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Abstract—As the development of autonomous and connected
vehicles advances, the complexity of modern vehicles increases,
with numerous Electronic Control Units (ECUs) integrated into
the system. In an in-vehicle network, these ECUs communicate
with one another using a standard protocol called Controller
Area Network (CAN). Securing communication among ECUs
plays a vital role in maintaining the safety and security of
the vehicle. This paper proposes a robust SDN-based False
Data Detection and Mitigation System (FDDMS) for in-vehicle
networks. Leveraging the unique capabilities of Software-Defined
Networking (SDN), FDDMS is designed to monitor and detect
false data injection attacks in real-time. Specifically, we focus on
brake-related ECUs within an SDN-enabled in-vehicle network.
First, we decode raw CAN data to create an attack model that
illustrates how false data can be injected into the system. Then,
FDDMS, incorporating a Long Short-Term Memory (LSTM)-
based detection model, is used to identify false data injection
attacks. We further propose an effective variant of the DeepFool
attack to evaluate the model’s robustness. To countermeasure
the impacts of four adversarial attacks including Fast gradient
descent method, Basic iterative method, DeepFool, and the Deep-
Fool variant, we further enhance a re-training technique method
with a threshold based selection strategy. Finally, a mitigation
scheme is implemented to redirect attack traffic by dynamically
updating flow rules through SDN. Our experimental results show
that the proposed FDDMS is robust against adversarial attacks
and effectively detects and mitigates false data injection attacks
in real-time.

I. INTRODUCTION

In modern vehicles, especially connected and autonomous
vehicles (CAVs), the number of Electronic Control Units
(ECUs) has significantly increased. The Controller Area Net-
work (CAN), which is a standard communication protocol
used in the vehicle network, enables ECUs to communicate
with each other [1]]. CAVs leverage additional ECUs to support
advanced driving tasks such as lane change, parking assistance,
automatic emergency braking, and more [2]. To enable these
features, the vehicle needs to communicate not only within
itself but also with other vehicles and infrastructure, such as in
Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I)
communication [3].

Protecting the in-vehicle network is just as critical as
protecting the security of Vehicle-to-Everything (V2X) com-
munication. Modern vehicles can have over 70 ECUs, and
research has shown that these ECUs are vulnerable to remote
attacks [4]], [[5]]. Because ECUs are interconnected, an attacker
can gain remote access to the in-vehicle network via wireless

networks such as WLAN or Bluetooth, and compromise
ECUs. As a result, vehicle networks are susceptible to a variety
of attacks, including intrusion attacks and False Data Injection
Attacks (FDIA) [6]. Software-defined Networking (SDN), well
known for its flexibility and programmability, can separate a
network traffic controller from the data plane in a network [7].
Using the SDN based controller provides better traffic flow
monitoring and forwarding for network management. In the
context of a vehicle network, detecting FDIA in real time
is crucial to prevent potentially catastrophic outcomes like
traffic accidents [8]]. The use of SDN allows for more effective
detection and mitigation of attack traffic in real time.

FDIA can cause significant damage, as seen in the 2015
Ukraine blackout [9]. In vehicle networks, such attacks could
lead to life-threatening situations, like car crashes, if not de-
tected. To address this, we propose an SDN-based False Data
Detection and Mitigation System (FDDMS) for in-vehicle
networks. The system uses SDN to detect and mitigate FDIA
on ECUs in real time. It consists of two main components: a
False Data Detection Module with Long Short-Term Memory
(LSTM) for detection, and a False Data Mitigation Module.
The SDN controller monitors network traffic and, upon detect-
ing an attack, updates forwarding rules in OpenFlow switches
to block the attack.

While the LSTM based module can detect FDIA signals
with high accuracy, recent studies have shown that neural net-
work based models are vulnerable to adversarial attacks [[10]—
[13]]. Thus, FDIA signals, when combined with adversarial
attacks, can cause the LSTM model to misclassify them as
”Normal” instead of “Attack”. FGSM generates adversarial
examples by adding gradient based perturbations [11]. The
FGSM based perturbations have the same direction as the
gradients of the loss function. Because FGSM is designed to
be fast, its perturbations are often large. BIM [12]], an iterative
version of FGSM, finds more subtle perturbations compared to
FGSM. Using BIM to craft adversarial FDIA signals requires
hyperparameter tuning to minimize distortion and maintain
a high attack success rate (ASR). Thus, both approaches
suffer from a trade-off between minimal perturbations and
ASR [14]. Meanwhile, DeepFool was specifically designed
to find the minimal perturbation for misclassifications [13].
Because DeepFool relies on iteratively approximating the
decision boundary of a non-linear model, it can be compu-



tationally intensive, especially for complex models such as
the LSTM model with recurrent units [[1] and datasets with
multiple classes. Thus, while these attacks significantly reduce
the detection accuracy of the model with relatively small
perturbations to the inputs, it is still crucial to study of the
robustness of the LSTM model and the potential impact of
adversarial attacks especially for in-vehicle networks. In this
study, we advance the study of machine learning robustness
by improving the DeepFool attack. Compared to the original
version, we propose a practical variant that can significantly
reduce the distortion of FDIA signals while maintaining high
ASR, with a potential decrease in computational costs.

