · · ·m (lines 2-
4), with superscripts distinguishing parameters of different
models. To preserve model behavior, distinct layer choices are
sampled for each training sample xi in X . The algorithm then
performs a forward pass using the selected parameters for each
layer and computes the final output Zn.

Next, the algorithm propagates gradients only to the selected
parameters for the corresponding training sample. By iterating
over multiple epochs, the parameters across models are con-
tinuously updated in relation to each other. This effectively
trains a larger model that uses only a subset of itself during
inference, maintaining reasonable accuracy. However, imple-
menting conditional selection in the forward pass remains a
challenge, as detailed in the next subsection.

C. Key Challenge: Conditional Statements on Edge TPU
Having established a secure training and inference algo-

rithm, we now demonstrate its implementation on the Edge
TPU. While training occurs offline, all trained model pa-
rameters, along with the network architecture, are packaged
into a single model for deployment on the Edge TPU. How-
ever, implementing inference with random parameter selection
presents significant challenges.

As shown in Figure 1, implementing the randomizer in-
volves conditional instructions. The network must select layer
parameters from the random input and execute computations
using them. While the latter is straightforward—requiring only
weighted summations and activation function evaluations—the
first step, involving control flow operations, is non-trivial on
the Edge TPU. As discussed in Section II-C, the TPU hardware
likely lacks support for control flow instructions. To test this,
we compiled programs with constructs such as if-else and
tf.cond from the TensorFlow API. These constructs work
on a host CPU but fail to compile with the edgetpu-compiler,
showing the Edge TPU’s control flow limitations.

To implement our defense on the Edge TPU without explicit
control flow statements, we adopted a fundamentally different

approach. After examining all supported Edge TPU operations,
we found no direct equivalent of a conditional statement. Con-
sequently, we constructed one using existing operations—a
function that takes three inputs (a, b, r) and outputs either a
or b, depending on the value of r.

The rectified linear unit (ReLU) function proved particularly
useful for this purpose. It is defined as:

ReLU(x) =

{
x, x ≥ 0

0, x < 0

The definition of the ReLU function inherently contains an
if condition, selecting either the input x or zero based on the
sign of x. By randomly choosing r between −1 and +1 and
multiplying it with x, the result is x 50% of the time. While
this partially meets our requirement of selecting a number
based on random input, it also outputs zero 50% of the time.

To fully achieve the desired functionality, we multiply r
by −1 and then multiply the result with y. This creates two
mutually exclusive branches: one branch outputs x and the
other outputs zero, or vice versa with y. Adding the outputs
of both branches gives x when r = +1 and y when r = −1.

Figure 2 demonstrates the construction of an if-else
statement using the ReLU operation. Leveraging this approach,
we design a novel function composed solely of ReLU oper-
ations that effectively replicates an if-else construct. This
function enables the selection of different parameters from
each model during inference on the Edge TPU.

IV. IMPLEMENTATION RESULTS

We next discuss our experimental setup, the tests and results
for the validation of side-channel leakage reduction on an edge
TPU, and the impact of the proposed training on accuracy.

A. Measurement Setup

Our target board is Google Coral’s Dev Board, which is a
development board that hosts the edge TPU on a removable
system on module (SoM) [23]. We choose EM side channels
for this evaluation to precisely capture the activity directly
from the leaky points on the TPU. We use Riscure’s high-
sensitivity EM probe to capture the EM emanations from the
TPU [24]. We also use the EM Probe Station provided by
Riscure which uses an XYZ table along with the EM probe to
spatially scan the chip for high EM activity. This is required
because the floorplan of the edge TPU has not been released.
Our setup first performs a spatial scan of the entire TPU chip
while running inferences, and captures the EM activity at each
point. Then we use a bandpass filter to find the subset of points
that correspond to an EM activity at 500 MHz, which is the
operating frequency of the TPU core. We fix the probe position
to this location and conduct the rest of the validation.

B. Side Channel Validation

Without loss of generality, we evaluate two MLPs for the
MNIST dataset with configurations 784-10, and 784-100-10,
and call them N1 and N2. For both networks, we conduct three
sets of experiments I, II, and III. Experiment I corresponds
to a network without any countermeasure. Experiment II

5



Fig. 3. The figure shows averaged power consumption and TVLA results
from our experiments. We observe a reduction of 50% in the t-scores for III
compared to II.

corresponds to the network with the countermeasure blocks
present, but the randomness is disabled. Essentially all the
random values are fixed to -1 in every measurement. This
setting is expected to be equivalent when the defenses are
turned off. Experiment III corresponds to the network with
countermeasures enabled by actually changing the randomness
for each measurement. Our goal is to quantify the amount of
side-channel leakage in 1) a vanilla neural network with no
defense, 2) a network with additional logic for defense but
disabled randomness, and 3) the final solution with defense
enabled. We use TVLA3 for assessment.

