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Abstract

Synthetic data is often positioned as a solution to replace sensi-
tive fixed-size datasets with a source of unlimited matching data,
freed from privacy concerns. There has been much progress in
synthetic data generation over the last decade, leveraging corre-
sponding advances in machine learning and data analytics. In this
survey, we cover the key developments and the main concepts in
tabular synthetic data generation, including paradigms based on
probabilistic graphical models and on deep learning. We provide
background and motivation, before giving a technical deep-dive
into the methodologies. We also address the limitations of synthetic
data, by studying attacks that seek to retrieve information about
the original sensitive data. Finally, we present extensions and open
problems in this area.
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1 Introduction

A common scenario in many data-focused applications is when
there is a valuable dataset but its contents are very sensitive. For
instance, this could be a dataset of customers with their personal
details and purchases, or a dataset of hospital patients with infor-
mation on their health conditions. The dataset would be very useful
to share with data scientists or machine learning engineers, but due
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to privacy concerns it is not appropriate to make the data available
in its original form. Instead we would like to create a new dataset
that shares the characteristics of the original data, but is entirely
fabricated. This is referred to as “Synthetic Data Generation”. Being
completely made up, intuitively we would believe synthetic data is
freed of privacy concerns, and can be shared more easily than the
original source. However, things are not so simple: if the synthetic
data is very similar to the original data, it may leak sensitive infor-
mation about its source. Meanwhile, if the synthetic data does not
resemble the original data, it is not a useful substitute. Research
in synthetic data is concerned with walking this tightrope: balanc-
ing fidelity and privacy, whilst taking into account expressivity
(richness of the model), and efficiency (computational cost).

Synthetic data can take many forms, depending on the domain.
We might want to generate synthetic text, synthetic images and
videos, or synthetic three-dimensional objects. However, in this sur-
vey we focus on the core case of synthetic tabular data: data which is
most naturally represented within a structured table. This captures
many problems in data management, where we can consider the
tables as relations from a database; and in machine learning, where
the rows are examples and the columns are features.

This survey aims to give an overview of the state-of-the-art in
synthetic tabular data. We will describe the objectives and desider-
ata for synthetic data, and how they are achieved. We will show how
techniques have developed from simplistic modeling to leveraging
complex cutting-edge machine learning models, and the tradeoffs
along this path. A number of different lenses can be used to view
the task of generating synthetic data: a statistical lens, which seeks
to find a parsimonious model of the original data from which new
examples can be sampled (Section 3); or a machine learning per-
spective, which seeks to train a model that can generate examples
that are sufficiently realistic to fool a classifier; we can also adopt
the framing of generative Al, where the objective is to create data
based on many real-world examples of tables and the context of
a specific target (Section 4). We will also consider the limitations
of synthetic data generation, and how adversaries can try to use
the output synthetic data to learn private information about the
data that the model was trained on (Section 5). We will address
defenses against such attacks based on formal privacy guarantees,
and discuss how the relative success of attacks can be used as an
estimate of empirical privacy risk of synthetic data release. We
conclude with a consideration of extensions to other forms of data
and other scenarios, and open problems for the community to work
on (Section 6).
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2 Background and Preliminaries
2.1 Social and Legal Reasons

The requirements for privacy stem from many sources. Legal frame-
works such as GDPR and CCPA place restrictions on what data
can be shared and under what protections. Organizations handling
data make promises to data subjects about how their information
will be processed and protected. Consumers exercise their freedom
of choice, and may prefer to use one organization’s services over
another based on their privacy stance. Collectively, these mean that
data must be handled with care, and appropriate controls put in
place to restrict how it is used. At the same time, many organiza-
tions utilize sensitive data, for example to inform their business
decisions. To bridge this gap, various privacy enhancing technolo-
gies (PETs) have been proposed in order to provide the results of
computations over sensitive data while offering suitable privacy
guarantees on what is not revealed.

Synthetic data generation is a popular privacy enhancing tech-
nology, but the methodologies to model data and generate syn-
thetic datasets is still evolving. Except in trivial cases, synthetic
data requires a reference dataset to work from. That is, unless it is
satisfactory to use an off-the-shelf statistical distribution (e.g., a
Normal distribution with mean zero and unit variance) or naive
modeling (e.g., a table where each attribute is chosen independently
and uniformly at random), we need to generate the synthetic data
with some properties of the real dataset. It is therefore useful to
treat this as a machine learning problem: given some training data
(the reference dataset), the task is to learn a model that can generate
new examples, such that the generated data resembles the training
data. The process must ensure that some privacy guarantees hold
(to prevent trivially non-private approaches, such as copying the
training data in whole or in part), and may additionally try to opti-
mize some utility metrics. This immediately sets some requirements
for synthetic data: there must be reference data available to guide
the modeling. The applications must tolerate some imprecision,
since the synthetic data will necessarily not be a perfect match
for the training data, and the reference data must have enough
examples to allow the synthetic data generation to learn patterns.
This already restricts some scenarios, such as in healthcare, where
if there are only a very small number of cases of a particular rare
disease, changing any details risks disguising an important pattern.
For such settings, other privacy enhancing technologies, such as
the use of secure data environments, might be a better fit.