To protect neural networks from the adversarial attacks,
Madry et al. [15] proposed an effective training technique
called adversarial training (AdvTrain). Ilyas et al. [16] showed
that AdvTrain could improve several image classfiers’s ro-
bustness against adversarial attacks by removing non-robust
features from adversarial inputs and forcing the classifiers to
learn only robust features. While AdvTrain has been shown to
be effective against advanced adversarial attacks [17]-[19], it
suffers from the trade-off between natural accuracy and robust
accuracy [19]], [20]. A ”normal” accuracy is the test accuracy
of the trained model performed on the clean data. A robust”
accuracy is the test accuracy of the trained model performed on
the adversarial data. Thus, we adopted an effective AdvTrain
technique proposed in [21]] that can train a robust detec-
tion model against four adversarial attacks including FGSM,
BIM, DeepFool, and our DeepFool variant attacks. Compared
to [15], Li.et al’s iterative re-training technique [21] involves
1) gradually expanding the training set size with adversarial
examples and 2) re-training the detection model using both
adversarial examples and original training examples sampled
from the expanded training dataset. We further extend [21]]
by introducing a score and a threshold parameter to select
challenging adversarial examples for the model to learn. The
score is based on the confidence of the model’s prediction for
each adversarial examples and its ground truth labels. We skip
adversarial examples with a higher confidence score above the
predefined threshold because the higher scores might indicate
that the model is already certain about its predictions. To
optimize computational costs, we also apply an early stopping
technique to check the robust accuracy against the FGSM
attack on a validation set.

We conducted our experiments on a dataset of real in-
vehicle CAN bus [22]] to evaluate the efficacy of the proposed
FDDMS. In particular, we assumed a white-box scenario that
was used in [14], [21]]. This assumption allows calculating the
gradients needed to create effective adversarial examples with
minimal distortion to the FDIA signal. Because we consider
detecting adversarial inputs as a binary classification problem,
we focused on the untargeted versions of FGSM, BIM, and
DeepFool. In a binary classification set-up, our DeepFool
attack only needs to find the closest approximated decision
boundary that divide the two classes, which might require
a smaller perturbation and less computational costs than a
multi-classification problem. Our DeepFool variant achieved

the lowest Lo, Lo, and L,,-norm and a comparable high ASR
of 99% when compared to FGSM, BIM, and the original
DeepFool. We found that the LSTM based model trained
on challenging FGSM examples achieved the best normal
accuracy of 99.47%, and the best robust accuracy. The robust
accuracy against FGSM, BIM, the original DeepFool, and our
DeepFool attacks was 99.475%, 99.47%, 98.95%, and 99.47%,
respectively. Finally, the SDN and mitigation scheme took a
low average time of 5.3617 ms, 1.6217 ms, and 0.7991 ms for
message transmission, adversarial detection, and adversarial
mitigation. In summary, our study makes the following key
contributions.

e We design and implement an efficient variant of the
DeepFool attack that can effectively reduce the distortion
of adversarial perturbations added to False Data Injection
Attack samples while maintaining a high attack success
rate.

o We design an efficient re-training technique that can se-
lect difficult adversarial samples for model re-training by
using a score based mechanism. Furthermore, we showed
that our adversarially trained models had a minimal trade-
off between normal and robust accuracy.

o To redirect attack traffic, we design and implement a
mitigation scheme by dynamically updating flow rules
through SDN.

The rest of the paper is organized as follows. Section
reviews related work on FDIA and in-vehicle network security.
Section presents the design of the proposed FDDMS.
Section evaluates the system’s performance, including
detection accuracy. Finally, Section[V]concludes the paper and
discusses future directions for research.

II. RELATED WORK

The characteristics of CAN data frames including its broad-
cast communication, lack of authentication, and absence of
encryption make an in-vehicle network vulnerable to a variety
of attacks. Attackers can exploit interfaces such as Bluetooth
and Wi-Fi to infiltrate the in-vehicle network and execute
attacks such as Denial of Service (DoS), replay attacks, and
DIA (23], [24].

Miiter et al. [25]] proposed an anomaly detection system for
in-vehicle networks that leverages the unique characteristics
of the CAN bus. Their system used eight attack detection
sensors to identify anomalies in the network. Later, Miiter et al.
[26] enhanced this approach by introducing an entropy-based
anomaly detection technique, which added a reactive layer of
protection for the CAN bus. Their method was shown to be
effective in detecting a range of attack scenarios in real-world
vehicle settings. Other studies and surveys include [27]—[29].

Cho et al. [30] developed a clock-based intrusion detection
system (CIDS) to safeguard in-vehicle networks. CIDS works
by fingerprinting Electronic Control Units (ECUs) based on
the intervals between periodic CAN messages. A baseline of
normal clock behavior was created using the recursive least
squares algorithm, which is then used to detect intrusions.
They considered three types of attack scenarios: fabrication,



suspension, and masquerade attacks, and found that CIDS was
effective at identifying intrusions in the in-vehicle network.

