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Abstract
The dire need to protect sensitive data has led to various flavors

of privacy definitions. Among these, Differential privacy (DP) is

considered one of the most rigorous and secure notions of pri-

vacy, enabling data analysis while preserving the privacy of data

contributors. One of the fundamental tasks of data analysis is clus-

tering , which is meant to unravel hidden patterns within complex

datasets. However, interpreting clustering results poses significant

challenges, and often necessitates an extensive analytical process.

Interpreting clustering results under DP is even more challeng-

ing, as analysts are provided with noisy responses to queries, and

longer, manual exploration sessions require additional noise to meet

privacy constraints. While increasing attention has been given to

clustering explanation frameworks that aim at assisting analysts by

automatically uncovering the characteristics of each cluster, such

frameworks may also disclose sensitive information within the

dataset, leading to a breach in privacy.

To address these challenges, we present DPClustX, a framework

that provides explanations for black-box clustering results while sat-

isfying DP. DPClustX takes as input the sensitive dataset alongside

privately computed clustering labels, and outputs a global explana-

tion, emphasizing prominent characteristics of each cluster while

guaranteeing DP. We perform an extensive experimental analysis

of DPClustX on real data, showing that it provides insightful and

accurate explanations even under tight privacy constraints.

1 Introduction
Sensitive data collection has never been more prevalent, from fit-

ness trackers [22] and financial institutions [57], to healthcare and

insurance facilities [2]. Such data require special treatment to allow

for its safe and secure usage without exposing individuals to harm

due to the presence of their information in the data. Differential

Privacy (DP) [16, 19] has emerged as the gold standard for handling

such issues. The crux of DP is to allow sensitive data to be used

while bounding the privacy leakage and to offer utility bounds

on the obtained results. Indeed, DP has been adopted by multiple

companies [3, 17] and governmental organizations [12, 20, 67].

Among the many operations in data analysis, clustering plays a

pivotal role in uncovering hidden patterns and providing actionable

insights from data. To ensure privacy, researchers have worked

extensively to adapt clustering techniques to comply with DP [25,

27, 62, 64]. Under DP, the true clusters must be obfuscated and

slightly distorted to prevent individual information leakage, often

at the cost of accuracy.

Clustering algorithms often operate as black boxes, offering

little insight into the reasoning behind their results. Hence, it is

challenging for end users to comprehend this reasoning, or draw

meaningful conclusions from the results based on domain knowl-

edge [32]. The additional requirement to adhere to strict DP stan-

dards further amplifies this complexity. To account for this, pre-

vious work has focused on explaining non-private clustering algo-

rithms [21, 23, 45, 51, 69] and aimed to provide succinct and inter-

pretable summaries of the properties of each cluster by showing

how it varies from the other clusters. When considering privacy, it

is likely that lack of access to the data is accompanied by lack of

access to the clustering algorithm, requiring an approach that is

suitable for black-box clustering algorithms.

Works that focus on providing explanations for black-box clus-

tering results are often histogram-based approaches [8, 11], which

is a popular form of explanation in other settings as well, including

visualization recommendations [38, 42, 72] and automated insight

extraction from data [5, 66]. With these approaches, users get a

histogram for each cluster that focuses on a specific attribute and

graphically shows how the data associated with the cluster differs

from the rest of the data. Yet, the approaches that generate such

explanations cannot be directly used in the DP setting.

First, these approaches choose histograms based on quality func-

tions, such as interestingness [8, 11, 30, 61], sufficiency [8, 10], and

diversity [8, 75], which require significant distortion under DP. That

is, the required noise scale is large relative to their range, making

it impractical to obtain a reliable explanation, as the ranking of

explanations by quality is unlikely to be preserved after adding

noise. Second, existing methods generate all explanation options

before choosing the ones with the highest scores. However, in the

DP setting, this strategy quickly becomes infeasible because it re-

quires producing private histograms for every attribute and cluster,

necessitating excessive distortion to ensure DP compliance. Third,

evaluating the quality of the explanation based on noisy histograms

introduces excessive noise, as each bin is injected with indepen-

dent noise, which accumulates and leads to an inaccurate quality

assessment.

In light of this, we propose DPClustX, a novel framework for gen-

erating histogram-based explanations of black-box clustering results

under DP. DPClustX is inspired by previous work [8, 11] and ad-

dresses the above limitations as follows. (1) We first prove that

previous approaches cannot be applied directly, as existing quality

functions for histogram-based explanationswould have to be signifi-

cantly distorted to satisfy DP. Then, we develop DP tailored variants

that enable the generation of high-quality and privacy-preserving

explanations. (2) To minimize privacy costs in the explanation se-

lection process, we evaluate the attribute quality directly, privately

selecting high-scoring explanation attributes based on the sensitive

dataset with our novel quality function. We then generate noisy his-

tograms exclusively for the selected attributes, leveraging previous

work on DP histograms [13, 18]. However, each explanation corre-

sponds to an assignment of histograms to clusters, and its quality

is evaluated globally across all clusters. Therefore, the search space
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age gender lab_proc diag_1 . . . cluster
[60, 70) Female [40, 50) Circulatory . . . 1
[60, 70) Female [0, 10) Diabetes . . . 2
[70, 80) Male [40, 50) Injury . . . 2
. . . . . . . . . . . . . . . . . .

Figure 1: Example of the Diabetes dataset.
for the best clustering explanation, which encompasses all possible

assignments, is considerably large.

Hence, (3) we adapt techniques from prior work [8] and develop

a DP mechanism that constructs a smaller candidate set for each

cluster, from which the clustering explanation is privately derived.

To this end, we adapt the idea of a single-cluster score function

which is used to rank the attributes for each cluster by their ex-

planation quality for that cluster [8] and tailor it to the DP setting.

This function is adapted to DP so that the noise added to it will still

render the results useful in filtering attributes. However, to naively

select the top explanation attributes for each cluster, one would

need to apply a DP mechanism for privately selecting a single high

quality attribute multiple times, with each iteration requiring a

re-calculation of noisy scores for all remaining candidates. Instead,

we utilize the One-shot Top-𝑘 mechanism [15], which computes

the noisy scores once and then releases the top 𝑘 candidates. This

further reduces execution times, thereby enhancing the interac-

tive user experience. An illustration of the DPClustX framework,

summarizing these steps, is given in Figure 3. Our experimental

study confirms that DPClustX generates insightful and accurate

explanations even under tight privacy constraints, demonstrating

robustness to attribute correlations, variations in the number of

clusters, and maintaining reasonable execution times

Example 1.1. Consider an analyst working with the Diabetes

dataset [7] (a subset of the columns is illustrated in Figure 1), aim-

ing to identify groups of patients with similar medical records using

the DP-𝑘-means algorithm [64]. While DP-𝑘-means privately pro-

vides cluster centers (see the last column in Figure 1 associating

each tuple with a cluster), it does not offer additional insights about

the clusters. Instead of exhausting the privacy budget through a

manual EDA session, the analyst employs DPClustX to generate

histogram-based explanations. These explanations reveal signifi-

cant patterns, such as the fact that Cluster 1 consists primarily of

individuals who underwent a higher number of lab procedures, as

shown in Figure 2a. Comparing the cluster distribution of lab_proc
with the remaining data, we see that values outside Cluster 1 are

concentrated in the middle and lower ranges, peaking at [40, 50). In
contrast, Cluster 1 values are concentrated in the upper range, peak-

ing at [60, 70). This suggests that the clustering algorithm groups

individuals with a higher number of lab procedures in Cluster 1. For

simplicity, we have attached an LLM generated textual description

of the histogram in Figure 2b.

Our contributions. Our contributions are summarized as follows:

• We formulate the problem of finding a high scoring privacy-

preserving histogram-based explanation for black-box clustering

methods, with the main challenge being the private selection of

high-quality attributes (Section 3).

• We design quality functions for histogram-based explanations in-

spired by the notions of interestingness, sufficiency, and diversity

that are adapted for the DP setting (Section 4).
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(a) Part of a histogram-based explanation for the Diabetes dataset.
The selected attribute, lab_proc, specifies the number of lab proce-
dures an individual underwent.

Textual description: The ‘lab_proc‘ column values differ sig-

nificantly. Values outside Cluster 1 are concentrated in the lower

and mid-range (85% below 50), while Cluster 1 contains mainly

higher values (95% above 50).

(b) Textual description of the histogram explanation in Figure 2a.

Figure 2: Cluster explanation with its textual description.
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Figure 3: System architecture of DPClustX. Algorithm 1 se-
lects candidate attributes for each cluster (1) using the single-
cluster score function (2). Algorithm 2 selects a high-quality
attribute combination from these candidates (3) using the
global score function (4), and generates noisy histograms
only for the selected attributes (5).
• We develop DPClustX, the first framework designed to generate

histogram-based explanations for clustering results under DP

(Section 5), equipped with formal guarantees.

• We provide a comprehensive experimental study demonstrating

the effectiveness of DPClustX, showing that its explanations

align closely with non-private explanations even under a strict

privacy budget (Section 6).

2 Preliminaries
In this section, we introduce our notations, and review existing

concepts from DP used in this work.

Data. Given a single table schema 𝑅(𝐴1, . . . , 𝐴𝑑 ), 𝑅 is a rela-

tion name and A = {𝐴1, . . . , 𝐴𝑑 } denotes the set of attributes.

Each attribute 𝐴𝑖 has discrete, finite, and data-independent do-

main dom(𝐴𝑖 ). The full domain of 𝑅 is dom(𝑅) = dom(𝐴1) ×
· · · × dom(𝐴𝑑 ). An instance (dataset) 𝐷 of a relation 𝑅 is a bag
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(multiset) whose elements are tuples in dom(𝑅). We let D de-

note the set of all datasets of the relation 𝑅, i.e., D = {𝐷 | 𝐷 ⊆
dom(𝐴1) × · · · × dom(𝐴𝑑 ), |𝐷 | < ∞}. The number of tuples in 𝐷

is denoted as |𝐷 |. 𝜋𝐴 (𝐷) is the projection of 𝐷 onto the attribute

𝐴. For a dataset 𝐷 and an attribute 𝐴 ∈ A, we let dom𝐷 (𝐴) de-
note the active domain of 𝐴 with respect to 𝐷 , i.e, the subset of

dom(𝐴) of values appearing in 𝜋𝐴 (𝐷) at least once. we denote by
cnt𝐴=𝑎 (𝐷) the number of occurrences of value 𝑎 in 𝜋𝐴 (𝐷), and
by ℎ𝐴 (𝐷) the histogram of the dataset 𝐷 over attribute 𝐴. That is,

ℎ𝐴 (𝐷) [𝑎] = cnt𝐴=𝑎 (𝐷) for any 𝑎 ∈ dom(𝐴). For visualizations, we
use normalized histograms, where each count is replaced by its

proportion.

Example 2.1. Consider the Diabetes dataset, illustrated in Fig-

ure 1, which contains 47 attributes, including age, gender, lab_proc,
and diag_1. The domain dom(lab_proc) comprises 8 values, each

representing a range of lab procedure counts. Figure 2a illustrates

two histograms derived from the Diabetes dataset. For instance, the

blue bars represent the histogram ℎlab_proc (𝐷1), where 𝐷1 is the

cluster explained. Here, dom𝐷1
(lab_proc) comprises 4 values, as

no tuple in 𝐷1 has lab_proc < 40.

Histogram-based explanation (HBE). A clustering of 𝐷 is a

partition into disjoint subsets {𝐷𝑐 ⊆ 𝐷 | 𝑐 ∈ 𝐶}, each assigned with
a cluster label 𝑐 ∈ 𝐶 . That is,𝐷𝑐 ∩𝐷𝑐′ = ∅ for 𝑐 ≠ 𝑐′ and

⋃
𝑐∈𝐶 𝐷𝑐 =

𝐷 , An single-cluster HBE candidate consists of two histograms on

a specified attribute: the histogram of the cluster values, and the

histogram of the values outside the cluster (illustrated in Figure 2a).

A global HBE candidate is a set of single-cluster HBE candidates,

with a candidate for each cluster. Formally,

Definition 2.2 (Single cluster HBE candidate [8, 11]). For a dataset

𝐷 and a cluster label 𝑐 ∈ 𝐶 , a single-cluster HBE candidate 𝑒𝑐 is a

tuple (𝑐, 𝐴, ℎ𝐴 (𝐷 \ 𝐷𝑐 ), ℎ𝐴 (𝐷𝑐 )) where 𝐴 ∈ A.

Example 2.3. Figure 2a illustrates a single cluster HBE candidate

for Cluster 1 in the Diabetes dataset [7], using the lab_proc at-

tribute. The (normalized) histogram of the cluster values is shown

in blue, and for the remaining data in red.

Definition 2.4 (Global HBE candidate [8]). Given 𝐷 , clustered into

{𝐷𝑐 | 𝑐 ∈ 𝐶}, a global HBE candidate is a set {𝑒𝑐 | 𝑐 ∈ 𝐶}, where 𝑒𝑐
is a single-cluster HBE candidate for 𝐷𝑐 .

An HBE should capture unique patterns that characterize each

cluster, and distinguish it from other clusters. Building upon [10, 11,

30, 75], the work of [8] proposed the aspects of interestingness, suf-

ficiency and diversity for evaluating the quality of an HBE. Briefly,

interestingness is quantified as the distributional shift between the

inner cluster distribution and the full dataset in a given attribute.

Sufficiency represents the extent to which the HBE captures the

patterns of the underlying clustering, and diversity measures the

overall distinctiveness among explanations. We discuss these mea-

sures further in Section 4.

2.1 Differential Privacy
We next review preliminary background from the DP literature

used in this work. DP ensures that the distribution of outputs does

not significantly change when the algorithm is applied to any two

neighboring databases.

Definition 2.5 (Neighboring Datasets [16]). Two datasets 𝐷 and

𝐷′ are called neighboring (denoted 𝐷∼𝐷′) if 𝐷′ can be obtained

from 𝐷 by removing or adding one tuple.

Definition 2.6 (𝜀-Differential Privacy (DP) [16, 19]). A randomized

mechanismM is said to satisfy 𝜀-DP if for any neighboring datasets

𝐷∼𝐷′ and any set of possible outputs 𝑆 ⊆ 𝑅𝑎𝑛𝑔𝑒 (M),
Pr[M(𝐷) ∈ 𝑆] ≤ 𝑒𝜀 · Pr[M(𝐷′) ∈ 𝑆],

where the probability is over the randomness ofM.

Proposition 2.7. The following holds for DP [18, 19]:

• Sequential Composition: LetM1 : D → Y andM2 : D ×
Y → Z. SupposeM1 satisfies 𝜀1-DP and for every 𝑦 ∈ Y,
M2 (·, 𝑦) satisfies 𝜀2-DP (as a function of its first input). Define
M3 : D → Z byM3 (𝐷) = M2 (𝐷,M1 (𝐷)). Then,M3

satisfies (𝜀1 + 𝜀2)-DP
• Parallel Composition: SupposeM1 : D → Y satisfies 𝜀1-DP

andM2 : D → Z satisfies 𝜀2-DP. Let D1,D2 ⊆ dom(𝑅)
be disjoint subsets of the input domain. DefineM′ : D →
Y × Z byM′ (𝐷) = (M1 (𝐷 ∩ D1),M2 (𝐷 ∩ D2)). Then,
M′ satisfies max{𝜀1, 𝜀2}-DP.

• Post-processing: SupposeM : D → Y satisfies 𝜀-DP. Then,

for any function 𝑔 : Y → Z (deterministic or randomized),

The mechanism defined by 𝑔(M(𝐷)) satisfies 𝜀-DP.

To quantify the noise that has to be injected in order for mecha-

nisms to satisfy DP, we first define then notion of sensitivity,

Definition 2.8 (Sensitivity [19]). For a set of candidates R, Let
𝑞 : D × R → R be a quality function that given 𝐷 ∈ D, defines a

score for every 𝑟 ∈ R. The sensitivity of 𝑞 is

Δ𝑞 = sup

𝑟 ∈R
sup

𝐷∼𝐷 ′

��𝑞(𝐷) − 𝑞(𝐷′)��
The exponential mechanism [47] is a DP primitive for privately

releasing the top item from a set of candidates with respect to a qual-

ity function that depends on the sensitive dataset. The mechanism

injects noise to the selection process, and outputs each candidate

with probability proportional to its score.

Definition 2.9 (The Exponential Mechanism (EM) [47]). Given

𝐷 ∈ D, a set of candidates R, a quality function 𝑞 : D × R → R,
and a privacy parameter 𝜀, the exponential mechanismM𝐸 selects

and outputs 𝑟 ∈ R with probability proportional to exp

(
𝜀 ·𝑞 (𝐷,𝑟 )

2Δ𝑞

)
Theorem 2.10 ([47]). The exponential mechanism satisfies 𝜀-DP.

Moreover,

Pr
[
M𝐸 (𝐷,R, 𝑞, 𝜀) ≤ max

𝑟 ∈R
𝑞(𝐷, 𝑟 ) −

2Δ𝑞

𝜀
(ln |R | + 𝑡)

]
≤ 𝑒−𝑡 .

The One-shot Top-k Mechanism. In DPClustX, we utilize the
One-shot Top-k mechanism [15] to privately select top-𝑘 explanation

attributes for each cluster. This mechanism adds independent Gum-

bel noise
1
to each of the true scores with scale 𝜎 = 2ΔScore · 𝑘/𝜀,

where ΔScore is the sensitivity of the score function (Definition 2.8).

Then, it reorders all the candidates in a descending order by their

noisy scores, and outputs the first 𝑘 candidates. It satisfies 𝜀-DP

since it is identical to iteratively applying the EM 𝑘 times [15],

1
The CDF of the Gumbel distribution Gumbel (𝜎 ) is 𝐹 (𝑧 ) = exp(− exp(−𝑧/𝜎 ) ) .
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where each satisfies 𝜀/𝑘-DP. Therefore, by sequential composition

(Proposition 2.7) it satisfies overall 𝜀-DP.

Differentially private histograms. DP mechanisms for comput-

ing private histograms are well-studied (e.g., [4, 29, 40, 59, 74]). As

DPClustX can be instantiated with any DP histogram generation

mechanism, we denote it asMℎ𝑖𝑠𝑡 (𝜋𝐴 (𝐷), 𝜀ℎ𝑖𝑠𝑡 ). It takes the col-
umn of interest 𝜋𝐴 (𝐷) and a privacy budget 𝜀ℎ𝑖𝑠𝑡 , and outputs a

histogram of noisy counts ℎ̃𝐴 (𝐷) over dom(𝐴), while satisfying
𝜀ℎ𝑖𝑠𝑡 -DP. Such mechanisms are accompanied by utility bounds, en-

abling accuracy control by translating accuracy requirements into

the required privacy budget.

Differentially private clustering. DP clustering has been ex-

tensively studied in the DP literature, with prominent approaches

aiming to release cluster centers from a sensitive dataset 𝐷 while

preserving DP (e.g., [25, 27, 62, 64]). In the non-private black-box

clustering explanation setting (e.g. [69]), a clustering is typically

modeled by a function 𝑓 : 𝐷 → 𝐶 , assigning each tuple in 𝐷 a

cluster label 𝑐 ∈ 𝐶 . However, this modeling is inherently unsuitable

for the output of DP clustering, which requires any possible output

(i.e., a clustering function) to occur with similar probability for any

two different but neighboring datasets. Instead, we model the out-

put of a DP clustering algorithm as function 𝑓 : dom(𝑅) → 𝐶 . This

definition encompasses DP mechanisms that release centers, as the

fixed centers define a cluster assignment for any tuple in dom(𝑅),
while also accommodating other approaches, such as user-defined

predicates or future clustering techniques.

