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Abstract—Sensor systems are extremely popular today and
vulnerable to sensor data attacks. Due to possible devastating
consequences, counteracting sensor data attacks is an extremely
important topic, which has not seen sufficient study. This paper
develops the first methods that accurately identify/eliminate only
the problematic attacked sensor data presented to a sequence
estimation/regression algorithm under a powerful attack model
constructed based on known/observed attacks. The approach
does not assume a known form for the statistical model of
the sensor data, allowing data-driven and machine learning
sequence estimation/regression algorithms to be protected. A
simple protection approach for attackers not endowed with
knowledge of the details of our protection approach is first
developed, followed by additional processing for attacks based
on protection system knowledge. In the cases tested for which it
was designed, experimental results show that the simple approach
achieves performance indistinguishable, to two decimal places,
from that for an approach which knows which sensors are
attacked. For cases where the attacker has knowledge of the
protection approach, experimental results indicate the additional
processing can be configured so that the worst-case degradation
under the additional processing and a large number of sensors
attacked can be made significantly smaller than the worst-case
degradation of the simple approach, and close to an approach
which knows which sensors are attacked, for the same number of
attacked sensors with just a slight degradation under no attacks.
Mathematical descriptions of the worst-case attacks are used
to demonstrate the additional processing will provide similar
advantages for cases for which we do not have numerical results.
All the data-driven processing used in our approaches employ
only unattacked training data.

Index Terms—Cyber security, Sensor attack protection, pow-
erful attack protection, connected vehicle networks, anomaly
detection.

I. INTRODUCTION

Incorporation of sensors into infrastructure provides impor-
tant advantages [1]–[7]. The 2020 World Economic Forum’s
Global Risks Report listed cyber attacks on global critical
infrastructure as a top concern that urgently needs to be
mitigated [8]. Sensors are highly vulnerable to cyber attacks
and cyber attacks on sensors can cause tremendous damage.
Unfortunately, protection against such cyber attacks on sen-
sors has not been adequately addressed [9]. Here we focus
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on protecting sensor-based sequence estimation/regression al-
gorithms. These sensor-based sequence estimation/regression
algorithms can be employed to estimate any quantity sensed
by the sensors, for example: position, velocity and acceleration
of objects of interest.

Many systems today depend on sensors. These include
vehicles and vehicle networks, internet of things systems, and
other smart systems. There are attacks on sensors that 1) give
the attacker complete control over the attacked data; 2) allow
attacks at a sensor to be changed arbitrarily vs time; 3) allow
attacked sensors to be changed arbitrarily vs time; 4) Allow
the number of sensors attacked to be changed arbitrarily vs
time; 5) provide no prior knowledge on which sensors are
more likely attacked. Mitigation approaches for such cases are
lacking so we consider them here.

Consider a radar system as one example of an important
sensor that can be attacked. During unattacked operation,
as shown in Fig 1a, a radar transmits a pulsed wave in a
given direction, which after bouncing off an object, maybe an
airplane, is reflected back towards the radar. The pulsed wave
is received at the radar with a given delay θ with respect to
the transmitted waveform and with additive noise and clutter
n. By knowing the speed of the wave c, the distance d from
the radar to the object can be determined based on the delay.
As shown in Fig 1b, a spoofing attack can be launched if an
attacker receives the waveform transmitted by the radar, stores
it in a digital memory for a while, and then plays back the
waveform with an extra delay τ of its choosing. Since the
attacker can choose the extra delay, he has complete control
of the distance to the object that the radar reports, the sensor
data.

Similar attacks apply to other active sensor systems1, in-
cluding lidar, sonar, and GPS. In GPS attacks, attackers often
transmit fake GPS signals [10]. All such attacks are sometimes
called in-band attacks since the attacks employ signals whose
frequencies match those sensed by the sensor. Many other
sensors allow similar attacks, including many of the in-band
and out-of-band attacks described in [11]. These out-of-band
attacks employ signals of vastly different frequencies from
those sensed, impinging on sensors or connections to alter
sensor data. The impinging attack signal modality can be
acoustic, optical, or electromagnetic, while the sensor senses a
different modality. One group of out-of-band attacks employ
acoustic attacks targeting the resonant frequencies of gyro-
scopes and accelerometers. Many of these attacks, along with
many classical spoofing and man-in-the-middle attacks, which

1Active sensor systems transmit signals.

https://arxiv.org/abs/2506.06572v1


2

(a)

(b)

Fig. 1: Figure illustrating spoofing attack on a radar. (a)
Unattacked. (b) Attacked.

modify transmissions of sensor data [12], allow attackers to
replace actual sensor data with values of their choosing, a
powerful type of attack we consider later.

A. Problem and Attack Model

This work aims to provide an outer shell of protection that
can surround any unprotected sequence estimation/regression
algorithm chosen from a large class. Without the shell, the
original unprotected estimation algorithm is designed for cases
without cyber attacks on the sensor data. The shell will elimi-
nate problematic (in terms of degrading the estimate) attacked
sensor data, allowing the protected estimation algorithm to
operate using the remaining data. We focus on centralized
sequence estimation algorithms in this paper, but we intend
to later consider decentralized estimation algorithms in an
attempt to show similar ideas can be employed there.

The attack model considered in this paper allows much
more powerful attacks than we have ever seen successfully
detected/eliminated in the existing attack mitigation literature.
We assume the attacker has complete control to generate any
sensor data values after the attack. We assume the protection
system has no prior knowledge of which sensors are more
likely attacked. We assume the attacked sensors and the attacks
launched on those sensors can change each time step. We
assume the protection system can’t make any assumptions
on the number of sensors attacked at any time step or about
the patterns of attacks over time. Such attacks are consistent
with sensor spoofing and out-of-band attacks discussed in
Subsection I-A, where the signal impinging on the sensor
is already modified and this modification changes a sensor
output exactly as desired by the attacker. The attacked sensors
can also exhibit such properties for other types of sensor
attacks also, see Subsection I-A . We provide two protection
approaches, one for attackers without detailed knowledge of
the protection approach and another for attackers with detailed

knowledge of our protection approach. We assume all the
data-driven processing used in our approaches, for protection
or for estimation, will employ only unattacked training data
since it seems impossible to obtain training data accurately
representing all possible attacks.

B. Contribution

This paper develops the first methods that accurately iden-
tify/eliminate only the problematic attacked sensor data (keep
the rest) presented to a sequence estimation/regression al-
gorithm under a proper powerful attack model that fits the
situation based on known/observed attacks. Our approaches
can be used as an outer shell of protection that can surround
an unprotected estimation/regression algorithm (designed for
unattacked sensor data), allowing the protected estimation
algorithm to properly operate, with excellent performance,
using the deemed to be unattacked data, which we have
not seen for the attack model considered. Our approaches
do not assume a known form for the statistical model of
the sensor data, allowing data-driven and machine learning
sequence estimation/regression algorithms to be protected. Our
approaches employ only unattacked training data and handle
the possible attacks allowed by the powerful attack model
where the attacked sensors and attacks can change for each
time step, the attacker has complete control of after-attack
sensor data, and the protection system has no prior knowledge
of which sensors are more likely attacked and how many
sensors are attacked. Such powerful sensor attacks have not
been mitigated elsewhere in the literature.