Recently, there has been a growing use of machine learning
based intrusion detections techniques for in-vehicle networks.
Kang et al. [31] proposed a deep learning based intrusion
detection system (IDS). The model achieved better accuracy
in detecting intrusions by using a pre-trained unsupervised
deep belief network for weight initialization. Kuwahara et
al. [32] utilized both supervised and unsupervised learning
approaches for intrusion detection with sequential data formed
by processing CAN messages within fixed time windows.

FDIA, first introduced by Liu et al. [33]] to disrupt state
estimation in power systems, have since been explored in
domains like smart grids [34]], wireless sensor networks [35],
and vehicle networks [36]. Cao et al. [36] proposed the
Proof-of-Relevance framework for defending against FDIA
in VANETs, relying on consensus from witness vehicles to
prevent false data propagation. Moore et al. [37] identified
signal frequency as a key feature for CAN bus intrusion
detection, detecting FDIA by observing irregular refresh rates
in regularly transmitted PID signals. Their method showed
promising results across multiple attack scenarios.

The concept of Software-Defined Vehicular Networks
(SDVN) has gained significant attention due to the poten-
tial advantages of SDN in network management [38]. Singh
et al. [[39] proposed a machine learning-based system for
detecting Distributed Denial of Service (DDoS) attacks in
Vehicle-to-Infrastructure (V2I) communications. Their system
employed several machine learning models to identify the most
effective approach for detecting DDoS attacks. Khan et al. [40]]
presented an effective framework for detecting and mitigating
in-vehicle false information attacks using a combination of
machine learning and SDN.

III. METHODOLOGY

CAN is the industry standard for in-vehicle network com-
munication because it can facilitate efficient data exchange
for complex vehicle operations. CAN utilizes a broadcasting
method for transmitting messages. When an ECU wants to
send data, it transmits a CAN message onto the bus. The
message becomes available to all other ECUs connected to
the same CAN bus. Unlike some other network protocols,
CAN messages do not contain the source and destination
information. Thus, it presents a significant security challenge
because an attacker can easily inject false data into the CAN
bus without being detected, leading to vehicle accidents [[1].

The decoding and data processing technique used in this
study is first describe in this section. Next, we extend the attack
model with adversarial attacks. Specifically, we present our
DeepFool variant for generating adversarial perturbations that
bypass the detection model with smaller perturbation. Lastly,
we show our SDN-based False Data Detection and Mitigation
System (FDDMS) for in-vehicle networks. We further improve
the detection module by introducing an effective adversarial-
retraining technique. The technique can protect the detection
model against four adversarial attacks including FGSM, BIM,
the original DeepFool, and the proposed DeepFool variant.

Arbitration  : Control:

11 bits |1 bit| 6 bits

Length [1 bit 16 bits |2 bits|7 bits

8 bytes
Data

Frame |SOF 1D RTR|: | DLC CRC [ACK|EOF

Fig. 1. Format of a CAN data frame

A. Decoding and Data Processing

In this paper, we used the dataset from real a KIA SOUL in-
vechicle CAN bus [22]] to thoroughly investigate the efficacy
of proposed FDDMS. The dataset comprises of an attack free
state data and three other data injected with denial of service
attacks, fuzzy attacks, and impersonation attacks. The attack
free file has 3,713,146 rows and four columns including ID,
DLC, Data, and Timestamp. The Timestamp column records
approximately 1,904 seconds of data. We only used the attack
free state data because we want to implement a false data
injection using our attack model described in the following
section.

TABLE I
DETAILS FOR DECODING RAW CAN DATA
No. | Signal MSG CID | MID | Bits Scale | Offset
1 SAS_Angle SASI1 | 02b0 | 688 | 0-15 | 0.10 | 0.00
2 SAS_Speed SASI1 | 02b0 | 688 16-23 | 4.00 | 0.00
3 MsgCount SASI1 | 02b0 | 688 | 32-35 | 1.00 | 0.00
4 CheckSum SASI1 | 02b0 | 688 | 36-39 | 1.00 | 0.00
5 TQ_COR_STAT | EMSI1 | 0316 | 790 | 4-5 1.00 | 0.00
6 TQI_ACOR EMSII | 0316 | 790 | 8-15 | 0.39 | 0.00
7 N EMSI11 | 0316 | 790 16-31 | 0.25 | 0.00
8 TQI EMSII1 | 0316 | 790 | 32-39 | 0.39 | 0.00
9 TQFR EMSI1 | 0316 | 790 | 40-47 | 0.39 | 0.00
10 | VS EMSI1 | 0316 | 790 | 48-55 | 1.00 | 0.00
11 | MUL_CODE EMSI12 | 0329 | 809 | 6-7 1.00 | 0.00
12 | TEMP_ENG EMSI12 | 0329 | 809 | 8-15 | 0.75 | -48.00
13 | BRAKE_ACT EMSI12 | 0329 | 809 | 32-33 | 1.00 | 0.00
14 | TPS EMSI12 | 0329 | 809 | 40-47 | 0.47 | -15.02
15 | PV_AV_CAN EMSI12 | 0329 | 809 | 48-55 | 0.39 | 0.00
16 | VB EMS14 | 0545 | 1349 | 24-31 | 0.10 | 0.00
17 | TQI_MIN EMS16 | 0260 | 608 | 0-7 0.39 | 0.00
18 | TQI EMSI16 | 0260 | 608 | 8-15 | 0.39 | 0.00
19 | TQL_TARGET EMS16 | 0260 | 608 16-23 | 0.39 | 0.00
20 | TQI_MAX EMS16 | 0260 | 608 | 40-47 | 0.39 | 0.00