2.2 Desiderata for Synthetic Data

There are multiple desirable properties for synthetic data, as out-
lined above.

o Fidelity: the generated data must be “faithful” to the refer-
ence data. This may be measured via an appropriate distance
metric, or by comparing various statistical characteristics of
the data e.g., mean/median values, frequency distributions,
and correlations.

e Privacy: the result of modeling the data, either in the form
of the model itself or the data that it generates, must not leak
sensitive information about the reference data under some
appropriate formalization.
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¢ Efficiency: the process must be computationally efficient
to perform. It may be the case that synthetic generation is
done only once for a given reference dataset and the results
are used extensively, so the process does not have to be real-
time, but still operate within reasonable bounds on time and
memory requirements.

o Expressivity: the model must be sufficiently rich to capture
sufficient details of the reference data. Typically, we want
the generated data to match the format of the reference data:
the same attributes and domain.

e Utility: the data should be useful for downstream tasks,
allowing similar conclusions to be drawn as with the original
data. This may be tested by application-specific measures,
e.g., evaluating the performance of ML models trained on
some (withheld) reference data.

Although fidelity and utility may appear similar, they focus on
different aspects of synthetic data generation. It may be possible to
adopt generic measures of fidelity based on the statistical distance
between the generated and reference data, whereas in general there
is no universal definition of utility, and the same synthetic data may
have very different utilities for different tasks. We will revisit each
of these properties as we discuss different methodologies. Next, we
provide more detail on how privacy can be formalized.

2.3 Privacy Requirements

Defining “privacy” in formal terms has been a challenging prob-
lem for the computer science and statistical communities for many
years. Initial attempts to give syntactic properties that correspond
to privacy are seen to be lacking due to loopholes [15]. This is par-
ticularly the case for synthetic data, where syntactic requirements
on the output can be easily evaded. For instance, the k-anonymity
requirement states that each record in the output must match at
least k — 1 others [64]. This can be defeated for synthetic data by
simply duplicating each true record k times.

In this survey, we will focus on the statistical notion of Differen-
tial Privacy (DP), which has become the de facto standard [18]. The
definition of differential privacy states (informally) that any prop-
erty of the output should be approximately equally likely whether
or not any individual was included in the input. This means the
synthetic data (or the parameters of the model used to generate it)
should not depend too strongly on the contribution of any one in-
dividual. There are many ways to achieve differential privacy for a
given task, but it is most often achieved through the introduction of
carefully calibrated random noise into the numeric values that are
computed by the algorithm. There are also many variations of the
definition, which affect the exact nature of the privacy guarantee
and the mathematical properties that support the privacy analysis
- including local differential privacy (LDP) [37], pure/approximate
privacy [18], Rényi privacy (RDP) [52], and zero-concentrated dif-
ferential privacy (zCDP) [9]. For the purposes of this survey, we will
largely gloss over the differences between these concepts for the
presentation of different methods. For the privacy expert, it suffices
to state that the majority of results in synthetic data generation
are characterized in terms of approximate DP, although bounds are
often proved via RDP or zCDP techniques.
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3 Marginal-based methods
3.1 Initial Statistical Approaches

Initial approaches to synthetic data generation emerged from the
statistical community in the late 20th century. These proceed by
manipulating the reference data, for sources such national census
data. The concept of “data swapping” [16] involves exchanging the
attribute values for various individuals in the data. This approach
preserves some properties exactly (such as the marginal distribution
of each attribute), but risks introducing impossible combinations,
as correlations may not be preserved. Subsequent work on this
approach is surveyed by Fienberg and McIntyre [20].

A related example is SMOTE, Synthetic Minority Over-sampling
technique [8]. SMOTE was proposed in the context of handling data
imbalance, where certain classes were under-represented, and so it
was desirable to generate additional synthetic examples of those
classes. Here, records are assumed to lie within in a geometric
space. A synthetic point is generated by taking a point p from
the reference dataset, and picking one of its nearest neighbors q.
The new point is formed by interpolating between p and g, as
ap + (1 — a)q, for a chosen randomly in [0, 1]. These approaches
may be useful for generating realistic-looking examples, but may
not give any useful privacy guarantee if there are several similar
individuals in the data: swapping or interpolating their values will
give near-duplicate examples.

3.2 Probabilistic Graphical Models

Subsequent work on synthetic data takes inspiration from the sta-
tistical modeling, where the key concepts include marginals and
probabilistic graphical models (PGMs) [38]. In what follows, most
works concentrate on the case of a single dataset in the form of
a table with n rows and d columns. Each row corresponds to an
individual record, while each column corresponds to an attribute (or
feature). As a canonical example, consider a demographic dataset
where each row refers to an individual, and the attributes are their
properties, such as age, sex, country of residence, income level etc.
As a further simplification, we will assume that each feature is
treated as categorical, and so is drawn from a known set of possi-
bilities.