3 Problem Statement
We begin by describing the privacy setup. Subsequently, we present

the formal problem definitions.

An HBE mechanism (Definition 3.1) preserves privacy if for any

clustering function 𝑓 : dom(𝑅) → 𝐶 , its distribution of outputs

does not change much when we add a single tuple to the dataset.

Note that we assume only black-box access to 𝑓 , and therefore make

no assumptions regarding the formation or structure of the clusters.

Definition 3.1. An HBE mechanism Exp(𝐷, 𝑓 ) is an algorithm

that takes a dataset 𝐷 and a clustering function 𝑓 : dom(𝑅) → 𝐶 ,

and outputs a global HBE (Definition 2.4) for the clustering of 𝐷

defined by 𝑓 . We say that Exp satisfies 𝜀𝑒𝑥𝑝 -DP if for any clustering

function 𝑓 , for any pair of neighboring datasets 𝐷∼𝐷′, and any

set of explanations 𝑆 ⊆ 𝑅𝑎𝑛𝑔𝑒 (Exp), it holds Pr[Exp(𝐷, 𝑓 ) ∈ 𝑆] ≤
𝑒𝜀𝑒𝑥𝑝 · Pr[Exp(𝐷′, 𝑓 ) ∈ 𝑆].

Note that a clustering algorithm may output different clustering

functions for two neighboring datasets. However, Definition 3.1 is

motivated by the sequential composition theorem (Proposition 2.7)

as our approach is aimed at a privately computed 𝑓 . To formally

argue that the entire process of DP clustering and explanation sat-

isfies DP by applying sequential composition, it suffices to show

that if we fix the output of the clustering algorithm (i.e., a cluster-

ing function), the distribution of outputs of Exp(·, 𝑓 ) only changes

slightly under two neighboring input datasets, with the fixed cluster-

ing function 𝑓 . A similar setting has also been used for DP classifier

explanations [58]. The resulting overall privacy guarantee is as

follows. Let 𝑀𝑐𝑙𝑢𝑠𝑡 (𝐷,𝐶) be a DP clustering mechanism, i.e, an
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Figure 4: Ranked explanation candidates for Cluster 1 of the
Diabetes dataset.
algorithm that outputs a clustering function 𝑓 while satisfying

𝜀𝑐𝑙𝑢𝑠𝑡 -DP (e.g, DP 𝑘-means [64], where 𝑓 is defined by the centers).

By Proposition 2.7 (sequential composition), the sequential, adap-

tive composition Exp(𝐷,𝑀𝑐𝑙𝑢𝑠𝑡 (𝐷,𝐶)) satisfies (𝜀𝑒𝑥𝑝 + 𝜀𝑐𝑙𝑢𝑠𝑡 )-DP.
One challenge with existing approaches is the high sensitiv-

ity of previously proposed HBE score functions, which cannot be

used directly in the DP setting (e.g., Proposition 4.1). Moreover,

these functions are applied to pre-computed explanation candi-

dates (Definition 2.2), and privately computing all candidates incurs

a significant waste of privacy budget. Instead, one would hope to

assess attribute quality directly, and produce DP histograms only

for attributes selected for the output.

An attribute combination AC : 𝐶 → A maps each cluster label

to an attribute. Thus, our goal is to find a high-quality attribute com-

bination such that the histograms of the corresponding attributes

form a high-quality HBE
2
. This leads to our first goal: devising

candidate attribute quality functions with low sensitivity while

preserving utility, where sensitivity is as defined in Definition 2.8.

Then, our next goal is to develop a privacy-preserving algorithm

that leverages the low-sensitivity score to produce high-quality

explanations.

We can now summarize the challenges addressed in this work:

Problem1 (Low Sensitivity Quality Functions). Find a low-sensitivity,
global quality function GlScore that maps a sensitive dataset 𝐷 , a

clustering function 𝑓 : dom(𝑅) → 𝐶 , and an attribute combination

AC to a real number.

Once we have a low-sensitivity score function, we can rank the

explanations and return the highest scoring ones. Nevertheless, we

still need a private mechanism to allow us to do so with low error.

Problem 2 (Select Top explanation attributes). Given a sensitive

dataset 𝐷 , a clustering function 𝑓 : dom(𝑅) → 𝐶 , and a privacy

budget 𝜀, find a high-scoring attribute combination AC according to

the global score function GlScore and output the corresponding global

explanation while satisfying 𝜀-DP.

Example 3.2. Figure 4 gives an example of three explanation

candidates for Cluster 1 of the Diabetes dataset. In this example,

the top-ranked candidate is also selected to explain Cluster 1 in the

final output, showcased in Example 1.1.

2
While the global explanation uses one histogram per cluster, as in prior work [8], our

framework can be extended to output multiple histograms per cluster. However, this

comes at the cost of increased complexity, as further discussed in Appendix B.
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In the next section, we describe our solution to Problem 1 and

then describe our approach for obtaining high-scoring explanations

(Definition 2.4) while satisfying 𝜀-DP to solve Problem 2.

4 Low Sensitivity Quality Functions
In this section, we address Problem 1 by building upon prior work

[8, 10, 11, 30, 75] and focusing on three prominent quality aspects of

HBEs: Sufficiency [8, 10], interestingness [30, 61], and diversity [8,

75]. We prove that these measures are highly sensitive, making

them unsuitable for a DP algorithm. These results then motivate us

to devise low-sensitivity variants.

4.1 Interestingness
The interestingness of an HBE is quantified as the distributional

shift of the given attribute values between the cluster and the

full-dataset [8, 11, 30]. There are many ways to quantify distance

between probability distributions. Among them, the total variation

distance (TVD) has been shown to be effective in quantifying the

interestingness of HBEs [8].

For a dataset 𝐷 and a cluster 𝐷𝑐 ⊆ 𝐷 , the TVD between the

distributions of values in 𝜋𝐴 (𝐷) and 𝜋𝐴 (𝐷𝑐 ), and thus the interest-

ingness of an attribute 𝐴 with respect to the cluster 𝐷𝑐 , is defined

as

TVD(𝜋𝐴 (𝐷), 𝜋𝐴 (𝐷𝑐 )) =
1

2

∑︁
𝑎∈dom(𝐴)

���� cnt𝐴=𝑎 (𝐷)|𝐷 | − cnt𝐴=𝑎 (𝐷𝑐 )
|𝐷𝑐 |

���� (1)

The global interestingness of an attribute combination AC, is de-
fined as the average of all single-cluster interestingness scores [8],

which we denote by Int(𝐷, 𝑓 ,AC)
In the context of DP, we cannot make any assumptions about

the input dataset 𝐷 or the clustering function, and privacy must be

guaranteed for any input, regardless of the cluster size. In particular,

when a cluster is small, the removal of a single tuple from it can

significantly change the cluster’s internal distribution, which may

lead to a large change in the distribution distance, as reflected in

Equation (1). Given that sensitivity analysis must account for such

cases, the sensitivity of this function is high.

Proposition 4.1. The sensitivity of TVD is at least
1

2
and its range

is [0, 1].
Intuitively, since this function outputs a number between 0 and

1, its sensitivity is relatively high. While the proof of Proposition 4.1

is provided in Appendix A.1, we illustrate the issue in the following

example.
3

Example 4.2 (The Issue with Interestingness sensitivity). Suppose

𝐷 is a dataset of size 100, 000 with a binary attribute 𝐴. Suppose

further that 95% of individuals in the dataset we have 𝐴 = 1. As-

sume that the clustering is imbalanced, with a cluster 𝐷𝑐 that con-

tains only 1 tuple 𝑡 , and 𝑡 [𝐴] = 0. In this case, from Equation (1),

the interestingness score of attribute 𝐴 for explaining cluster 𝐷𝑐

is
1

2
( |0.95 − 0| + |0.05 − 1|) = 0.95. however, suppose a new tu-

ple 𝑡 ′ that satisfies 𝑡 ′ [𝐴] = 1 is added to cluster 𝐷𝑐 . Now the in-

terestingness in Equation (1) becomes
1

2
( |95, 001/100, 001 − 0.5| +

|5000/100, 001 − 0.5|) ≈ 0.45. Note that while we only added a

3
Previous work has also considered the Jensen-Shannon distance [41] as an interest-

ingness measure. We show that it is highly sensitive as well, making it unsuitable for

the privacy setting. The proposition and proof appear in Appendix A.1.

single tuple, it led to a change of ≈ 0.95 − 0.45 = 0.5 in the interest-

ingness function.

Low-Sensitivity Interestingness. We propose a new interesting-

ness function that is inspired by the interestingness of [8], but has

lower sensitivity.

Definition 4.3 (Low Sensitivity Interestingness). For a dataset 𝐷

and a clustering function 𝑓 : dom(𝑅) → 𝐶 , define the interest-

ingness of an attribute 𝐴 for explaining the cluster 𝐷𝑐 = {𝑡 ∈
𝐷 | 𝑓 (𝑡) = 𝑐} as

Int𝑝 (𝐷, 𝑓 , 𝑐, 𝐴) =
1

2

∑︁
𝑎∈dom(𝐴)

����cnt𝐴=𝑎 (𝐷𝑐 ) −
|𝐷𝑐 |
|𝐷 | · cnt𝐴=𝑎 (𝐷)

���� .
To gain insight into the low sensitivity formulation, note that

Int𝑝 (𝐷, 𝑓 , 𝑐, 𝐴) = |𝐷𝑐 | · TVD(𝜋𝐴 (𝐷), 𝜋𝐴 (𝐷𝑐 )), where TVD is the

total variation distance (Equation (1)). Hence, for a given cluster,

the ranking of attributes by low-sensitivity interestingness (Defini-

tion 4.3) is identical to their ranking by TVD deviation, which is

the sensitive interestingness [8]. However, intuitively, the effect of

small clusters on the sensitivity is mitigated by the multiplication

by |𝐷𝑐 |, as now the sensitivity is 1, but the function takes values in

[0, |𝐷𝑐 |]. This new interestingness function gives us more leeway

for adding the necessary noise to satisfy DP, while not distorting

the attribute ranking too much when the cluster is sufficiently large.

(see Appendix A.1 for proof).

Proposition 4.4. The sensitivity of Int𝑝 (𝐷, 𝑓 , 𝑐, 𝐴) is 1 and its

range is [0, |𝐷𝑐 |].

4.2 Sufficiency
We begin by revisiting the notion of sufficiency from previous work.

Recognizing the need to ensure that a given explanation is rele-

vant only to its associated class, Dasgupta et al. [10] introduced an

abstract definition of sufficiency (faithfulness) of classifier expla-

nations. Informally, the sufficiency of an explanation at 𝑡 ∈ 𝐷 is

defined as the fraction of tuples assigned the same prediction as

𝑡 , out of all tuples for which the explanation of 𝑡 “holds". In other

words, if 𝑡 is assigned an explanation that holds for another tuple,

then that tuple should have the same classification as 𝑡 . Then, a

global sufficiency score is obtained by averaging the sufficiency

value at all tuples. However, their framework assumes the existence

of a binary relation indicating whether an explanation holds for

a given tuple, and extending this idea to HBEs is not straightfor-

ward. Copul et al. [8] proposed an adaptation of the formula from

[10], replacing the classifier prediction with cluster assignment, and

the binary relation with a probability value derived from the HBE.

Specifically, they quantify the extent to which an HBE, defined by

an attribute combinationAC, “holds for" a tuple 𝑡 that belongs to a
cluster 𝐷𝑐 as the probability that uniformly random tuple sampled

from 𝐷 conditioned on having the same value in AC(𝑐) as 𝑡 , be-
longs to the same cluster as 𝑡 . Unfortunately, this function, which

we denote Suf (𝐷, 𝑓 ,AC), is too sensitive to be of use.
4

Proposition 4.5. The sensitivity of Suf (𝐷, 𝑓 ,AC) is at least 1

2

and its range is [0, 1].

4
See further discussion in Appendix A.2.
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Low Sensitivity Sufficiency. Next, we introduce an alternative

formulation of the sufficiency measure for the following reasons.

First, the original function is too sensitive to be of use under DP.

Second, the alternative formulation shows that single-attribute suf-

ficiency can, in fact, be measured for each individual cluster, with

the global sufficiency being the average of these single-cluster suf-

ficiency functions, which simplifies the sensitivity analysis. Third,

it ensures that the range of each single-cluster sufficiency matches

that of the interestingness measure, [0, |𝐷𝑐 |] for a cluster 𝐷𝑐 , and

that the sensitivity of the modified sufficiency is also 1, making the

two directly comparable.

Definition 4.6 (Low Sensitivity Sufficiency). For a dataset 𝐷 and a

clustering function 𝑓 : dom(𝑅) → 𝐶 , define the sufficiency of an

attribute 𝐴 for explaining the cluster 𝐷𝑐 as

Suf𝑝 (𝐷, 𝑓 , 𝑐, 𝐴) =
∑︁

𝑎∈dom𝐷𝑐 (𝐴)

cnt𝐴=𝑎 (𝐷𝑐 )2
cnt𝐴=𝑎 (𝐷)

.

Note that we do not divide by zero, since the sum is only over

values appearing at least once in𝐷𝑐 , and hence also in𝐷 . Intuitively,

from Definition 4.6, we see that Suf𝑝 is maximized when values of

dom(𝐴) appearing in the cluster 𝐷𝑐 occur only within it, reflecting

maximal sufficiency of 𝐴, since observing a tuple’s value in that

attribute “suffices" to determine its membership to 𝐷𝑐 . Conversely,

the function decreases when such values also appear frequently

outside the cluster, indicating that 𝐴 is insufficient to explain 𝐷𝑐 .

Our modified sufficiency is consistent with the definition in pre-

vious work, as the equality in item (1) of Proposition 4.7 ensures that

both measures induce the same ranking of attribute combinations

when the dataset and clustering are fixed. We prove:

Proposition 4.7. For an attribute combination AC,
(1) The following equality holds:

|𝐷 | · Suf (𝐷, 𝑓 ,AC) =
∑︁
𝑐∈𝐶

Suf𝑝 (𝐷, 𝑓 , 𝑐,AC(𝑐))

(2) The sensitivity of Suf𝑝 (𝐷, 𝑓 , 𝑐, 𝐴) is 1 and its range is [0, |𝐷𝑐 |].

4.3 Diversity
The diversity measure is designed to quantify the overall distinc-

tiveness among explanations. We provide an intuitive introduction

of the diversity measure, denoted Div, outline its inadequacies in

the context of DP, and discuss its relation to our new measure.
5

Diversity is initially defined for a pair of single-cluster expla-

nations, and generalized to global explanations by averaging all

pairwise diversities. When two single-cluster explanations utilize

different attributes, the diversity for that pair attains its maximum

value of 1. If the explanations use the same attribute, the diversity is

measured as the distance between the two distributions, quantifying

the new knowledge gained from the additional explanation on that

attribute. However, common metrics used in previous work, such

as total-variation distance and Jensen-Shannon distance, have high

sensitivity (Proposition 4.1, Footnote 3), which intuitively means

they are unsuitable for the DP setting.

Inspired by the diversity measure of [8], we introduce the fol-

lowing low-sensitivity pairwise diversity function:

5
The reader is referred to [8] for the original definition, and to Appendix A for our

sensitivity analysis of this function.

Definition 4.8 (Pair Diversity). For a dataset 𝐷 and a clustering

function 𝑓 , the diversity score of a pair of attributes 𝐴𝑐 , 𝐴𝑐′ ∈ A,

where 𝐴𝑐 (respectively 𝐴𝑐′ ) is a candidate attribute for explaining

𝐷𝑐 = {𝑡 | 𝑓 (𝑡) = 𝑐} (respectively 𝐷𝑐′ ), is

𝑑 (𝐷, 𝑓 , 𝑐, 𝑐′, 𝐴𝑐 , 𝐴𝑐′ ) = min{|𝐷𝑐 |, |𝐷𝑐′ |}×{
1 𝐴𝑐 ≠ 𝐴𝑐

1

2

∑
𝑎∈dom(𝐴)

��� cnt𝐴=𝑎 (𝐷𝑐 )
max{ |𝐷𝑐 |,1} −

cnt𝐴=𝑎 (𝐷𝑐′ )
max{ |𝐷𝑐′ |,1}

��� 𝐴𝑐 = 𝐴𝑐′

To interpret Definition 4.8, note that when both clusters are

not empty and are explained by the same attribute 𝐴, we have

𝑑 (𝐷, 𝑐, 𝑐′, 𝐴,𝐴) = min{|𝐷𝑐 |, |𝐷𝑐′ |} ·TVD(𝜋𝐴 (𝐷𝑐 ), 𝜋𝐴 (𝐷𝑐′ )), where
TVD is defined in Equation (1). Thus, for a given pair of clusters,

the low-sensitivity pairwise diversity ranks attributes identically to

the sensitive TVD deviation, and is maximized when the clusters

are explained by different attributes.

Following previous work on result diversification (e.g., [6, 70]),

we define global diversity as the average of all pairwise diversities.

Note that achieving low sensitivity requires that pairs from smaller

clusters have a reduced impact on the global diversity function, as

is evident in Definition 4.9. The sensitivity bound for this function

is provided in Proposition 4.10, leveraging the fact that a convex

combination of sensitivity-1 functions has a sensitivity bounded by

1 (see Lemma A.3).

Definition 4.9 (Global Diversity). For a dataset 𝐷 and a clustering

function 𝑓 : dom(𝑅) → 𝐶 , define the diversity score of an attribute

combination AC as

Div𝑝 (𝐷, 𝑓 ,AC) =
1( |𝐶 |
2

) ∑︁
{𝑐,𝑐′ }⊆𝐶

𝑑 (𝐷, 𝑓 , 𝑐, 𝑐′,AC(𝑐),AC(𝑐′))

where the sum is over all distinct pairs of cluster labels.

Proposition 4.10. The sensitivity of Div𝑝 is bounded by 1. More-

over, its range is [0, 𝑅Div] where 𝑅Div = 1

( |𝐶 |
2
)
∑ |𝐶 |
𝑖=1
( |𝐶 | − 𝑖)

��𝐷𝑐𝑖

��
is a

weighted average of the cluster sizes, and |𝐷𝑐𝑖 | ≤ |𝐷𝑐𝑖+1 |.

4.4 Combining All Quality Functions
Following prior work on explainability [8, 37, 43, 52, 60], we com-

bine the different measures into a weighted sum, with weights that

may be user-defined or preference-driven. We first define the single-

cluster score function, which assesses the quality of an attribute 𝐴

in explaining a given cluster 𝐷𝑐 .

Definition 4.11 (Single-Cluster Score). Let 𝛾 = (𝛾Int, 𝛾Suf ) be a

pair of non-negative parameters that sum to 1. For a dataset 𝐷 and

a clustering function 𝑓 : dom(𝑅) → 𝐶 , define the quality score

𝐴 ∈ A as a candidate attribute for a cluster 𝑐 ∈ 𝐶 , as
Score𝛾 (𝐷, 𝑓 , 𝑐, 𝐴) = 𝛾Int · Int𝑝 (𝐷, 𝑓 , 𝑐, 𝐴) + 𝛾Suf · Suf𝑝 (𝐷, 𝑓 , 𝑐, 𝐴).

Importantly, we can bound the sensitivity of the score function.

Proposition 4.12. Score𝛾 (𝐷, 𝑓 , 𝑐, 𝐴) has sensitivity bounded by

1 and its range is [0, |𝐷𝑐 |].

The global score combines individual measures to assess the

quality, with smaller clusters contributing less than larger ones for

the same distribution distance, addressing the high sensitivity of

the original global score. As shown in Proposition 4.1, removing a

6
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single point from a small cluster can significantly alter its column

distribution, leading to a large score change. In Appendix A.4, we

prove the bound Proposition 4.14.