For an in-vehicle network, the CAN data frames are used
by ECUs to transmit messages and data to other ECUs on
the bus [21]. Figure |l| shows the format of a CAN data
frame. The CAN data frame contains three critical fields
including Arbitration, Control, and Data. The Arbitration field
contains the CAN IDs (CID), which identifies the associated
ECU [14]. Next, the Control indicates the length of the data
field [1]. Lastly, the 8-bytes Data carries the signals being
transmitted [|14]]. To obtain decimal signal values, we decoded
the raw CAN data frames using a generic KIA DBC file
decoder [41]]. The DBC file contains the message IDs (MSG),
the CIDs, the starting bit position of signals, the length in bits
of signals, the scale and offset values to attain human-readable
signal values from raw bits of data. Table |lj provides all the
necessary details for decoding the raw CAN data frames.

Each CID is linked to a specific ECU while each ECU
has multiple signals [21]. We examined 20 signals related
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Fig. 2. Heatmap of correlation matrix among all features

to five ECUs, as described in [21]], [40]. These ECUs are
responsible for controlling various critical vehicle functions,
ranging from Anti-lock Braking System (ABS), Electronic
Parking Brake System (EPB), Electronic Stability Control
System (ESC) for braking, and Motor Driven Power Steering
(MDPS) for steering to Engine Management System (EMS).
MDPS and EMS ECUs send CAN messages/frames to ABS,
EPB, ESC. EMS broadcasts four types of CAN messages
(MSGQG) including EMS11, EMS12, EMS14, and EMS16 while
MDPS ECU broadcasts SAS11 [21]]. We began the decoding
process by converting the CIDs in hexadecimal representation
to match the MIDs in decimals. Then, we identified signal bits
within the 8-byte data field. Once we identified the bit range
for a signal, we could extract these bits from the 8-byte data
field. Lastly, we used Equation [I] to convert the raw binary
values into decimal values:

Vsignal =0+ 5 X Vequ, (D

where V;gnq1 denotes the signal value after decoding, s is the
scale value, o is the offset from the DBC file, and V.4, is the
raw decimal data value from the data field.

Given that our analysis focused on the five brake-related
ECUs, we filtered all irrelevant data. We retained 1,904
seconds of data and 952,101 rows of CAN data frames, with a
relatively uniform distribution of frames across different CIDs.
We then selected the 20 signals outlined in Table [I| as features
to build the training, validation, and test datasets.

B. Attack Model

In this section, we present our FDIA model for in-vehicle
networks and demonstrate how false data is injected into the
attack-free dataset.

1) Correlation Analysis

Before injecting false data, we identified the relation-
ships between the features. Modifying the value of one
feature can impact other features that are highly correlated
with it. Therefore, we began by conducting a correlation
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Fig. 3. Attack on TQI_MAX signal

analysis across all 20 features. We used Pearson’s Corre-
lation Coefficient to assess the linear correlation between
pairs of features. Figure [2] displays the correlation heatmap
for all features. Based on our qualitative analysis of the
dataset, we set the significance threshold for correlation at
0.75 to determine whether two features were considered
correlated. For instance, TQI_ACOR shows strong corre-
lations with the following features: TQI (0.999537), TPS
(0.887654), PV_AV_CAN (0.862707), TQI_MIN (0.778768),
and TQI_TARGET (0.934837).

2) Attack Model

The reduced dataset contained 1,904 seconds of data and
952,101 rows of CAN data frames. The dataset was divided
based on timestamps, with each instance spanning 10 seconds.
For example, the first instance covered seconds 1 to 10, the
second instance spans seconds 2 to 11, and so on. In total,
1,894 instances were created. Of these instances, half were
randomly selected for false data injection.

Based on the analysis of feature correlations, we selected the
following signals/features to target in the attack: TQI_ACOR,
N, TQFR, and VB. Because these signals are also correlated
with other features, we ultimately chose 11 signals for false
data injection. These signals were derived from the EMS11,
EMS12, EMS14, and EMS16 message frames, and are asso-
ciated with the braking and Engine Management System.

An attacker can easily manipulate the original data by
injecting attack data, which can be generated in various ways.
In this paper, we first analyzed the normal range for each
signal using the DBC file for the KIA Soul. We then generated
random values following a uniform distribution within the de-
fined normal range. For each 10-second instance, we randomly
selected one second during which to inject the attack. The
equation for our attack model is shown as follows:

i _ i i
Vattack - Vnormal + 5 ) (2)
where &' ~ U=V} . 0 Ve — Vi ma) TeDresents a

uniformly distributed random value added to the normal data to
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generate false data. Here, ¢ denotes the signal index, Vi¢tqck
is the false data injected by the attacker, and Vi . is the
maximum value of the signal. For example, V5, . refers
to the false data injected into signal 6, which corresponds to
TQI_ACOR. V,,ormai represents the normal data without any
attack. Figure [3] illustrates an example of false data injection
into the TQI_ACOR signal using the attack model, along with
the normal signal values. The plot shows the TQI_ACOR
normal and attack signal values over the time interval from
392 to 402 seconds. The false data was injected at the 393-
second mark.