Given such a dataset X, we can define an (empirical) probabil-
ity distribution based on the frequency of observed values. For
instance, for the country of residence, we can define Preountry as
the distribution of countries seen in the data. Then, for instance,
Preountry [USA] = [{i : X;j = ‘USA’}|/n, if j is the column of X
containing country of residence information. More generally, we
can similarly find probabilities for combinations of values, e.g.,
Preountry,sex [USA, female]. These collections of probabilities are re-
ferred to as marginal distributions, or marginals for short, since they
correspond to aggregations that could be computed at the margin
of tables, after summing over some removed (or ‘marginalized’)
columns. The distribution over (country, sex) is referred to as a 2-
way marginal, since it includes two attributes, and more generally
we may refer to k-way marginals for various values of k.

A probabilistic graphical model (or just ‘graphical model’) is a
way of representing the interaction of multiple variables in a com-
pact way, possibly at the expense of some fidelity [38]. In our set-
ting, we will consider the full distribution defined by the reference
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data, also known as the joint distribution, and consider approaches
to capture this via a smaller collection of marginals. The area of
probabilistic graphical models studies ways to do so effectively. A
graphical model uses a graph structure to represent the structure:
each node corresponds to an attribute, and edges link nodes that are
correlated. Nodes without an edge directly linking them are con-
sidered to be (conditionally) independent, and so the relationship
between the corresponding attributes is not explicitly described in
the model. Attributes whose correlations are captured by the model
have this correlation described by a marginal distribution.

Several synthetic data generation methods can be understood as
modeling the reference data via a graphical model. The graphical
model is represented by the graph structure and a set of marginal
distributions. The marginal distributions are learned from the refer-
ence data, and typically have some random noise added to provide
a formal privacy guarantee. The structure of the graphical model
means that synthetic data can be sampled from this representation,
sometimes referred to as ‘inference’.

3.3 Early Work

A first approach to creating synthetic data from marginals is to
model just the correlations between each attribute and one “target”
attribute in turn. This corresponds to the textbook Naive Bayes
model [72]. In more detail, assume that we pick attribute d as the
“target” attribute. The Naive Bayes approach is to build the two-
way marginal distributions between each attribute j < d and d.
Privacy can be achieved by adding suitable random noise to each
marginal. Synthetic data is generated, for instance, by first sampling
avalue for the target attribute according its own (one-way) marginal
distribution. Then each other attribute is filled in by sampling
from the corresponding two-way marginal, conditioned on the
value chosen for the target attribute. This approach is simple to
instantiate, but fails to capture any of the complex structure of the
underlying reference data.

At the other extreme is the Multiplicative Weights with Exponen-
tial Mechanism (MWEM) approach [27]. This approach maintains
probabilities over the full joint distribution of d attributes (so the
size of the representation is exponential in d). The method also
requires a collection of (linear) queries Q that should be answered
accurately: this defines a ‘workload’. It builds a private distribution
A over the attributes, initialized to be uniform. The essence of the
method is to iteratively improve the distribution A by picking (pri-
vately) a query g € Q that is currently poorly answered. That is,
pick query q as a function of qg(A) — q(X). Then A is updated in
order to improve the result for query g, following the multiplicative
weights definition [28]. Synthetic data can then be drawn by di-
rectly sampling from A. This method has strong privacy and utility
guarantees, but won'’t scale well for even moderate values of d.

3.4 PrivBayes: a middle way

Naive Bayes and MWEM adopt two extreme approaches: consider-
ing only limited correlations or considering the full dataset. Naive
Bayes misses information about combinations of attributes, while
MWEM risks allowing the sparse distribution being drowned out
by privacy noise. A middle way is to seek a representation that
materializes information that is just rich enough to describe useful
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correlations without losing information in the noise. The PrivBayes
approach adopts the model of Bayesian networks to represent the
data [77]. A Bayesian network is specified by a graph G, whose
nodes are the d attributes in the data. Given G, it is straightforward
to materialize the corresponding set of marginals, and add the noise
required to satisfy differential privacy. Hence, most of the work for
PrivBayes is in choosing what graph G to use.

PrivBayes includes a number of steps to choose G given dataset X.
It takes a greedy approach, considering a set of possible marginals
based on an information theoretic measure of how much value they
add. Specifically, it considers the mutual information of a marginal,
defined for a pair X,Y as

I(X;Y) = Z Pr(x, y)(log Pr(x, y) — log(Pr(x) Pr(y))). (1)
Yy

Exact computation of mutual information entails adding a large
amount of privacy noise, so PrivBayes replaces this with a surrogate
measure that is more privacy-friendly. Attention is restricted to
only the k-way marginals, where k is chosen based on a heuristic
combining n, d, and the differential privacy parameter ¢. PrivBayes
is relatively simple to instantiate and apply, and as a result it has
enjoyed popularity as a baseline approach to private synthetic data
generation. For instance, it has been adopted to publish demo-
graphic national statistics on live births [32].

3.5 Richer Models

The PrivBayes approach provides a robust benchmark for synthetic
data generation, but has many opportunities for extension and im-
provement. Successive approaches have expanded on the graphical
modeling approach, by varying the class of models considered, and
the approach taken to learn the model structure.

