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Abstract

Differentially private stochastic gradient descent (DP-SGD) is the most widely used
method for training machine learning models with provable privacy guarantees. A
key challenge in DP-SGD is setting the per-sample gradient clipping threshold, which
significantly affects the trade-off between privacy and utility. While recent adaptive
methods improve performance by adjusting this threshold during training, they
operate in the standard coordinate system and fail to account for correlations across
the coordinates of the gradient. We propose GeoClip, a geometry-aware framework
that clips and perturbs gradients in a transformed basis aligned with the geometry
of the gradient distribution. GeoClip adaptively estimates this transformation using
only previously released noisy gradients, incurring no additional privacy cost. We
provide convergence guarantees for GeoClip and derive a closed-form solution for
the optimal transformation that minimizes the amount of noise added while keeping
the probability of gradient clipping under control. Experiments on both tabular
and image datasets demonstrate that GeoClip consistently outperforms existing
adaptive clipping methods under the same privacy budget.

1 Introduction

As machine learning models are increasingly trained on sensitive user data, ensuring strong privacy
guarantees during training is essential to reduce the risk of misuse, discrimination, or unintended
data exposure. Differential privacy (DP) [Dwork et al., 2006a,b] offers a principled framework for
protecting individual data, and has become a cornerstone of privacy-preserving machine learning.
In deep learning, the most widely used approach for DP is differentially private stochastic gradient
descent (DP-SGD) [Abadi et al., 2016], which clips per-sample gradients and adds calibrated noise to
their average.

Despite its widespread use, standard DP-SGD has a key limitation: it relies on a fixed clipping
threshold to bound the sensitivity of individual gradients. Selecting this threshold poses a challenging
privacy-utility tradeoff—setting it too low discards useful gradient information, while setting it
too high increases sensitivity and necessitates injecting more noise, ultimately degrading model
performance. This trade-off was observed empirically by McMahan et al. [2018] and later analyzed
theoretically and shown to be a fundamental limitation of differentially private learning by Amin
et al. [2019]. Moreover, the optimal threshold can vary over the course of training, across tasks, and
between datasets, limiting the effectiveness of a fixed setting.
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To address this, recent work has proposed adaptive strategies that dynamically adjust the clipping
threshold during training. One class of methods uses decay schedules to reduce the threshold over
time. Yu et al. [2018] and Du et al. [2021] propose linear and near-linear decay rules, respectively,
where the schedule is predefined and does not depend on the dataset—hence, no privacy budget is
required. Lin et al. [2022] introduce a nonlinear decay schedule, along with a transfer strategy that
leverages public data to guide threshold selection. Recently, methods have been introduced which set
the clipping level based on the data during the training process. These include AdaClip [Pichapati
et al., 2019], which applies coordinate-wise clipping based on estimated gradient variances. Yet
another is quantile-based clipping [Andrew et al., 2021], which sets the threshold using differentially
private quantiles of per-sample gradient norms. Although [Andrew et al., 2021] was designed for
federated learning, it can be adapted to centralized DP-SGD. These adaptive strategies have been
shown to improve model utility while preserving privacy guarantees.

Despite these advances, existing adaptive clipping methods remain agnostic to the geometry of the
gradient distribution. They operate in the standard basis—treating each coordinate independently. This
overlooks dependencies between coordinates, especially when gradients exhibit strong correlations
across dimensions. In such cases, independently clipping and perturbing each coordinate can introduce
redundant noise without improving privacy, ultimately degrading model utility. To address this, we
propose GeoClip, a method that transforms gradients into a decorrelated basis that better reflects their
underlying geometry. By applying DP mechanisms in this transformed space, GeoClip allocates noise
more effectively, achieving a better privacy-utility tradeoff.

A different approach to correlations in gradients from the literature considers introducing corre-
lations—dependencies across iterations and between entries of the noise vector—into the noise,
rather than injecting i.i.d. Gaussian noise. This has been shown to improve the utility of private
training [Denisov et al., 2022, Kairouz et al., 2021]. Choquette-Choo et al. [2024] strengthen this
direction by analytically characterizing near-optimal spatio-temporal correlation structures that
lead to provably tighter privacy-utility tradeoffs. However, these approaches have been developed
independently of adaptive clipping, and the effect of combining both methods remains unexplored. In
addition, [Choquette-Choo et al., 2024] uses pre-determined correlations in the noise, rather than
being tailored to the data, as our approach is.

GeoClip is data-driven but does not require any additional privacy budget to compute the clipping
transformation. Instead, it reuses the noisy gradients already released during training to estimate the
mean and the covariance of the gradient distribution. By reusing these privatized gradients, GeoClip
adapts its basis over time without accessing raw data or incurring additional privacy cost.

We list our main contributions below:

1. We propose GeoClip, a novel framework that applies differential privacy in a transformed basis
rather than the standard coordinate system. To guide the choice of transformation, we derive a
convergence theorem (Theorem 1) showing how the basis impacts convergence under DP-SGD,
providing theoretical guidance for selecting transformations that improve utility.

2. Building on this insight, we formulate a convex optimization problem to find the transformation,
and derive a closed-form solution (Theorem 2).

3. We introduce two algorithms to estimate the transformation using only previously released noisy
gradients. The first is based on a moving average to estimate the gradient covariance matrix.

4. For large-scale models, the full gradient covariance matrix is prohibitively large to store. Thus,
our second algorithm uses a streaming low-rank approximation of the covariance matrix. This second
algorithm is thus suitable for deep models with large parameter counts.

5. We validate GeoClip through experiments on synthetic, tabular, and image datasets, showing that
it consistently outperforms existing adaptive clipping methods under the same privacy budget.

Notation. We denote the d × d identity matrix by Id. The notation N ∼ N (0, σ2Id) denotes a
d-dimensional Gaussian with zero mean and covariance σ2Id. We use ∥x∥2 for the Euclidean norm
of a vector x, A−1 for the inverse of matrix A, and A⊤ for its transpose. The trace of a matrix A is
denoted by Tr(A), and Cov(x | y) refers to the conditional covariance of x given y.
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2 General Framework

LetD = {xk}Nk=1 be a dataset of N examples, and let f : Rd → R denote the empirical loss function
defined as the average of per-sample losses:

f(θ) =
1

N

N∑
k=1

fk(θ), (1)

where θ ∈ Rd is the model parameter vector and each fk corresponds to the loss on the k-th data
point xk. In DP-SGD, the algorithm updates θ using a noisy clipped stochastic gradient to ensure
privacy. Let gt ∈ Rd denote the stochastic gradient at iteration t. The update rule is:

θt+1 = θt − ηg̃t, (2)

where g̃t is the privatized version of gt, obtained by clipping and adding noise.