Definition 4.13 (Global Score). Let 𝜆 = (𝜆Div, 𝜆Int, 𝜆Suf ) be non-
negative parameters that sum to 1. For a dataset 𝐷 and a clustering

function 𝑓 , define the overall quality score of an attribute combina-

tion AC as

GlScore𝜆 (𝐷, 𝑓 ,AC) = 𝜆Int · Int𝑝 (𝐷, 𝑓 ,AC) + 𝜆Suf · Suf𝑝 (𝐷, 𝑓 ,AC)
+ 𝜆Div · Div𝑝 (𝐷, 𝑓 ,AC)

where we extend Int𝑝 (𝐷, 𝑓 ,AC) = 1

|𝐶 |
∑
𝑐∈𝐶 Int𝑝 (𝐷, 𝑓 , 𝑐,AC(𝑐))

and Suf𝑝 (𝐷, 𝑓 ,AC) = 1

|𝐶 |
∑
𝑐∈𝐶 Suf𝑝 (𝐷, 𝑓 , 𝑐,AC(𝑐)) .

Proposition 4.14. GlScore𝜆 has sensitivity bounded by 1. More-

over, its range is [0, 𝑅
GlScore𝜆

] where

𝑅
GlScore𝜆

= (𝜆Int + 𝜆Suf ) ·
1

|𝐶 |
∑︁
𝑐∈𝐶
|𝐷𝑐 | + 𝜆Div · 𝑅Div

is a weighted average of the cluster sizes, and 𝑅Div is defined as in

Proposition 4.10.

Selecting the weight parameters. Previous work on HBEs in the

non-private setting [8] has shown through user studies and quanti-

tative evaluations that equal weight distribution 𝜆Int = 𝜆
Suf

= 𝜆Div =

1/3 produces high quality and informative explanations. We adopt

this default parameter setting in our framework. However, weights

can be adjusted based on preference. Our experiments show that

DPClustXmaintains high explanation quality compared to the non-

private baseline across different weight distributions.

5 The DPClustX Framework
In this section, we introduce our algorithms for computing ex-

planations (depicted in Figure 3), addressing Problem 2. Since the

space of all possible attribute combinations is generally too large

to analyze, we propose a novel DP-tailored manner of pruning the

search space. Following previous work [8], we construct a small

set of high-quality candidate attributes for each cluster (Stage-1),

which serve as the candidate pool for a global explanation of all

clusters (Stage-2). To optimize our privacy budget usage, we avoid

generating noisy histograms at Stage-1.

5.1 Stage-1: Construct Private Candidate Sets
We now present our candidate set construction algorithm (Figure 3).

In DPClustX, to satisfy DP, we privately select top-𝑘 candidate

attributes for each cluster based on our single-cluster score function.

Since doing so by iteratively applying the exponential mechanism

𝑘 times can be computationally expensive, we adopt the One-shot

Top-k mechanism (Section 2.1) to privately select top-𝑘 .

The pseudo code in Algorithm 1 provides the candidate selection

procedure. we first set the privacy budget 𝜀𝑇𝑜𝑝𝑘 = 𝜀𝐶𝑎𝑛𝑑𝑆𝑒𝑡/|𝐶 |
allocated for each Top-𝑘 selection, and in Line 2 we set the noise

scale parameter 𝜎 = 2𝑘/𝜀𝑇𝑜𝑝𝑘 . Then, we run the Top-𝑘 attributes

selection procedure for each cluster 𝑐 ∈ 𝐶 . Specifically, in Line 5

we compute the noisy single-cluster score (Definition 4.11) for each

cluster and attribute. In Line 7, we sort the attributes based on the

noisy scores for each cluster. In Line 9, we define the set 𝑆𝑐 . The

output returned in Line 11 consists of the sets 𝑆𝑐 for every 𝑐 ∈ 𝐶 .

Note that 1/|𝐶 |-fraction of the total privacy budget 𝜀𝐶𝑎𝑛𝑑𝑆𝑒𝑡
is allocated for selecting top candidate attributes for each cluster.

While one might have hoped to use parallel composition, this is

typically not possible. The quality score of an attribute for a given

cluster depends on the entire dataset, not just the cluster itself. A

high-scoring attribute exhibits large distributional deviation be-

tween the cluster and the full dataset, requiring consideration of

tuples outside the cluster.

Algorithm 1 Select-Candidates: Generate all single-cluster top-𝑘

candidate attributes

Input: Dataset 𝐷 , clustering function 𝑓 : dom(𝑅) → 𝐶 , hyperpa-

rameters 𝛾 = (𝛾Int, 𝛾Suf ) Attribute set A, privacy parameter

𝜀𝐶𝑎𝑛𝑑𝑆𝑒𝑡 , cardinality 𝑘 .

Output: Sets 𝑆𝑐1 . . . , 𝑆𝑐 |𝐶 | where 𝑆𝑐𝑖 contains noisy Top-𝑘 candi-

date explanation attributes for 𝐷𝑐𝑖 .

1: 𝜀𝑇𝑜𝑝𝑘 ← 𝜀𝐶𝑎𝑛𝑑𝑆𝑒𝑡/|𝐶 |
2: Set 𝜎 ← 2𝑘/𝜀𝑇𝑜𝑝𝑘
3: for 𝑐 ∈ 𝐶 do
4: for 𝐴 ∈ A do
5: 𝑠𝐴 ← Score𝛾 (𝐷, 𝑓 , 𝑐, 𝐴) + Gumbel (𝜎)
6: end for
7: Sort {𝑠𝐴 | 𝐴 ∈ A} in descending order.

8: Let 𝐴1, . . . , 𝐴𝑘 be the attributes corresponding to the top-𝑘

noisy scores.

9: Set 𝑆𝑐 ← {𝐴1, . . . , 𝐴𝑘 }
10: end for
11: return Candidate sets 𝑆𝑐1 . . . , 𝑆𝑐 |𝐶 | .

The privacy and utility guarantees of Algorithm 1 are given by

the following proposition:

Proposition 5.1. Given a clustering function 𝑓 , a set of attributes

A, a privacy parameter 𝜀𝐶𝑎𝑛𝑑𝑆𝑒𝑡 , non-negative hyperparameters

𝛾Int, 𝛾Suf that sum to 1, and a size parameter 𝑘 , the following holds:

(1) Algorithm 1 satisfies 𝜀𝐶𝑎𝑛𝑑𝑆𝑒𝑡 -DP.

(2) For 𝑐 ∈ 𝐶 , denote by OPT(ℓ )𝑐 the ℓ-th highest (true) score, and

by𝐴
(ℓ )
𝑐 the ℓ-th explanation attribute selected by Algorithm 1

to 𝑆𝑐 . For all 𝑐 and ℓ = 1, 2, . . . , 𝑘 , we have

Pr
[
Score(𝑐,𝐴 (ℓ )𝑐 ) ≤ OPT

(ℓ )
𝑐 − 2 |𝐶 | · 𝑘

𝜀𝐶𝑎𝑛𝑑𝑆𝑒𝑡

(ln |A | + 𝑡 )
]
≤ 𝑒−𝑡 .

where we denote Score(𝑐, 𝐴(ℓ )𝑐 ) = Score(𝐷, 𝑓 , 𝑐, 𝐴(ℓ )𝑐 )

The proof of item 1 follows from Proposition 2.7 and the analysis

of the one-shot Top-𝑘 mechanism [14, 15]. The proof of item 2 is

based on the utility proposition of EM (Theorem 3.11 in [19]). Both

proofs can be found in Appendix A.

Example 5.2. Reconsider Example 1.1. Algorithm 1 outputs the

set 𝑆1 = {lab_proc, time_in_hospital, num_medications}, which
indeed comprises the top-3 attributes for Cluster 1 obtained from

the ranked list partly presented in Figure 4. Algorithm 1 outputs

one such set for each cluster.

7
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5.2 Stage-2: A Private Global Explanation
We now present a privacy-preserving mechanism that, given a

dataset 𝐷 and a clustering function 𝑓 , outputs an HBE for the

given clustering while selecting the explanation attribute for each

cluster 𝐷𝑐 from its corresponding set 𝑆𝑐 (Section 5.1), as depicted

in Figure 3. By restricting the search space to the candidate sets,

DPClustX evaluates only 𝑘 |𝐶 | attribute combinations, instead of

the full space of |A| |𝐶 | combinations.

As in Stage-1, pre-computing noisy histograms and selecting the

best candidate combination afterward incurs a waste of privacy

budget, and evaluating the global score based on noisy histograms

introduces more noise than necessary due to the injection of noise

into each count of the private histograms. To address these issues,

we propose the following approach.

We begin by computing the candidate sets 𝑆𝑐 using Algorithm 1

with privacy budget 𝜀𝐶𝑎𝑛𝑑𝑆𝑒𝑡 . Then, we apply the EM (Defini-

tion 2.9) to select the noisy-best attribute combination drawn from

each cluster’s candidate set using our global score function (Defini-

tion 4.13). Subsequently, we generate the noisy histograms only for

the selected attribute combination, employing a black-box mecha-

nism for histogram generation while leveraging the parallel com-

position property for efficient privacy budget allocation.

The pseudo code describing our approach can be found in Al-

gorithm 2. We first set the marginal weights for interestingness

and sufficiency in the single-cluster score function. In Line 3, Al-

gorithm 1 is invoked to obtain candidate sets 𝑆𝑐 for each cluster.

In Line 6, the EM is run using the global score function (Defini-

tion 4.13), privacy parameter 𝜀𝑇𝑜𝑝𝐶𝑜𝑚𝑏 , and the set of possible can-

didate attribute combinations, assigning each cluster 𝑐 an attribute

from 𝑆𝑐 . Line 8 extracts all attributes selected at least once. In Line 9,

we allocate 𝜀ℎ𝑖𝑠𝑡,𝑎𝑙𝑙 = 𝜀𝐻𝑖𝑠𝑡 /(2|A′ |) and 𝜀ℎ𝑖𝑠𝑡,𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 𝜀𝐻𝑖𝑠𝑡 /2 as
privacy budgets for full-dataset and cluster histograms, respectively.

Lines 10–12 compute full-dataset histograms. Line 16 computes clus-

ter histograms. In Line 17, we derive out-of-cluster histograms by

subtracting cluster from full-dataset histograms, replacing nega-

tives with 0. Line 18 constructs explanations 𝑒𝑐 using these his-

tograms, and Line 20 outputs the global explanation {𝑒𝑐 | 𝑐 ∈ 𝐶}.
The following theorem states the privacy guarantee ofDPClustX.

Theorem 5.3. Given a clustering function 𝑓 : dom(𝑅) → 𝐶 , num-

ber of candidates 𝑘 , privacy parameters 𝜀𝐶𝑎𝑛𝑑𝑆𝑒𝑡 , 𝜀𝑇𝑜𝑝𝐶𝑜𝑚𝑏 , 𝜀𝐻𝑖𝑠𝑡 ,

Algorithm 2 is (𝜀𝐶𝑎𝑛𝑑𝑆𝑒𝑡 + 𝜀𝑇𝑜𝑝𝐶𝑜𝑚𝑏 + 𝜀𝐻𝑖𝑠𝑡 )-DP.

Proof Sketch. The execution of Algorithm 1 satisfies 𝜀𝐶𝑎𝑛𝑑𝑆𝑒𝑡 -

DP by Proposition 5.1. Since the function GlScore𝜆 has sensitivity

1 (Proposition 4.14), the execution of the exponential mechanism

in Line 6 guarantees 𝜀𝑇𝑜𝑝𝐶𝑜𝑚𝑏 -DP, applying Theorem 2.10. We

assume that each execution ofMℎ𝑖𝑠𝑡 (·, 𝜀) satisfies 𝜀-DP. Therefore,
by sequential composition, the computation of ℎ̃𝐴 for all 𝐴 ∈ A′
satisfies overall 𝜀𝐻𝑖𝑠𝑡/2-DP. Since the clusters are disjoint, the com-

putation of all noisy histograms ℎ̃𝑐 satisfies overall 𝜀𝐻𝑖𝑠𝑡 /2-DP by

parallel composition. Note that the computation of each ℎ̃−𝑐 in

Line 17 is post-processing, and therefore incurs no additional pri-

vacy loss. Overall, by sequential composition, the entire algorithm

guarantees (𝜀𝐶𝑎𝑛𝑑𝑆𝑒𝑡 + 𝜀𝑇𝑜𝑝𝐶𝑜𝑚𝑏 + 𝜀𝐻𝑖𝑠𝑡 )-DP. □

Algorithm 2 DPClustX Algorithm - Generate Global Explanation

Input: Dataset 𝐷 , clustering function 𝑓 , number of candidates

𝑘 , privacy parameters 𝜀𝐶𝑎𝑛𝑑𝑆𝑒𝑡 , 𝜀𝑇𝑜𝑝𝐶𝑜𝑚𝑏 , 𝜀𝐻𝑖𝑠𝑡 , hyperparam-

eters 𝜆Div, 𝜆Int, 𝜆Suf
Output: Global explanation {𝑒𝑐 | 𝑐 ∈ 𝐶} (Definition 2.4)

1: Let 𝛾
Suf
← 𝜆

Suf
/(𝜆

Suf
+ 𝜆Int) and 𝛾Int ← 𝜆Int/(𝜆Suf + 𝜆Int)

2: // Invoke Algorithm 1

3: Let 𝑆𝑐1 , . . . 𝑆𝑐 |𝐶 | ← Select-Candidates(𝐷, 𝑓 ,𝛾,A, 𝜀𝐶𝑎𝑛𝑑𝑆𝑒𝑡 , 𝑘)
4: // Select attribute combination

5: Let R ← {AC | ∀𝑐. AC(𝑐) ∈ 𝑆𝑐 } be the set of candidate

combinations, mapping each 𝑐 ∈ 𝐶 to an attribute in 𝑆𝑐 .

6: AC ←M𝐸 (𝐷,GlScore𝜆,ΔGlScore
,R, 𝜀𝑇𝑜𝑝𝐶𝑜𝑚𝑏 )

7: // Generate full-dataset histograms

8: Let A′ ← {AC(𝑐) | 𝑐 ∈ 𝐶} be the set of attributes appearing
in at least once in the combination.

9: 𝜀ℎ𝑖𝑠𝑡,𝑎𝑙𝑙 ← 𝜀𝐻𝑖𝑠𝑡/(2 |A′ |), 𝜀ℎ𝑖𝑠𝑡,𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ← 𝜀𝐻𝑖𝑠𝑡/2
10: for every 𝐴 ∈ A′ do
11: ℎ̃𝐴 ←Mℎ𝑖𝑠𝑡 (𝜋𝐴 (𝐷), 𝜀ℎ𝑖𝑠𝑡,𝑎𝑙𝑙 )
12: end for
13: // Compute single-cluster explanations

14: for every 𝑐 ∈ 𝐶 do
15: Let 𝐴𝑐 ← AC(𝑐) be the attribute selected for 𝐷𝑐 .

16: ℎ̃𝑐 ←Mℎ𝑖𝑠𝑡 (𝜋𝐴𝑐
(𝐷𝑐 ), 𝜀ℎ𝑖𝑠𝑡,𝑐𝑙𝑢𝑠𝑡𝑒𝑟 )

17: ℎ̃−𝑐 ← max(ℎ̃𝐴𝑐
− ℎ̃𝑐 , 0)

18: 𝑒𝑐 ← (𝑐, 𝐴𝑐 , ℎ̃
−𝑐 , ℎ̃𝑐 )

19: end for
20: return global explanation {𝑒𝑐 | 𝑐 ∈ 𝐶}.

Example 5.4. Consider the setting in Example 1.1, and suppose

the input contains 3 clusters of the Diabetes dataset. First, a can-

didate set is obtained for each cluster, with the set for Cluster 1

shown in Example 5.2. In Line 6, the selected attribute combina-

tion is: Cluster 1: lab_proc, Cluster 2: lab_proc, and Cluster 3:

discharge_disp. DP noisy histograms are generated for these at-

tributes. Figure 2a depicts a part of the output , showcasing the

explanation for Cluster 1. The full output of Algorithm 2 contains

such an explanation for each cluster.

Time complexity. The time complexity DPClustX is proportional

to 𝑂 ( |A| · |𝐶 | + 𝑘 |𝐶 | ), where the first term is due to Stage-1 (Algo-

rithm 1) and the second to Stage-2 (Algorithm 2). Stage-1 constructs

a candidate set for each cluster, requiring𝑂 ( |A| · |𝐶 |) evaluations of
the single-cluster score function, each involving two count group-

by queries. The noisy scores are computed only once using the

one-shot top-𝑘 mechanism, instead of 𝑘 times using repeated ap-

plications of the EM that require overall 𝑂 (𝑘 |A| |𝐶 |) noisy scores

evaluations. Stage-2 performs 𝑂 (𝑘 |𝐶 | ) evaluations of the global

score function, corresponding to the number of global explanation

candidates. The complexity of each global score evaluation is as fol-

lows. The average interestingness and sufficiency across all clusters

require𝑂 ( |𝐶 |) count group-by queries. Computing global diversity

requires𝑂 ( |𝐶 |2) count group-by queries, as it is defined as average

of pairwise diversities, with each pair requiring two count queries.
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6 Experiments
In this section, we evaluate the quality and efficiency of the expla-

nations generated by DPClustX with the following questions:

(1) With respect to the qualitymeasures for HBEs, how doesDPClustX
perform compared to the non private method and a naive ap-

proach which computes all histograms in advance?

(2) How close is the attribute combination selected by DPClustX
to that of the non-private baseline?

(3) How efficient is DPClustX in computing the explanations?

Summary of our findings. With a total privacy budget of 𝜀 =

0.1, DPClustX selects attributes of comparable quality to those

chosen by the non-private baseline in all datasets and clustering

methods. Moreover, at 𝜀 = 1, DPClustX consistently selects the

same attributes as the non-private baseline across all runs and

clustering methods for the Diabetes dataset. The execution time of

DPClustX for generating explanations averages under 6.6 seconds

across all datasets and clustering methods with at most 9 clusters.

6.1 Experimental Settings
We next present our settings for the experiments. We have imple-

mented DPClustX in Python 3.9.19 using the Pandas and NumPy

libraries. All experiments were run on an Intel Xeon CPU-based

server with 24 cores and 96 GB of RAM. We use the Geometric

mechanism [26] for DP histogram generation, implemented by

DiffPrivLib [31]. The source code is available in [1].

Default parameters. Unless mentioned otherwise, the following

default parameters are used.We set 𝜀𝐶𝑎𝑛𝑑𝑆𝑒𝑡 = 𝜀𝑇𝑜𝑝𝐶𝑜𝑚𝑏 = 𝜀𝐻𝑖𝑠𝑡 =

0.1. Thus, the combined privacy budget for attribute selection is

𝜀 = 0.2, which we vary from 0.001 to 1 when evaluating its effect

on the selected attributes. The number of candidate attributes per

cluster selected at Stage-1 (denoted by 𝑘 in Section 5.1) is set to 3, a

choice supported by ablation studies presented in Figure 7, where

it is varied from 1 to 5. Following the discussion in Section 4.4, we

set the default values 𝜆Int = 𝜆
Suf

= 𝜆Div = 1/3. We also evaluate

alternative weight distributions, where we set one weight to zero

and each of the remaining two to 1/2. Unless otherwise stated, we
use 5 clusters for evaluation.

Datasets. We evaluate DPClustX on the following two datasets:

• US Census Data [49]: 2,458,285 tuples and 68 attributes. This

dataset contains a one percent sample of the Public UseMicrodata

Samples (PUMS) person records drawn from the 1990 census.