The (Private-)PGM algorithm [51] addresses the general problem
of estimating and sampling from a high-dimensional distribution
(i.e., inference) given a collection of noisy measurements of a set
of marginals. It adopts the idea of using a workload of (linear)
queries to guide the synthetic data generation, similar to MWEM. It
formalizes the task as one of optimization, to choose a set of queries
to pose on the data, so that the answer to these queries is sufficient
to instantiate a model for synthetic data generation and that the
error of the query workload will be minimized. The optimization
proceeds by minimizing a convex loss function, which produces
the parameters of a graphical model as a by-product. The approach
can be used to find solutions for a variety of graphical models,
provided the graphical model is given as input, including the full
joint distribution (i.e., the MWEM setting), Bayesian networks (i.e.,
the PrivBayes setting), and more. The PGM algorithm has been
widely used subsequently as a subroutine in many synthetic data
generation methods.

The MST approach [48] makes use of the PGM algorithm and
adapts the modeling approach of PrivBayes. Specifically, it builds a
graph over the attributes where edge weights are defined based on
the mutual information between the two corresponding attributes.
It then computes the maximum spanning tree (MST) over this graph,
and materializes the marginals corresponding to the edges of tree.
This step is inspired by the Chow-Liu algorithm for Bayes net
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construction [14]. Then it considers three-way marginals that cor-
respond to attributes that are neighbors of the tree edges, and a max-
imum spanning tree of the resulting graph is computed. Marginals
from this tree are also materialized, and finally PGM is used to
generate the data from the captured information.

The PrivMRF algorithm starts from the observation that Bayesian
networks inherently limit the expressivity of the model, and that
Markov Random Fields (MRF) present a more general model [10].
For a Markov Random Field, the graph G is replaced with a hyper-
graph H (so every Bayesian network is an MRF, but not vice-versa).
Learning an MRF under privacy is more complicated, and PrivMRF
seeks to select a set of marginals to materialize that accurately de-
scribe the reference dataset while ensuring that the inference step
remains efficient. PrivMRF selects pairs of marginals to materialize
when their joint distribution is very different from the product of
each distribution separately. Mathematically, this is

D(X,Y) = ) Pr(x,y) - Pr(x) Pr(y) )
xy

for distribution pairs X, Y — note that this is similar in spirit, but
different in detail from mutual information in (1). It then performs
a triangulation of the resulting graph, ensuring that the cliques in
the triangulation are not too large, since large cliques correspond
to a computationally expensive inference task. PrivMRF uses the
PGM algorithm as a key step to obtain the marginal distributions
from the triangulated graph representation.

The PrivSyn algorithm seeks to handle scenarios where there
are many attributes, and the attributes have high cardinality [79].
Rather than explicitly using a graphical model, PrivSyn picks a
large collection of overlapping low-degree marginal distributions
(one-way and two-way marginals). It picks marginals based on the
same criterion as PrivMRF, choosing attribute pairs whose joint
distribution is most different from their product distribution. The
selected marginals are published with noise, then post-processing is
applied to achieve consistency among the overlapping information.
To produce synthetic data, an approach similar to MWEM is used,
by iteratively modifying a candidate dataset in order to make it
more consistent with the published marginals.

3.6 Current State-of-the-art

The state of the art (SOTA) approaches are also based on marginal
queries. These all follow the “select-measure-generate” paradigm,
which is arguably as simple as it sounds: given a target workload of
queries to answer, select a next marginal that will give the biggest
increase in accuracy, measure that marginal (with DP noise), and
use the current set of published marginals to generate a set of
synthetic data [44]. The idea was first put forward within the MST
paper, and has been adopted by several subsequent works.

The recent AIM method embodies this approach [50]. It fol-
lows the select-measure-generate paradigm using PGM to build a
graphical model over noisy marginals. The main contributions are
a set of heuristics that greatly improve the utility and scalability
of the graphical model, refining the select-measure-generate ap-
proach to be more adaptive. These include extending the marginal
selection strategy to better account for the signal-to-noise ratio
from measuring marginals under DP, a budget annealing strategy
which progressively decreases the noise parameters if the model



Synthetic Tabular Data: Methods, Attacks and Defenses

has stopped improving and constraints on the size of the graphical
model to prevent it from exploding in memory.

Alternatives that follow the select-measure-generate paradigm
include RAP and its successor RAP++. In RAP, a collection of queries
are posed to the data, and a synthetic dataset is generated by trying
to pick one that maximally agrees with the queries [4]. This for-
goes a graphical model and instead directly models a differentiable
continuous representation of the synthetic dataset. The process is it-
erated, by (privately) picking a batch of new queries that elicit high
error, so that the synthetic dataset can be tuned to better fit them.
The chief challenge to overcome is in fitting the synthetic data to
the query answers. RAP maintains queries that are differentiable
over the data space, allowing powerful optimization methods to
be used, before applying rounding to obtain a final output. RAP++
extends this approach to handle numeric values in addition to cat-
egoric attributes [70]. It introduces additional technical steps to
achieve this, namely random linear projections to handle mixtures
of numeric and categoric data, and a sigmoid approximation to
allow threshold queries to be differentiated.

3.7 Extensions

Marginal-based methods are an active research topic, and several
approaches have sought to extend marginal-based tabular data gen-
eration in different ways. The PrivLava algorithms aims to support
multi-table generation via latent variables [11]; JAM-PGM seeks
to handle the case when some of the training data is considered
public [21]; and Private-GSD makes use of genetic algorithms to
support numerical features and better fit the training data [42].