We initially focus in this paper on a simple protection
approach for attacks not endowed with knowledge of the
details of our protection approach, but later we describe addi-
tional processing for attackers with knowledge, thus allowing
a lower complexity approach if suitable. The paper provides
experimental demonstration of good performance for both the
simple and additional processing. Our simple method is shown
to achieve, to two decimal places, indistinguishable estimation
performance in cases tested, which assume the attacker does
not have knowledge of the protection scheme, in comparison
to an optimized approach which knows which sensors were
attacked. For cases where the attacker has knowledge of the
protection approach, the additional processing can be config-
ured so that the worst-case degradation under the additional
processing and a large number of sensors attacked can be
made significantly smaller than the worst-case degradation
under the simple approach, and close to that for an approach
which knows which sensors are attacked, for the same number
of attacked sensors with just a slight degradation under no
attacks. Guarding against the worst-case is extremely impor-
tant and if this performance can be made acceptable, then
performance will always be acceptable for any attacks. Since
our method does not employ high-complexity searches over all
possible subsets of sensors, it is a relatively low-complexity
algorithm to reduce delay and needed hardware for practical
implementation.

To accomplish the majority of what we have just described,
we rely heavily on our discovery on how to mathematically
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describe the worst-case attacks for our simple and additional
processing approaches. This then allowed us to describe how
to calculate the worst-case performance. We feel this is an
important contribution of our work that can be employed
to analyze other protection approaches in a similar manner.
We hope others will employ these ideas in future work.
While our numerical testing is limited, as all would be, the
mathematical description of our worst-case attacks allow us
to ensure, even for cases not tested, that proper choice of the
additional processing parameters imply the worst-case degra-
dation under the additional processing and a large number of
sensors attacked can be made significantly smaller than the
worst-case degradation for the simple approach for the same
number of sensors attacked. Directly calculating the worst-case
performance, by knowing the worst-case attack, is extremely
efficient in reducing computations, which is especially impor-
tant if you want to try many parameter settings. It avoids trying
many different attacks, an approach others take. This would
be difficult to use due to extremely high complexity and one
would never obtain the actual worst-case attack performance.

C. Example Application

To provide a specific example application, we consider
connected vehicle networks (CVNs). However the general
ideas can be applied to other applications. In CVNs, sensor
technology is being adopted by automotive manufacturers,
creating distributed self-organized networks of many high-
speed vehicles and infrastructure [13] where these vehicles
can communicate with each other to share sensor data to
make driving safer [14]. Using sensor data to help identify
the time-varying position and velocity of objects of interest
is an important fundamental building block in CVNs [15],
[16] since it is used by most other required functions, such as
navigation and collision avoidance [17]. It is well known that
CVNs are vulnerable to sensor attacks [18]–[20] so this seems
a good example application we can use as needed in the rest
of the paper.

Section II provides a literature review. In Section III we
describe our proposed methods and the worst-case attacks on
these methods. Section IV presents our numerical results. In
Section V we provide conclusions.

II. LITERATURE REVIEW

There has been study on protecting classical sensor-based
sequence estimation algorithms, for example Kalman filter-
ing approaches, which assume a known mathematical model
(usually linear) for the sensor data, see [21]–[26] for example.
As these protection methods exploit the known mathematical
sensor data model, they are not applicable to protecting
data-driven (machine learning) approaches where a known
mathematical sensor data model is not available. While these
methods are not applicable to the problem of interest here, it is
worth noting that the methods of this type that achieve the best
performance generally perform a search over all the possible
subsets of sensors which could be attacked. Such searches
greatly increase the implementation complexity and run time

of these algorithms. Our goal is to avoid such searches to avoid
these issues.

Another approach to the problem of inference with attacked
sensor data has been studied under the topic of inference
with Byzantine data [27], [28]. This work built on early
work on the Byzantine Generals problem [29]. Unfortunately,
these approaches are known to provide very poor performance
for some attacks when the number of attacked sensors is
unknown, which makes them unsuitable for our attack model.
For example, it is common in these approaches to assume that
more than half of the sensors are unattacked and to produce an
estimate based on identifying, and then using, these sensors.
This can yield very poor performance if the assumption is not
true. Other assumptions lead to similar issues.

The Byzantine ideas have also been used in the dis-
tributed and federated learning paradigm [30], where process-
ing nodes/agents share data and some nodes/agents launch
attacks. In the distributed and federated learning paradigm,
the agents may pass gradients as opposed to raw data, but the
goal of rejecting the gradients representing attacked data, while
keeping the gradients representing unattacked data, makes
the problems similar in some sense. In the distributed and
federated learning paradigm, computing the average of the
unattacked gradients becomes very important and thus the ro-
bust computation of these averages, called robust aggregation,
has also become important. One example of robust aggregation
employs a median operation, which is robust to attacks unless
the number of values (gradients) attacked is greater than half
of the number of values aggregated, the number of sensors
in our cases. Trimmed means/medians and related approaches
(see [30]), which have also (along with the median) received
attention in the signal processing community [31], are also
applicable. Clearly these robust aggregation approaches are
also applicable to our sensor attack problems. Unfortunately,
for the attack model we consider these robust aggregation
approaches can perform poorly for some attacks. In fact, [30])
states that none of these robust aggregation approaches can
be guaranteed to give accurate aggregation results when the
number of attacked sensors is unknown.

More recently, some distributed estimation approaches have
been considered where the notion of the trust in an agent is
available [32] in a multi-agent system. The trust describes prior
knowledge, possibly from past interactions, on the likelihood
that an agent is providing false or attacked information. It
has been shown that when trust information is available, it
is possible to significantly outperform the robust aggregation
approaches [33], [34]. In some cases, one can even provide
accurate estimates for cases where more than half of the agents
are providing false/attacked data [32] if trust information is
available. Unfortunately, the nature of the attacks considered
here would not allow one to produce the required trust
information. We simply do not have any information on which
sensors are more likely to be attacked.