GeoClip builds on the DP-SGD framework but changes how gradients are processed before clipping
and adding noise. It begins by shifting and projecting the gradient into a new coordinate system:

ωt = Mt(gt − at), (3)

where at ∈ Rd is a reference point and Mt ∈ Rd×d is a full-rank transformation matrix that defines
the new basis. To enforce differential privacy, we clip the transformed gradient ωt to unit norm and
add Gaussian noise:

ω̃t =
ωt

max(1, ∥ωt∥2)
+Nt, Nt ∼ N (0, σ2Id), (4)

where σ is set based on the desired privacy guarantee. We then map the noisy, clipped gradient back
to the original space:

g̃t = M−1
t ω̃t + at. (5)

Remark 1. GeoClip generalizes AdaClip of Pichapati et al. [2019], which itself extends standard
DP-SGD. AdaClip essentially assumes that Mt is diagonal for per-coordinate scaling, whereas
GeoClip allows Mt to be any full-rank matrix. This added flexibility allows GeoClip to account for
correlations between gradient components and inject noise along more meaningful directions.

A key feature of our framework is that the privacy guarantees remain unaffected by the choice of
Mt and at, as long as no privacy budget is used to compute them. This allows Mt and at to be
chosen entirely based on utility, without compromising privacy. The main challenge, then, is how to
select these parameters effectively. To address this, we first define a performance metric for GeoClip.
Inspired by Pichapati et al. [2019], we derive the following convergence bound for our framework and
use it to guide the design of Mt and at, ultimately improving both convergence and training efficiency.
Theorem 1 (Convergence of GeoClip). Assume f has an L-Lipschitz continuous gradient. Further,
assume the stochastic gradients are bounded, i.e., ∥∇fk(θ)∥ ≤ G, and have bounded variance, i.e.,
Ek∥∇fk(θ)−∇f(θ)∥2 ≤ σ2

g . Let θ∗ = argminθ∈Rd f(θ) denote the optimal solution, and suppose
the learning rate satisfies η < 2

3L . Then, for the iterates {θt}T−1
t=0 produced by GeoClip with batch

size 1 using the update rule θt+1 = θt − ηg̃t, where g̃t is defined in (5), the average squared gradient
norm satisfies:

1

T

T−1∑
t=0

E∥∇f(θt)∥2 ≤
f(θ0)− f(θ∗)

T
(
η − 3Lη2

2

)
︸ ︷︷ ︸

Optimization gap

+
3Lη

2− 3Lη
σ2
g︸ ︷︷ ︸

Gradient variance term

+
Lησ2

T (2− 3Lη)

T−1∑
t=0

ETr
[(
M⊤

t Mt

)−1
]

︸ ︷︷ ︸
Noise-injection term

+
2

T (2− 3Lη)

T−1∑
t=0

E
[
β(at)

(
Tr
(
M⊤

t MtΣt

)
+ ∥Mt(E[gt | θt]− at)∥2

)]
︸ ︷︷ ︸

Clipping error term

,

(6)
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where θt = (θ0, . . . , θt) represents the history of parameter values up to iteration t, Σt = Cov(gt|θt),
and

β(at) = (G+ ∥at∥)
(
G+

3Lη

2
(G+ ∥at∥)

)
. (7)

The above result generalizes Theorem 2 in Pichapati et al. [2019]; proof details are in the supplement.

Theorem 1 provides insight into how we should choose the transformation parameters at and Mt. In
particular, we want to choose the transformation parameters at and Mt, for all t, to minimize the
right-hand side of (6). The reference point at directly affects the clipping error by setting the center
around which gradients are clipped, thereby influencing how much of each gradient is truncated.
In contrast, the noise injection term remains independent of at, as noise is added regardless of the
gradient’s position relative to at. From Theorem 1, the clipping error at iteration t takes the form

β(at)
(
Tr
(
M⊤

t Mt Σt

)
+ ∥Mt(E[gt | θt]− at)∥2

)
, (8)

where β(at) is a scale factor that grows with ∥at∥. A natural choice is to set at = E[gt | θt] which
eliminates the bias term ∥Mt(E[gt | θt]−at)∥2. Given this choice, since gradients are norm-bounded
by G, we can apply Jensen’s inequality to also bound the norm of their mean, to obtain the bound

β (at) ≤ 2G2(1 + 3Lη). (9)

We now show that the remaining contribution to the clipping error term Tr
(
M⊤

t MtΣt

)
in fact serves

as an upper bound on the probability that the gradient is clipped (i.e., |ω| > 1). We do so using
Markov’s inequality as detailed below:

Tr
(
M⊤

t Mt Σt

)
= E[∥Mt(gt − E[gt | θt])∥2 | θt] (10)
= E[∥ω∥2 | θt] (11)
≥ Pr(∥ω∥ > 1 | θt). (12)

We can now interpret the clipping error term as the likelihood that clipping occurs—ideally, the lower
the better as the gradient information will be better preserved. However, in setting a clipping level,
we must also be aware of the amount of noise: if Mt is scaled down, there is effectively more noise,
as captured by the noise-injection term in (6). We handle this tradeoff via the following optimization
problem for the transformation matrix Mt:

minimize
Mt

Tr
(
M⊤

t Mt

)−1

subject to Tr
(
M⊤

t Mt Σt

)
≤ γ. (13)

Theorem 2. Let Σt = Cov(gt | θt) be a positive definite matrix. The optimal transformation matrix
M∗

t ∈ Rd×d at iteration t for the optimization problem in (13), along with its corresponding objective
value, are given by:

M∗
t =

(
γ∑d

i=1

√
λi

)1/2

Λ
−1/4
t U⊤

t , Tr
(
M∗⊤

t M∗
t

)−1
=

(∑d
i=1

√
λi

)2
γ

, (14)

whereΣt = UtΛtU
⊤
t is the eigendecomposition of the covariance matrix, withΛt = diag(λ1, . . . , λd)

containing its eigenvalues.
Remark 2. Applying the optimal transformation M∗

t to the gradient gt at iteration t, the covariance
of the transformed gradient ω̃t = M∗

t (gt − E[gt | θt]), conditioned on the history θt, is

Cov(ω̃t | θt) = M∗
t Σt M

∗
t
⊤ =

γ Λ
1/2
t∑d

i=1

√
λi

= γ diag

( √
λ1∑d

i=1

√
λi

, . . . ,

√
λd∑d

i=1

√
λi

)
.