Figure 3 shows our results on N1. We observe that the t-
scores cross the threshold of ±4.5 for all three experiments.
However, the magnitude of t-scores decreases from I to III. The
t-scores are highest in I because of the lack of any defense; the
image is processed directly with the same parameters for each
inference causing a high information leakage. The t-scores
are lower in II compared to I because the noise caused by
the additional logic of the defense decreases the signal-to-
noise ratio in the side channel measurements. Although the
defense is disabled, it still imparts some protection. The t-
scores reduce by approximately 2× in III. This is because
of the active defense. The new inference algorithm chooses
a different set of parameters for each inference based on the
random input. This reduces side-channel leakage by lowering
the likelihood of the same parameters being processed in each
measurement.

Figure 4 shows the variation of the t-scores with the
increasing number of measurements. We conduct a TVLA with
20,000 measurements, thus, the fixed and random sets contain
approximately 10,000 traces each. As the setup captures more
measurements, we observe an increasing trend in the t-scores
for both II and III. However, the increase is much more rapid in
II compared to III. This implies that with the defense enabled,
the increase in the side channel leakage with a number of

3Test Vector Leakage Assessment (TVLA) is a statistical method widely
used in side-channel analysis to evaluate whether a system exhibits data-
dependent leakage. It compares side-channel traces collected under two
different conditions, such as fixed and random inputs, using statistical metrics
like Welch’s t-test. A t-score exceeding a threshold indicates significant
leakage, suggesting that an attacker could potentially exploit the side-channel
information. TVLA is a reliable and efficient tool for assessing the security
of hardware against side-channel vulnerabilities.

Fig. 4. The figure shows the evolution of t-scores with the number of traces
in experiment II (red) compared to III (green).

TABLE I
ACCURACY COMPARISON OF THE MODELS WITH DEFENSE

Architecture Baseline Modelwise Layerwise
784-10 91.98% 91.24% 91.52%

784-100-10 97.35% 97.29% 95.89%
784-100-100-10 97.68% 97.47% 96.30%

measurements is substantially lower that the implementation
with the defense disabled.

C. Accuracy Evaluations
We evaluated multiple models to determine whether the

proposed defense impacts accuracy. Table I summarizes the
results, using the MNIST dataset for all evaluations. The
experiments were conducted on the same MLP networks used
in side-channel evaluation. We also added a third one with
another layer of 100 neurons to identify if the proposed
training would have a different impact as the layer complexity
increases. The results indicate that the accuracy of the models
with our defense remains comparable to the baseline model
without defense. While the layerwise models show a slight
drop in accuracy, this is attributed to splitting the same training
dataset across multiple models, resulting in less data for each
individual model. This issue can be mitigated by increasing
the number of training epochs to provide more iterations for
learning.

V. CONCLUSION

In this work, we proposed a novel training methodology
to enhance the resilience of edge AI devices against power
and EM side-channel attacks. By leveraging the stochastic
nature of neural network training, our approach dynamically
creates interchangeable model configurations during inference,
significantly complicating side-channel analysis. Experimental
results demonstrated a reduction in side-channel leakage and
a slower increase in t-scores over extended measurements
while maintaining about 1% accuracy degradation compared
to baseline models. These findings highlight the practicality of
our method, which requires no hardware or software modifi-
cations, making it particularly suited for resource-constrained
edge devices. This solution paves the way for robust, scalable
defenses against emerging threats in the rapidly evolving
landscape of AI security.

ACKNOWLEDGMENTS

This project is supported in part by NSF under Grants No.
1943245 and 2333126.

6



REFERENCES

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016.

[2] Rambus, “Side-channel attacks target machine learning (ml) models,”
Rambus Blog, 2019.

[3] N. Papernot, P. McDaniel, and A. Swami, “The limitations of deep
learning in adversarial settings,” Proceedings of the IEEE European
Symposium on Security and Privacy, pp. 372–387, 2016.

[4] S. Tajik and F. Ganji, “Artificial neural networks and fault injection
attacks,” arXiv preprint arXiv:2008.07072, 2020.