Recently, some machine learning-based encoder-decoder
anomaly detection (EDAD) approaches were proposed for pro-
tecting general sequence estimation algorithms and significant
progress on advancing the technology has taken place, see the
full story in [35]–[37]. In particular, there have been a rapid
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series of papers which have presented further improvement of
the initial basic EDAD approaches employed. The approaches
have progressed from using early technology, for example au-
toencoder technology, to much more sophisticated approaches,
the latest being generative adversarial network technology.
Using these anomaly detection approaches to protect against
sensor attacks has several advantages: (1) No assumptions
needed on the number of attacked sensors or amount of
attacked sensor data. (2) We can take advantage of the great
progress to incorporate the latest technology. (3) There are
many available approaches that need only unattacked training
data. Unfortunately, all of these EDAD approaches have a
negative point which we discuss next. However, we have
a method to augment these approaches that overcomes this
negative point.

The EDAD methods learn a statistical model fitting all the
possible (called valid) observed time sequences of unattacked
sensor training data. The training data set is assumed to be
sufficiently large to fully describe all unattacked sensor data.
During anomaly detection, any sensor data not following that
model will be marked as anomalous (either an attacked or
broken sensor, we call both attacked here). Thus, the EDAD
methods will identify data that is not consistent with the
training data as anomalous. For example, if an observed
sensor data sequence exhibits certain patterns in training data
but different patterns during operation, an anomaly (attack)
is detected. This enables very powerful verification that the
sensed trajectories are possible under no anomaly.

On the other hand, these EDAD approaches have an issue
for the trajectory state estimation problems we consider here
which typically have more than one possible (valid) state
sequence. To make things clear, consider the case where
the state sequence being estimated is the position/velocity
of some real object. There will be many possible (valid)
state sequences in such an application but many of them
do not follow the position/velocity of the real object we are
tracking. If the attacker substitutes sensor data following one
valid sequence/trajectory with sensor data following another
valid sequence/trajectory, then this attack passes EDAD. This
gives the attacker tremendous power to cause big problems.
The attacker can lead the system to believe the state being
estimated is following a very different trajectory than it is
actually following, potentially inducing an extremely large
error in the estimates based on this sensor data. This error
can be as large as the error between two valid trajectories that
are farthest apart, unbounded if this difference is unbounded.
Similar problems occur for if we estimate the state of some
machine or some some other state sequence.

To overcome this issue, after EDAD we employ novel
additional checks that are shown to provide acceptably small
degradations even with full knowledge attacks on a large
number of sensors. The additional checks makes use of
a machine learning predictor trained to predict a typical
unattacked sensor’s measurement of the actual state trajectory,
for example the position/velocity of the real object we are
tracking. Details are described later. We have not seen this
approach used to fix issues with EDAD. In fact, we have
not seen these issues discussed, even though EDAD has been

suggested for state sequence estimation problems.

III. PROPOSED METHODS AND WORST-CASE ATTACKS

Next, we describe our two approaches for augmenting
EDAD to eliminate the issue described at the end of the
previous section. Our approaches implement what we call an
actual path consistency check (APCC) to test if the sensor
data is following the actual trajectory of the state. The first
approach, called APCC-SIMPLE, is designed for cases where
the attacker does not have knowledge about the details of
the protection approach. The second approach, called APCC-
ADDITIONAL, is designed for cases when the attacker has
knowledge about the protection approach. This second ap-
proach adds some additional checks.

First, we group all sensors such that each group contains all
processed sensor outputs that predict the same component of
the tracked trajectory. For the group of sensors predicting the
first component of the trajectory (maybe the X component of
an object’s position as in the top left of Fig 2), all the sensors
passing EDAD (AD in Fig 2) are put through our APCC,
which attempts to check if the sensor data is following the path
of the actual trajectory. This same processing is carried out for
each group of sensors predicting all the other components of
the trajectory. Then all the sensor data that passes this check,
deemed to be unattacked sensor data, will be sent on to the
estimation/fusion processing which will combine (fuse) this
data, possibly with other data (including trajectory estimates
at previous time steps), to produce the trajectory estimate. The
estimation/fusion processing can be thought of as a possibly
user-selected estimation algorithm that assumes all the sensor
data input to it is unattacked.

The overall approach is illustrated in the block diagram in
Fig 2. It should be noted that the APCC block includes the
two options just discussed. The first option, called APCC-
SIMPLE, consists of just the part labeled 1 in the APCC block
in Fig 2. The second option, called APCC-ADDITIONAL,
includes both the parts labeled 1 and 2 (2 builds on 1) in the
APCC block in Fig 2. Next, we describe the details of the
APCC block, under two subsections entitled APCC-SIMPLE
and APCC-ADDITIONAL. This is followed by a subsection
on the worst-case attacks and a subsection providing the details
of the estimation/fusion processing.

Fig. 2: Block Diagram of our approach. The block AD is an
EDAD approach as per the text. We have two APCC options,
APCC-SIMPLE (1. only) and APCC-ADDITIONAL (both 1
and 2) in the APCC block in the figure.
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A. APCC-SIMPLE

Let us remind the reader that this version of the APCC is
employed alone for cases where the attacker has no knowledge
of the protection approach. For attackers with knowledge, we
augment this approach as described in the next subsection.
For APCC-SIMPLE, take any sensor measurements in a given
group that have passed EDAD at a given time step and
immediately subtract from them a prediction of what a typical
unattacked sensor output would look like at that time step. The
prediction comes from a trained machine learning algorithm
whose input is sensor data from previous time steps which we
deemed to be unattacked and possibly predictions at previous
times. After the subtraction, we check that the difference lies in
an interval chosen to contain a certain percentage β of all the
possible values observed when computing this difference using
all the unattacked training data. We refer to this percentage β
as the consistency percentage. In some numerical results we
select β to be 99.9%. Then any sensors producing differences
not falling within the interval will be deemed attacked.

The prediction of what a typical sensor output would look
like at a given time step can employ any machine learning
approach. In the numerical results, we focus on a prediction
method based on the Random Forest approach as delineated
by Breiman [40]. Since the number of sensors labeled as
unattacked can vary over time, we employ multiple Random
Forest models to accommodate different numbers of input
features. Accordingly, when the number of unattacked sensors
changes, a corresponding Random Forest model with the exact
number of unattacked sensor inputs is selected to perform the
prediction. Once the predictor is trained, the processing in
APCC-SIMPLE is illustrated in Fig 3 for β = 99%.

Fig. 3: Block Diagram of APCC-SIMPLE with β = 99%.

B. APCC-ADDITIONAL

For attackers that have knowledge of our protection ap-
proach, we augment the APCC-SIMPLE approach with
additional processing in an approach we call APCC-
ADDITIONAL. Note that APCC-SIMPLE has already elim-
inated some sensors deemed to be attacked. This additional
processing may eliminate more. To motivate the need for
additional processing, consider the following. Suppose the
malicious attackers know the details of the APCC-SIMPLE
algorithm implemented to protect the sensor data. In that case,
it’s reasonable to infer that the attackers might insert many
attacks (called edge attacks later) just inside one edge of the
confidence interval shown in Fig 3 to avoid the attacks from
being identified while causing maximum damage. Thus the
edge attacks are the worst-case attacks on APCC-SIMPLE.