• Diabetes [7]: 101,766 tuples and 47 attributes. This dataset com-

prises ten years (1999–2008) of clinical care data. Each tuple

represents a hospital record of a diabetic patient. Numerical and

large-domain categorical attributes are binned in accordance

with [63] to ensure interpretable histograms, following prior

work on HBEs [8, 11]. Domain sizes vary from 2 to 39. Further

details can be found in Appendix C.

• Stack Overflow Developer Survey [56]: 98,855 tuples and 60

attributes. This dataset is obtained from the 2018 Stack Over-

flow Developer Survey. We consider 60 attributes, which include

demographic information, professional background, and work

habits of the respondents. Numerical and large-domain categori-

cal attributes are binned. Domain sizes vary from 2 to 22. The

preprocessing of this dataset is detailed in Appendix C.

Clustering methods. To demonstrate the effectiveness and ver-

satility of DPClustX, we evaluate it across diverse scenarios, using
both private and non-private clustering methods, following prior

work on DP classifier explanations [28, 50, 58]. In real-world deploy-

ment, to protect data privacy, the clustering function must be either

privately computed or data-independent. This evaluation highlights

the robustness of our method in providing meaningful explana-

tions for different clustering tasks, including: (i) 𝑘-means, (ii) DP-

𝑘-means [64] implemented by DiffPrivLib [31], (iii) 𝑘-modes, (iv)

Agglomerative Clustering, (v) Gaussian Mixture Models (GMMs).

The budget for DP-𝑘-means is set to 𝜀 = 1, as commonly used

for clustering in experimental settings [53, 54, 64, 65]. Categorical

attributes are transformed into equivalent numerical data by map-

ping each domain value to a unique integer. Due to its scalability

limitations, Agglomerative clustering is not applied to the Census

dataset.

Baselines. Despite the importance of explainability, to the best of

our knowledge, no attempts have been made to develop explana-

tions for clustering results under DP. Nevertheless, we consider

one non-private algorithm and two devised DP adaptations of that

baseline for comparative evaluation. We compare the performance

of DPClustX with the following approaches for generating expla-

nations:

• TabEE (non-private): The non-private algorithm in [8] for find-

ing a high-scoring attribute combination. The algorithm selects

the top attribute combination from a pre-constructed candidate

pool based on the original, sensitive definition of the quality

functions, as we discussed in Section 4.

• DP-TabEE: We implement a direct adaptation of the TabEE

algorithm to satisfy DP. This baseline uses the original, sensitive

quality functions for attribute selection, but injects the required

noise to satisfy DP, according to Theorem 2.10 and the sensitivity

of the quality functions (i.e., Propositions 4.1 and 4.5).

• DP-Naive: In Section 5 we discussed a naive approach for com-

puting HBEs under DP. We implement this simple DP baseline as

follows. Given a privacy budget 𝜀, we compute each of the full-

dataset histograms using a budget 𝜀/(2 |A|) for each attribute.

We compute the histogram of each cluster for each attribute us-

ing a budget of 𝜀/(2 |A|) per cluster. Then, as a post-processing
step, we run the TabEE-based algorithm on the noisy histograms.

By the composition and post-processing theorems, the entire

algorithm satisfies 𝜀-DP.

Evaluation measures. While in this work we introduce low-

sensitivity variants of interestingness, sufficiency and diversity, which

are incorporated into our algorithm, the original, sensitive vari-

ants of these functions can still be used for evaluating the quality

of the selected attribute combination. Hence, we let 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 =

𝜆Int · Int + 𝜆Suf · Suf + 𝜆Div · Div. be the global score function from

[8], using the sensitive quality functions Int, Suf,Div (Section 4).

We also evaluate the similarity between the attribute combina-

tion selected by non-private baseline, denoted AC∗, and that of

DPClustX or the DP-Naive baseline. To this end, we adapt the mean

absolute error (MAE) [71] to our discrete setting. TheMAE score for

a combinationAC is given byMAE(𝐸) = 1

|𝐶 |
∑
𝑐∈𝐶 1{AC(𝑐 )≠AC∗ (𝑐 ) } .
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6.2 Quality Analysis
We detail our experimental analysis for the different configurations

of our framework. All results are averaged over 10 runs.

Selected attributes quality score. In this experiment (Figure 5),

we evaluate the 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 score of the selected attribute combina-

tion with default parameters for different privacy budgets 𝜀, where

𝜀𝐶𝑎𝑛𝑑𝑆𝑒𝑡 = 𝜀𝑇𝑜𝑝𝐶𝑜𝑚𝑏 = 𝜀/2. Note that this experiment examines

the attribute choice, hence histogram generation is not needed.

Results for additional cluster numbers are provided in Appendix C,

showing similar trends. We find that increasing the total privacy

budget 𝜀 improves the quality scores achieved by DPClustX in all

cases, and that it consistently outperforms the other DP baselines.

Moreover, DP-TabEE failed to improve in the examined range. For

the Diabetes dataset, at 𝜀 = 0.1, DPClustX scores are only 0.66%

lower than TabEE on average, while DP-Naive scores 20.22% lower.

At 𝜀 = 1, DPClustX matches TabEE across all methods. For the

Census dataset, at 𝜀 = 10
−2.5

, DPClustX attains scores 1.6% lower

on average, while DP-Naive scores are 9.8% lower. At 𝜀 = 0.1, the

difference for DPClustX is only 0.003%. For the Stack Overflow

dataset, the scores of DPClustX are only 1.3% lower than TabEE on

average at 𝜀 = 0.1, while DP-Naive scores 9.8% lower. The scores of

DP-TabEE are lower by 19% even at 𝜀 = 1.

Selected attributes error. This experiment (Figure 6) examines

the MAE of the selected attribute combination with varying pri-

vacy budgets 𝜀, where 𝜀𝐶𝑎𝑛𝑑𝑆𝑒𝑡 = 𝜀𝑇𝑜𝑝𝐶𝑜𝑚𝑏 = 𝜀/2. Note that all at-
tributes are considered distinct, despite possible correlations. Hence,

an MAE score of 0 implies identical attribute choice to that of the

non-private TabEE baseline. The results show that DPClustX out-

performs the DP baselines in all cases. For the Diabetes dataset,

DPClustX selects the same combination as TabEE for all methods

at 𝜀 = 1, and for most methods at 𝜀 = 0.1, with an MAE of 0.04

for GMMs and 0.36 for k-modes. For the Census dataset, the MAE

values are below 0.25 for all methods at 𝜀 = 0.1 and below 0.18 at

𝜀 = 1. For the Stack Overflow dataset at 𝜀 = 1, DPClustX obtains

average MAE scores below 0.4 for all methods, and below 0.12 for

GMMs and k-modes. Notably, with the Stack Overflow and Census

datasets, multiple choices achieve nearly optimal scores due to at-

tribute correlations. Consequently, under DP randomization, it is

expected that the selection will not always favor the top solution,

leading to relatively higher MAE for all DP methods, despite the

nearly-optimal quality scores (Figure 5).

Quality for different candidate set sizes. In this experiment (Fig-

ure 7) We evaluate the score of the selected attribute combination

with varying candidate set sizes from Stage-1 of our algorithm. We

focus on the Census and Diabetes datasets, as the Stack Overflow

dataset exhibited similar trends. For the Diabetes dataset and all

methods except 𝑘-modes, we find that increasing the candidate

size from 1 to 5 had no effect, with the same attributes selected in

all runs. For 𝑘-modes, the score increases by 8% between 1 and 3

candidates, and stabilizes. For the Census dataset, a positive trend

is observed for all methods between 1 and 3, peaking at 3 and sta-

bilizing. GMMs shows a 40% score improvement between 1 and

2 candidates, with the same attributes selected for 3. We set the

default size to 3, as further increase did not improve quality in

our experiments, but considerably increased the running time, as

shown in Figure 9b.

Quality for different choices ofweights.Wemeasure the𝑄𝑢𝑎𝑙𝑖𝑡𝑦

scores of the selected attribute combination for different weight pa-

rameters 𝜆Int, 𝜆Suf , and 𝜆Div, setting one to zero and the remaining

two to 1/2. The results, detailed in Table 1, show zero or negligible

score difference on the Census dataset for 3 clusters. For the Dia-

betes dataset, scores are lower by merely 0.11% on average across

all clustering methods and weight configurations. For 5 clusters,

the results show a minor difference of 0.06% on average on the

Diabetes dataset, and of 0.13% on the Census dataset. For 7 clusters,

we find that the scores are lower by 0.4% on average on the Dia-

betes dataset. and by only 0.08% for Census dataset. These minor

differences indicate that DPClustX selects an attribute combination

with a quality comparable to that of the non-private baseline across

different weights configurations, offering the same flexibility in

parameter selection.

Quality for different numbers of clusters. We examine the

impact of varying the number of clusters on the quality of expla-

nations generated by DPClustX compared to the baselines. Fig-

ure 8a presents the results for the Census and Diabetes datasets

using 𝑘-means clustering, with other methods exhibiting similar

trends. The results indicate that explanation quality decreases as

the number of clusters increases, even without privacy constraints.

In all cases, DPClustX outperforms the DP baselines. For Census,

both DPClustX and DP-Naive achieve scores comparable to TabEE,

whereas DP-TabEE obtains significantly lower scores (36.7% dif-

ference on average). For Diabetes, DPClustX outperforms the DP

baselines, and maintains a score close to TabEE (lower by 2% on

average, and by 0.4% when the number of clusters is at most 9).

Note that the presence of small clusters, which tends to occur with

a larger number of clusters, inevitably leads to some degradation in

utility of DP methods. Intuitively, the small count differences are

masked by DP noise, leading to inaccurate quality evaluations of

the histograms. However, this effect is not observed in Figure 8a

for the Census dataset as it is larger.

Quality for different cluster sizes. We study the impact of

varying the average cluster size on the quality scores. (Figure 8b). A

subset comprising 𝜂 fraction of the tuples in each cluster is sampled,

where 𝜂 ranges from 10
−3

to 1 (full dataset), and an explanation is

generated for the sampled data. Figure 8b shows the results for the

Census and Diabetes datasets under 𝑘-means clustering, while for

other cases the results exhibited similar trends.We find that the non-

private TabEE baseline maintains a stable explanation quality, while

the DP methods exhibit a decrease in quality with smaller cluster

sizes. For the Diabetes dataset, at𝜂 = 10
−0.5

, the average cluster size

is 6436, andDPClustX performs comparably to TabEE, with a minor

difference of 0.2%, while DP-Naive scores 15% lower, and DP-TabEE

consistently performs poorly with a 42% difference. At 𝜂 = 10
−1
,

the average cluster size is 2035, and DPClustX’s score decreases
by 20%. For the Census dataset, DPClustX performs comparably

to the non-private TabEE, with an average difference of 0.09% at

𝜂 ≥ 10
−2

and an average cluster size of ≥ 4917. At 𝜂 = 10
−2.5

, the

average cluster size is 1555, and the score decreases by 12%. In all

cases, DPClustX consistently outperforms or matches the two DP

baselines with smaller cluster sizes.
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Figure 5: 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 values of the selected attribute combination as the total privacy budget 𝜀 varies. Note that the range of the
𝑄𝑢𝑎𝑙𝑖𝑡𝑦 axis differs across methods, reflecting the substantial variation in explanation quality between clustering approaches.
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Impact of attribute correlations on quality.We assess the stabil-

ity of DPClustX in the presence of attribute correlations by adopt-

ing the experimental setting of [8]. We cluster the datasets after

adding attributes that are highly correlated with the original ones.

Specifically, for each original attribute, we generate a correspond-

ing correlated attribute by randomly perturbing a small portion

of the records, while maintaining a Cramer’s V value of 0.85, a

3 5 7 9 11
# of  Clusters

0.4
0.5
0.6
0.7
0.8

Q
ua

lit
y

Diabetes

3 5 7 9 11
# of  Clusters

0.5
0.6
0.7
0.8

Census
DPClustX TabEE DP-Naive DP-TabEE

(a) Trend by number of clusters.

104103102
Avg. cluster size

10 3 10 2 10 1 100

Sampling Rate 

0.4

0.5

0.6

0.7

Q
ua

lit
y

Diabetes
105104103

Avg. cluster size

10 3 10 2 10 1 100

Sampling Rate 

0.6
0.7
0.8

Census
DPClustX TabEE DP-Naive DP-TabEE

(b) Trend by sample size. The bottom x-axis indicates the sampling
rate, and the top x-axis shows the corresponding average cluster size.

Figure 8:𝑄𝑢𝑎𝑙𝑖𝑡𝑦 values for the selected attribute combination
as the number of clusters varies (top) and as the sample size
per cluster varies (bottom). Note the differing 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 axis
ranges.

standard association measure [9] between attributes. Then, we run

DPClustX twice, once with the extended set of attributes and once

with the original set, and compare the 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 scores of the se-

lected attributes in both scenarios. We find that, for all datasets,

the difference is below 2% on average, indicating a minor change.

This difference is mostly due to the diversity measure, as an at-

tribute and its noisy counterpart are considered different, hence

selecting both maximizes diversity. In contrast, while running with

the original attribute set, DPClustX may select the same attribute

twice, potentially contributing less to diversity. Considering only
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interestingness and sufficiency, the difference is below 0.1% in all

cases.

6.3 Performance Analysis
We measure the execution time of our algorithm with various pa-

rameter settings for both datasets. We focus on 𝑘-means and GMMs

clustering methods, as other methods were unable to scale to a

large number of clusters or returned mostly empty clusters when

the number of clusters exceeded 9. The default settings for these

experiments are 9 clusters, 3 candidate attributes per cluster, and

the entire dataset with all attributes used. Each experiment varies

one of these parameters and is averaged over 10 runs.

Number of clusters. Figure 9a illustrates the relationship between
the execution time (in seconds, log scale) and the number of clus-

ters for which an explanation is generated. We observe that the

running time increases exponentially with the number of clusters,

yet remains reasonably low across both methods when the number

of clusters is at most 11. For the larger Census dataset, the runtimes

for up to 9 clusters across both methods are less than 6.6 seconds.

For the Diabetes and Stack Overflow datasets, all runtimes are be-

low 3 seconds up to 9 clusters, exhibiting a similar trend. For 15

clusters, the runtimes are up to 1275 seconds for Stack Overflow

and Diabetes, and 1314 seconds for Census.

Number of candidate attributes per cluster. Figure 9b illustrates
the relationship between the execution time (in seconds, log scale)

and the size of the candidate set constructed by Algorithm 1 for each

cluster. The results indicate a significant execution time increase

with larger sizes, highlighting the benefit of selecting a smaller

size. The execution times remain below 3 seconds with at most

3 candidates for the Diabetes and Stack Overflow datasets, and

under 7 seconds for the Census dataset. However, with 5 candidates,

execution times rise up to 80 seconds for Census, 75 seconds for

Diabetes, and 69 seconds for Stack Overflow.

Number of attributes. In this experiment (Figure 9c), we randomly

sample a subset of the attributes for each dataset, and generate an

explanation using only the sampled attributes. Figure 9c depicts the

relationship between running time (in seconds) and the percentage

of attributes selected from the dataset. The results indicate a linear

increase in running time, implying that while the number of at-

tributes has an effect, it is relatively small. For instance, with a 50%

sample, the execution times are at most 4.6 seconds for the Cen-

sus dataset and 2 seconds for Diabetes and Stack Overflow, while

with a 100% sample (full dataset), the execution times increase to

a maximum of 6.3 seconds for Census and at most 2.9 seconds for

Diabetes and Stack Overflow.

Dataset size. In this experiment (Figure 9d), we randomly sample a

portion of the tuples for each dataset, and generate an explanation

using the sampled data. Figure 9d shows the relationship between

execution time (in seconds) and the percentage of tuples sampled

from each dataset. The results indicate a linear increase in running

time, suggesting that while an increase in the number of tuples

leads to longer execution times, the effect remains relatively small.

With a 50% sample, the execution times are at most 4.8 seconds for

the Census dataset and below 2.6 seconds for Diabetes and Stack

Overflow. With a 100% sample (full dataset), the execution times are

at most 6.3 seconds for Census and below 2.9 seconds for Diabetes

and Stack Overflow.

6.4 Case Study
We now present a case study over the Census dataset with default

parameters. The dataset is clustered into 3 clusters using 𝑘-means.

DPClustX selects the attributes iRlabor, which represents em-

ployment status, iWork89, which indicates whether the individual

worked in 1989, and dHours, which denotes the number of work-

ing hours in the previous week. The final output is shown in Fig-

ure 10a. Figure 10b shows the non-private explanation generated by

TabEE. In this case, the selected attributes are iRlabor, iYearwrk,
which specifies the last year the individual worked, and iMeans,
which describes the means of transportation to work. Since the

two explanations agree on 1 out of 3 attributes, DPClustX achieves

MAE = 2/3. However, the 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 of the non-private baseline is

only 0.04% higher, and the explanation generated by DPClustX
conveys similar insights.

Both explanations indicate that Cluster 1 predominantly con-

sists of adults who are currently not working, and Cluster 2 of

individuals under age 16, for whom data is unavailable. In this

group, the attributes iWork89 and iYearwrk are correlated. Both
DPClustX and TabEE reveal that Cluster 3 primarily consists of

working individuals, as they worked more than 0 hours last week

and have means of transportation to work. Thus, a similar con-

clusion is reached, though different attributes are used, which are

correlated among non-working individuals. Note that DPClustX
is not guaranteed to select attributes most correlated with those

chosen by TabEE in general.

7 Related Work
We next survey related work in relevant fields.

Differentially private explanations. Several works have ex-

plored integrating DP with MLmodels and query result explanation

methods to address the dual challenge of transparency and privacy.

The work of [58] introduced differentially private mechanisms for

model explanations, providing interpretable insights into model

behavior while satisfying DP. Their approach adapts traditional

explanation methods such as feature importance scores and local

interpretable model-agnostic explanations (LIME) to operate under

DP constraints, thereby ensuring that the explanations themselves

do not leak sensitive information. Additionally, significant contri-

butions have been made in creating a framework for generating

differentially private Shapley values, enabling the interpretation

of model predictions with strong privacy guarantees [35]. Further

approaches include a DP SVMmechanism for robust counterfactual

explanations [50] and DP Locally Linear Maps, which provide both

local and global model explanations while enabling a favorable

privacy-accuracy trade-off by efficiently managing the number of

parameters [28]. See [55] for a survey on privacy-preserving model

explanations. In the context of query result explanation, DPXPlain

[68] is a framework that generates differentially private explana-

tions for aggregate queries based on the notion of intervention.

These efforts represent crucial steps towards creating trustworthy

ML and data analysis systems that offer both transparency and
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Figure 9: DPClustX’s execution time trends for the Census (C), Diabetes (D), and Stack Overflow (SO) datasets by different
parameters.
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Figure 10: Explanations for the US Census dataset case study.
robust privacy guarantees, thus addressing the critical need for

ethical AI deployment in sensitive applications.

Clustering explanations. In the non-private setting, clustering ex-
planations are well-studied. For instance, [21, 23, 44, 45, 51] study

tree-based interpretable clustering algorithms specifically for 𝑘-

means or 𝑘-medians. Tutay and Somech [69] provides black-box

clustering explanations using filter predicates. Copul et al. [8] use

histogram-based explanations for clusters in tabular datasets, in-

duced by clusters formed in the tabular-embedding space. However,

differentially-private explanation algorithms for clustering have not

been explored beyond our work.

Private data summarization and exploration tools. In the realm
of databases, privacy-preserving techniques have been a focal point

of research, particularly with the advent of differential privacy (DP).