Thus, the optimal transformation decorrelates and scales down the gradients while preserving the
relative ordering of variance across directions, in contrast to traditional whitening, which eliminates
all variance structure. Note that setting at = E[gt | θt] and choosing Mt =

√
γ
d Λ

−1/2
t U⊤

t
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would amount to a whitening of the gradients and ensures that the constraint in (13) is active, i.e.,
Tr
(
M⊤

t Mt Σt

)
= γ. Under this choice, the objective becomes:

Tr
(
M⊤

t Mt

)−1
=

d

γ
Tr(Λt) =

d

γ

d∑
i=1

λi. (15)

Comparing our objective in (14) with the objective resulting from the whitening transformation, we
observe that applying the Cauchy–Schwarz inequality yields:

d

γ

d∑
i=1

λi ≥
1

γ

(
d∑

i=1

√
λi

)2

, (16)

with equality if and only if λ1 = . . . = λd. This shows that our solution achieves a strictly smaller
objective than whitening in all non-isotropic cases, where the gradient distribution exhibits unequal
variance along the eigenbasis directions.

The proof of Theorem 2 is in the supplement.

3 Algorithm Overview

Algorithm 1 outlines our proposed GeoClip method. We explain its key steps below.

Moving average for mean and covariance estimation. While the theoretical results from Section 2
assume access to the true gradient distribution, in practice this distribution is unknown, and so it must
be estimated using only privatized gradients. We estimate the mean and covariance using exponential
moving averages computed from those privatized gradients. This enables us to estimate the geometry
of the gradients without consuming additional privacy budget. Specifically, we maintain estimates at
of the mean, and Σt of the covariance matrix, which are updated according to:

at+1 ← β1at + (1− β1)g̃t (17)
Σt+1 ← β2Σt + (1− β2)(g̃t − at)(g̃t − at)

⊤ (18)

where β1 and β2 are constants close to 1 (e.g., β1 = 0.99, β2 = 0.999). The eigenvalues and
eigenvectors used for the transformation are then computed from the estimated covariance.

Clamping eigenvalues. The covariance matrix is positive semi-definite and may contain zero
eigenvalues, which can cause numerical instability. To address this, we clamp eigenvalues from below
at a small threshold h1 (e.g., 10−15). Since we only observe privatized gradients, which may be noisy
and unstable, we also clamp from above at h2 to prevent extreme scaling.

Covariance update with mini-batch. Let B denote a mini-batch of training examples sampled
at each iteration, with |B| indicating the batch size. When using mini-batch gradient descent with
|B| > 1, we must estimate the mean and covariance from the privatized batch averages of the
per-sample gradients. Let gi be the random variable representing the gradient of the i-th sample in
the batch. Let ḡ = 1

|B|
∑

i∈B gi be the batch average gradient. Assuming that the gi are i.i.d., with
the same distribution as g, the covariance of the average gradient ḡ satisfies

Cov (ḡ) = Cov

(
1

|B|
∑
i∈B

gi

)
=

1

|B|
Cov(g). (19)

The same principle applies when we observe only the privatized average gradient g̃. To account for
this averaging effect, the covariance update is scaled by the batch size; i.e., line 11 of GeoClip in
Algorithm 1 becomes

Σt+1 ← β2Σt + |B|(1− β2)(g̃t − at)(g̃t − at)
⊤. (20)

Low-Rank PCA. When the dimensionality is high, computing and storing the full gradient covariance
matrix becomes impractical. To address this, we propose a method to maintain a low-rank approxi-
mation using a simple and efficient procedure we refer to as Streaming Rank-k PCA (Algorithm 2).
Specifically, we maintain an approximate eigendecomposition of the covariance in the form UΛU⊤,
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Algorithm 1 GeoClip
Require: Dataset D, model fθ, loss L, learning rate η, noise scale σ, steps T , hyperparameters

h1, h2, β1, β2

1: Initialize θ, mean vector a0 = 0, covariance Σ0 = Id, transform M0 = M inv
0 = Id

2: for t = 0 to T do
3: Sample a data point (xt, yt)

4: Compute gradient gt ← ∇θL(fθ(xt), yt)

5: Center and transform: ωt ←Mt(gt − at)

6: Clip: ω̄t ← ωt/max(1, ∥ωt∥2)
7: Add noise: ω̃t ← ω̄t +N , where N ∼ N (0, σ2Id)

8: Map back: g̃t ←M inv
t ω̃t + at

9: Update model: θt+1 ← θt − ηg̃t
10: Update mean: at+1 ← β1at + (1− β1)g̃t
11: Update covariance: Σt+1 ← β2Σt + (1− β2)(g̃t − at)(g̃t − at)

⊤

12: Eigendecompose: Σt+1 = UtΛtU
⊤
t

13: Clamp eigenvalues: λi ← Clamp(λi,min = h1,max = h2)

14: Set Mt+1 ←
(
γ/
∑

i

√
λi

)1/2
Λ
−1/4
t U⊤

t

15: Set M inv
t+1 ←

(
γ/
∑

i

√
λi

)−1/2
UtΛ

1/4
t

16: end for
17: return Final parameters θ

Algorithm 2 Streaming Rank-k PCA

Require: Eigenvectors V ∈ Rd×k, eigenvalues Λ ∈ Rk×k, gradient g̃, mean a, factor β3, rank k

1: Center: z ← g̃ − a

2: Form augmented matrix: Uaug ← [V z]

3: Compute: Z ← Uaug diag(
√
β3λ1, . . . ,

√
β3λk,

√
1− β3)