Since these attacks will not be identified without additional
processing, they will skew the estimation of the trajectory.
If the attacker tries to launch a large number of such attacks,
our additional processing, a data-driven approach, will attempt
to eliminate many (or all) of these attacks by recognizing
that they are not consistent with the statistics implied by the
unattacked training data. Our approach will also mitigate other
attacks.

For additional protection, we employ a different method to
ensure the deemed to be unattacked data is statistically close to
the training data, assumed unattacked, when closeness is mea-
sured in a different manner. The approach makes a decision on
if a previously (based on APCC-SIMPLE) deemed unattacked
sensor is attacked based on constructing the histogram of
all the differences computed in Fig 3, at a given time and
sensor group, that pass the APCC-SIMPLE test. We call this
histogram f̂(x) when evaluated at a given bin x. Note that
a histogram is often called an empirical probability density
function (PDF) estimate and we use this to test if the statistics
during operation match those obtained with training data in a
specific sense.

In particular, APCC-ADDITIONAL uses the training data
to find the smallest upper limit of a confidence interval, called
U(x), such that with probability 0 < α < 1 (usually closer to
1) the histogram f̂(x) should lie below U(x) as per

Pr(f̂(x) < U(x)) = α. (1)

After learning U(x) from the training data, we effectively
eliminate sensor data which would cause f̂(x) to exceed U(x).
In particular, for any small histogram bin where f̂(x) > U(x),
we exclude the smallest number of sensors that produce
values in that bin so afterwards f̂(x) ≤ U(x). The remaining
sensor measurements, all those not excluded by either this
or the previous processing, will be incorporated into the
estimation/fusion processing as per Fig. 4 and Fig. 2.

Fig. 4: Block diagram with α = 99% illustrating how
the APCC-ADDITIONAL processing builds on the APCC-
SIMPLE processing, resulting in a decision on if each sensor
is unattacked at a given time.

C. Worst-case Attacks

An important point is that we can calculate both the
worst-case attack performance under the simple processing
in APCC-SIMPLE (the edge attack mentioned previously
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in Subsection III-B) and the worst-case attack performance
under the additional processing in APCC-ADDITIONAL, a
major contribution of our work. We will use this later in
the numerical results to show the worst-case attack under
APCC-ADDITIONAL can be made to cause significantly less
damage that the worst-case attack under APCC-SIMPLE for
cases with a large number of sensors being attacked, with
the proper choice of the parameters in APCC-ADDITIONAL.
If the worst-case attack can be tolerated, any attack can be
tolerated.

At any given time step, the optimum NA-sensor attack
against the APCC-ADDITIONAL approach will try to insert
NA attacks whose magnitudes lie in a set of histogram
bins2 which each provide a large enough difference between
the upper bound U(x) and the sensor data histogram f̂(x)
to support those attacks (so the attacks get through) while
choosing those bins that cause the greatest degradation to the
estimation/fusion. Such attacks are called water-filling attacks
since one can imagine pouring water to fill up the space left
between the upper bound and the sensor data histogram, but
the water must be poured in the most damaging bins first.

The approach is illustrated in Fig. 5. The red lines show bins
deemed to cause the most degradation to the estimation/fusion
of all bins where there is enough room between the upper
bound and the sensor data histogram to insert one or more
attacks. As shown in Fig. 5, one can only add attacks to a
given histogram bin if there is enough space between the upper
bound and the sensor data histogram. This greatly limits the
possible attacks which will pass this protection approach and
the damage they can impose. Notice that increasing the number
of sensors attacked beyond a certain value creates a smaller
change in the possible degradation of the estimation/fusion for
each additional sensor attacked since the additional sensors
attacked have to eventually occupy bins which cause smaller
degradation. At some point, an additional attacked sensor can
no longer degrade the estimation/fusion more than typical
noise at that sensor.

To find the particular NA sensors in which we will launch
those attacks, we should pick those sensors that lead to the
greatest damage, called nonrandom attacks. Intuitively, these
sensors will have unattacked sensor values that differ the most
from the attack values. Thus if the attack will be launched on
the far left-hand side of the x axis as in Fig. 5 (see red bins),
then you should pick a sensor whose unattacked value is the
farthest away, on the right-hand side of the x axis in Fig. 5
(away from the red bins).

D. Fusion Processing Block

At each time step, the possibly user-selected estima-
tion/fusion processing will take all the sensor outputs passing
the APCC and combine them with internally stored values to
produce a fused scalar output for each trajectory component
to be estimated. For example, the estimation/fusion processing
can employ a set of previous predictions that can be saved
internally inside the estimation/fusion block in Fig. 2.

2Bins are assumed small so we insert attacks in the middle of the bins.

Fig. 5: Block Diagram illustrating the worst-case water-filling
attack for APCC-ADDITIONAL. The red lines show places
where there is enough room between the upper bound and the
sensor data histogram to insert one or two attacks and these
attacks cause the greatest degradation to the estimation/fusion.

The number of sensors deemed unattacked at a given time
can change from time to time. This can be handled by choosing
from several different machine-learning (or other) models,
each with a different number of inputs. Specific examples are
described in Section IV.

IV. EXPERIMENTAL RESULTS

First, we remind the reader that, as explained at the end
of Section II, EDAD approaches alone will give very large,
potentially unbounded, errors for typical sequence estimation
problems. We skip numerical results of this type to save space.
By definition, by adding at least APCC-SIMPL to the EDAD
approaches, we can limit the errors to reasonably small values
of our choosing.

As CVN data sources with a sufficient number of sensors
are unavailable and to test in a fully controllable environment,
we generate sensor data used for experiments from a vehicle
trajectory simulated using the Simulation of Urban Mobility
open source software (SUMO) and introduce controllable
sensor noise, independent samples from time to time. Most
experiments will be conducted for cases of both Gaussian and
Laplacian sensor noise, two very different noise models [38].
Let the scale parameter of the Gaussian noise be σ so that its
variance is σ2. Let the scale parameter of the Laplace noise be
b so that its variance is 2b2 [38]. We vary the noise variance
to characterize performance for different noise levels. Here
we estimate a trajectory for a scalar quantity for simplicity,
where the estimation/fusion algorithm uses only the sensor
data at a given time step to produce the estimate at that same
time step in the trajectory (no stored data) although we have
considered other cases. We first employ SUMO to generate
many different possible noise-free vehicle path trajectories of
length m = 150 time steps that follow routes on a map shown
in Fig 6. After adding independent noise from sensor to sensor
to these trajectories, we have our sensor data. This sensor data
will be used differently for testing APCC-SIMPLE and APCC-
ADDITIONAL as discussed later.