4 Deep learning-based methods
4.1 Generative Adversarial Networks (GANs)

In contrast to marginal-based methods, deep-learning approaches
leverage neural-networks to directly model synthetic data distri-
butions. Generative Adversarial Networks (GANs) are one such
method for producing synthetic data [24]. The idea is to maintain a
generator network G(z) which produces synthetic samples from
random noise z and a discriminator network D(x), whose goal
is to classify whether a sample is real or fake. These models are
trained adversarially, with the generator producing synthetic sam-
ples whilst the discriminator attempts to classify it. If the generator
can successfully trick the discriminator then it means the GAN can
produce sufficiently high-quality synthetic data.

Adapting GANs to tabular data is not straightforward as tabu-
lar data consists of a mix of discrete (categorical) and continuous
(numerical) features. To address these challenges, CTGAN was de-
veloped specifically for tabular data [73]. Xu et al. show how to
modify the conventional GAN framework by incorporating tech-
niques to model discrete and continuous variables more effectively.
More specifically, continuous columns are modeled using a varia-
tional Gaussian mixture model which captures the modes of the
distribution and are used for normalizing continuous features. Fur-
thermore, a conditional GAN structure is employed which samples
feature values based on its log-frequency and conditionally samples
from the GAN using these values. This sampling process allows CT-
GAN to more evenly explore all possible discrete values to produce
more consistent tabular data.
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Differentially private variants of GANs also exist. To ensure for-
mal DP guarantees, the GAN is trained via DP-SGD [1], a general
algorithm that can be applied to provide DP guarantees to any
neural-network. DP-SGD involves, at each iteration, clipping the
individual gradients of the SGD update and adding calibrated Gauss-
ian noise to them, ensuring privacy of the final model. Fang et al.
propose DP-CTGAN [19], a DP variant which involves simplifying
the mode-based normalization and log-frequency sampling to be
more privacy friendly whilst training the model with DP-SGD.

Despite these advances, GAN-based methods suffer from conver-
gence instability, which can result in inconsistent performance and
difficulty in reliably reproducing the underlying source data distri-
butions, including even simple one-way marginals [22]. Alterna-
tives based on variational autoencoders (VAEs) were also proposed
by Xu et al. In particular, the tabular VAE (TVAE) method uses
the CTGAN feature modeling framework but explicitly models the
data distribution through an encoder-decoder framework. TVAEs
helps avoid some of the convergence issues associated with GANs
to more reliably produce accurate synthetic data.

4.2 Extensions to DP-GANs

While GANs are one solution for generating tabular data they
encounter a myriad of problems in practice. In particular, the adver-
sarial training of GANSs can cause convergence problems such as
mode collapse which is worsened under the noise introduced from
differential privacy [22, 66]. Because of this, many private alterna-
tives have been proposed that make use of generator networks but
avoid either the adversarial training of GANs or the use of DP-SGD,
relying instead on simpler privacy mechanisms.

One of the first extensions to DP-GANSs is PATE-GAN [34] which
extends the Private Aggregation of Teacher Ensembles (PATE)
framework to GANs. Here the discriminator network D(x) is re-
placed by PATE which trains a set of teacher discriminators {T; (x) };
without DP and then releases their predictions under a majority
vote via DP. To train the generator network G(z), a student dis-
criminator S(x) is trained on synthetic data generated from G(z)
with the labels classified (privately) from the teacher discriminators.
This student discriminator is used as a proxy for the discriminator
network in a traditional GAN setting and is used to update the gen-
erator network. This entire process relies on the post-processing
property of differential privacy, since the teacher models are the
only ones to access the underlying private data and only their
predictions are privatized. Thus the student models and the up-
dates to the generator network remain differentially private via
post-processing. Jordon et al. show PATE-GAN always outperforms
DP-GAN, likely because PATE-GAN avoids the use of DP-SGD
which causes traditional DP-GANS to suffer large losses in utility.

Further methods also replace the discriminator network with
more privacy-friendly alternatives. Harder et al. propose DP-MERF
[26] which aims to simplify the GAN-based training procedure.
Instead of using a discriminator network, the idea is to train a
generator network on random Fourier feature representations of
kernel mean embeddings with the goal of minimizing the Maxi-
mum Mean Discrepancy (MMD). This simpler approach is better
suited for differential privacy as noise is applied to only the mean
embeddings and the generator network is trained on these as a form
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of post-processing. DP-MERF is shown to consistently outperform
other DP-GAN variants.

Some methods look to combine the marginal-based framework
with generator networks. Liu et al. propose GEM [44], a marginal-
based method that follows the standard “select-measure-generate”
paradigm like AIM or MST. However, instead of using a graphical
model, it trains a generator network on the noisy marginals that
are measured. This hybrid method combines the flexibility and
privacy-friendly approach of workload-based marginal methods
with the modeling power of generator networks.

4.3 Recent Advances: Diffusion-based Models
and LLMs

Diffusion models offer a compelling alternative to GANs by address-
ing several of their limitations. Unlike GANSs that rely on adversarial
training, which often leads to instability, diffusion models operate
by gradually perturbing data via statistical noise, learning a model
to reverse this process to recover the original data [31, 62]. The
denoising framework results in a more stable training process and
the reverse denoising process can be applied to random noise to
generate synthetic data. For image generation, recent diffusion
models are more effective than GAN-based models [17].