In recent years, DP has been increasingly adopted to practical sys-

tems for interactive data analysis, such as PINQ [48], PrivateSQL

[36], FLEX [34], and Chorus [33]. Another significant contribution

is the DPCube framework by Xiao et al., which enables efficient

and private OLAP data cube construction, by differentially private

histogram release through multidimensional partitioning, thereby

enhancing the usability of summarized data under privacy con-

straints [73]. The RONA algorithm by McKenna et al. improves

the accuracy of DP synthetic data generation through an iterative

refinement process, supporting private data release [46]. Addition-

ally, Zhang et al. introduced PrivBayes, a method for generating

differentially private synthetic data using Bayesian networks to

capture correlations in the data while preserving privacy [76]. In

the context of data exploration, APEx [24] is a system that allows

data analysts to pose adaptively chosen queries along with required

accuracy bounds, identifying algorithms with the least privacy loss

to answer these queries accurately under DP.

These advancements collectively highlight the progress and on-

going challenges in developing privacy-preserving database sys-

tems that balance data utility with stringent privacy requirements.

8 Conclusion and Future Work
We proposed DPClustX, a framework for generating global, his-

togram based explanations for black-box clustering results while

preserving differential privacy. These explanations consist of his-

tograms on carefully selected attributes for each cluster and the

remaining dataset, highlighting significant distributional shifts

alongside additional high-quality characteristics. We demonstrated

through extensive experiments that the explanations generated by

DPClustX are comparable to the non-privately generated explana-

tions even under tight privacy budgets.

There are several interesting future directions. First, the current

framework outputs one explanation per cluster, aligning with the

non-private [8]. It can be generalized to output multiple explana-

tions per cluster for a more comprehensive understanding, but com-

plexity may increase (see Appendix B). Extending the framework

to efficiently output multiple explanations per cluster is important

future work. Second, DPClustX uses one-dimensional histograms

due to their simplicity and interpretability, building upon existing

work. One possible way to extend DPClustX to higher-dimensional

histograms is by considering the Cartesian product of the domains.

However, such an extension is not straightforward, as it comes

at the cost of increased complexity, and may result in histograms

where all counts are small, making it challenging to accurately com-

pute them under DP. Examining the quality and interpretability

of such explanations is an interesting direction. Third, it would

be intriguing to examine the impact of different discretization and

binning approaches on the performance of our system. Fourth, the

extension of DPClustX to different score functions that emphasize

different facets of explainability would be an interesting direction.

These directions will enhance the usability and interpretability of

clustering methods under DP.

13



Amir Gilad, Tova Milo, Kathy Razmadze, and Ron Zadicario

Acknowledgments
This research was supported by the Israel Science Foundation (ISF)

under grant 2707/22 of the Breakthrough Research Grant (BRG)

Program. The work of Amir Gilad was funded by the Israel Science

Foundation (ISF) under grant 1702/24, the Scharf-Ullman Endow-

ment, and the Alon Scholarship.

References
[1] 2024. DPClustX Git Repository. https://github.com/ronzadi/DPClustX

[2] Karim Abouelmehdi, Abderrahim Beni Hssane, and Hayat Khaloufi. 2018. Big

healthcare data: preserving security and privacy. J. Big Data 5 (2018), 1. https:

//doi.org/10.1186/S40537-017-0110-7

[3] John M. Abowd. 2018. The U.S. Census Bureau Adopts Differential Privacy. In

Proceedings of the 24th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining, KDD 2018, London, UK, August 19-23, 2018, Yike Guo

and Faisal Farooq (Eds.). ACM, 2867. https://doi.org/10.1145/3219819.3226070

[4] Gergely Acs, Claude Castelluccia, and Rui Chen. 2012. Differentially private

histogram publishing through lossy compression. In 2012 IEEE 12th International

Conference on Data Mining. IEEE, 1–10.

[5] Sihem Amer-Yahia, Tova Milo, and Brit Youngmann. 2021. Exploring ratings

in subjective databases. In Proceedings of the 2021 International Conference on

Management of Data. 62–75.

[6] Allan Borodin, Aadhar Jain, Hyun Chul Lee, and Yuli Ye. 2017. Max-sum di-

versification, monotone submodular functions, and dynamic updates. ACM

Transactions on Algorithms (TALG) 13, 3 (2017), 1–25.

[7] John Clore, Krzysztof Cios, Jon DeShazo, and Beata Strack. 2014. Diabetes 130-

US Hospitals for Years 1999–2008. UCI Machine Learning Repository. DOI:

https://doi.org/10.24432/C5230J.

[8] Roni Copul, Nave Frost, Tova Milo, and Kathy Razmadze. 2024. TabEE: Tabular

Embeddings Explanations. Proceedings of the ACM on Management of Data 2, 1

(2024), 1–26.

[9] Harald Cramér. 1999. Mathematical methods of statistics. Vol. 43. Princeton

university press.

[10] Sanjoy Dasgupta, Nave Frost, and Michal Moshkovitz. 2022. Framework for eval-

uating faithfulness of local explanations. In International Conference on Machine

Learning. PMLR, 4794–4815.

[11] Daniel Deutch, Amir Gilad, Tova Milo, Amit Mualem, and Amit Somech. 2022.

FEDEX: An Explainability Framework for Data Exploration Steps. Proceedings of

the VLDB Endowment 15, 13 (2022), 3854–3868.

[12] Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin. 2017. Collecting Telemetry

Data Privately. In Proceedings of the 31st International Conference on Neural

Information Processing Systems (Long Beach, California, USA) (NIPS’17). Curran

Associates Inc., Red Hook, NY, USA, 3574–3583.

[13] Jinshuo Dong, David Durfee, and Ryan Rogers. 2020. Optimal differential privacy

composition for exponential mechanisms. In International Conference on Machine

Learning. PMLR, 2597–2606.

[14] D. Durfee and R. Rogers. 2021. One-shot DP top-k mechanisms. DifferentialPri-

vacy.org. https://differentialprivacy.org/one-shot-top-k/.

[15] David Durfee and Ryan M Rogers. 2019. Practical differentially private top-k

selection with pay-what-you-get composition. Advances in Neural Information

Processing Systems 32 (2019).

[16] Cynthia Dwork. 2006. Differential privacy. In International colloquium on au-

tomata, languages, and programming. Springer, 1–12.

[17] Cynthia Dwork. 2019. Differential Privacy and the US Census. In Proceedings

of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database

Systems (Amsterdam, Netherlands) (PODS ’19). Association for Computing Ma-

chinery, New York, NY, USA, 1. https://doi.org/10.1145/3294052.3322188

[18] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Cali-

brating noise to sensitivity in private data analysis. In Theory of Cryptography

Conference. Springer, 265–284.

[19] Cynthia Dwork, Aaron Roth, et al. 2014. The algorithmic foundations of differ-

ential privacy. Foundations and Trends® in Theoretical Computer Science 9, 3–4

(2014), 211–407.

[20] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. 2014. RAPPOR: Ran-

domized Aggregatable Privacy-Preserving Ordinal Response. In Proceedings of

the 2014 ACM SIGSAC Conference on Computer and Communications Security

(Scottsdale, Arizona, USA) (CCS ’14). Association for Computing Machinery, New

York, NY, USA, 1054–1067. https://doi.org/10.1145/2660267.2660348

[21] Hossein Esfandiari, Vahab Mirrokni, and Shyam Narayanan. 2022. Almost tight

approximation algorithms for explainable clustering. In Proceedings of the 2022

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM, 2641–2663.

[22] Sandra Gabriele and Sonia Chiasson. 2020. Understanding Fitness Tracker Users’

Security and Privacy Knowledge, Attitudes and Behaviours. In CHI ’20: CHI

Conference on Human Factors in Computing Systems, Honolulu, HI, USA, April 25-

30, 2020, Regina Bernhaupt, Florian ’Floyd’ Mueller, David Verweij, Josh Andres,

Joanna McGrenere, Andy Cockburn, Ignacio Avellino, Alix Goguey, Pernille

Bjøn, Shengdong Zhao, Briane Paul Samson, and Rafal Kocielnik (Eds.). ACM,

1–12. https://doi.org/10.1145/3313831.3376651

[23] Buddhima Gamlath, Xinrui Jia, Adam Polak, and Ola Svensson. 2021. Nearly-

tight and oblivious algorithms for explainable clustering. Advances in Neural

Information Processing Systems 34 (2021), 28929–28939.

[24] Chang Ge, Xi He, Ihab F Ilyas, and Ashwin Machanavajjhala. 2019. Apex:

Accuracy-aware differentially private data exploration. In Proceedings of the

2019 International Conference on Management of Data. 177–194.

[25] Badih Ghazi, Ravi Kumar, and Pasin Manurangsi. 2020. Differentially private

clustering: Tight approximation ratios. Advances in Neural Information Processing

Systems 33 (2020), 4040–4054.

[26] Arpita Ghosh, Tim Roughgarden, and Mukund Sundararajan. 2009. Universally

utility-maximizing privacy mechanisms. In Proceedings of the forty-first annual

ACM symposium on Theory of computing. 351–360.

[27] Anupam Gupta, Katrina Ligett, Frank McSherry, Aaron Roth, and Kunal Talwar.

2010. Differentially private combinatorial optimization. In Proceedings of the

twenty-first annual ACM-SIAM symposium on Discrete Algorithms. SIAM, 1106–

1125.

[28] Frederik Harder, Matthias Bauer, and Mijung Park. 2020. Interpretable and dif-

ferentially private predictions. In Proceedings of the AAAI Conference on Artificial

Intelligence, Vol. 34. 4083–4090.

[29] Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan Suciu. 2010. Boosting the

Accuracy of Differentially Private Histograms Through Consistency. Proceedings

of the VLDB Endowment 3, 1 (2010).

[30] Robert J Hilderman and Howard J Hamilton. 2013. Knowledge Discovery and

Measures of Interest. Vol. 638. Springer Science & Business Media.

[31] Naoise Holohan, Stefano Braghin, Pól Mac Aonghusa, and Killian Levacher. 2019.

Diffprivlib: the IBM differential privacy library. arXiv preprint arXiv:1907.02444

(2019).

[32] Lianyu Hu, Mudi Jiang, Junjie Dong, Xinying Liu, and Zengyou He. 2024. Inter-

pretable Clustering: A Survey. arXiv preprint arXiv:2409.00743 (2024).

[33] Noah Johnson, Joseph P Near, Joseph M Hellerstein, and Dawn Song. 2020.

Chorus: a programming framework for building scalable differential privacy

mechanisms. In 2020 IEEE European Symposium on Security and Privacy (EuroS&P).

IEEE, 535–551.

[34] Noah Johnson, Joseph P Near, and Dawn Song. 2018. Towards practical differen-

tial privacy for SQL queries. Proceedings of the VLDB Endowment 11, 5 (2018),

526–539.

[35] James Jordon, Jinsung Yoon, and Mihaela van der Schaar. 2019. Differentially

private model personalization. In Proceedings of the 36th International Conference

on Machine Learning. PMLR.

[36] Ios Kotsogiannis, Yuchao Tao, Xi He, Maryam Fanaeepour, Ashwin Machanava-

jjhala, Michael Hay, and Gerome Miklau. 2019. Privatesql: a differentially private

sql query engine. Proceedings of the VLDB Endowment 12, 11 (2019), 1371–1384.

[37] Himabindu Lakkaraju, Stephen H Bach, and Jure Leskovec. 2016. Interpretable

decision sets: A joint framework for description and prediction. In Proceedings

of the 22nd ACM SIGKDD international conference on knowledge discovery and

data mining. 1675–1684.

[38] Doris Jung-Lin Lee, Dixin Tang, Kunal Agarwal, Thyne Boonmark, Caitlyn Chen,

Jake Kang, Ujjaini Mukhopadhyay, Jerry Song, Micah Yong, Marti A Hearst, et al.

2021. Lux: always-on visualization recommendations for exploratory dataframe

workflows. PVLDB 15, 3 (2021), 727–738.

[39] David A Levin and Yuval Peres. 2017. Markov chains and mixing times. Vol. 107.

American Mathematical Soc.

[40] Bing-Rong Lin and Daniel Kifer. 2013. Information preservation in statistical

privacy and bayesian estimation of unattributed histograms. In Proceedings of the

2013 ACM SIGMOD International Conference on Management of Data. 677–688.

[41] Jianhua Lin. 1991. Divergence measures based on the Shannon entropy. IEEE

Transactions on Information theory 37, 1 (1991), 145–151.

[42] Yuyu Luo, Xuedi Qin, Nan Tang, and Guoliang Li. 2018. DeepEye: Towards

Automatic Data Visualization. ICDE.

[43] Ge Lv and Lei Chen. 2023. On data-aware global explainability of graph neural

networks. Proceedings of the VLDB Endowment 16, 11 (2023), 3447–3460.

[44] Konstantin Makarychev and Liren Shan. 2021. Near-optimal algorithms for

explainable k-medians and k-means. In International Conference on Machine

Learning. PMLR, 7358–7367.

[45] Konstantin Makarychev and Liren Shan. 2022. Explainable k-means: don’t

be greedy, plant bigger trees!. In Proceedings of the 54th Annual ACM SIGACT

Symposium on Theory of Computing. 1629–1642.

[46] Ryan McKenna, Gerome Miklau, and Daniel Sheldon. 2021. Winning the NIST

Contest: A scalable and general approach to differentially private synthetic data.

arXiv preprint arXiv:2108.04978 (2021).

[47] Frank McSherry and Kunal Talwar. 2007. Mechanism design via differential

privacy. In 48th Annual IEEE Symposium on Foundations of Computer Science

(FOCS’07). IEEE, 94–103.

[48] Frank D McSherry. 2009. Privacy integrated queries: an extensible platform

for privacy-preserving data analysis. In Proceedings of the 2009 ACM SIGMOD

14

https://github.com/ronzadi/DPClustX
https://doi.org/10.1186/S40537-017-0110-7
https://doi.org/10.1186/S40537-017-0110-7
https://doi.org/10.1145/3219819.3226070
https://differentialprivacy.org/one-shot-top-k/
https://doi.org/10.1145/3294052.3322188
https://doi.org/10.1145/2660267.2660348
https://doi.org/10.1145/3313831.3376651


Differentially Private Explanations for Clusters

International Conference on Management of data. 19–30.

[49] Chris Meek, Bo Thiesson, and David Heckerman. 2001. US Census Data (1990).

UCI Machine Learning Repository. DOI: https://doi.org/10.24432/C5VP42.

[50] Rami Mochaourab, Sugandh Sinha, Stanley Greenstein, and Panagiotis Papa-

petrou. 2021. Robust counterfactual explanations for privacy-preserving SVM. In

International Conference on Machine Learning (ICML 2021), Workshop on Socially

Responsible Machine Learning.

[51] Michal Moshkovitz, Sanjoy Dasgupta, Cyrus Rashtchian, and Nave Frost. 2020.

Explainable k-means and k-medians clustering. In International conference on

machine learning. PMLR, 7055–7065.

[52] Ramaravind K Mothilal, Amit Sharma, and Chenhao Tan. 2020. Explaining

machine learning classifiers through diverse counterfactual explanations. In

Proceedings of the 2020 conference on fairness, accountability, and transparency.

607–617.

[53] Huu Hiep Nguyen. 2018. Privacy-preserving mechanisms for k-modes clustering.

Computers & Security 78 (2018), 60–75.

[54] Huy L Nguyen, Anamay Chaturvedi, and Eric Z Xu. 2021. Differentially private

k-means via exponential mechanism and max cover. In Proceedings of the AAAI

conference on artificial intelligence, Vol. 35. 9101–9108.

[55] Thanh TamNguyen, Thanh TrungHuynh, Zhao Ren, Thanh ToanNguyen, Phi Le

Nguyen, Hongzhi Yin, and Quoc Viet Hung Nguyen. 2024. A survey of privacy-

preserving model explanations: Privacy risks, attacks, and countermeasures.

arXiv preprint arXiv:2404.00673 (2024).

[56] Stack Overflow. 2018. Stack Overflow Annual Developer Survey. https://survey.

stackoverflow.co.

[57] Adedoyin Tolulope Oyewole, Bisola Beatrice Oguejiofor, Nkechi Emmanuella

Eneh, Chidiogo Uzoamaka Akpuokwe, and Seun Solomon Bakare. 2024. Data

privacy laws and their impact on financial technology companies: a review.

Computer Science & IT Research Journal 5, 3 (2024), 628–650.

[58] Neel Patel, Reza Shokri, and Yair Zick. 2022. Model explanations with differential

privacy. In Proceedings of the 2022 ACM Conference on Fairness, Accountability,

and Transparency. 1895–1904.

[59] WahbehQardaji,Weining Yang, andNinghui Li. 2013. Understanding hierarchical

methods for differentially private histograms. Proceedings of the VLDB Endowment

6, 14 (2013), 1954–1965.

[60] Kaivalya Rawal and Himabindu Lakkaraju. 2020. Beyond individualized recourse:

Interpretable and interactive summaries of actionable recourses. Advances in

Neural Information Processing Systems 33 (2020), 12187–12198.

[61] Sunita Sarawagi, Rakesh Agrawal, and Nimrod Megiddo. 1998. Discovery-driven

exploration of OLAP data cubes. In EDBT.

[62] Uri Stemmer and Haim Kaplan. 2018. Differentially private k-means with con-

stant multiplicative error. Advances in Neural Information Processing Systems 31

(2018).

[63] Beata Strack, Jonathan P DeShazo, Chris Gennings, Juan L Olmo, Sebastian

Ventura, Krzysztof J Cios, and John N Clore. 2014. Impact of HbA1c measurement

on hospital readmission rates: analysis of 70,000 clinical database patient records.

BioMed research international 2014, 1 (2014), 781670.

[64] Dong Su, Jianneng Cao, Ninghui Li, Elisa Bertino, and Hongxia Jin. 2016. Differ-

entially private k-means clustering. In Proceedings of the sixth ACM conference

on data and application security and privacy. 26–37.

[65] Dong Su, Jianneng Cao, Ninghui Li, Elisa Bertino, Min Lyu, and Hongxia Jin.

2017. Differentially private k-means clustering and a hybrid approach to private

optimization. ACM Transactions on Privacy and Security (TOPS) 20, 4 (2017),

1–33.

[66] Bo Tang, Shi Han, Man Lung Yiu, Rui Ding, and Dongmei Zhang. 2017. Extracting

top-k insights from multi-dimensional data. In Proceedings of the 2017 ACM

International Conference on Management of Data. 1509–1524.

[67] Jun Tang, Aleksandra Korolova, Xiaolong Bai, Xueqiang Wang, and XiaoFeng

Wang. 2017. Privacy Loss in Apple’s Implementation of Differential Privacy on

MacOS 10.12. CoRR abs/1709.02753 (2017). arXiv:1709.02753 http://arxiv.org/

abs/1709.02753

[68] Yuchao Tao, Amir Gilad, Ashwin Machanavajjhala, and Sudeepa Roy. 2022.

DPXPlain: privately explaining aggregate query answers. Proceedings of the

VLDB Endowment 16, 1 (2022), 113–126.

[69] Sariel Tutay and Amit Somech. 2023. Cluster-Explorer: An interactive Frame-

work for Explaining Black-Box Clustering Results. In Proceedings of the 32nd

ACM International Conference on Information and Knowledge Management (Birm-

ingham, United Kingdom) (CIKM ’23). Association for Computing Machinery,

New York, NY, USA, 5106–5110. https://doi.org/10.1145/3583780.3614734

[70] Marcos RVieira, Humberto L Razente, Maria CNBarioni, Marios Hadjieleftheriou,

Divesh Srivastava, Caetano Traina, and Vassilis J Tsotras. 2011. On query result

diversification. In 2011 IEEE 27th International Conference on Data Engineering.