While our protection approach allows changing the number
of sensors attacked each time step, here we fix the number of
sensors attacked each time step for ease of interpretation of
the results and call the number of attacked sensors NA. Here
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Fig. 6: Map used with SUMO to produce trajectories.

(a) x coordinate waveform of
the true trajectory.

(b) x coordinate waveform of
an attacked trajectory.

Fig. 7: Comparison of true and attacked trajectories.

NA < N where N is the total number of sensors available
(attacked plus unattacked). In order to focus on the ability of
our approach to find and eliminate attacked sensor data and
to remove any effects due to the estimation/fusion algorithm
in our numerical results, we employ Maximum Likelihood
Estimation (MLE) [38], [39] as the fusion approach, which
is optimized under the assumption of known sensor noise
distribution. For Gaussian noise or a large number of provided
sensor observations, the MLE is optimum among unbiased
estimators. We have observed that these MLE results can
well approximate performance for highly optimized machine
learning-based fusion algorithms. We have also found that
non-optimized machine learning-based fusion algorithms do
impose some additional degradation in performance, while we
do not provide these results here.

None of the attacks we consider in our tests would be
detected by pure EDAD since these attacks substitute one
valid sequence for another as discussed in the second to last
paragraph of Section II. Our purpose here is to show our
new approaches can achieve very good performance for such
attacks, thus providing a useful way of augmenting EDAD
to perform well for attacks that EDAD misses. We should
note that for the kind of attacks we consider, it’s obvious
that using attacked data (rather than eliminating it) will never
improve performance since these attacks delete all the useful
information about the original trajectory by changing it.

Let the actual trajectory we wish to estimate be y1, . . . , ym.

Let the vector of sensor observations at time step j, j =
1, . . . ,m be Xj = (x1j , . . . , xNj)

T . The estimation/fusion
algorithm will use this vector to produce an estimate for time
step j which we denote as ŷj . For any given estimation/fusion
method, the performance is measured using the mean square
error (MSE), defined as

MSE = E

 1

m

m∑
j=1

(ŷj − yj)
2

 . (2)

The Normalized Root MSE (NRMSE) can be defined as

NRMSE =

√
MSE

1
m

∑m
j=1 |yj |

=

√√√√E
[

1
m

∑m
j=1(ŷj − yj)2

]
1
m

∑m
j=1 |yj |

(3)
By employing an optimized estimate which also only uses

the sensor data which is actually unattacked, we obtain a
useful performance comparison that incorporates information
not normally available in practice called the Genie Estimate
(GE), The GE sets ŷj in (2) as the MLE estimate/fusion for
the known noise distribution using only the unattacked sensor
data in Xj .

A. Numerical Results for APCC-SIMPLE: Attacks Without
Knowledge

In this subsection, we discuss the numerical results obtained
with the APCC-SIMPLE algorithm, described in Subsec-
tion III-A. In the experiments, the chosen β is 99.9%, the
total number of time steps in the trajectory m is 150, and the
sampling period of the sensor data is 1.0×10−3 sec. To obtain
an accurate estimate of NRMSE in (3), we performed a Monte
Carlo (MC) simulation where we average the NRMSE over 1
million independent realizations called the MC run length.

We consider cases where the attacker is assumed to not
have detailed knowledge of the protection scheme, for example
the confidence interval in Fig. 3 or the prediction. Thus the
attacker is unable to launch optimum (worst case) attacks that
are all focused to lie at the edge of the confidence interval
in Fig. 3. We consider such cases later. Instead, for ease in
comparing the various cases considered in this subsection, the
noise-free unattacked trajectory was chosen to be the trajectory
shown in Figure 7a, which is one of the trajectories from the
set of those generated using the map in Fig 6. The noise-
free attacked trajectory was chosen randomly (attacker can not
optimize) from the other waveforms generated using the map
in Fig 6. One of these possible attacked trajectories is shown in
Figure 7b. The attacked trajectories are chosen randomly and
independently at each attacked sensor without replacement.

In Table I and Table II, we show the numerical results for
various cases we have tested. The numerical results illustrate
that for these cases where we apply the APCC-SIMPLE
approach with optimized MLE fusion to address attackers
without protection system knowledge, the NRMSE between
the APCC-SIMPLE (SIMPLE in Tables) estimated trajectory
and the true trajectory (last column) is small and it is very
close (identical to two decimal places) to that for the GE (using
MLE). It indicates the APCC-SIMPLE approach successfully
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identifies the attacked sensors and excludes their readings
accordingly in the estimation/fusion process.

TABLE I: APCC-SIMPLE Gaussian Results β = 99.9%
σ2 is noise variance, N is # of sensors, NA is # of attacked sensors,
NRMSE GE and NRMSE SIMPLE (APCC-SIMPLE) both use MLE

σ2 N NA NRMSE GE NRMSE SIMPLE
1.0× 10−4 50 40 5.03× 10−5 5.03× 10−5

1.0× 10−4 50 30 3.56× 10−5 3.56× 10−5

1.0× 10−4 50 10 2.52× 10−5 2.52× 10−5

1.0× 10−4 20 10 5.03× 10−5 5.03× 10−5

1.0× 10−4 10 5 7.12× 10−5 7.12× 10−5

1.0× 10−2 50 40 5.03× 10−4 5.03× 10−4

1.0× 10−2 50 30 3.56× 10−4 3.56× 10−4

1.0× 10−2 50 10 2.52× 10−4 2.52× 10−4

1.0× 10−2 20 10 5.03× 10−4 5.03× 10−4

1.0× 10−2 10 5 7.12× 10−4 7.12× 10−4

TABLE II: APCC-SIMPLE Laplacian Results β = 99.9%
See TABLE I for column definitions.