4: Perform SVD: Z = USR⊤

5: Set Vnew ← first k columns of U
6: Set Λnew ← squares of the first k singular values in S

7: Return: Vnew,Λnew

where U ∈ Rd×k contains the top-k eigenvectors and Λ ∈ Rk×k the corresponding eigenvalues,
where k ≪ d. Upon receiving a new gradient g̃, we center it using the running mean a, yielding
z = g̃ − a, and perform a weighted update to the covariance:

Σnew = β3UΛU⊤ + (1− β3)zz
⊤ = [U z]

[
β3Λ 0
0 1− β3

]
[U z]⊤ (21)

Rather than forming this full matrix, we compute its square root:

Z = [U z] · diag(
√
β3λ1, . . . ,

√
β3λk,

√
1− β3) ∈ Rd×(k+1) (22)

We then perform an SVD on Z and retain the top k singular vectors and squared singular values as
the updated eigenvectors and eigenvalues. We note that this computation takes O(dk2 + k3) time Li
et al. [2019], highlighting that it is only linear in d. The rest of the procedure follows Algorithm 1
by replacing the moving average over the full covariance matrix in line 11 of Algorithm 1 with
the low-rank approximation described above. Another necessary change to the algorithm is the
following: since Ut is no longer a square matrix, the transformation Mt takes the gradient into
the lower k-dimensional space to clip and add noise, such that the resulting M inv

t returns to the
full d-dimensional space. The complete version of this variant is provided as Algorithm 3 in the
supplementary material.
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Figure 1: GeoClip results for the synthetic Gaussian dataset with 10 features. The left plot shows the
average test MSE for each method over 10 epochs, with shaded regions representing the standard
deviation across 20 random seeds. We observe that GeoClip achieves the fastest convergence and
lowest average test MSE. The right plot shows the overall privacy budget ε expended for δ = 10−5.
This plot applies to all four algorithms, as they are tuned to achieve the same privacy level for a given
number of epochs.

4 Experimental Results

We present empirical results demonstrating the benefits of our proposed GeoClip framework compared
to AdaClip, quantile-based clipping, and standard DP-SGD. For quantile-based clipping, we use
the median of per-sample norms, which has been shown to perform well across various learning
tasks Andrew et al. [2021]. All (ε, δ)-DP guarantees are computed using the Connect-the-Dots
accountant Doroshenko et al. [2022]. All experiments were conducted on Google Colab using CPU
resources.

We start with a synthetic dataset to demonstrate how GeoClip accelerates convergence, reflecting its
design motivation from Theorem 1, and then evaluate its performance on real-world datasets. All
datasets are split into 80-10-10 train-validation-test sets for consistent evaluation. The results in
Sections 4.1, 4.2, and 4.3 are derived from Algorithm 1. We present the results using the low-rank
PCA variant in Section 4.4.

Our results indicate that our framework in Algorithm 1 is robust to the choice of hyperparameters β1,
β2, and h1. Standard values commonly used in optimization, such as β1 = 0.99 and β2 = 0.999,
work well in our setting. The parameter h1 only needs to be a small positive constant (e.g., 10−15)
to ensure numerical stability. Since the eigenvalues are clamped to the range [h1, h2] (line 13
in Algorithm 1), the trace term

∑
i

√
λi is bounded between d

√
h1 and d

√
h2, where d is the

dimensionality. This allows us to set the parameter γ to 1, as its effect can be absorbed by tuning
h2. For h2, we have observed that the values 1 and 10 perform consistently well across datasets.
Throughout all experiments, we tune only h2 to select between these two options. A similar setup is
used in Algorithm 2 with β2 replaced by β3 (set to 0.99), which is also robust across experiments.

4.1 Synthetic Dataset

GeoClip is designed to improve convergence, particularly in the presence of feature correlation. To
empirically demonstrate this, we evaluate it on a synthetic Gaussian dataset with 20,000 samples and
10 features—five of which are correlated, while the remaining five are independent. We train a linear
regression model using various private training methods for 10 epochs with a batch size of 1024,
tuning the learning rate for each method to ensure stable convergence. As shown in Figure 1 (left),
GeoClip converges as early as epoch 2, while the next best method—quantile-based clipping—requires
nearly twice as many epochs. Figure 1 (right) plots the privacy cost (ε) versus epoch, showing how
faster convergence helps minimize overall privacy cost.

As illustrated by the standard deviation bands in Figure 1, GeoClip not only achieves faster convergence
but also demonstrates more stable training with reduced variance—an important property when
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privacy constraints limit training to a single run. In such scenarios, lower variability across runs
enhances the reliability of the final model without requiring additional privacy budget.

4.2 Tabular Datasets

In addition to the synthetic dataset, we run experiments to compare the performance of different
clipping strategies on three real-world datasets: Diabetes Efron et al. [2004], Breast Cancer Wolberg
et al. [1993], and Android Malware Borah and Bhattacharyya [2020]. We briefly describe each dataset
and its corresponding learning task below.

The Diabetes dataset contains 442 samples and 10 standardized features. The continuous valued
target variable indicates disease progression, making this a regression task. The Breast Cancer
dataset contains 569 samples and 30 numerical features, which are standardized to zero mean and
unit variance before training. The target is to predict a binary label indicating the presence or absence
of cancer. The Android Malware dataset contains 4465 samples and 241 integer attributes. The target
is to classify whether a program is malware or not.

For each of the three datasets, we perform a grid search over the relevant hyperparameters to identify
the best model under a given (ε, δ) privacy budget. We train for 5 epochs using 20 random seeds and
report the average performance along with the standard deviation in Tables 1, 2, and 3. We observe
that our proposed GeoClip framework consistently outperforms all baseline methods across both
regression and classification tasks. GeoClip achieves better performance with noticeably smaller
standard deviations, indicating greater stability across random seeds.

Table 1: Diabetes dataset test MSE comparison for δ = 10−5, batch size = 32, and model dimension
d = 11.