TabDDPM [40] adapts diffusion models to tabular synthetic data.
The difficulty in extending diffusion models to tabular data is to
adapt the (de)noising process to account for both numerical and
categorical features. TabDDPM applies the diffusion noise process
independently to each feature. For numerical features, a quantile
transformation is applied and a standard Gaussian diffusion model
is used. For categorical features, a one-hot encoding is applied and
a multinomial noise diffusion process is used. TabDDPM is shown
to be far more effective than CTGAN and TVAE for retaining dis-
tributional statistics over both categorical and numerical features.

One limitation of TabDDPM is that it considers a diffusion pro-
cess which adds noise to each feature independently. Zhang et al.
propose TabSyn [76] building directly on TabDDPM to address this
issue. It first embeds tabular data into a continuous latent space
using a variational autoencoder (VAE) with transformer-based en-
coders and decoders, unifying both numerical and categorical fea-
tures into a single latent space. It then applies a standard Gaussian
diffusion model to these latent representations to generate synthetic
samples. This approach combines both numerical and categorical
features into a unified representation and circumvents the challenge
of modeling mixed-type tabular data. This modeling approach out-
performs TabDDPM on a wide-range of tasks, highlighting the
effectiveness of using a latent representation.

Recent approaches have moved away from diffusion-based mod-
els to focus instead on leveraging the effectiveness of large-language
models (LLMs). Borisov et al. propose GReaT [7] which fine-tunes
a pretrained LLM on textually encoded tabular data along with
an effective sampling scheme to generate synthetic tabular data
from the LLM. This sampling scheme relies on the fact that LLMs
are auto-regressive models that generate tokens based on the prior
tokens that have been sampled before and a similar procedure can
be used to generate the feature values for synthetic tabular data.
This process is shown to beat CTGAN and TVAE on a range of
tabular benchmarks.
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Differentially private adaptations also exist for LLMs. Sablay-
rolles et al. propose SynLM [60] which trains a transformer-based
language model from scratch via DP-SGD, providing formal privacy
guarantees. One difficulty when using LLMs is that due to their
auto-regressive nature they are prone to generating invalid values
for features. SynLM utilizes a trie structure during generation to
ensure that sampling from the LLM produces only valid tokens
(i.e., valid feature values) for the synthetic tabular data. Experi-
ments show that SynLM has competitive performance with SOTA
marginal-based methods like AIM.

4.4 Deep-learning vs. Marginal-based methods

There has been much debate about whether deep-learning ap-
proaches outperform marginal-based methods when using differen-
tial privacy. Whilst deep generative models offer greater flexibility
and may be more naturally suited for learning complex interactions
in high-dimensional data, it has often been shown that the simpler
marginal-based approaches remain more effective, especially due
to the noise added from DP [13, 22, 45, 65].

Tao et al. present one such systematic benchmark of various DP-
SDG algorithms for tabular data, studying 12 recent DP-SDG meth-
ods across 7 benchmark datasets [65]. They compare GAN-based
approaches such as DP-CTGAN and PATE-GAN against marginal-
based methods like MST and MWEM-PGM. Their experiments
reveal that although no one DP-SDG algorithm dominates, the
majority of GAN-based methods struggle to accurately reproduce
basic statistical properties of the reference dataset such as one-way
marginals. This creates synthetic datasets that fail to capture the
very basic distributional characteristics of the underlying source
data. On the other hand, marginal-based methods consistently show
robust performance across both simple statistics and ML tasks, out-
performing all GAN-based competitors.

Liu et al. study this phenomena more closely, investigating what
they coin the “utility recovery incapability” of neural-network based
methods [45]. Specifically, they highlight that increasing the privacy
budget (i.e., relaxing privacy constraints) does not necessarily lead
to improved utility of synthetic data for neural-network methods.
Their experiments reveal that DP-CTGAN’s performance remains
stagnant regardless of the privacy budget, while PATE-GAN only
shows utility improvements when the privacy budget is sufficiently
large (e.g., ¢ > 3). They observe marginal-based approaches like
PrivBayes do not suffer from these issues, suggesting marginal-
based methods may inherently be more stable in terms of utility
recovery when increasing the privacy budget.

Ganev et al. compare graphical models with deep generative mod-
els for DP synthetic data generation [22]. Specifically, they focus on
how privacy budgets are allocated. Graphical models like PrivBayes
and MST distribute budget per column, while deep generative mod-
els (e.g., DP-CTGAN and PATE-GAN) spend privacy budget per
training iteration. Their findings indicate that graphical models are
particularly effective for datasets with limited features and simple
tasks, as they preserve basic statistical properties more reliably.
However, deep generative models exhibit greater flexibility when
handling high-dimensional data, noting that PATE-GAN remains
competitive on high-dimensional tasks. Despite this potential, the
performance of neural-network approaches can be unpredictable,
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especially under strict privacy levels (¢ < 1). While recent studies re-
fute the usefulness of private deep-learning methods for tabular syn-
thetic data [13], there still remains a gap where SOTA approaches
based on diffusion models and LLMs have not been systematically
compared to marginal-based methods. Indeed, Ganev et al. hint
at the potential of deep-learning approaches for outperforming
marginal-based methods when applied to high-dimensional tabular
data, and it may be the case that recent advances can close this gap.