σ2 = 2b2 N NA NRMSE GE NRMSE SIMPLE
2.0× 10−4 50 40 6.06× 10−5 6.06× 10−5

2.0× 10−4 50 30 4.11× 10−5 4.11× 10−5

2.0× 10−4 50 10 2.80× 10−5 2.80× 10−5

2.0× 10−4 20 10 6.06× 10−5 6.06× 10−5

2.0× 10−4 10 5 9.43× 10−5 9.43× 10−5

2.0× 10−2 50 40 6.06× 10−4 6.06× 10−4

2.0× 10−2 50 30 4.11× 10−4 4.11× 10−4

2.0× 10−2 50 10 2.80× 10−4 2.80× 10−4

2.0× 10−2 20 10 6.06× 10−4 6.06× 10−4

2.0× 10−2 10 5 9.43× 10−4 9.43× 10−4

B. Numerical Results for APCC-ADDITIONAL and Attacks
With Knowledge

1) Edge Attack - APCC-SIMPLE vs APCC-ADDITIONAL :
In this subsection, we consider the worst-case attack, called an
edge attack, for the APCC-SIMPLE approach and demonstrate
the performance improvements obtainable for such attacks
when the APCC-ADDITIONAL approach is applied. The
edge attack places the attacked sensor values just inside the
edge of the confidence interval shown in Fig 3, thus they
require knowledge of the protection approach to launch. In the
experiments, the number of sensors N is fixed to be 50 while
we vary the number of attacked sensors NA to investigate the
impact of attacking more sensors. The total number of time
steps considered m in the trajectory to be estimated is still
150. To perform the APCC-ADDITIONAL processing, we use
histograms of 25 bins to calculate U(x) and f̂(x) in Fig. 4.
We consider two specific types of edge attacks. One where we
select the sensors to attack randomly, called a random attack,
and the other where we select the sensors to attack which will
cause the most damage, called a nonrandom attack. Since we
pick the attacks near one edge of the confidence interval in
Fig 3, the sensors which will cause the most damage are those
with unattacked data closest to the other end of the confidence
interval while lying inside the confidence interval.

For the case when the sensor noise is Gaussian, Ta-
ble III (Non-Random attack) and Table IV (Random attack)
show the NRMSE performance improvements of the APCC-
ADDITIONAL approach over the APCC-SIMPLE approach

for the edge attacks. For large NA, the APCC-ADDITIONAL
approach nearly perfectly identifies and removes all the edge
attacked sensors to provide NRMSE performance close to
the GE (identical to two decimal places). The performance
of the APCC-ADDITIONAL approach is considerably better
than that of the performance of the APCC-SIMPLE approach
for the edge attacks which is extremely important in some
critical applications. However, considering its simplicity. the
performance of the APCC-SIMPLE approach for the edge
attacks is not that bad and might be suitable in some noncritical
applications. Note that the degradation of the worst-case attack
(Edge attack) is bounded to a reasonably small value for
APCC-SIMPLE but this will not be the case if we remove
the APCC-SIMPLE processing as discussed previously. In the
cases considered, the nonrandom attacks are more powerful
than the corresponding random attacks as expected. Similar
conclusions to those drawn from Table III and Table IV can
be drawn from the cases shown in Table V (NonRandom
attack) and Table VI (Random attack) which consider cases
with Laplacian noise as opposed to Gaussian noise.

2) Water-filling Attack - Worst-case attack on APCC-
ADDITIONAL processing: The previously considered edge
attack is the worst-case (causes the most damage) attack for
the APCC-SIMPLE processing, but the worst-case attack for
the APCC-ADDITIONAL processing is the water-filling attack
we discussed previously. In the water-filling attack considered
in this subsection, we optimally select the sensors to attack,
so we call this a nonrandom attack. Table VII illustrates the
APCC-ADDITIONAL processing performance (NRMSE with
MLE fusion) for several values of α and β for the nonrandom
water-filling attack for some cases with Gaussian sensor noise.
Note that while the majority of the results in Table VII are
for water-filling attacks (worst-case for ADDITIONAL), the
first row in Table VII below the headings is for edge attacks
(worst-case for SIMPLE) to allow simple comparison.

The results in Table VII show that, with proper choice of
the parameters α and β, we can find approaches that make the
worst-case NRMSE performance of the APCC-ADDITIONAL
processing with a large NA smaller than that of the worst-
case NRMSE performance of APCC-SIMPLE processing in
the same case and close to GE. As Table VII illustrates, this
decrease in worst-case NRMSE performance of the APCC-
ADDITIONAL processing for cases with a large NA comes
with a small increase in the NRMSE for cases with NA = 0
when compared with the APCC-SIMPLE approach in Table III
(same as GE). Table VII shows that when the noise distribution
is Gaussian with a variance of 1 × 10−4, using α = 80%
and β = 80% yields worst-case performance with NA = 40
that is within a factor of 2 of the GE for that case while
yielding performance with NA = 0 that is within a factor of
1.8 of the GE for that case. While this seems to provide good
performance at either extreme, other choices of α and β allow
different tradeoffs.

Table VIII illustrates similar findings for cases with Lapla-
cian noise. Figure 8 illustrates the trade-offs that the different
previously considered (α, β) approaches can achieve in terms
of worst-case NRMSE performance (y-axis) for a large NA

versus the NA = 0 NRMSE performance (x-axis) under
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TABLE III: Gaussian Non-Random Edge Attack α = 90% β = 99.9%

Variance approach NA = 0 NA = 10 NA = 20 NA = 30 NA = 40

1.0× 10−4
NRMSE GE 2.25× 10−5 5.93× 10−5 1.04× 10−4 1.54× 10−4 2.21× 10−4

NRMSE APCC-SIMPLE 2.25× 10−5 2.10× 10−4 4.09× 10−4 6.12× 10−4 8.34× 10−4

NRMSE APCC-ADDITIONAL 2.28× 10−5 6.65× 10−5 1.09× 10−4 1.56× 10−4 2.21× 10−4

1.0× 10−2
NRMSE GE 2.25× 10−4 5.93× 10−4 1.04× 10−3 1.54× 10−3 2.21× 10−3

NRMSE APCC-SIMPLE 2.25× 10−4 2.06× 10−3 4.02× 10−3 6.02× 10−3 8.19× 10−3

NRMSE APCC-ADDITIONAL 2.28× 10−4 6.08× 10−4 1.05× 10−3 1.54× 10−3 2.21× 10−3

Note: The NRMSEs in this table are obtained by using MLE as the fusion approach.

TABLE IV: Gaussian Random Edge Attack α = 90% β = 99.9%

Variance approach NA = 0 NA = 10 NA = 20 NA = 30 NA = 40

1.0× 10−4
NRMSE GE 2.25× 10−5 2.52× 10−5 2.91× 10−5 3.56× 10−5 5.03× 10−5

NRMSE APCC-SIMPLE 2.25× 10−5 1.44× 10−4 2.86× 10−4 4.29× 10−4 5.69× 10−4

NRMSE APCC-ADDITIONAL 2.28× 10−5 2.52× 10−5 2.91× 10−5 3.56× 10−5 5.03× 10−5

1.0× 10−2
NRMSE GE 2.25× 10−4 2.52× 10−4 2.91× 10−4 3.56× 10−4 5.03× 10−4

NRMSE APCC-SIMPLE 2.25× 10−4 1.43× 10−3 2.87× 10−3 4.28× 10−3 5.73× 10−3

NRMSE APCC-ADDITIONAL 2.28× 10−4 2.52× 10−4 2.91× 10−4 3.56× 10−4 5.03× 10−4

Note: The NRMSEs in this table are obtained by using MLE as the fusion approach.