[5] X. Wang, J. Li, X. Kuang, Y.-a. Tan, and J. Li, “The security of
machine learning in an adversarial setting: A survey,” J. Parallel
Distrib. Comput., vol. 130, no. C, p. 12–23, Aug. 2019. [Online].
Available: https://doi.org/10.1016/j.jpdc.2019.03.003

[6] L. B. et al., “CSI NN: Reverse engineering of neural network architec-
tures through electromagnetic side channel,” in USENIX Security ’19,
2019.

[7] L. Wei, B. Luo, Y. Li, Y. Liu, and Q. Xu, “I know what you see:
Power side-channel attack on convolutional neural network accelerators,”
in Proceedings of the 34th Annual Computer Security Applications
Conference, 2018, pp. 393–406.

[8] X. Jin, C. Katsis, F. Sang, J. Sun, A. Kundu, and R. Kompella, “Edge
security: Challenges and issues,” arXiv preprint arXiv:2206.07164,
2022.

[9] A. Dubey, R. Cammarota, and A. Aysu, “MaskedNet: The first hardware
inference engine aiming power side-channel protection,” in 2020 IEEE
International Symposium on Hardware Oriented Security and Trust,
HOST 2020, San Jose, CA, USA, December 7-11, 2020. IEEE, 2020,
pp. 197–208.

[10] A. Dubey, R. Cammarota, and A. Aysu, “BoMaNet: Boolean masking
of an entire neural network,” in IEEE/ACM International Conference
On Computer Aided Design, ICCAD 2020, San Diego, CA, USA,
November 2-5, 2020. IEEE, 2020, pp. 51:1–51:9. [Online]. Available:
https://doi.org/10.1145/3400302.3415649

[11] A. Dubey, R. Cammarota, V. Suresh, and A. Aysu, “Guarding machine
learning hardware against physical side-channel attacks,” ACM Journal
on Emerging Technologies in Computing Systems (JETC), vol. 18, no. 3,
2022.

[12] A. Dubey, A. Ahmad, M. A. Pasha, R. Cammarota, and A. Aysu,
“Modulonet: Neural networks meet modular arithmetic for efficient
hardware masking,” IACR Trans. Cryptogr. Hardw. Embed. Syst., vol.
2022, no. 1, pp. 506–556, 2022.

[13] K. Athanasiou, T. Wahl, A. A. Ding, and Y. Fei, “Masking feedforward
neural networks against power analysis attacks,” Proceedings on Privacy
Enhancing Technologies, vol. 2022, no. 1, pp. 501–521, 2022.

[14] A. Dubey, R. Cammarota, A. Varna, R. Kumar, and A. Aysu,
“Hardware-software co-design for side-channel protected neural
network inference,” in IEEE International Symposium on Hardware
Oriented Security and Trust, HOST 2023, San Jose, CA, USA,
May 1-4, 2023. IEEE, 2023, pp. 155–166. [Online]. Available:
https://doi.org/10.1109/HOST55118.2023.10133716

[15] Google, “Edge TPU,” 2022, https://cloud.google.com/edge-tpu.
[16] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Annual

international cryptology conference. Springer, 1999, pp. 388–397.
[17] A. Dubey, E. Karabulut, A. Awad, and A. Aysu, “High-fidelity model

extraction attacks via remote power monitors,” in 2022 IEEE 4th
International Conference on Artificial Intelligence Circuits and Systems
(AICAS), 2022, pp. 328–331.

[18] Google, “Tensorflow,” 2022, https://www.tensorflow.org/.
[19] Meta, “Pytorch,” 2022, https://pytorch.org/.
[20] Meta, “Pytorch mobile,” 2022, https://pytorch.org/mobile/home/.
[21] Google, “Tensorflow lite,” 2022, https://www.tensorflow.org/lite.
[22] N. Veyrat-Charvillon, M. Medwed, S. Kerckhof, and F. Standaert,

“Shuffling against side-channel attacks: A comprehensive study with
cautionary note,” in Advances in Cryptology - ASIACRYPT 2012
- 18th International Conference on the Theory and Application of
Cryptology and Information Security, Beijing, China, December 2-6,
2012. Proceedings, ser. Lecture Notes in Computer Science, X. Wang
and K. Sako, Eds., vol. 7658. Springer, 2012, pp. 740–757. [Online].
Available: https://doi.org/10.1007/978-3-642-34961-4\ 44

[23] Google, “Dev board,” 2020, https://coral.ai/products/dev-board.
[24] Riscure, “High precision em probe,” 2020, https://getquote.riscure.com/

en/quote/2101073/high-precision-em-probe.htm.

7