IEEE, 1163–1174.

[71] Cort J Willmott and Kenji Matsuura. 2005. Advantages of the mean absolute

error (MAE) over the root mean square error (RMSE) in assessing average model

performance. Climate research 30, 1 (2005), 79–82.

[72] Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock Mackinlay, Bill

Howe, and Jeffrey Heer. 2016. Voyager: Exploratory analysis via faceted browsing

of visualization recommendations. TVCG (2016).

[73] Yonghui Xiao, Li Xiong, Liyue Fan, and Slawomir Goryczka. 2012. DPCube:

Differentially private histogram release through multidimensional partitioning.

arXiv preprint arXiv:1202.5358 (2012).

[74] Jia Xu, Zhenjie Zhang, Xiaokui Xiao, Yin Yang, Ge Yu, and Marianne Winslett.

2013. Differentially private histogram publication. The VLDB journal 22 (2013),

797–822.

[75] Brit Youngmann, Sihem Amer-Yahia, and Aurelien Personnaz. 2022. Guided

exploration of data summaries. Proceedings of the VLDB Endowment (PVLDB) 15,

9 (2022), 1798–1807.

[76] Jun Zhang, Graham Cormode, Cecilia M Procopiuc, Divesh Srivastava, and

Xiaokui Xiao. 2017. Privbayes: Private data release via bayesian networks. ACM

Transactions on Database Systems (TODS) 42, 4 (2017), 1–41.

15

https://survey.stackoverflow.co
https://survey.stackoverflow.co
https://arxiv.org/abs/1709.02753
http://arxiv.org/abs/1709.02753
http://arxiv.org/abs/1709.02753
https://doi.org/10.1145/3583780.3614734


Amir Gilad, Tova Milo, Kathy Razmadze, and Ron Zadicario

A Theorems and Proofs
Quality functions for histogram-based explanations used in prior

work on are closely related to the 𝐿1 distance between histograms,

viewed as vectors. This connection will also be used in our analy-

sis. Hence, we now formally define these concepts. A histogram

ℎ𝐴 (𝐷) can be viewed as a |dom(𝐴) |-dimensional vector with value

cnt𝐴=𝑎 (𝐷) in its 𝑎’th entry for every 𝑎 ∈ dom(𝐴). The 𝐿1-norm of

a vector 𝑣 ∈ R𝑑 , denoted ∥𝑣 ∥
1
, is defined as

∑𝑑
𝑖=1 |𝑣𝑖 |. For histogram

vectors, we always have ∥ℎ𝐴 (𝐷)∥1 = |𝐷 |, as the 𝐿1-norm is simply

the sum of counts of all domain elements. The following is implied

immediately from the definition:

Corollary A.1. For a dataset 𝐷 and a clustering function 𝑓 :

dom(𝑅) → 𝐶 , a cluster label 𝑐 , and an attribute𝐴, the interestingness

score (Definition 4.3) is

Int𝑝 (𝐷, 𝑓 , 𝑐, 𝐴) =
1

2





ℎ𝐴 (𝐷𝑐 ) −
|𝐷𝑐 |
|𝐷 | ℎ𝐴 (𝐷)






1

Corollary A.2. Let 𝐷 be a dataset, 𝑓 a clustering function, 𝐴 an

attribute, and 𝐷𝑐 , 𝐷𝑐′ non-empty clusters such that |𝐷𝑐 | ≤ |𝐷𝑐′ |. The
pairwise-diversity score (Definition 4.8) is

𝑑 (𝐷, 𝑓 , 𝑐, 𝑐′, 𝐴,𝐴) = 1

2





ℎ𝐴 (𝐷𝑐 ) −
|𝐷𝑐 |
|𝐷𝑐′ |

ℎ𝐴 (𝐷𝑐′ )





1

Our global quality measures are defined as the average of low-

sensitivity functions. Consequently, our analysis frequently uses

the following Lemma

Lemma A.3. For 𝑖 = 1, . . . ,𝑚 let 𝛼𝑖 ∈ R be a scalar and 𝑓𝑖 : D →
R be a function with sensitivity Δ𝑖 . Then, the function 𝑓 =

∑𝑚
𝑖=1 𝛼𝑖 · 𝑓𝑖

has sensitivity bounded by

∑𝑚
𝑖=1 |𝛼𝑖 | Δ𝑖 .

Proof. Let 𝐷∼𝐷′ be two neighboring datasets. By the triangle

inequality,��𝑓 (𝐷) − 𝑓 (𝐷′)
�� = ����� 𝑚∑︁

𝑖=1

𝛼𝑖 · 𝑓𝑖 (𝐷) −
𝑚∑︁
𝑖=1

𝛼𝑖 · 𝑓𝑖 (𝐷′)
�����

≤
𝑚∑︁
𝑖=1

|𝛼𝑖 | ·
��𝑓𝑖 (𝐷) − 𝑓𝑖 (𝐷′)

��
≤

𝑚∑︁
𝑖=1

|𝛼𝑖 | Δ𝑖 .

□

A.1 Interestingness
We prove next the high sensitivity of the total variation distance

interestingness measure (1), restated below for convenience.

TVD(𝜋𝐴 (𝐷), 𝜋𝐴 (𝐷𝑐 )) =
1

2

∑︁
𝑎∈dom(𝐴)

���� cnt𝐴=𝑎 (𝐷)|𝐷 | − cnt𝐴=𝑎 (𝐷𝑐 )
|𝐷𝑐 |

����
Proposition 4.1. The sensitivity of TVD is at least

1

2
and its range

is [0, 1].

Proof. Since the range bound is standard (see, e.g., [39]), we

focus on the sensitivity lower bound. Let 𝐷 be a dataset of size

𝑛 ≥ 1, and 𝐴 an attribute. Suppose that for all tuples 𝑡 ∈ 𝐷 it holds

that 𝑡 [𝐴] = 𝑎 for some 𝑎 ∈ dom(𝐴). That is, cnt𝐴=𝑎 (𝐷) = 𝑛. Let

𝐷𝑐 ⊆ 𝐷 be a cluster of size 1. In this case TVD(𝜋𝐴 (𝐷), 𝜋𝐴 (𝐷𝑐 )) = 0,

as 𝜋𝐴 (𝐷) and 𝜋𝐴 (𝐷𝑐 ) define the same distribution (the value 𝑎 has

probability 1).

Now, let 𝐷′ = 𝐷 ∪ {𝑡 ′} and 𝐷′𝑐 = 𝐷𝑐 ∪ {𝑡 ′} for a tuple 𝑡 ′ with
𝑡 ′ [𝐴] = 𝑎′ for 𝑎′ ≠ 𝑎. We now have

2 · TVD(𝜋𝐴 (𝐷′), 𝜋𝐴 (𝐷′𝑐 )) =
���� cnt𝐴=𝑎 (𝐷′)|𝐷′ | − cnt𝐴=𝑎 (𝐷′𝑐 )

|𝐷′𝑐 |

����
+

���� cnt𝐴=𝑎′ (𝐷′)|𝐷′ | − cnt𝐴=𝑎′ (𝐷′𝑐 )
|𝐷′𝑐 |

����
=

���� 𝑛

𝑛 + 1 −
1

2

���� + ���� 1

𝑛 + 1 −
1

2

����
=

𝑛

𝑛 + 1 −
1

2

+ 1

2

− 1

𝑛 + 1
= 1 − 2

𝑛 + 1
Therefore,

TVD(𝜋𝐴 (𝐷′), 𝜋𝐴 (𝐷′𝑐 )) =
1

2

− 1

𝑛 + 1
Since sensitivity is defined as the supremum over all datasets and

dataset sizes, the lemma follows. □

Since previous work has also considered the Jensen-Shannon

distance [41] as an interestingness metric, we show that it is highly

sensitive as well, making it unsuitable for the DP setting.

Definition A.4 (Jensen-Shannon Divergence [41]). For two dis-

tributions 𝑝 and 𝑞 over the same domain, their Jensen–Shannon

divergence is defined as

𝐽𝑆𝐷 (𝑝, 𝑞) = 𝐻

(𝑝 + 𝑞
2

)
− 1

2

𝐻 (𝑞) − 1

2

𝐻 (𝑞)

where 𝐻 (·) is the Shannon entropy and
𝑝+𝑞
2

is the mixture distri-

bution of 𝑝 and 𝑞. The Jensen–Shannon distance, denoted 𝑑 𝐽 𝑆 , is

the square root of the Jensen–Shannon divergence.

Let 𝑃𝐴 (𝐷) and 𝑃𝐴 (𝐷𝑐 ) be the probability distributions of the val-
ues in the columns of 𝜋𝐴 (𝐷) and 𝜋𝐴 (𝐷𝑐 ), respectively, determined

by the relative frequencies of each value. Define𝑑 𝐽 𝑆 (𝑃𝐴 (𝐷), 𝑃𝐴 (𝐷𝑐 ))
as the Jensen-Shannon distance between these distributions. We

prove the following:

Proposition A.5. The sensitivity of 𝑑 𝐽 𝑆 is at least
1

2
and its range

is [0, 1].

Proof. The proof for the range bound can be found in [41]. We

proceed with the sensitivity analysis. Let 𝐷 be a dataset of size

𝑛, and 𝐴 an attribute. Suppose that for all tuples 𝑡 ∈ 𝐷 it holds

that 𝑡 [𝐴] = 𝑎 for some 𝑎 ∈ dom(𝐴). Let 𝐷𝑐 = {𝑡} be a cluster of
size 1. In this case, 𝑑 𝐽 𝑆 (𝑃𝐴 (𝐷), 𝑃𝐴 (𝐷𝑐 )) = 0, as 𝑃𝐴 (𝐷) and 𝑃𝐴 (𝐷𝑐 )
are the same distribution (the value 𝑎 has probability 1). Now, let

𝐷′ = 𝐷 ∪ {𝑡 ′} and 𝐷′𝑐 = 𝐷𝑐 ∪ {𝑡 ′} for a tuple 𝑡 ′ with 𝑡 ′ [𝐴] = 𝑎′

where 𝑎′ ≠ 𝑎. We now have

𝑃𝐴 (𝐷′) =
{
𝑎 w.p

𝑛
𝑛+1

𝑎′ w.p
1

𝑛+1
and

𝑃𝐴 (𝐷′𝑐 ) =
{
𝑎 w.p

1

2

𝑎′ w.p
1

2
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therefore, the mixture distribution satisfies

𝑃𝐴 (𝐷′) + 𝑃𝐴 (𝐷′𝑐 )
2

=

{
𝑎 w.p

𝑛
2(𝑛+1) +

1

4

𝑎′ w.p
1

2(𝑛+1) +
1

4

Since all three distributions are supported on {𝑎, 𝑎′}, we have

𝐽𝑆𝐷 (𝑃𝐴 (𝐷′), 𝑃𝐴 (𝐷′𝑐 )) = 𝐻𝑏

(
1

2(𝑛 + 1) +
1

4

)
−
𝐻𝑏

(
1

𝑛+1

)
+ 𝐻𝑏

(
1

2

)
2

where 𝐻𝑏 is the binary entropy function. Note that by continuity

of 𝐻𝑏 we have

lim

𝑛→∞
𝐽𝑆𝐷 (𝑃𝐴 (𝐷′), 𝑃𝐴 (𝐷′𝑐 )) = 𝐻𝑏

(
1

4

)
− 1

2

≈ 0.311

In particular, for sufficiently large 𝑛, 𝐽𝑆𝐷 (𝑃𝐴 (𝐷′), 𝑃𝐴 (𝐷′𝑐 )) > 0.3,

and hence 𝑑 𝐽 𝑆 (𝑃𝐴 (𝐷′), 𝑃𝐴 (𝐷′𝑐 )) > 1

2
. Therefore, we find that 𝑑 𝐽 𝑆

has sensitivity greater than
1

2
. □

Intuitively, since the range of 𝑑 𝐽 𝑆 is [0, 1] [41], its sensitivity is

relatively high. We proceed with the analysis of our low sensitivity

interestingness function.

Proposition 4.4. The sensitivity of Int𝑝 (𝐷, 𝑓 , 𝑐, 𝐴) is 1 and its

range is [0, |𝐷𝑐 |].

Proof. Let 𝑓 : dom(𝑅) → 𝐶 be a clustering function, and 𝑐 ∈ 𝐶
be a cluster label. Let 𝐴 ∈ A and 𝐷∼𝐷′ be neighboring datasets

such that 𝐷′ = 𝐷 ∪ {𝑡}. Denote 𝑎 = 𝑡 [𝐴], and let ℎ𝑎 = ℎ𝐴 (𝑡) be
the |dom(𝐴) |-dimensional histogram with 1 in its 𝑎’th entry and 0

elsewhere. Let 𝐷𝑐 (respectively, 𝐷
′
𝑐 ) denote the set of tuples in 𝐷

(respectively, 𝐷′) that are mapped to 𝑐 by the function 𝑓 , and note

that 𝐷′𝑐 is either 𝐷𝑐 or 𝐷𝑐 ∪ {𝑡}.
We first consider the case that 𝐷𝑐 = 𝐷′𝑐 . By Corollary A.1 and

the triangle inequality, we have��
Int𝑝 (𝐷′, 𝑓 , 𝑐, 𝐴) − Int𝑝 (𝐷, 𝑓 , 𝑐, 𝐴)

��
=

1

2

����



ℎ𝐴 (𝐷𝑐 ) −
|𝐷𝑐 |
|𝐷′ |ℎ𝐴 (𝐷

′)





1

−




ℎ𝐴 (𝐷𝑐 ) −

|𝐷𝑐 |
|𝐷 | ℎ𝐴 (𝐷)






1

����
≤ 1

2





 |𝐷𝑐 |
|𝐷 | ℎ𝐴 (𝐷) −

|𝐷𝑐 |
|𝐷′ |ℎ𝐴 (𝐷

′)





1

Substituting ℎ𝐴 (𝐷′) = ℎ𝐴 (𝐷) + ℎ𝑎 into the inequality above and

applying the triangle inequality again, we obtain

=
1

2





 |𝐷𝑐 |
|𝐷 | + 1ℎ𝑎 −

|𝐷𝑐 |
|𝐷 | ( |𝐷 | + 1)ℎ𝐴 (𝐷)






1

≤ 1

2

(
∥ℎ𝑎 ∥1 +

1

|𝐷 | ∥ℎ𝐴 (𝐷)∥1
)

where for the equality, we used the fact that |𝐷′ | = |𝐷 | + 1, which
implies

|𝐷𝑐 |
|𝐷 | −

|𝐷𝑐 |
|𝐷 ′ | =

|𝐷𝑐 |
|𝐷 | ( |𝐷 |+1) . For the inequality, we also bound

|𝐷𝑐 | ≤ |𝐷 | + 1. Next, we substitute ∥ℎ𝑎 ∥1 = 1 and ∥ℎ𝐴 (𝐷)∥1 = |𝐷 |
to obtain

=
1

2

(
1 + |𝐷 ||𝐷 |

)
= 1

Now, consider the case that 𝐷′𝑐 = 𝐷𝑐 ∪ {𝑡}. Applying the triangle
inequality, we have��

Int𝑝 (𝐷′, 𝑓 , 𝑐, 𝐴) − Int𝑝 (𝐷, 𝑓 , 𝑐, 𝐴)
��

≤ 1

2






ℎ𝐴 (𝐷′𝑐 ) −
��𝐷′𝑐 ��
|𝐷′ |ℎ𝐴 (𝐷

′) − ℎ𝐴 (𝐷𝑐 ) +
|𝐷𝑐 |
|𝐷 | ℎ𝐴 (𝐷)






 .
Substituting ℎ𝐴 (𝐷′) = ℎ𝐴 (𝐷) +ℎ𝑎 and ℎ𝐴 (𝐷′𝑐 ) = ℎ𝐴 (𝐷𝑐 ) +ℎ𝑎 , and
rearranging, we obtain

=
1

2






ℎ𝑎 −
��𝐷′𝑐 ��
|𝐷′ |ℎ𝐴 (𝐷) −

��𝐷′𝑐 ��
|𝐷′ |ℎ𝑎 +

|𝐷𝑐 |
|𝐷 | ℎ𝐴 (𝐷)







=

1

2







(
1 −

��𝐷′𝑐 ��
|𝐷′ |

)
ℎ𝑎 −

( ��𝐷′𝑐 ��
|𝐷′ | −

|𝐷𝑐 |
|𝐷 |

)
ℎ𝐴 (𝐷)







Recall that

��𝐷′𝑐 �� = |𝐷𝑐 | +1 and |𝐷′ | = |𝐷 | +1. Therefore,
��𝐷′𝑐 �� /|𝐷′ | −

|𝐷𝑐 |/|𝐷 | = ( |𝐷 | − |𝐷𝑐 |)/(|𝐷 | ( |𝐷 | + 1)), which is non-negative, as

|𝐷𝑐 | ≤ |𝐷 |. Since
��𝐷′𝑐 �� ≤ |𝐷′ | holds as well, we have

≤ 1

2

(
1 −

��𝐷′𝑐 ��
|𝐷′ |

)
∥ℎ𝑎 ∥1 +

1

2

(
|𝐷 | − |𝐷𝑐 |
|𝐷 | ( |𝐷 | + 1)

)
∥ℎ𝐴 (𝐷)∥

≤ 1

2

(
1 −

��𝐷′𝑐 ��
|𝐷′ |

)
∥ℎ𝑎 ∥1 +

1

2

(
1

|𝐷 | + 1

)
∥ℎ𝐴 (𝐷)∥ .

Since ∥ℎ𝑎 ∥1 = 1 and ∥ℎ𝐴 (𝐷)∥1 = |𝐷 |, we conclude

=
1

2

(
1 −

��𝐷′𝑐 ��
|𝐷′ |

)
+ 1

2

(
1

|𝐷 | + 1

)
|𝐷 |

≤ 1

2

+ 1

2

= 1.

For the range upper bound, we use Corollary A.1 to obtain

Int𝑝 (𝐷, 𝑓 , 𝑐, 𝐴) =
1

2





ℎ𝐴 (𝐷𝑐 ) −
|𝐷𝑐 |
|𝐷 | ℎ𝐴 (𝐷)






1

≤ 1

2

(
∥ℎ𝐴 (𝐷𝑐 )∥1 +

|𝐷𝑐 |
|𝐷 | ∥ℎ𝐴 (𝐷)∥1

)
= |𝐷𝑐 |

□

A.2 Sufficiency
We revisit the notion of sufficiency from prior work and provide its

sensitivity analysis. For a tuple 𝑡 , an attribute𝐴, and a cluster label 𝑐 ,

Let 𝑟 (𝑡, 𝐴) = cnt𝐴=𝑡 [𝐴] (𝐷 𝑓 (𝑡 ) )/cnt𝐴=𝑡 [𝐴] (𝐷). Observe that 𝑟 (𝑡, 𝐴)
equals the probability that a uniformly random tuple sampled from

𝐷 , conditioned on having the same value in attribute𝐴 as 𝑡 , belongs

the same cluster as 𝑡 . The quantity 𝑟 (𝑡, 𝐴) is used in [8] to quantify

the extent to which an HBE that employs attribute 𝐴 to explain a

cluster labeled 𝑓 (𝑡) applies to the tuple 𝑡 . The local sufficiency of

an attribute combination AC at a tuple 𝑡 is thus defined as

𝑚𝑠
AC (𝑡) =

∑︁
𝑡 ′∈𝐷

1{ 𝑓 (𝑡 ′ )=𝑓 (𝑡 ) } · 𝑟 (𝑡 ′,AC(𝑓 (𝑡))),∑︁
𝑡 ′∈𝐷

𝑟 (𝑡 ′,AC(𝑓 (𝑡)))
. (2)
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Let 𝑐 = 𝑓 (𝑡) be the cluster of a tuple 𝑡 , and𝐴𝑐 = AC(𝑐) the attribute
used to explain this cluster by attribute combination AC. Observe
that𝑚𝑠

AC (𝑡) attains its maximum value of 1 when the value 𝑡 [𝐴𝑐 ]
appears only in the cluster 𝐷𝑐 , capturing the notion of maximal

sufficiency.