TABLE V: Laplacian Non-Random Edge Attack α = 90% β = 99.9%

Variance approach NA = 0 NA = 10 NA = 20 NA = 30 NA = 40

2.0× 10−4
NRMSE GE 2.48× 10−5 4.62× 10−5 8.97× 10−5 1.54× 10−4 2.66× 10−4

NRMSE APCC-SIMPLE 2.48× 10−5 8.88× 10−5 2.65× 10−4 1.55× 10−3 1.66× 10−3

NRMSE APCC-ADDITIONAL 2.48× 10−5 4.85× 10−5 9.11× 10−5 1.54× 10−4 2.66× 10−4

2.0× 10−2
NRMSE GE 2.48× 10−4 4.62× 10−4 8.97× 10−4 1.54× 10−3 2.66× 10−3

NRMSE APCC-SIMPLE 2.48× 10−4 8.90× 10−4 2.65× 10−3 1.52× 10−2 1.63× 10−2

NRMSE APCC-ADDITIONAL 2.48× 10−4 4.78× 10−4 9.03× 10−4 1.54× 10−3 2.66× 10−3

Note: The NRMSEs in this table are obtained by using MLE as the fusion approach.

TABLE VI: Laplacian Random Edge Attack α = 90% β = 99.9%

Variance approach NA = 0 NA = 10 NA = 20 NA = 30 NA = 40

2.0× 10−4
NRMSE GE 2.48× 10−5 2.80× 10−5 3.29× 10−5 4.11× 10−5 6.06× 10−5

NRMSE APCC-SIMPLE 2.48× 10−5 5.76× 10−5 1.88× 10−4 1.35× 10−3 1.35× 10−3

NRMSE APCC-ADDITIONAL 2.48× 10−5 2.80× 10−5 3.29× 10−5 4.11× 10−5 6.06× 10−5

2.0× 10−2
NRMSE GE 2.48× 10−4 2.80× 10−4 3.29× 10−4 4.11× 10−4 6.06× 10−4

NRMSE APCC-SIMPLE 2.48× 10−4 5.73× 10−4 1.88× 10−3 1.36× 10−2 1.37× 10−2

NRMSE APCC-ADDITIONAL 2.48× 10−4 2.80× 10−4 3.29× 10−4 4.11× 10−4 6.06× 10−4

Note: The NRMSEs in this table are obtained by using MLE as the fusion approach.

Gaussian sensor noise. In addition, Figure 9 shows the trade-
offs in worst-case NRMSE performance (y-axis) for a large
NA compared to the no-attack NRMSE performance (x-axis)
when subjected to Laplacian sensor noise.

While the just given results numerically indicate that a
sufficient decrease in α will lead to a decrease in the worst-
case performance with a large NA, this can be deduced based
on the construction of the APCC-ADDITIONAL approach.
This follows since reducing α reduces the upper bound U(x)
which then eliminates the space between the upper bound and
the histogram for all bins which can support one or more
attacks. Thus the bins that have space for attacks to pass
through become fewer as α is reduced. In fact, the most
damaging bins of this type will typically be heavily impacted
in this way first so that the attacks that pass the protection after
α reduction will cause less damage to the estimation/fusion.
It is also clear that increasing α will improve the performance
under no attack since fewer sensors will be deemed to be
attacked with other things equal.

It’s important to note that any error in the prediction in
Fig. 3 could negatively affect the performance of the proposed
APCC approach. We omit results showing this since the idea

is quite intuitive. An accurate prediction approach must be
employed. One might be concerned that there could be an
accumulation of prediction errors over time. Thus if some at-
tacked sensors are determined to be unattacked at a given time
step, these sensors will be used in the prediction for the next
time step as described in Fig 3, possibly increasing the predic-
tion error at the next step. This error could accumulate over
time if the attacks always move the prediction in a consistent
direction. However, experimental results show if we employ a
good machine learning approach which is properly trained then
by properly adjusting β and α in APCC-ADDITIONAL, the
impact of even powerful optimized attacks always moving the
prediction in a consistent direction do not cause large degrada-
tion over longer trajectories. Table IX shows results when the
noise distribution is Gaussian with a variance of 1× 10−4 for
an attacker launching 40 optimum (non-random water-filling,
consistent direction over time) attacks each time step on a
total of 50 sensors. Table IX show that by setting α to 60%
and β to 80%, the APCC-ADDITIONAL approach provides
enough protection to counteract even this severe worst-case
attack. The simulation results show that the NRMSE reaches
1.86 × 10−4 after 150 time steps. Even when extending the



10

TABLE VII: Gaussian Optimized Non-Random Water Filling Attack

Variance approach NA = 0 NA = 10 NA = 20 NA = 30 NA = 40

1.0× 10−4

Worst-case for SIMPLE (β = 99.9%) – 2.10× 10−4 4.09× 10−4 6.12× 10−4 8.34× 10−4

NRMSE for α = 80%, β = 80% 4.15× 10−5 1.29× 10−4 2.56× 10−4 4.03× 10−4 4.47× 10−4

NRMSE for α = 70%, β = 80% 4.94× 10−5 1.29× 10−4 2.19× 10−4 2.60× 10−4 2.60× 10−4

NRMSE for α = 60%, β = 80% 5.24× 10−5 1.29× 10−4 1.86× 10−4 1.86× 10−4 1.86× 10−4

NRMSE for α = 50%, β = 80% 6.06× 10−5 1.22× 10−4 1.40× 10−4 1.40× 10−4 1.40× 10−4

NRMSE for α = 40%, β = 80% 7.14× 10−5 9.31× 10−5 9.33× 10−5 9.33× 10−5 9.33× 10−5

1.0× 10−2

Worst-case for SIMPLE (for β = 99.9%) – 2.06× 10−3 4.02× 10−3 6.02× 10−3 8.19× 10−3

NRMSE for α = 80%, β = 80% 2.45× 10−4 1.29× 10−3 2.74× 10−3 4.79× 10−3 5.53× 10−3

NRMSE for α = 70%, β = 80% 2.70× 10−4 1.29× 10−3 2.52× 10−3 3.12× 10−3 3.12× 10−3

NRMSE for α = 60%, β = 80% 2.91× 10−4 1.29× 10−3 1.82× 10−3 1.82× 10−3 1.82× 10−3

NRMSE for α = 50%, β = 80% 3.34× 10−4 9.17× 10−4 9.54× 10−4 9.48× 10−4 9.48× 10−4

NRMSE for α = 40%, β = 80% 3.91× 10−4 5.60× 10−4 5.60× 10−4 5.60× 10−4 5.60× 10−4

Note: The NRMSEs in this table are obtained by using MLE as the fusion approach.

simulation to 7.0×104 time steps, the NRMSE only increases
to 2.80× 10−4, about 1.5 times larger. We observed similarly
small increases for slightly larger α of 70% or 80%. These
results demonstrate that with proper protection, the damage
from attacks leaking through and degrading the prediction can
be made small, even under the worst-case attack, allowing for
acceptable performance.