C. Generating adversarial examples

1) Fast gradient sign method (FGSM)

Goodfellow et al. [11f] introduced FGSM for generating
adversarial examples against deep learning models. FGSM
crafts adversarial examples x’ by adding perturbations in the
direction of gradient of the loss function, that is,

' = x + € x sign ((gradient, L(F(x),y;0))), Q)

where ¢ controls the perturbation. To reduce distortion, a
smaller € should be used, but this could also decrease the
success rate of evading the detector.
2) Basic Iterative Method (BIM):

Kurakin et al. [12] proposed an iterative version of FGSM
called BIM by taking multiple small steps in the gradient
direction. At each iteration ¢, the point ! was updated by:
' = Clip. (2" + a x sign(gradient,(L(F(z"),y;0)))),

“4)

where « is the step size for each iteration. Kurakin et al. [|12]]
obtained adversarial examples x'*! that could lead to misclas-
sifications after a number of steps, m. By using a small step
size a = = in each step, BIM might find more subtle and
adversarial perturbations compared to a single large step in
FGSM. Similarly to FGSM, the parameter € should be tuned
to minimize distortion while maintaining a high ASR. In our
experiment, we set the initial point 2° to the original example
.
3) DeepFool

Given the FDIA signals, we used the DeepFool attack to
obtain the minimal perturbation needed to bypass the detection
model. In a binary classification problem, DeepFool [13]]
linearly approximated the decision boundary of a machine

learning model around an input point. The minimal perturba-
tion was obtained by calculating the distance between the input
point and its projection on the decision boundary, then plus an
overshoot amount of € = 0.02 to ensure misclassifications. To
speed up the noise generation process, in each iteration, the
attack modified the intermediary signals x’ by 7,4, which is an
accumulation of ongoing perturbations r;. DeepFool continued
until the model misclassified 2’ or a maximum iteration 7" was
reached.

We further made two modification to the DeepFool [13]
as shown in Algorithm [I] to enhance its effectiveness for the
FDIA signals:

o Gradient Clipping: because the gradient w.r.t z’ can
suffer from the gradient explosive problem, especially
for recurrent neural networks, the perturbation r; can be
large. Thus, we limited the gradient as follows:

min_value if x < min_val
GradientClipping(z) =  max_value if z > max_val
T otherwise
(5
In our experiments, we set the min_val = mazx_val = «
where o = 0.95.

e Scaling Factor: we further reduced the perturbation r;
by multiplying it by the scaling factor x due to the
accumulation nature of our update rule. Specifically, we
updated r,¢ as follows,

Tiot = Ttot + K X 15 (6)

where ~ is less than 1. We used x = 0.5 for our

experiments.

Algorithm 1 The DeepFool variant for detection models

input: z: an input signal, model: a detection model, T the
maximum iterations, e: the overshooting factor, «: the step
decaying factor, «: the gradient clipping factor
output: 7: a minimum distorted perturbation and z’: a
perturbed signal.
Initialize ¢t < 0, step < €, ot < 0
while ¢ < T do

Ti < T+ Ttot

loss < model(z;)

grad < gradient,, (loss)

grad < GradientClipping|_ 4, +q](grad)

. loss-grad
"t S Tgradl3
Ttot < Ttot + K X 14

if pred(x)! = pred(x;) then
return 7, /I The perturbation is minimized.
end if
t—t+1
end while
return 7 < Tior, & T+ (1 4+€) X 10t

D. An SDN-based FDDMS For In-vehicle Networks
In an in-vehicle network, the CAN bus is characterized
by a security challenge where multiple ECUs broadcast and



receive CAN messages without explicit source and destination
addresses. Securing these communications is essential for
ensuring the vehicle’s safety and security. Software-Defined
Networking (SDN) architecture provides a centralized con-
troller with a global view of the entire in-vehicle network. The
SDN controller can be programmed to implement and deploy
sophisticated security mechanisms to manage the network.
This global network view and programmability enable the
SDN controller to monitor and manage network traffic in real-
time, providing improved oversight and control. Implementing
SDN in an in-vehicle network improves communication flow
management while enhancing vehicle security and safety.