To measure the global sufficiency of AC, [8] averages the local
sufficiency across all tuples:

Suf (𝐷, 𝑓 ,AC) = 1

|𝐷 |
∑︁
𝑡 ∈𝐷

𝑚𝑠
AC (𝑡) . (3)

In the unbounded-DP variant, where the dataset size is not fixed and

which we adopt in this work, this function exhibits high sensitivity

relative to its range. We remark that this issue does not arise in the

bounded-DP variant, as can be seen in the proof of Proposition 4.7.

However, there is still motivation to modify this function due to

the other reasons outlined in Section 4.2.

Proposition 4.5. The sensitivity of Suf (𝐷, 𝑓 ,AC) is at least 1

2

and its range is [0, 1].

Proof. To see that the range is [0, 1], note that by definition

in (2), 𝑚𝑠
AC (𝑡) ∈ [0, 1] for every tuple 𝑡 , and (3) averages these

values across all tuples. We proceed with the sensitivity analysis.

Consider a dataset 𝐷 = {𝑡1} and two clusters 𝐷1 = {𝑡1} and an

empty cluster 𝐷2 = ∅. Let AC be an attribute combination, and

suppose denote AC(𝑖) = 𝐴 for 𝑖 = 1, 2. Let us denote 𝑎 = 𝑡1 [𝐴].
In this case Suf𝑝 (𝐷, 𝑓 , 1, 𝐴) = 1, as the value 𝑎 appears only in-

side the cluster 𝐷1. Hence, using the the equality from item (1) of

Proposition 4.7,

Suf (𝐷,AC, 𝑓 ) = 1

|𝐷 |
∑︁
𝑐∈𝐶

Suf𝑝 (𝐷, 𝑓 , 𝑐,AC(𝑐)) = 1.

Now, suppose a tuple 𝑡2 is added to the cluster 𝐷2. That is, 𝐷
′ =

{𝑡1, 𝑡2}, 𝐷′
1
= {𝑡1} and 𝐷′

2
= {𝑡2}. Suppose further that 𝑡2 [𝐴] = 𝑎.

In this case, for 𝑖 ∈ {1, 2}

Suf𝑝 (𝐷′, 𝑓 , 𝑖, 𝐴) =
∑︁

𝑏∈dom𝐷′
𝑖
(𝐴)

(cnt𝐴=𝑏 (𝐷′𝑖 ))
2

cnt𝐴=𝑏 (𝐷′)
=

1

2

.

Hence, we find that

Suf (𝐷′,AC, 𝑓 ) = 1

|𝐷′ |
∑︁

𝑐∈{1,2}
Suf𝑝 (𝐷′, 𝑓 , 𝑐,AC(𝑐)) =

1

2

· ( 1
2

+ 1

2

)

=
1

2

.

□

Proposition 4.7. For an attribute combination AC,
(1) The following equality holds:

|𝐷 | · Suf (𝐷, 𝑓 ,AC) =
∑︁
𝑐∈𝐶

Suf𝑝 (𝐷, 𝑓 , 𝑐,AC(𝑐))

(2) The sensitivity of Suf𝑝 (𝐷, 𝑓 , 𝑐, 𝐴) is 1 and its range is [0, |𝐷𝑐 |].

Proof of (1). LetAC be an attribute combination. Denote𝐴𝑐 =

AC(𝑐). Observe that the right-hand-side of Equation (2) depends

only on the cluster assignment 𝑓 (𝑡), therefore it is equal across

all tuples 𝑡 of the same cluster. Thus, plugging in the definition of

𝑟 (𝑡 ′, 𝐴),

∑︁
𝑡 ∈𝐷

𝑚𝑠
𝐸 (𝑡) =

∑︁
𝑐∈𝐶
|𝐷𝑐 | ·

∑
𝑡 ′∈𝐷𝑐

cnt𝐴𝑐=𝑡
′ [𝐴𝑐 ] (𝐷𝑐 )

cnt𝐴𝑐=𝑡 [′𝐴𝑐 ] (𝐷 )∑
𝑡 ′∈𝐷

cnt𝐴𝑐=𝑡
′ [𝐴𝑐 ] (𝐷𝑐 )

cnt𝐴𝑐=𝑡 [′𝐴𝑐 ] (𝐷 )

. (4)

Let us consider each cluster separately, and observe that each

value cnt𝐴𝑐=𝑎 (𝐷𝑐 )/cnt𝐴𝑐=𝑎 (𝐷) appears in the numerator exactly

cnt𝐴𝑐=𝑎 (𝐷𝑐 ) times, and cnt𝐴𝑐=𝑎 (𝐷) times in the denominator. Hence,

by changing the order of summation∑
𝑡 ∈𝐷𝑐

cnt𝐴𝑐=𝑡
′ [𝐴𝑐 ] (𝐷𝑐 )

cnt𝐴𝑐=𝑡 [′𝐴𝑐 ] (𝐷 )∑
𝑡 ′∈𝐷

cnt𝐴𝑐=𝑡
′ [𝐴𝑐 ] (𝐷𝑐 )

cnt𝐴𝑐=𝑡 [′𝐴𝑐 ] (𝐷 )

=

∑
𝑎∈dom𝐷𝑐 (𝐴)

cnt𝐴𝑐=𝑎 (𝐷𝑐 ) ·
cnt𝐴𝑐=𝑎 (𝐷𝑐 )
cnt𝐴𝑐=𝑎 (𝐷 )∑

𝑎∈dom𝐷 (𝐴𝑐 )
cnt𝐴𝑐=𝑎 (𝐷) ·

cnt𝐴𝑐=𝑎 (𝐷𝑐 )
cnt𝐴𝑐=𝑎 (𝐷 )

=

∑
𝑎∈dom𝐷𝑐 (𝐴𝑐 )

(cnt𝐴𝑐=𝑎 (𝐷𝑐 ) )2
cnt𝐴𝑐=𝑎 (𝐷 )∑

𝑎∈dom𝐷 (𝐴𝑐 )
cnt𝐴𝑐=𝑎 (𝐷𝑐 )

Since the denominator equals |𝐷𝑐 |, the following equality holds:

=
1

|𝐷𝑐 |
∑︁

𝑎∈dom𝐷𝑐 (𝐴𝑐 )

(cnt𝐴𝑐=𝑎 (𝐷𝑐 ))2

cnt𝐴𝑐=𝑎 (𝐷)

=
1

|𝐷𝑐 |
Suf𝑝 (𝐷, 𝑓 , 𝑐, 𝐴) .

The proposition follows by substituting the equality into Equa-

tion (4). □

To prove item (2) of Proposition 4.7, we introduce the following

to lemmas.

Lemma A.6. The range of Suf𝑝 (𝐷, 𝑓 , 𝑐, 𝐴) is [0, |𝐷𝑐 |].

Proof. We have

Suf𝑝 (𝐷, 𝑓 , 𝑐, 𝐴) =
∑︁

𝑎∈dom𝐷𝑐 (𝐴)

cnt𝐴=𝑎 (𝐷𝑐 )2
cnt𝐴=𝑎 (𝐷)

≤
∑︁

𝑎∈dom𝐷𝑐 (𝐴)
cnt𝐴=𝑎 (𝐷𝑐 )

= |𝐷𝑐 |

where the inequality holds since cnt𝐴=𝑎 (𝐷𝑐 ) ≤ cnt𝐴=𝑎 (𝐷). □

Lemma A.7. Let 𝑎, 𝑏 ∈ R such that 𝑏 > 0 and 0 ≤ 𝑎 ≤ 𝑏. Then

(i)

���𝑎2
𝑏
− (𝑎+1)

2

𝑏+1

��� ≤ 1,

(ii)

���𝑎2
𝑏
− 𝑎2

𝑏+1

��� ≤ 1
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Proof. For item (i), observe that our assumption 𝑎 ≤ 𝑏 implies

that
(𝑎+1)2
𝑏+1 ≥

𝑎2

𝑏
. Indeed,

𝑎2

𝑏
=
𝑎2 (𝑏 + 1)
𝑏 (𝑏 + 1)

=
𝑎2𝑏 + 𝑎2
𝑏 (𝑏 + 1) ≤

𝑎2𝑏 + 2𝑎𝑏 + 𝑏
𝑏 (𝑏 + 1) =

𝑏 (𝑎2 + 2𝑎 + 1)
𝑏 (𝑏 + 1) =

(𝑎 + 1)2
𝑏 + 1 .

where the in the inequality we used 𝑎2 ≤ 𝑎𝑏 ≤ 2𝑎𝑏 + 𝑏. Now, we
have

(𝑎 + 1)2
𝑏 + 1 − 𝑎2

𝑏
=
𝑏 (𝑎 + 1)2 − 𝑎2 (𝑏 + 1)

𝑏 (𝑏 + 1)

=
2𝑎𝑏 + 𝑏 − 𝑎2
𝑏 (𝑏 + 1) ≤ 𝑏2 + 𝑏

𝑏 (𝑏 + 1) = 1

where the inequality follows from 2𝑎𝑏 − 𝑎2 ≤ 𝑏2 which holds for

any 𝑎, 𝑏 ∈ R.
For (ii), note that

𝑎2

𝑏
− 𝑎2

𝑏 + 1 =
𝑎2

𝑏 (𝑏 + 1) < 1

as 𝑎 ≤ 𝑏. □

Proof of Proposition 4.7 item (2). Let 𝑓 : dom(𝑅) → 𝐶 be a

clustering function, and 𝑐 ∈ 𝐶 be a cluster label. Fix an attribute 𝐴.

Let 𝐷∼𝐷′ be two neighboring datasets such that 𝐷′ = 𝐷 ∪ {𝑡}. Let
𝐷𝑐 (respectively, 𝐷

′
𝑐 ) denote the set of tuples in 𝐷 (respectively, 𝐷′)

that are mapped to 𝑐 by the function 𝑓 , and note that 𝐷′𝑐 is either
𝐷𝑐 or 𝐷𝑐 ∪ {𝑡}. First, note that if 𝐷𝑐 is empty,��

Suf𝑝 (𝐷, 𝑓 , 𝑐, 𝐴) − Suf𝑝 (𝐷′, 𝑓 , 𝑐, 𝐴)
�� ≤ 1.

Indeed, in this case

��𝐷′𝑐 �� ≤ 1, and by LemmaA.6we have Suf𝑝 (𝐷, 𝑓 , 𝑐, 𝐴) =
0 and Suf𝑝 (𝐷′, 𝐷′𝑐 , 𝐴) ≤ 1.

Second, if cnt𝐴=𝑡 [𝐴] (𝐷) = 0, then clearly cnt𝐴=𝑡 [𝐴] (𝐷𝑐 ) = 0

and cnt𝐴=𝑡 [𝐴] (𝐷′𝑐 ) ≤ 1. In this case��
Suf𝑝 (𝐷, 𝑓 , 𝑐, 𝐴) − Suf𝑝 (𝐷′, 𝑓 , 𝑐, 𝐴)

��
=

�������
∑︁

𝑎∈dom𝐷𝑐 (𝐴)

cnt𝐴=𝑎 (𝐷𝑐 )2
cnt𝐴=𝑎 (𝐷)

−
∑︁

𝑎∈dom𝐷′𝑐 (𝐴)

cnt𝐴=𝑎 (𝐷′𝑐 )2
cnt𝐴=𝑎 (𝐷′)

�������
=

cnt𝐴=𝑡 [𝐴] (𝐷′𝑐 )2

cnt𝐴=𝑡 [𝐴] (𝐷′)
≤ 1.

where the second equality holds because all summands are identical

in both sums, except for the term corresponding to 𝑎 = 𝑡 [𝐴], which
appears only in the second sum. The inequality holds since the

numerator is at most 1.

Hence, we assume that𝐷𝑐 is not empty and that cnt𝐴=𝑡 [𝐴] (𝐷) >
0. We consider two cases according to whether or not 𝑡 is added to

𝐷𝑐 .

First assume that 𝐷′𝑐 = 𝐷𝑐 . We have��
Suf𝑝 (𝐷, 𝑓 , 𝑐, 𝐴) − Suf𝑝 (𝐷′, 𝑓 , 𝑐, 𝐴)

��
=

����� cnt𝐴=𝑡 [𝐴] (𝐷𝑐 )2

cnt𝐴=𝑡 [𝐴] (𝐷)
−

cnt𝐴=𝑡 [𝐴] (𝐷𝑐 )2

cnt𝐴=𝑡 [𝐴] (𝐷) + 1

����� ≤ 1

where in the equality we have used that cnt𝐴=𝑎 (𝐷𝑐 ) = cnt𝐴=𝑎 (𝐷′𝑐 )
for all 𝑎 since 𝐷′𝑐 = 𝐷𝑐 . We also used that the only summand in the

definition of Suf𝑝 that changes is the one corresponding to 𝑡 [𝐴].
The inequality uses item (i) of Lemma A.7.

If 𝐷′𝑐 = 𝐷𝑐 ∪ {𝑡}, we use item (ii) of Lemma A.7 to obtain��
Suf𝑝 (𝐷, 𝑓 , 𝑐, 𝐴) − Suf𝑝 (𝐷′, 𝑓 , 𝑐, 𝐴)

��
=

����� cnt𝐴=𝑡 [𝐴] (𝐷𝑐 )2

cnt𝐴=𝑡 [𝐴] (𝐷)
−
(cnt𝐴=𝑡 [𝐴] (𝐷𝑐 ) + 1)2

cnt𝐴=𝑡 [𝐴] (𝐷) + 1

����� ≤ 1.

□

A.3 Diversity
We begin with a sensitivity analysis of the diversity function from

prior work, and proceed with the analysis of our low sensitivity

diversity measure (Definition 4.9).

The diversity from [8] is defined as follows. LetAC : 𝐶 → A be

an attribute combination. For an attribute𝐴, let Let𝐸𝑥𝑝𝐵𝑦 (AC, 𝐴) =
AC−1 ({𝐴}). That is, the set of cluster labels assigned to 𝐴 by AC
(which can also by empty).

For a finite set 𝑆 , let 𝑃𝑒𝑟𝑚(𝑆) denote its set of permutations,

containing all bijections 𝑝 : {1, . . . , |𝑆 |} → 𝑆 . For a permutation

𝑝 ∈ 𝑃𝑒𝑟𝑚(𝐸𝑥𝑝𝐵𝑦 (AC, 𝐴)), its diversity is defined as [8]:

𝑃𝑒𝑟𝑚𝐷𝑖𝑣𝐴 (𝑝) =
|𝐸𝑥𝑝𝐵𝑦 (AC,𝐴) |∑︁

𝑖=1

min

𝑗<𝑖
TVD(𝜋𝐴 (𝐷𝑝 (𝑖 ) , 𝜋𝐴 (𝐷𝑝 ( 𝑗 ) ))

and if |𝐸𝑥𝑝𝐵𝑦 (AC, 𝐴) | = 1, 𝑃𝑒𝑟𝑚𝐷𝑖𝑣𝐴 (𝑝) is set as 1.
Now, the diversity measure is defined as

6

Div(𝐷, 𝑓 ,AC) =
∑︁
𝐴∈A

∑︁
𝑝∈𝑃𝑒𝑟𝑚 (𝐸𝑥𝑝𝐵𝑦 (AC,𝐴) )

𝑃𝑒𝑟𝑚𝐷𝑖𝑣𝐴 (𝑝)
|𝐸𝑥𝑝𝐵𝑦 (AC, 𝐴) |!

Proposition A.8. The sensitivity of Div(𝐷, 𝑓 ,AC) is at least 1

2

and its range is [0, |𝐶 |].

Note that since the number of clusters |𝐶 | is typically a small

constant, the sensitivity is relatively high compared to the range.

Proof. Let 𝐷 be a dataset of size 𝑛 and 𝑓 : dom(𝑅) → 𝐶 be a

clustering function such that 𝐷1 = {𝑡1} is a cluster of size 1. Let 𝐴
be an attribute and suppose that there exists 𝑎 ∈ dom(𝐴) such that

𝑡 [𝐴] = 𝑎 for all tuples 𝑡 ∈ 𝐷 . Let AC be an attribute combination

mapping all cluster labels to 𝐴.

In this case, we have 𝐸𝑥𝑝𝐵𝑦 (AC, 𝐴) = 𝐶 . Moreover, for any

𝑐, 𝑐′ ∈ 𝐶 we have that TVD(𝜋𝐴 (𝐷𝑐 ), 𝜋𝐴 (𝐷𝑐′ )) = 0, as the dis-

tributions of values of the column 𝐴 is identical among all clus-

ters. Therefore, for any permutation 𝑝 ∈ 𝑃𝑒𝑟𝑚(𝐶), we find that

𝑃𝑒𝑟𝑚𝐷𝑖𝑣𝐴 (𝑝) = 0. Hence, Div(𝐷, 𝑓 ,AC) = 0.

Now, suppose a new tuple is added to cluster 1. Denote 𝐷′ =
𝐷 ∪ {𝑡2} and 𝐷′

1
= {𝑡1, 𝑡2}. Suppose further that 𝑡2 [𝐴] = 𝑎′ for

𝑎′ ≠ 𝑎. Now, for every 𝑐 ≠ 1 we have

TVD(𝜋𝐴 (𝐷1), 𝜋𝐴 (𝐷𝑐 )) =
1

2

(5)

and for every 𝑐, 𝑐′ ∈ 𝐶 \ {1} we have
TVD(𝜋𝐴 (𝐷𝑐 ), 𝜋𝐴 (𝐷𝑐′ )) = 0 (6)

6
to obtain a value between 0 and 1, this function can be normalized by the number of

clusters |𝐶 | .
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as for other clusters the distribution of values is unchanged. Hence,

for any permutation 𝑝 ∈ 𝑃𝑒𝑟𝑚(𝐶), we find that

𝑃𝑒𝑟𝑚𝐷𝑖𝑣𝐴 (𝑝) =
|𝐶 |∑︁
𝑖=1

min

𝑗<𝑖
TVD(𝜋𝐴 (𝐷𝑝 (𝑖 ) , 𝜋𝐴 (𝐷𝑝 ( 𝑗 ) )) =

1

2

,

where we used that exactly one of the summands has the form

(5) and the rest have the form (6). Therefore, we conclude that

Div(𝐷, 𝑓 ,AC) = 1/2.
For the range bound, observe that Div(𝐷, 𝑓 ,AC) is maximized

when all pairwise distances equal 1. This can occur, for instance,

when AC maps each cluster to a distinct attribute. Alternatively,

when any two clusters assigned with the same attribute 𝐴 satisfy

TVD(𝜋𝐴 (𝐷1), 𝜋𝐴 (𝐷𝑐 )) = 1. Assuming this is the case, we have

𝑃𝑒𝑟𝑚𝐷𝑖𝑣𝐴 (𝑝) =
|𝐸𝑥𝑝𝐵𝑦 (AC,𝐴) |∑︁

𝑖=1

1 = |𝐸𝑥𝑝𝐵𝑦 (AC, 𝐴) | .