Framework ε = 0.50 ε = 0.86 ε = 0.93

GeoClip (ours) 0.073± 0.015 0.044±0.003 0.039±0.009
AdaClip 0.077±0.027 0.062±0.028 0.055±0.014
Quantile 0.090±0.027 0.083±0.044 0.072±0.014
DP-SGD 0.108±0.040 0.095±0.047 0.072±0.040

Table 2: Breast Cancer dataset test accuracy (%) comparison for δ = 10−5, batch size = 64, and
model dimension d = 62.

Framework ε = 0.67 ε = 0.8 ε = 0.87

GeoClip (ours) 87.87±3.32 88.57±3.37 93.63±1.63
AdaClip 84.90±5.91 85.42±5.34 87.71±5.87
Quantile 81.41±12.53 81.63±10.71 92.28±2.68
DP-SGD 77.32±6.17 79.42±9.71 85.95±4.45

Table 3: Malware dataset test accuracy (%) comparison for δ = 10−5, batch size = 512, and model
dimension d = 484.

Framework ε = 0.26 ε = 0.49 ε = 0.67

GeoClip (ours) 90.77±1.83 91.64±1.26 92.67±1.63
AdaClip 88.35±3.27 90.25±1.33 90.23±3.11
Quantile 77.84±1.29 78.84±1.27 81.86±1.31
DP-SGD 88.04±2.21 90.55±1.55 90.57±1.61

4.3 Final Layer Fine-Tuning

In many transfer learning scenarios, fine-tuning only the final layer is standard practice due to both its
computational efficiency and minimal privacy cost. Last-layer fine-tuning is a well-suited application
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of GeoClip, as it involves a small number of trainable parameters, making covariance estimation more
tractable. This setup also benefits from GeoClip’s faster convergence, which is particularly valuable
in privacy-constrained settings where only limited training iterations are feasible.

To demonstrate this, we design an experiment where a convolutional neural network (CNN) is
first trained on MNIST LeCun et al. [1998] using the Adam optimizer and then transferred to
Fashion-MNIST Xiao et al. [2017] by freezing all layers except the final fully connected layer. The
CNN consists of two convolutional and pooling layers followed by a linear compression layer that
reduces the feature size to 50, resulting in a total of only 510 trainable parameters. We fine-tune this
layer using different methods under varying privacy budgets, and present the results in Table 4.

Table 4: Final layer DP fine-tuning on Fashion-MNIST for 4 epochs and δ = 10−6 over 5 seeds.

Framework ε = 0.6 ε = 1

GeoClip (Ours) 73.09±0.72 73.09±0.63
AdaClip 68.35±0.41 69.24±0.28
Quantile-based 71.78±1.28 72.09±1.12
DP-SGD 69.40±0.82 69.83±0.83

4.4 Low-Rank PCA Results

To evaluate our method on low-rank PCA algorithm (Algorithm 2), we construct a synthetic binary
classification dataset with 20,000 samples and 400 Gaussian features, where 50 are correlated and 350
are uncorrelated. Labels are generated by applying a linear function to the features, adding Gaussian
noise, and thresholding the sigmoid output. We train a logistic regression model with 802 trainable
parameters. We then apply our method using a low-rank PCA approximation with rank 50. As shown
in the left panel of Figure 2, our approach converges faster than competing methods even with this
low-rank approximation.

We also evaluate our method on the USPS dataset Hull [1994] using logistic regression with 2,570
trainable parameters (256 input features × 10 classes + 10 biases). The USPS dataset contains 9,298
grayscale handwritten digit images (0–9), each of size 16 × 16 pixels. This compact benchmark
is commonly used for evaluating digit classification models. For this dataset, we apply a low-rank
PCA approximation with rank 100. Results are shown in the right panel of Figure 2. As with the
synthetic dataset, GeoClip with low-rank PCA also achieves faster convergence on USPS compared
to baseline methods. We provide additional ε-vs-iteration plots for both datasets, illustrating how
faster convergence reduces overall privacy cost in the supplementary material.

5 Conclusions

We have introduced GeoClip, a geometry-aware framework for differentially private SGD that
leverages the structure of the gradient distribution to improve both utility and convergence. By
operating in a basis adapted to the estimated noisy gradients, GeoClip injects noise more strategically,
thereby reducing distortion without incurring additional privacy cost. We have provided a formal
analysis of convergence guarantees which characterizes the optimal transformation. Our empirical
results on synthetic and real-world datasets show that GeoClip consistently converges faster and
outperforms existing adaptive clipping methods, improving both the mean and standard deviation of
the performance metrics over multiple runs. Via low-rank approximation method, we have shown that
GeoClip scales to the high-dimensional data setting, thus making it suitable for practical deployment
in large, privacy-sensitive models.
Limitations. The linear transformation involved in GeoClip requires an additional computation via
an eigendecomposition. Our low-rank approximation addresses that to some extent. The algorithm
introduces additional hyperparameters (most notably h2) compared to standard DP-SGD, which must
be tuned for optimal performance. Our experiments have been performed on a limited collection of
datasets; additional testing is needed to see how our algorithm performs in more generality.

Broader impact. As discussed in the Introduction, our work is motivated by societal concerns, with
a focus on improving the theoretical limits of differentially private optimization.
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Figure 2: The left panel shows results on the synthetic Gaussian dataset with 400 features using
a rank-50 PCA approximation for GeoClip. The plot displays average test accuracy (%) over 80
iterations with a batch size of 1024. GeoClip achieves the fastest convergence and highest average
accuracy. The right panel shows results on the USPS dataset using a rank-100 approximation over 25
iterations with a batch size of 1024, where a similar convergence trend is observed. Shaded regions
represent standard deviation across 20 random seeds.
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A Proof of Theorem 1

Theorem (Convergence of GeoClip). Assume f has an L-Lipschitz continuous gradient. Further,
assume the stochastic gradients are bounded, i.e., ∥∇fk(θ)∥ ≤ G, and have bounded variance, i.e.,
Ek∥∇fk(θ)−∇f(θ)∥2 ≤ σ2

g . Let θ∗ = argminθ∈Rd f(θ) denote the optimal solution, and suppose
the learning rate satisfies η < 2

3L . Then, for the iterates {θt}T−1
t=0 produced by GeoClip with batch

size 1 using the update rule θt+1 = θt − ηg̃t, where g̃t is defined in (5), the average squared gradient
norm satisfies:

1

T

T−1∑
t=0

E∥∇f(θt)∥2 ≤
f(θ0)− f(θ∗)

T
(
η − 3Lη2

2

)
︸ ︷︷ ︸

Optimization gap

+
3Lη

2− 3Lη
σ2
g︸ ︷︷ ︸

Gradient variance term

+
Lησ2

T (2− 3Lη)

T−1∑
t=0

ETr
[(
M⊤

t Mt

)−1
]

︸ ︷︷ ︸
Noise-injection term

+
2

T (2− 3Lη)

T−1∑
t=0

E
[
β(at)

(
Tr
(
M⊤

t MtΣt

)
+ ∥Mt(E[gt | θt]− at)∥2

)]
︸ ︷︷ ︸

Clipping error term

,

(23)

where θt = (θ0, . . . , θt) represents the history of parameter values up to iteration t, Σt = Cov(gt|θt),
and

β(at) = (G+ ∥at∥)
(
G+

3Lη

2
(G+ ∥at∥)

)
. (24)

Proof. We can express the noisy gradient as:

g̃t = M−1
t ω̃t + at (25)

=
M−1

t ωt

max{1, ∥ωt∥}
+M−1

t Nt + at (26)

=
gt − at

max{∥Mt(gt − at)∥, 1}
+M−1

t Nt + at. (27)

Thus, the parameter update takes the form

θt+1 = θt − ηg̃t (28)

= θt − η

[
gt − at

max {∥Mt(gt − at)∥, 1}
+M−1

t Nt + at

]
. (29)

We define the following quantities:

ct =
gt − at

max {∥Mt(gt − at)∥, 1}
, (30)

∆t = ct − (gt − at). (31)

ct is the clipped version of gt − at. ∆t quantifies the distortion due to clipping, being zero when no
clipping occurs and negative when clipping is applied. By the L-Lipschitz continuity of the gradient
of f(θ), we have:

f(θt+1) ≤ f(θt) + ⟨∇f(θt), θt+1 − θt⟩+
L

2
∥θt+1 − θt∥2. (32)
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Let θt = (θ0, . . . , θt) describe the entire history of states. Taking the expectation conditioned on θt,
we obtain:

E
[
f (θt+1)

∣∣θt]
≤ f (θt) + E

[
⟨∇f (θt) , θt+1 − θt⟩

∣∣θt]+ L

2
E
[
∥θt+1 − θt∥2

∣∣∣θt] (33)

= f (θt)− ηE
[〈
∇f (θt) , ct +M−1

t Nt + at
〉∣∣θt]+ Lη2

2
E
[∥∥ct +M−1

t Nt + at
∥∥2∣∣∣θt] (34)

= f (θt)− ηE
[
⟨∇f (θt) , ct + at⟩

∣∣θt]+ Lη2

2
E
[
∥ct + at∥2

∣∣∣θt]+ Lη2

2
E
[∥∥M−1

t Nt

∥∥2∣∣∣θt] (35)

= f (θt)− ηE
[
⟨∇f (θt) , ct + at⟩

∣∣θt]+ Lη2

2
E
[
∥ct + at∥2

∣∣∣θt]+ Lη2σ2

2

∥∥M−1
t

∥∥2
F

(36)

= f (θt)− ηE
[
⟨∇f (θt) , gt +∆t⟩

∣∣θt]+ Lη2

2
E
[
∥gt +∆t∥2

∣∣∣θt]+ Lη2σ2

2

∥∥M−1
t

∥∥2
F

(37)

= f (θt)− η ∥∇f (θt)∥2 − ηE
[
⟨∇f (θt) ,∆t⟩

∣∣θt]
+

Lη2

2
E
[
∥gt −∇f (θt) +∇f (θt) + ∆t∥2

∣∣∣θt]+ Lη2σ2

2

∥∥M−1
t

∥∥2
F

(38)

where (35) follows from E[Nt] = 0 and the independence of Nt from gt (and thus from ct + at).
The equality (36) follows because E[NN⊤] = σ2Id, and ∥M−1

t ∥F represents the Frobenius norm of
M−1

t . The equality (37) follows from ct + at = ∆t + gt. The last equality follows because

E
[
⟨∇f (θt) , gt +∆t⟩

∣∣θt] = E
[
⟨∇f (θt) ,∆t⟩

∣∣θt]+ E
[
⟨∇f (θt) , gt⟩

∣∣θt] (39)

= E
[
⟨∇f (θt) ,∆t⟩ |θt

]
+∇f (θt)

⊤ E[gt|θt] (40)
= E

[
⟨∇f (θt) ,∆t⟩

∣∣θt]+ ∥∇f (θt) ∥2, (41)

where (41) follows because gt is an unbiased estimator of the true gradient, i.e., E[gt | θt] = ∇f(θt).
From Jensen’s inequality, we have:

E
[
∥gt −∇f(θt) +∇f(θt) + ∆t∥2

∣∣∣θt]
≤ 3

(
E
[
∥gt −∇f(θt)∥2

∣∣∣θt]+ ∥∇f(θt)∥2 + E
[
∥∆t∥2

∣∣∣θt]) . (42)

From the Cauchy–Schwarz inequality, we have:

E
[
⟨∇f(θt),∆t⟩

∣∣θt] ≤ ∥∇f(θt)∥ E [∥∆t∥
∣∣θt] . (43)

Plugging (42) and (43) into (38), we obtain:

E
[
f (θt+1)

∣∣θt] ≤ f (θt)− η ∥∇f (θt)∥2 + η ∥∇f (θt)∥E
[
∥∆t∥

∣∣θt]
+

3Lη2

2

[
E
[
∥gt −∇f(θt)∥2

∣∣∣θt]+ ∥∇f(θt)∥2 + E
[
∥∆t∥2

∣∣∣θt]]+ Lη2σ2

2

∥∥M−1
t

∥∥2
F
. (44)

To bound E [∥∆t∥|θt] and E
[
∥∆t∥2

∣∣∣θt], we first bound Pr (∥∆t∥ > 0|θt) and ∥∆t∥ given θt and
∥∆t∥ > 0. Using Markov’s inequality, we obtain:

Pr
(
∥∆t∥ > 0

∣∣θt) = Pr
(
∥Mt(gt − at)∥2 > 1

∣∣θt) (45)
≤ Pr

(
∥Mt(gt − at)∥2 ≥ 1

∣∣θt) (46)
≤ E

[
∥Mt(gt − at)∥2

∣∣θt] (47)

= E
[
∥Mt

(
gt − E[gt

∣∣θt] + E[gt
∣∣θt]− at

)
∥2
∣∣∣θt] (48)

= E
[
∥Mt

(
gt − E[gt

∣∣θt]) ∥2∣∣∣θt]+ ∥Mt(E[gt|θt]− at)∥2 (49)

= Tr
(
Cov

(
Mtgt

∣∣θt))+ ∥Mt(E[gt|θt]− at)∥2. (50)
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Using (30) and (31), we obtain:

∥∆t∥ =
∥∥∥∥( 1

max {∥Mt(gt − at)∥, 1}
− 1

)
(gt − at)

∥∥∥∥ (51)

≤ ∥gt − at∥ (52)
≤ ∥gt∥+ ∥at∥ (53)
≤ G+ ∥at∥, (54)

where the final inequality follows from ∥∇fk(θ)∥ ≤ G. Therefore,
E
[
∥∆t∥

∣∣θt] = Pr
(
∥∆t∥ > 0

∣∣θt)E [∥∆t∥
∣∣∥∆t∥ > 0, θt

]
(55)

≤ (G+ ∥at∥)
(
Tr
(
Cov

(
Mtgt

∣∣θt))+ ∥Mt(E[gt|θt]− at)∥2
)
. (56)

Similarly, we obtain the following bound:

E
[
∥∆t∥2

∣∣∣θt] ≤ (G+ ∥a∥)2
(
Tr
(
Cov

(
Mtgt

∣∣θt))+ ∥Mt(E[gt|θt]− at)∥2
)
. (57)

By plugging (56) and (57) into (44) and rearranging the terms, we obtain
E
[
f (θt+1)

∣∣θt]
≤ f (θt) + (

3Lη2

2
− η)∥∇f(θt)∥2 + η(G+ ∥at∥)

(
G+

3Lη

2
(G+ ∥at∥)

)
[
Tr
(
Cov

(
Mtgt

∣∣θt))+ ∥Mt(E[gt|θt]− at)∥2
]
+

3Lη2

2
E
[
∥gt −∇f(θt)∥2

∣∣∣θt]+ Lη2σ2

2
∥M−1

t ∥2F .

(58)
Above, we have used the fact that ∥∇f(θt)∥ ≤ G, which itself follows from Jensen’s inequality and
the assumption that ∥∇fk(θ)∥ ≤ G. Let

β(at) = (G+ ∥at∥)
(
G+

3Lη

2
(G+ ∥at∥)

)
. (59)

Rearranging the terms, applying the law of total expectation (now taking expectation over the entire
history of states θt), and using the bound Ek∥∇fk(θ)−∇f(θ)∥2 ≤ σ2

g , we obtain:(
η − 3Lη2

2

)
E∥∇f(θt)∥2 ≤ Ef(θt)− Ef(θt+1) +

3Lη2σ2
g

2
+

Lη2σ2

2
E∥M−1

t ∥2F

+ η E
[
β(at)

(
Tr
(
Cov

(
Mtgt

∣∣θt))+ ∥Mt(E[gt|θt]− at)∥2
)]

.
(60)

Summing over t = 0 to T − 1 and applying the telescoping sum, we get:(
η − 3Lη2

2

) T−1∑
t=0

E∥∇f(θt)∥2 ≤ f(θ0)− Ef(θT ) +
3Lη2σ2

g

2
T +

Lη2σ2

2

T−1∑
t=0

E∥M−1
t ∥2F

+ η

T−1∑
t=0

E
[
β(at)

(
Tr
(
Cov

(
Mtgt

∣∣θt))+ ∥Mt(E[gt|θt]− at)∥2
)]
(61)

Dividing by T , assuming η ≤ 2
3L , applying the identity ∥M−1

t ∥2F = Tr
((

M⊤
t Mt

)−1
)

, and using
the fact that Ef(θT ) ≥ f(θ∗), we obtain:

1

T

T−1∑
t=0

E∥∇f(θt)∥2

≤ f(θ0)− f(θ∗)

T
(
η − 3Lη2

2

) +
3Lη

2− 3Lη
σ2
g +

Lησ2

T (2− 3Lη)

T−1∑
t=0

E
[
Tr
(
M⊤

t Mt

)−1
]

+
2

T (2− 3Lη)

T−1∑
t=0

E
[
β(at)

(
Tr
(
M⊤

t MtCov(gt|θt)
)
+ ∥Mt(E[gt|θt]− at)∥2

)]
. (62)
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B Proof of Theorem 2

We would like to solve the following optimization

minimize
Mt

Tr
(
M⊤

t Mt

)−1

subject to Tr
(
M⊤

t Mt Σt

)
≤ γ. (63)

Defining At as the Gram matrix of Mt, i.e., At = M⊤
t Mt, we can reformulate the optimization

problem as:
minimize

At

Tr(A−1
t )

subject to Tr(At Σt) ≤ γ. (64)
Both the objective and the constraint are convex in A, so to solve the problem, we introduce the
Lagrangian function:

ℓ(At, µ) = Tr(A−1
t ) + µ (Tr(AtΣt)− γ) , (65)

Taking the derivative of ℓ(At, µ) with respect to At and setting the derivative to zero for optimality,
we get

A−2
t = µ Σt. (66)

and so

At =
1
√
µ
Σ

− 1
2

t . (67)

Substituting At in the constraint Tr (At Σt) = γ, we get
1
√
µ
Tr
(
Σ

1
2
t

)
= γ. (68)

Solving for µ:
√
µ =

1

γ
Tr
(
Σ

1
2
t

)
. (69)

Thus, the optimal At is:

At =
γ

Tr
(
Σ

1
2
t

) Σ
− 1

2
t . (70)

Using the eigen decomposition, we write Σt as:
Σt = UtΛtU

⊤
t , (71)

where Ut is an orthogonal matrix whose columns are the eigenvectors of Σt, and
Λt = diag(λ1, . . . , λd)

is a diagonal matrix containing the corresponding eigenvalues. We now have

Σ
1
2
t = UtΛ

1
2
t U

⊤
t , Σ

− 1
2

t = UtΛ
− 1

2
t U⊤

t , (72)
Thus, the final expression for At is:

At =
γ

Tr(Λ
1
2
t )

UtΛ
− 1

2
t U⊤

t . (73)

Therefore, we have

M⊤
t Mt =

γ

Tr(Λ
1
2
t )

UtΛ
− 1

2
t U⊤

t , (74)

and

Mt =

(
γ

Tr(Λ
1
2
t )

)1/2

Λ
− 1

4
t U⊤

t . (75)

Since Tr(Λ1/2
t ) =

∑d
i=1

√
λi, we can simplify Mt as follows:

Mt =

(
γ∑d

i=1

√
λi

)1/2

Λ
−1/4
t U⊤

t . (76)
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Algorithm 3 GeoClip with Rank-k PCA
Require: DatasetD, model fθ, lossL, learning rate η, noise scale σ, steps T , rank k, hyperparameters

h1, h2, β1, β3

1: Initialize θ, mean vector a0 = 0, U0 = [e1, . . . , ek] where ei ∈ Rd is the i-th standard basis
vector, Λ0 = Ik

2: Compute transform M0 ← (γ/k)
1/2

Λ
−1/4
0 U⊤

0 and M inv
0 ← (γ/k)

−1/2
U0Λ

1/4
0

3: for t = 0 to T do
4: Sample a data point (xt, yt)

5: Compute gradient gt ← ∇θL(fθ(xt), yt)

6: Center and transform: ωt ←Mt(gt − at)

7: Clip: ω̄t ← ωt/max(1, ∥ωt∥2)
8: Add noise: ω̃t ← ω̄t +N , where N ∼ N (0, σ2Ik)

9: Map back: g̃t ←M inv
t ω̃t + at

10: Update model: θt+1 ← θt − ηg̃t
11: Update mean: at+1 ← β1at + (1− β1)g̃t
12: Update eigenspace: (Ut+1,Λt+1)← Streaming Rank-k PCA(Ut,Λt, g̃t, at+1, β3, k)

13: Clamp eigenvalues: λi ← Clamp(λi,min = h1,max = h2)

14: Set Mt+1 ←
(
γ/
∑

i

√
λi

)1/2
Λ
−1/4
t+1 U⊤

t+1

15: Set M inv
t+1 ←

(
γ/
∑

i

√
λi

)−1/2
Ut+1Λ

1/4
t+1

16: end for
17: return Final parameters θ

C GeoClip with Low-Rank PCA

Computing and storing the full gradient covariance matrix becomes infeasible in high dimensions. To
address this, we propose a low-rank approximation method in Algorithm 3, which incorporates a rank-k
PCA step described in the Streaming Rank-k PCA algorithm. This procedure efficiently maintains
an approximate eigendecomposition UtΛtU

⊤
t , where Ut ∈ Rd×k contains the top-k eigenvectors and

Λt = diag(λ1, . . . , λk) ∈ Rk×k holds the corresponding eigenvalues at iteration t, with k ≪ d.

Given a new gradient g̃t, we center it using the running mean at+1 to obtain z = g̃t − at+1, and
update the covariance as:

Σnew = β3UtΛtU
⊤
t + (1− β3)zz

⊤ = [Ut z]

[
β3Λt 0
0 1− β3

]
[Ut z]⊤. (77)

Rather than forming this matrix directly, we compute its square root:

Z = [Ut z] · diag(
√
β3λ1, . . . ,

√
β3λk,

√
1− β3), (78)

and perform an SVD on Z, retaining the top k components to obtain Ut+1 and Λt+1.

Since Ut is not square, Mt ∈ Rk×d projects gradients into a k-dimensional subspace for clipping and
noise addition, while M inv

t ∈ Rd×k maps them back to Rd.

To compute M0 and M inv
0 in line 2 of Algorithm 3, we use the simplification Tr(Λ

1/2
0 ) =

∑k
i=1 1 = k.

Also, in line 13, each λi depends on t, but we omit the subscript for notational simplicity.

D Privacy Cost vs. Iteration (Corresponding to Figure 2)

Figure 4 shows the privacy cost (ε) versus iteration curves associated with the accuracy-vs-iteration
plots in Figure 2 (Section 4.4, Low-Rank PCA Results), which is repeated in this PDF as Figure 3
for easier reference. These plots highlight how faster convergence reduces overall privacy cost. For
example, on the USPS dataset (Figure 3, right), GeoClip achieves high accuracy within the first few
iterations, requiring only ε ≈ 0.15, whereas quantile-based clipping takes about 24 iterations to reach
similar accuracy, incurring a higher privacy cost of ε ≈ 0.5.
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Streaming Rank-k PCA
Require: Eigenvectors Ut ∈ Rd×k, eigenvalues Λt ∈ Rk×k, gradient g̃t ∈ Rd, mean at+1 ∈ Rd,

factor β3 ∈ R, rank k

1: Center: z ← g̃t − at+1

2: Form augmented matrix: Uaug ← [Ut z]

3: Compute: Z ← Uaug diag(
√
β3λ1, . . . ,

√
β3λk,

√
1− β3)

4: Perform SVD: Z = V SR⊤

5: Set Ut+1 ← first k columns of V
6: Set Λt+1 ← squares of the first k singular values in S

7: Return: Ut+1,Λt+1
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Figure 3: The left panel shows results on the synthetic Gaussian dataset with 400 features using
a rank-50 PCA approximation for GeoClip. The plot displays average test accuracy (%) over 80
iterations with a batch size of 1024. GeoClip achieves the fastest convergence and highest average
accuracy. The right panel shows results on the USPS dataset using a rank-100 approximation over 25
iterations with a batch size of 1024, where a similar convergence trend is observed. Shaded regions
represent standard deviation across 20 random seeds.
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Figure 4: The left plot shows the overall privacy budget ε spent on training the synthetic Gaussian
dataset with 400 features for δ = 10−5, while the right plot shows the same for the USPS dataset with
δ = 10−5. These plots apply to all four algorithms, which are tuned to achieve the same privacy level
for a given number of iterations.
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