In this study, we designed and implemented an SDN-
based FDDMS to detect and mitigate FDIA in in-vehicle
networks. We simulated a malicious ECU that is connected
to the CAN bus. Figure [ illustrates the overview of the
proposed SDN-based in-vehicle network, which comprises six
ECUs connected to the CAN bus. EMS and MDPS ECUs
are restricted to broadcasting CAN messages, whereas ABS,
ESC, and EPB ECUs are designed to receive them. In contrast,
a compromised ECU can broadcast and receive messages
on the CAN bus. We placed an OpenFlow Switch (OVS)
on the CAN bus and connected it to the SDN controller.
This placement allows the controller to manage and monitor
the traffic flow through the CAN bus via the OVS. Dur-
ing normal operation, the EMS ECU broadcasts legitimate
EMSI11, EMS12, EMS14, and EMS16 CAN messages, while
the MDPS ECU transmits attack-free SAS11 CAN messages
over the CAN bus. However, the compromised ECU, after
intercepting the messages exchanged on the bus, can alter
some chosen messages by injecting false data. These tampered
messages are then broadcast onto the CAN bus, where ECUs
such as ABS, ESC, and EPB receive the altered messages and
may take actions based on the manipulated data.

The FDDMS framework was implemented in the SDN
controller, which has a global view of the network. This
global network view allows the controller to monitor all traffic
flows going through the network. The framework consisted of
three main phases. Initially, the SDN controller continuously
monitors the traffic flowing through the CAN bus. Next, an
LSTM-based detection model identifies FDIA. Finally, the
mitigation module redirects the attack traffic to a backend
storage system. Specifically, if an attack was detected, the SDN
controller would update the flow table entries in the OVS,
altering the network’s forwarding rules. As a result, attack
messages are no longer broadcast over the CAN bus but are
instead sent to the backend storage for further analysis.

1) The LSTM based Detection Model

In the FDDMS framework, we developed an LSTM-based
detection model to identify FDIA. LSTM excels at processing
time-series data like network traffic or time-series data from
in-vehicle network [21]]. In our study, once the raw data was
decoded, we selected the 20 features associated with the five
brake related ECUs as input features for the LSTM model.
Because LSTM models are designed for sequential data, we
re-organized the time-series data of the selected signals into

fixed length sequences. We fed 20 features into the LSTM
model, each feature being a sequence of decoded CAN signal
values.

In our model, the LSTM layer consisted of 128 neurons.
The LSTM layer is best known for their recurrent structure,
where each element of a sequence is processed in the same
manner, with the output being dependent on previous calcula-
tions. LSTM networks were introduced to address issues like
vanishing gradients and to capture long-term dependencies by
introducing self-loops, allowing information to persist over
time [42]].

An LSTM typically contains three gates: an input gate, an
forget gate, and an output gate. After the LSTM layer, the
output layer consisted of a single neuron, where the output
is 0 (Normal) or 1 (Attack). The output layer employs a
sigmoid function, which converts the output to a probability,
making it suitable for the binary classification task. For the
loss function, we used binary cross-entropy, which is ideal for
binary classification. To optimize the model, we employed the
Adam optimizer [43]. Additionally, in the Evaluation section,
we will demonstrate that the LSTM model can be effectively
optimized using RMSProp, Adagrad, and Adam.

Our dataset consists of 1,894 instances in total. We splitted
the data as follows: 80% for training, 10% for validation,
and 10% for testing. Specifically, this means that we used
1,516 samples for training, 189 samples for validation, and
189 samples for testing.

2) Adversarial Training with The Sample Selection Tech-
nique

To overcome the destructive impact caused by the adver-
sarial attacks, we adopted an AdvTrain technique [21] that
effectively improved the detection model’s robustness against
FGSM and BIM. Compared to [15]], Li.et al’s re-training
technique [21] gradually increased the training set size and
re-traind the detection model using both adversarial examples
and original training examples in each iteration. We further
extended the re-training technique by proposing a score base
strategy to only select challenging adversarial examples for
training. Let Selection(S)) denote a decision on whether to
select the sample S, with its ground truth label yy

Y if
Selection(Sy,) = { es if score < threshold o

No if otherwise,
Then, the score can be computed using a function g(.),

score = g(Sk, Yr) (8)

where threshold is a parameter. Using the threshold = 0.5
and ¢(Sk, yr) based on the LSTM model’s prediction w.r.t yg,
we computed the scores for each sample S;. We only trained
the model on those examples with a score below the threshold.
Thus, we forced the model to learn the patterns given by
those challenging examples instead of easy ones. Our proposed
AdvTrain with the sample selection technique is shown in
Algorithm [2| To disrupt the carefully crafted perturbation by
adversarial attacks, Lin, et al [18] added Gaussian noise to



test samples. Different from [18]], we added adversarial noises
generated by FGSM and BIM to test samples.

Algorithm 2 AdvTrain with the sample selection technique
1: Input R: number of iterations; S"°P°: the adversarial
example repository; score: the score function to select
samples for expanding S7°P°; N: number of randomly
chosen sample; 6°: the pretrained model weights.
2: Output: The LSTM model that is robust to adversarial
attacks.
3: for all t=1to R do
4:  Randomly choose N instances S; from the training
dataset;
5: forall k=1to N do
: Use adversarial model to generate S;” P

7: Calculate a score based on Equation [8] for each
adversarial instance S, ;;

8 Use the selection criteria in Equation [7| to add S; i
to ST‘E])O ’

9: end for

A. Evaluation of the LSTM model
1) Normal accuracy

In the LSTM-based detection model, the LSTM layer con-
sisted of 128 neurons. We set the number of epochs to 50. We
measured the model performance using the “normal” accuracy
and time. The "Time” column shows the computational costs
required to train the model, measured in seconds. To ensure a
comprehensive evaluation of our proposed model, we trained
our proposed model using multiple optimization algorithms,
including SGD, Adam, RMSprop, and Adagrad. Specifically,
we set SGD, RMSprop, and Adam with a learning rate of
0.001, while Adagrad’s learning rate was set to 0.1. Table
shows the normal accuracy, recall, precision, F1 score, and
training time for each optimizer. We conducted the experi-
ments in GAIVI cluster at the University of South Florida and
used Pytorch to create and train the LSTM model.