5 Attacks and defenses

Privacy attacks can assess information leakage in procedures using
personal data. These can (a) quantify privacy leakage for procedures
with a-priori unclear or unquantified privacy-preserving properties,
and/or (b) provide more “realistic” privacy leakage as opposed to
worst-case guarantees such as (theoretical) DP.

5.1 Setup

An empirical privacy measurement is modeled as a game between
an attacker (“the adversary”) and the data curator, described via
the following dimensions. We will elaborate on each of the below.

e Threat Model: Assumptions on the attacker.
e Privacy Risk: Notion of privacy leakage being measured.

5.1.1 Threat Model. This consists of the following.

Model Access. To what extent is the adversary able to leverage in-
sight into the process of synthetic data modelling? Options include,

e Published/No-box: Access to synthetic data only.

e Blackbox: Sampling access to the synthetic data generator.

e Whitebox: Model parameters of the generator known.

e Active whitebox: Access to internal states (useful in audit-
ing DP) and ability to modify internal states (of the model).

Auxiliary information. Auxiliary data is used to model additional
relevant information an adversary may have. The strongest adver-
sary, which corresponds to the threat model with respect to which
DP is defined, knows all the training (or reference) points except
presence/absence of the point which we are testing for membership
inference.

o Aux-train: The part of the training data that is accessible to
the adversary.

o Aux-test: The part of the test data that is accessible to the
adversary (or access to distribution).

o Aux: The accessible part of the training and test data.

Power of Attacker. This is mostly useful for auditing the DP
guarantees by considering the worst-case bounds

e Active target: Attacker can choose the point to attack.
e Active training data: Attacker chooses the training dataset.

5.1.2  Privacy Risk. Various notions of privacy risks have been
studied in the literature. We elaborate on a few.

Membership Inference. Given a synthetic data generation algo-
rithm and a target data point (and auxiliary information), the goal
is to infer presence/absence of the given target data point in the
underlying training dataset. Given a membership inference classi-
fier/attack, we can calculate its True Positive rate (TPR) and False
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Positive rate (FPR). We obtain an empirical value of the differential
privacy parameter ¢ for a corresponding ¢ as follows [36].

TPR-§ TNR—5))

FPR ° FNR )

e >log (max (

Attribute inference. Attribute inference is another notion wherein
the goal is, given a partial description of a data point used in the
training set, to infer its sensitive attributes. Besides, other related
notions such as those of linkability, singling-out, etc. have also been
studied in the literature [41].

5.2 Methods and Techniques for Privacy Attacks

We limit our discussion to membership and attribute inference
problem. Most of the prior works can be broadly divided into two
categories, applying to both the above targets.

Density-based attacks. A line of work proposed attacks based
on the rationale that a synthetic data generation model produces
samples “close" to its training set, thus overfitting to it. This leads to
a strategy to test based on an estimate of the likelihood of the target
point, under the synthetic data generating distribution. The work
of Hillprecht et al. [30] estimates it via Monte-Carlo integration,
measuring the fraction of points produced within a neighborhood
of the target, under an appropriate distance metric. Subsequently,
the works of Hayes et al. [29] and Van Breugel et al. [69] instead
estimates it by fitting a generative model on the synthetic (and
auxiliary) data. The attack, DOMIAS [69], operates as follows:

(1) Fit generative models on synthetic dataset G, and auxiliary
dataset R.
(2) Do a likelihood ratio test on the target, as follows.

PG (xtarget) ) @)

PR (xtarget)

A(xtarget) = f(

where f is a monotonically increasing function with range [0, 1].
The normalization, using the auxiliary data above, can be inter-
preted as calibrating the attack [71]. The work of [23], proposes
MAMA-MIA, which instantiates the above framework with a den-
sity estimator tailored to marginal-based synthetic data algorithms
(such as AIM). The idea therein is to use the relative frequency of
the target, with respect to the marginals selected by the algorithm,
as the density estimator.

Shadow modeling-based attacks. A line of work on privacy at-
tacks in supervised learning [12, 61, 74, 75] relies on what is called
shadow modeling. The idea is to cast the membership inference
attack problem as a supervised learning problem. This approach
creates labeled shadow datasets for the membership inference prob-
lem by sampling from the auxiliary dataset. A meta-classifier (or
a hypothesis test) is trained on the features extracted from the
shadow datasets (via synthetic data generation, in our case), to do
membership inference on the target. The approach [3, 33, 63] is:

(1) Generate multiple shadow datasets (from aux-test), by ran-
dom sampling.

(2) Fit a synthetic data generation model on these datasets, and
sample to generate synthetic datasets.

(3) Extract features by querying the datasets (simple statistics,
histograms, and correlations).
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(4) Use these (features, label), as a new dataset, and train a
classifier to predict membership inference.

The above approach, due to Annamalai et al. [3], was able to find
privacy vulnerabilities in implementations of many popular syn-
thetic data algorithms, such as PrivBayes [78] from DataSynthesizer
[58] and MST [49] from SmartNoise [39].