Fig. 8: Trade-off between worst-case NRMSE with NA = 40
(Y-axis) versus NRMSE for NA = 0 (X-axis) for a case with
Gaussian sensor noise, various α, N = 50, β = 80%, and
noise variance = 1.0× 10−4.

V. CONCLUSIONS AND FUTURE WORK

This paper developed the first methods that accurately iden-
tify/eliminate just the problematic attacked sensor data (keep
the rest) presented to a sequence estimation/regression algo-
rithm under a powerful attack model based on known/observed
attacks. The developed approaches were shown to pro-
tect a sequence estimation/regression algorithm designed for
unattacked sensor data by allowing such an algorithm to
operate using the deemed to be unattacked data. The developed
approaches employ only unattacked training data to mitigate
all attacks allowed under the powerful considered attack model
where the attacked sensors and attacks can change for each
time step, the attacker has complete control of after-attack
sensor data, and the protection system has no prior knowledge
of how many sensors are attacked and which sensors are more
likely to be attacked. Such powerful sensor attacks have not
been mitigated elsewhere in the literature.

Fig. 9: Trade-off between worst-case NRMSE with NA = 40
(Y-axis) versus NRMSE for NA = 0 (X-axis) for a case with
Laplacian sensor noise, various α, N = 50, β = 60%, and
noise variance = 2.0× 10−4.

We first proposed a simple protection approach for attacks
not endowed with knowledge of the details of our protection
approach, but later we proposed additional processing for
attackers with knowledge. This allows a lower complexity
approach to be employed if the attacker does not have detailed
knowledge of the protection approach. Experimental results
were provided which demonstrated good performance for both
the simple and additional processing. Our simple method is
shown to achieve estimation performance which is indistin-
guishable (to two decimal places) when compared to that of
the GE (which knows which sensors were attacked) in cases
tested, which assume the attacker does not have knowledge of
the protection scheme. For cases where the attacker has knowl-
edge of the protection approach, numerical results show that
the additional processing can be configured, by proper param-
eter choice, so that the worst-case degradation under a large
number of sensors attacked can be made significantly smaller
than the worst-case degradation under the simple processing,
and close to GE, for the same number of attacked sensors with
just a slight degradation under no attacks. Guarding against the
worst-case is extremely important and if this performance is
acceptable, then performance will always be acceptable. Our
protection approach is relatively low-complexity, as it does not
employ high-complexity searches over all possible subsets of
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TABLE VIII: Laplacian Optimized Non-Random Water Filling Attack

Variance approach NA = 0 NA = 20 NA = 30 NA = 40

2.0× 10−4

Worst-case for SIMPLE (for β = 99.9%) – 2.65× 10−4 1.55× 10−3 1.66× 10−3

NRMSE for α = 70%, β = 60% 4.98× 10−5 2.56× 10−4 2.56× 10−4 2.56× 10−4

NRMSE for α = 60%, β = 60% 6.40× 10−5 1.73× 10−4 1.73× 10−4 1.73× 10−4

NRMSE for α = 50%, β = 60% 6.52× 10−5 1.47× 10−4 1.47× 10−4 1.47× 10−4

NRMSE for α = 40%, β = 60% 8.99× 10−5 1.18× 10−4 1.18× 10−4 1.18× 10−4

2.0× 10−2

Worst-case for SIMPLE (for β = 99.9%) – 2.65× 10−3 1.52× 10−2 1.63× 10−2

NRMSE for α = 70%, β = 70% 4.02× 10−4 2.60× 10−3 2.60× 10−3 2.60× 10−3

NRMSE for α = 60%, β = 70% 4.70× 10−4 1.99× 10−3 1.99× 10−3 1.99× 10−3

NRMSE for α = 50%, β = 70% 5.50× 10−4 1.43× 10−3 1.43× 10−3 1.43× 10−3

NRMSE for α = 40%, β = 70% 6.60× 10−4 1.13× 10−3 1.13× 10−3 1.13× 10−3

Note: The NRMSEs in this table are obtained by using MLE as the fusion approach.

Parameter Setting or measurement
Noise Distribution Gaussian
Attack Type Non-Random Water-Filling Attack
Variance 1× 10−4

α 60%
β 80%
N 50
NA 40
NRMSE (150 Steps) 1.86× 10−4

NRMSE (70,000 Steps) 2.80× 10−4

TABLE IX: Comparison between NRMSEs for short run and
long run

sensors.
We were able to mathematically describe the worst-case

attacks for our simple and additional processing approaches,
which allowed us to describe how to calculate the worst-case
performance. The mathematical description of our worst-case
attacks allowed us to show that proper choice of the additional
processing parameters imply the worst-case degradation under
the additional processing and a large number of sensors
attacked can be made smaller, even for cases we did not test
numerically. Since only a limited number of different cases
can be numerically tested, this is important. We hope other
researchers will employ similar ideas in their future work
since these ideas seem very powerful. Directly calculating the
worst-case performance, by knowing the worst-case attack is
extremely efficient in reducing computations, which is espe-
cially important if you want to try many parameter settings.
It avoids trying many different attacks, an approach others
take. Such an approach would be difficult due to extremely
high complexity and one would never get the actual worst-
case attack performance.

We recognize that we have only taken the first steps in a
new direction. There are still many more details that should
be further investigated in the future and we list some of these
in the rest of this section. The numerical results provided are
extensive but are limited as any numerical results would be.
It would be of interest to expand the cases tested in many
ways. For example, in the presented numerical results, we
focus solely on scalar trajectories, but in other investigations,
not reported here, we tested the proposed algorithm on some
higher-dimensional cases as well. We found the algorithm
provides similarly good performance, compared to the cases
reported here. Regardless, further testing would be desirable.
As another example, we tested for a few specific statistical

models, but we could expand the statistical models for the
sensor observations to include many more models. It would
also be of great interest to test using measured data. While
we did not find suitable measured data to date, there are
discussions of future initiatives which could provide this data
in the future.

It would be of interest to further study methods to ensure
good predictions where predictions are used in our approaches
and maybe to monitor these predictions to make sure nothing
has gone wrong. One issue of concern is to make sure prob-
lematic attacks do not leak through our protection to impact
our predictions. Fortunately, we have found that this can be
ensured even under very aggressive attacks if the APCC-
ADDITIONAL approach employs α and β which provide the
needed level of protection. On the other hand, it would be of
great interest to carefully study methods which might further
enhance performance on these cases. This seems possible.

In closing, it should be noted that our approach can be
considered one level of protection which can be combined
with other levels to enhance overall protection. As our ap-
proach focuses on difficult attacks, it would be interesting to
understand the gains of combining multiple approaches in this
manner.
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