TABLE I
EVALUATION OF DIFFERENT OPTIMIZERS

10:  Randomly choose N adversarial examples S¢4V; Optimizer i(c)g;::lcy Recall | Precision | F1 Score | Time(s)
11:  Update ' by training on S; + S¢*"; RMSprop | 99.47% | 1.00 | 0.99 1.00 4827
12: end for Adam 98.95% 0.99 0.99 0.99 56.60
Adagrad 99.47% 1.00 0.99 1.00 93.94
3) The Mitigation Scheme SGD 54.21% 0.33 0.62 0.43 48.13

In an SDN network, when an attack is detected, the SDN
controller can modify the flow table rules within the OpenFlow
Switch (OVS). The controller and the OVS interact through a
secure channel implemented by a protocol called OpenFlow.
Each flow table entry comprises three essential fields: (a) a
header field that identifies the flow, (b) an action field that
instructs on how the traffic flow should be redirected, and (c)
a statistics field that records network data related to the flow.

In this study, we utilized the three characteristics of SDN
network to update flow table rules, preventing false messages
from being broadcasted on the CAN bus. Instead, these mes-
sages were redirected to backend storage. When the LSTM-
based detection model identified attack traffic, the mitigation
process was triggered. In the mitigation scheme, an OVS
flow rule was applied to redirect attack traffic to backend
storage rather than allowing it to reach the CAN bus, while
simultaneously sending an alert to the driver. If no attack was
detected, the messages were broadcast normally.

IV. EXPERIMENTAL RESULTS

The SDN-based in-vehicle network was set up and tested
on GENI [44], using Floodlight as the SDN controller [45].
The network comprises six ECUs: EMS, MDPS, ESC, EPB,
ABS, and a malicious ECU. The EMS and MDPS broadcast
legitimate CAN messages, while the malicious ECU injects
false messages. The ESC, EPB, and ABS ECUs were con-
figured to only receive messages. This section first evaluates
the LSTM-based detection model with normal and robust ac-
curacy, followed by an evaluation on the proposed re-training
technique. Lastly, the section concludes with an investigation
on the computational complexity of the SDN-based mitigation
scheme.

As shown in Table |lI, the RMSprop and Adagrad optimizer
achieved the highest normal accuracy of 99.47%. Their recall,
precision, and F1 score were 1.00, 0.99, and 1.00, respectively.
The Adam optimizer obtained the second best performance
with a normal accuracy of 98.95%. Its recall, precision, and
F1 score were all equal to 0.99. The training times for the
RMSprop, Adam, Adagrad, and SGD optimizers were 48.27
seconds, 56.60 seconds, 93.94 seconds, and 48.13 seconds,
respectively. The training times are notably short, allowing the
FDDMS to update the model every two minutes and perform
real-time detection.

2) Normal accuracy, robust accuracy, and adversarial train-
ing

Nowadays, it is crucial to measure the model performance
using both the normal and robust accuracy. We followed the
setup detailed in Li, et al, [21] to evaluate the robustness of our
models. We set the batch size N = 200, and in each iteration,
we re-trained the model for 30 epochs. We adversarially
trained the models using the Adam optimizer with a learning
rate of 0.001. At test time, in addition to augmenting the
training dataset with the FGSM and BIM examples, we added
FGSM and BIM perturbations to test examples to improve
the model’s detection ability [18]. We computed the normal
accuracy using the test examples with FDIA. We used FGSM-
Lo, BIM-Lo, the original DeepFool, and our extended Deep-
Fool to calculate the robust accuracy. Furthermore, we used
three different datasets for training: 1) the FDIA based, 2) the
FGSM-Ls,, and BIM-based-L, datasets. Details about how to
generate the four types of adversarial examples were discussed
in the Methodology section. The results of the experiment are



presented in Table where our adversarially trained models
achieved the best normal and robust accuracy.

The LSTM based model trained on the challenging FGSM
examples achieved the best normal accuracy of 99.47% ,and
the robust accuracy against FGSM, BIM, the original Deep-
Fool, and our DeepFool(x = 0.5,a = 0.95) is 99.475%,
99.47%, 98.95%, and 99.47%, respectively. When we adver-
sarially trained the model using the challenging BIM exam-
ples, we achieved the same normal accuracy and the same
robust accuracy for FGSM and BIM. However, the robust
accuracy against the DeepFool attacks decreased to 93.16%
and 94.21%. In contrast, if we trained with only clean FDIA
signal, the robust accuracy was significantly reduced to 37%,
32%, 1%, and 1% for FGSM, BIM, the original DeepFool,
and our DeepFool attacks, respectively.