6 Advanced Topics and Open Problems

Graph Data. Graphs are a natural structured way to represent
network-based data. Graphs can of course be represented as tables,
inasmuch as that we can think of an adjacency matrix as a table with
binary entries. However, it should be clear that methods designed
for tabular data generation are not appropriate for graph generation.
In particular, the semantics of columns of the adjacency matrix
(representing the pattern of connections to some node i), do not
tally with the idea of a column representing a feature in a table. In a
graph, we have d = n, whereas for tables we expect d < n. Instead,
synthetic graphs can be generated by specific models targeting
this task. One line of work seeks to capture graph behaviors based
on a few high-level features, such as degree distribution, or the
prevalence of triangles in the reference data. A generative model
of a graph is obtained by randomly sampling from the space of
graphs that share these parameters [2]. Another direction starts
with a reference graph, and applies perturbations such as edge
addition/removal to mask the ground truth. In between are efforts
that seek produce richer generative models that are both faithful to
the reference data, and providing stronger privacy guarantees [67].

Image and Video Data. The recent advances in generative Al have
opened the door to synthetic images and videos, generated based
on (text) prompts [6]. The complex real-world semantics of visual
data, along with the lack of simple structure, mean there is little
direct interplay between this modality and tabular data. However,
as noted in Section 4.3, there are some efforts to apply ideas from
diffusion models to tabular data.

Text Data. Synthetic text can be viewed as another instance of
generative AL The standard application of Large Language Models
(LLMs) is, given some initial text, to generate synthetic text that is
a plausible continuation, based on the patterns learned from the
(massive) training data [54]. The highly structured approach of
tabular generation seeks to minimize the opportunity for creativity
in the response, and instead to more faithfully provide output that
closely matches patterns from the (comparatively tiny) reference
data. Nevertheless (see Section 4.3), there are efforts to generate
tabular data leveraging LLMs [7, 60], and emerging efforts to fuse
these approaches to provide more constrained synthetic text.

Distributed data generation. The standard model for synthetic
data generation assumes that the reference dataset is held centrally
by a trusted entity who can access it freely in order to build a
generative model. However, it is increasingly common to consider
scenarios where the data is sharded across a large collection of par-
ticipants, who wish to cooperate to build the model but who cannot
simply pool their data. In the machine learning community, this
is understood as distributed ML or Federated Learning [35]. Sev-
eral recent works have studied what it means to perform synthetic
data generation with distributed training data. The first approaches
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take a state-of-the-art method from the centralized setting, and
study how to implement it over distributed data. The tradeoffs here
are how to avoid excessive communication overhead. This can be
done by choosing an algorithm which does not require strict syn-
chronization, or by relaxing the algorithm to allow participants to
proceed independently of each other between occasional synchro-
nization steps. Pereira et al. [57] adapt the MWEM algorithm under
the model of secure multi-party computation (MPC), leveraging
the fact that the relatively simplicity of MWEM can be expressed
using lightweight MPC steps. Pentyala et al. [56] follow a simi-
lar approach, expanding to cover PGM-based approaches such as
AIM. In parallel, Maddock et al. [46] seek to emulate the AIM algo-
rithm under the federated model, using only simple secure addition
primitives to securely collect aggregated (and differentially private)
information from distributed clients. This reduces the communi-
cation and synchronization overhead, but yields weaker accuracy
than is achieved in the centralized or fully distributed settings.

Pragmatic data generation. A common assumption with differen-
tial privacy is that the entire dataset is assumed to be private. Recent
work has studied public-assisted methods which utilize public data
to improve utility [5, 68]. For synthetic data, it is common in prac-
tice that only a subset of the reference data will be privacy-sensitive.
This may be due to access to a publicly available dataset or that
some subset of columns is assumed public-knowledge i.e., age sta-
tistics can be obtained from public census information. Leveraging
this public information effectively can help improve the utility of
the generated synthetic data. Current public-assisted synthetic data
methods have extended marginal-based approaches to study both a
horizontal and vertical public-private partitioning. In the horizon-
tal setting, it is assumed that a subset of rows from the reference
dataset (following the same schema) is publicly available, whereas
in the vertical setting a subset of columns are instead assumed to
be public. Common approaches rely on pretraining the synthetic
data model on the public dataset. These include PMW-Pub [43], a
public-assisted version of the MWEM algorithm and GEMPub [44] a
public-assisted version of GEM. In both cases, the methods pretrain
the synthetic model (multiplicative weights for PMW-Pub and a
generator network for GEMPub) on public data before preceding
with the standard “select-measure-generate” paradigm. Current
SOTA methods include JAM-PGM [21], which uses public infor-
mation during the private training of AIM, extending the selection
strategy to choose between a publicly available marginal or a pri-
vate one and Conditional AIM [47], which leverages conditional
generation in the vertical setting.

Synthetic Data Frameworks. Many software libraries exist for
synthetic tabular data generation, from mature research frame-
works [55, 59] to commercial solutions [25, 53]. However, it’s com-
mon for existing libraries to not include current SOTA methods
or focus on specific SDG methods (i.e., deep-learning based only).
We plan to open-source our internally developed synthetic data
generation library in the future.
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