TABLE III
NORMAL ACCURACY AND ROBUST ACCURACY (%) OF THE LSTM BASED
DETECTION MODEL UNDER VARIOUS WHITE-BOX ATTACKS.

Training FDIA | FGSM-Lo | BIM-L> | DeepFool | Our

set DeepFool
FDIA 100 37 32 1 1

FGSM 97.89 | 99.47 96.32 63.68 65.26
Challenging FGSM | 99.47 | 99.475 99.47 98.95 99.47
BIM 99.47 | 97.89 99.47 25.26 14.74
Challenging BIM 99.47 | 99.47 99.47 93.16 94.21

B. Evaluation on the impacts of adversarial attacks

In this section, we compare FGSM, BIM, the original
DeepFool, and our extended DeepFool in terms of the per-
turbation magnitude. To ensure a comprehensive evaluation
of the perturbation magnitude, we adopt the mean Lo, Lo,
L, to measure the distance between the original signals and
the perturbed ones. We only selected the attack signals from
the test set to perform adversarial attacks. The Ly metric
counts the number of perturbed features. The Lo metric reports
the Euclidean distance between the original and perturbed
signals, while the L., measures the maximum absolute change
applied to a feature. Table [V] presents the attack success
rate (%) and the mean distortion metrics for each method.
The hyperparameters for each attack method are listed in
Table We generated adversarial examples for FGSM and
BIM via the IBM Adversarial Machine Learning toolbox [46].
Table [V]shows that our extended DeepFool achieved the lowest
Lo,-norm, Ly, and Lo-norm when using (v = 0.5,a =
0.95), indicating that it introduces minimal perturbation while
maintaining comparable high ASR of 99% when compared
to FGSM— L., BIM—L,, and the original DeepFool (L2)
attacks, respectively. The use of gradient clipping and scaling
factors effectively reduced perturbation while maintaining a
high ASR, making it an effective method to make the FDIA
signal robust against the detection model.
C. Evaluation of the SDN and Mitigation Scheme

In this section, we evaluate the transmission latency of our
SDN-based in-vehicle network, as well as the detection and
mitigation time of our FDDMS. Because the interval between
ECU are typically broadcast every 10 ms in this dataset,
an overall latency below this threshold demonstrates that a

TABLE IV
ADVERSARIAL ATTACK HYPERPARAMETER SUMMARY

Attack Method € Step Size | Iterations | x «

FGSM— Lo 13.0 | - 1 - -

FGSM—L 13.0 | - 1 - -

BIM— Lo 13.0 | 13.0/20 20 - -

BIM— L 13.0 | 13.0/20 20 - -

DeepFool (L2) - 0.02 50 - -

Our DeepFool (L2) | - 0.02 50 0.5 ] 0.95

TABLE V

COMPARISON OF DIFFERENT ADVERSARIAL ATTACKS ON THE CAN DATA
Attack Method ASR | Lo Lo Loo
FGSM— Lo 63.00 | 4337.56 67.32 4.85
FGSM—L 99.00 | 17198.69 | 2199559.0 | 13.00
BIM— Lo 68.00 | 2705.38 77.89 5.04
BIM— L 99.00 | 17952.02 | 1450620.5 | 13.00
DeepFool (L2) 99.00 | 6647.62 53.66 3.54
DeepFool (k = 0.5, = 0.95) | 99.00 | 6543.51 38.65 3.00

security system does not disrupt normal vehicle operation.
Table [V1] presents the latency for each message type, including
detection time, the mitigation time, and the total latency. The
overall latency is 7.7629 ms. The overall latency below the 10
ms threshold shows that our FDDMS can operate effectively
without disrupting normal vehicle operation.

TABLE VI
EVALUATION OF MITIGATION TIME
Msg Type | Latency| Detection | Mitigation | Overall
(ms) Time (ms) | Time (ms) | Latency (ms)
EMSI11 5.5490 7.9502
EMS12 5.7007 8.1019
EMS14 5.1252 7.5264
EMSI16 5.0749 1.6021 0.7991 7.4761
SASI11 4.9052 7.3064
Attack 5.8154 8.2166
Average | 5.3617 7.7629

V. CONCLUSION

This research proposed an SDN-based False Data Detection
and Mitigation System (FDDMS) for in-vehicle networks,
utilizing a real-world KIA SOUL CAN dataset. The raw
data was decoded using an OpenDBC file, and an attack
model was developed to simulate false data injection into the
CAN bus. The system incorporates five brake-related ECUs
and a malicious ECU for injecting attack traffic. The SDN
controller continuously monitors network traffic, while the
FDDMS, which includes an LSTM-based detection model and
a mitigation strategy, identifies and redirects malicious data.
Our approach achieved a detection accuracy of 99.47%. We
also develop an effective variant of the DeepFool attack to
evaluate the robustness of the detection mode. To counter-
measure the extended DeepFool attack, we further enhance the
LSTM’s robustness with an adversarial re-training approach.
The re-training approach selects strong adversarial examples
for training. Future work will focus on developing more
sophisticated attack models and further enhancing the FDDMS
to improve defenses against adversarial attacks.
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