Thus,

Div(𝐷, 𝑓 ,AC) =
∑︁
𝐴∈A

∑︁
𝑝∈𝑃𝑒𝑟𝑚 (𝐸𝑥𝑝𝐵𝑦 (AC,𝐴) )

𝑃𝑒𝑟𝑚𝐷𝑖𝑣𝐴 (𝑝)
|𝐸𝑥𝑝𝐵𝑦 (AC, 𝐴) |!

=
∑︁
𝐴∈A

∑︁
𝑝∈𝑃𝑒𝑟𝑚 (𝐸𝑥𝑝𝐵𝑦 (AC,𝐴) )

|𝐸𝑥𝑝𝐵𝑦 (AC, 𝐴) |
|𝐸𝑥𝑝𝐵𝑦 (AC, 𝐴) |!

=
∑︁
𝐴∈A

|𝐸𝑥𝑝𝐵𝑦 (AC, 𝐴) |

= |𝐶 | .

□

We now proceed with the sensitivity analysis of our diversity

measure (Definition 4.9).

Lemma A.9. For two clusters 𝐷𝑐 , 𝐷𝑐′ ⊆ 𝐷 and attributes 𝐴𝑐 , 𝐴𝑐′ ,

it holds that 𝑑 (𝐷, 𝑓 , 𝑐, 𝑐′, 𝐴𝑐 , 𝐴𝑐′ ) ∈ [0,min{|𝐷𝑐 |, |𝐷𝑐′ |}]

Proof. If one of the two clusters is empty, or if 𝐴𝑐 ≠ 𝐴𝑐′ , then

the claim trivially holds. Hence, we assume that both are not empty

and that 𝐴𝑐 = 𝐴𝑐′ = 𝐴. In this case

1

2

∑︁
𝑎∈dom(𝐴)

���� cnt𝐴=𝑎 (𝐷𝑐 )
max{|𝐷𝑐 | , 1}

− cnt𝐴=𝑎 (𝐷𝑐′ )
max{|𝐷𝑐′ |, 1}

����
≤ 1

2

∑︁
𝑎∈dom(𝐴)

���� cnt𝐴=𝑎 (𝐷𝑐 )
|𝐷𝑐 |

���� + 1

2

∑︁
𝑎∈dom(𝐴)

���� cnt𝐴=𝑎 (𝐷𝑐′ )
|𝐷𝑐′ |

����
=

1

2

+ 1

2

= 1

and therefore 𝑑 (𝐷, 𝑓 , 𝑐, 𝑐′, 𝐴𝑐 , 𝐴𝑐′ ) ≤ min{|𝐷𝑐 |, |𝐷𝑐′ |}. □

Proposition A.10. 𝑑 has sensitivity 1.

The proof is similar to that of Proposition 4.4, with the main

difference being that we now consider the distance between his-

tograms of disjoint subsets of the data, instead of one subset and

the entire dataset.

Proof. Let 𝑓 : dom(𝑅) → 𝐶 be a clustering function, and

𝑐, 𝑐′ ∈ 𝐶 be two cluster labels. Fix attributes 𝐴𝑐 , 𝐴𝑐′ , and let 𝐷∼𝐷′
be neighboring datasets such that 𝐷′ = 𝐷 ∪ {𝑡}.

Let𝐷𝑐 and𝐷𝑐′ (respectively,𝐷
′
𝑐 and𝐷

′
𝑐 ) denote the sets of tuples

in 𝐷 (respectively, 𝐷′) that are mapped to 𝑐 and 𝑐′ by the function

𝑓 .

First, observe thatwhen𝐴𝑐 ≠ 𝐴𝑐′ , we have𝑑 (𝐷, 𝑓 , 𝑐, 𝑐′, 𝐴𝑐 , 𝐴𝑐′ ) =
min{|𝐷𝑐 |, |𝐷𝑐′ |}, which changes by at most 1 when we add or re-

move one tuple from 𝐷 . Hence, we proceed with the assumption

that 𝐴𝑐 = 𝐴𝑐′ = 𝐴. To simplify notation, we let 𝑑 (𝐷, 𝑐, 𝑐′, 𝐴) =
𝑑 (𝐷, 𝑓 , 𝑐, 𝑐′, 𝐴,𝐴). If 𝑡 has not been added to either cluster, i.e,

𝐷𝑐 = 𝐷′𝑐 and 𝐷𝑐′ = 𝐷′
𝑐′ , then clearly��𝑑 (𝐷, 𝑐, 𝑐′, 𝐴) − 𝑑 (𝐷′, 𝑐, 𝑐′, 𝐴)�� = 0.

Otherwise, consider the case that 𝑡 has been added to one of the

clusters. Without loss of generality, suppose that 𝐷′
𝑐′ = 𝐷𝑐′ ∪ {𝑡}

and 𝐷′𝑐 = 𝐷𝑐 . If either of 𝐷𝑐 or 𝐷𝑐′ is empty, then by Lemma A.9,

we have 𝑑 (𝐷𝑐 , 𝐷𝑐′ , 𝐴) = 0, and 𝑑 (𝐷𝑐 , 𝐷
′
𝑐′ , 𝐴) ≤ 1, and so��𝑑 (𝐷, 𝑐, 𝑐′, 𝐴) − 𝑑 (𝐷′, 𝑐, 𝑐′, 𝐴)�� ≤ 1.

Hence, we proceed with the assumption that both are not empty.

Denote 𝑎 = 𝑡 [𝐴], and let ℎ𝑎 = ℎ𝐴 (𝑡) be the |dom(𝐴) |-dimensional

histogram with 1 in its 𝑎’th entry and 0 elsewhere. First, consider

the case that |𝐷𝑐 | ≤ |𝐷𝑐′ |. Recalling that |𝐷′
𝑐′ | = |𝐷𝑐′ | + 1, we have��𝑑 (𝐷, 𝑐, 𝑐′, 𝐴) − 𝑑 (𝐷′, 𝑐, 𝑐′, 𝐴)��

=
1

2

����



ℎ𝐴 (𝐷𝑐 ) −
|𝐷𝑐 |
|𝐷𝑐′ |

ℎ𝐴 (𝐷𝑐′ )





1

−




ℎ𝐴 (𝐷𝑐 ) −

|𝐷𝑐 |
|𝐷𝑐′ | + 1

ℎ𝐴 (𝐷′𝑐′ )





1

����
By the triangle inequality,

≤ 1

2





ℎ𝐴 (𝐷𝑐 ) −
|𝐷𝑐 |
|𝐷𝑐′ |

ℎ𝐴 (𝐷𝑐′ ) − ℎ𝐴 (𝐷𝑐 ) +
|𝐷𝑐 |
|𝐷𝑐′ | + 1

ℎ𝐴 (𝐷′𝑐′ )






Substituting ℎ𝐴 (𝐷′𝑐′ ) = ℎ𝐴 (𝐷𝑐′ ) + ℎ𝑎 into the inequality above, we

obtain

=
1

2





 |𝐷𝑐 |
|𝐷𝑐′ | + 1

ℎ𝑎 −
(
|𝐷𝑐 |
|𝐷𝑐′ |

− |𝐷𝑐 |
|𝐷𝑐′ | + 1

)
ℎ𝐴 (𝐷𝑐′ )






1

Applying the triangle inequality and noting that
|𝐷𝑐 |
|𝐷𝑐′ | −

|𝐷𝑐 |
|𝐷𝑐′ |+1 =

|𝐷𝑐 |
|𝐷𝑐′ | ( |𝐷𝑐′ |+1) , we have

≤ 1

2

(
∥ℎ𝑎 ∥1 +

|𝐷𝑐 |
|𝐷𝑐′ | ( |𝐷𝑐′ | + 1)

∥ℎ(𝐷𝑐′ )∥1
)

substituting ∥ℎ𝑎 ∥1 = 1 and ∥ℎ(𝐷𝑐′ )∥1 = |𝐷𝑐′ |,

=
1

2

(
1 + |𝐷𝑐 | · |𝐷𝑐′ |
|𝐷𝑐′ | ( |𝐷𝑐′ | + 1)

)
≤ 1

where we have also used our assumption that |𝐷𝑐 | ≤ |𝐷𝑐′ |.
Now, consider the case that |𝐷𝑐 | > |𝐷𝑐′ |, and therefore also

|𝐷𝑐 | ≥ |𝐷′𝑐′ | = |𝐷𝑐′ | + 1. We have��𝑑 (𝐷, 𝑐, 𝑐′, 𝐴) − 𝑑 (𝐷′, 𝑐, 𝑐′, 𝐴)��
=

1

2

����



 |𝐷𝑐′ |
|𝐷𝑐 |

ℎ𝐴 (𝐷𝑐 ) − ℎ𝐴 (𝐷𝑐′ )





1

−




 |𝐷𝑐′ | + 1
|𝐷𝑐 |

ℎ𝐴 (𝐷𝑐 ) − ℎ𝐴 (𝐷′𝑐′ )





1

����
By the triangle inequality,

≤ 1

2





 |𝐷𝑐′ |
|𝐷𝑐 |

ℎ𝐴 (𝐷𝑐 ) − ℎ𝐴 (𝐷𝑐′ ) −
|𝐷𝑐′ | + 1
|𝐷𝑐 |

ℎ𝐴 (𝐷𝑐 ) + ℎ𝐴 (𝐷′𝑐′ )





1
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Substituting ℎ𝐴 (𝐷′𝑐′ ) = ℎ𝐴 (𝐷𝑐′ ) +ℎ𝑎 into the inequality above and

rearranging, we obtain

≤ 1

2





 −1|𝐷𝑐 |
ℎ𝐴 (𝐷𝑐 ) + ℎ𝑎






1

Next, we once again use ∥ℎ𝑎 ∥1 = 1 and ∥ℎ(𝐷𝑐 )∥1 = |𝐷𝑐 |

≤ 1

2

(
1

|𝐷𝑐 |
∥ℎ𝐴 (𝐷𝑐 )∥1 + ∥ℎ𝑎 ∥1

)
= 1

□

Proposition 4.10. The sensitivity of Div𝑝 is bounded by 1. More-

over, its range is [0, 𝑅Div] where 𝑅Div = 1

( |𝐶 |
2
)
∑ |𝐶 |
𝑖=1
( |𝐶 | − 𝑖)

��𝐷𝑐𝑖

��
is a

weighted average of the cluster sizes, and |𝐷𝑐𝑖 | ≤ |𝐷𝑐𝑖+1 |.

Proof. The sensitivity bound follows from Proposition A.10

using Lemma A.3, as Div𝑝 is a convex combination of sensitivity-1

functions. For the range bound, note that 𝑑 (𝐷, 𝑓 , 𝑐, 𝑐′, 𝐴𝑐 , 𝐴𝑐′ ) at-
tains its upper-bound (Lemma A.9), in particular, when 𝐴𝑐 ≠ 𝐴𝑐′ .

Hence, LetAC be an attribute combination assigning a different at-

tribute for each cluster. It follows that Div𝑝 is maximized, attaining

value

1( |𝐶 |
2

) ∑︁
{𝑐,𝑐′ }⊆𝐶

min{|𝐷𝑐 |, |𝐷𝑐′ |}. (7)

Now, let |𝐷𝑐1 | ≤ · · · ≤ |𝐷𝑐 |𝐶 | | be an ordering of the clusters by

increasing size. For each 𝑖 = 1, . . . , |𝐶 |, the value |𝐷𝑐𝑖 | appears as
a summand in (7) |𝐶 | − 𝑖 times, each for a coupling of 𝑐𝑖 with 𝑐 𝑗
for 𝑗 < 𝑖 . By changing the order of summation, we obtain that (7)

equals

1( |𝐶 |
2

) |𝐶 |∑︁
𝑖=1

( |𝐶 | − 𝑖)
��𝐷𝑐𝑖

��
□

A.4 Combining All Quality Functions
Proposition 4.12. Score𝛾 (𝐷, 𝑓 , 𝑐, 𝐴) has sensitivity bounded by

1 and its range is [0, |𝐷𝑐 |].

Proof. The proposition follows directly from Lemma A.3 and

the sensitivity bounds of the sufficiency and interestingness func-

tions (Proposition 4.4, Proposition 4.7), as Score𝛾 is a convex com-

bination of the two. □

Proposition 4.14. GlScore𝜆 has sensitivity bounded by 1. More-

over, its range is [0, 𝑅
GlScore𝜆

] where

𝑅
GlScore𝜆

= (𝜆Int + 𝜆Suf ) ·
1

|𝐶 |
∑︁
𝑐∈𝐶
|𝐷𝑐 | + 𝜆Div · 𝑅Div

is a weighted average of the cluster sizes, and 𝑅Div is defined as in

Proposition 4.10.

Proof. The proposition follows directly from Lemma A.3 and

the sensitivity bounds of the sufficiency, interestingness and diver-

sity functions (Proposition 4.4, Proposition 4.7, Proposition 4.10), as

GlScore𝜆 is a convex combination of the three. For the range bounds,

note that
1

|𝐶 |
∑
𝑐∈𝐶 Suf𝑝 (𝐷, 𝑓 , 𝑐, 𝐴) and 1

|𝐶 |
∑
𝑐∈𝐶 Suf𝑝 (𝐷, 𝑓 , 𝑐, 𝐴)

both have range [0, 1

|𝐶 |
∑
𝑐∈𝐶 |𝐷𝑐 |]. The range upper bound for

Div𝑝 , 𝑅Div𝑝 , is given by 𝑃𝑟𝑜𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 4.10. □

A.5 Proof of Proposition 5.1
Proposition 5.1. Given a clustering function 𝑓 , a set of attributes

A, a privacy parameter 𝜀𝐶𝑎𝑛𝑑𝑆𝑒𝑡 , non-negative hyperparameters

𝛾Int, 𝛾Suf that sum to 1, and a size parameter 𝑘 , the following holds:

(1) Algorithm 1 satisfies 𝜀𝐶𝑎𝑛𝑑𝑆𝑒𝑡 -DP.

(2) For 𝑐 ∈ 𝐶 , denote by OPT(ℓ )𝑐 the ℓ-th highest (true) score, and

by𝐴
(ℓ )
𝑐 the ℓ-th explanation attribute selected by Algorithm 1

to 𝑆𝑐 . For all 𝑐 and ℓ = 1, 2, . . . , 𝑘 , we have

Pr
[
Score(𝑐,𝐴 (ℓ )𝑐 ) ≤ OPT

(ℓ )
𝑐 − 2 |𝐶 | · 𝑘

𝜀𝐶𝑎𝑛𝑑𝑆𝑒𝑡

(ln |A | + 𝑡 )
]
≤ 𝑒−𝑡 .

where we denote Score(𝑐, 𝐴(ℓ )𝑐 ) = Score(𝐷, 𝑓 , 𝑐, 𝐴(ℓ )𝑐 )

Proof. (1) Privacy. For each cluster, the distribution of the

selected top-𝑘 is equivalent to iteratively applying 𝑘 exponential

mechanisms [15], where each satisfies 𝜀 = 𝜀𝐶𝑎𝑛𝑑𝑆𝑒𝑡/(|𝐶 | · 𝑘). Over-
all, we have |𝐶 | applications of Top-𝑘 , hence the output distribution
is equivalent to |𝐶 | · 𝑘 exponential mechanisms. by sequential com-

position (Proposition 2.7), Algorithm 1 satisfies overall 𝜀𝐶𝑎𝑛𝑑𝑆𝑒𝑡 -DP.

(2) Utility Bound. Let 𝑐 ∈ 𝐶 , and Aℓ be the set of remaining

attributes after the (ℓ − 1)-th selection for this cluster. The distribu-

tion over the selected sequence𝐴
(1)
𝑐 , . . . , 𝐴

(𝑘 )
𝑐 is equal to applying 𝑘

exponential mechanisms [15] where𝐴
(ℓ )
𝑐 is selected fromAℓ . Note

that we always have max𝐴∈Aℓ
Score(𝑐, 𝐴) ≥ OPT

(ℓ )
𝑐 . Hence, for

𝜀 = 𝜀𝐶𝑎𝑛𝑑𝑆𝑒𝑡/(|𝐶 | · 𝑘), we apply the utility theorem of exponential

mechanism (Theorem 3.11 in [19]) to obtain

Pr
[
Score(𝑐, 𝐴(ℓ )𝑐 ) ≤ OPT

(ℓ )
𝑐 − 2

𝜀
(ln |A| + 𝑡)

]
≤ Pr

[
Score(𝑐, 𝐴(ℓ )𝑐 ) ≤ max

𝐴∈Aℓ

Score(𝑐, 𝐴) − 2

𝜀
(ln |Aℓ | + 𝑡)

]
≤ 𝑒−𝑡

where we have used that ΔScore ≤ 1. □

B Generating Multiple Explanations per Cluster
In this section we show how DPClustX can be extended to output

multiple histograms per cluster in a global explanation. To this end,

we extend the definition of an attribute combination to a mapping

AC : 𝐶 → {𝑆 ⊆ A | |𝑆 | = ℓ}, assigning to each cluster label a set

of ℓ attributes. Our goal is thus to find a high-quality attribute com-

bination such that the histograms of the corresponding attributes

form a high-quality HBE, where the global explanation contains

ℓ histograms per cluster. This requires extending the global score

function Definition 4.13 to attribute combinations with larger out-

puts.

We measure the overall diversity as follows. Let

𝐶𝑎𝑛𝑑 (AC) = {(𝑐, 𝐴) | 𝑐 ∈ 𝐶,𝐴 ∈ AC(𝑐)}

and define

Divℓ (𝐷, 𝑓 ,AC) =
1( |𝐶𝑎𝑛𝑑 (AC) |
2

) ∑︁
(𝑐,𝐴),(𝑐′,𝐴′ )

𝑑 (𝐷, 𝑓 , 𝑐, 𝑐′, 𝐴𝑐 , 𝐴𝑐′ )

where the sum is over all different pairs {(𝑐, 𝐴), (𝑐′, 𝐴′)} ⊆ 𝐶𝑎𝑛𝑑 (AC).
Note that the definition coincides with Definition 4.9 when ℓ = 1.
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The sufficiency and interestingness in the global score function

Definition 4.13 were averages across all candidates. With the new

definition, they remain averages, but are now taken over a larger

set of candidates. Overall, we have:

GlScore𝜆 (𝐷, 𝑓 ,AC) = 𝜆Int · Intℓ (𝐷, 𝑓 ,AC) + 𝜆Suf · Sufℓ (𝐷, 𝑓 ,AC)
+ 𝜆Div · Divℓ (𝐷, 𝑓 ,AC)

where we extend

Intℓ (𝐷, 𝑓 ,AC) =
1

|𝐶𝑎𝑛𝑑 (AC)|
∑︁

(𝑐,𝐴) ∈𝐶𝑎𝑛𝑑 (AC)
Int𝑝 (𝐷, 𝑓 , 𝑐, 𝐴))

and

Sufℓ (𝐷, 𝑓 ,AC) =
1

|𝐶𝑎𝑛𝑑 (AC)|
∑︁

(𝑐,𝐴) ∈𝐶𝑎𝑛𝑑 (AC)
Suf𝑝 (𝐷, 𝑓 , 𝑐, 𝐴).

Note that the definition coincides with Definition 4.13 when ℓ = 1.

The sensitivity of this function is bounded by 1, as it remains a

convex combination of sensitivity-1 functions, with an analysis

analogous to that of Proposition 4.14.

Stage-1 of DPClustX is unchanged, as its purpose is to narrow

the search space to high-quality candidates for each cluster, which

then form the pool for a global explanation. For Stage-2, we may

use the exponential mechanism to select a high-scoring attribute

combination AC : 𝐶 → {𝑆 ⊆ A | |𝑆 | = ℓ} with respect to the

extended low sensitivity global score. Finally, As in the case of

ℓ = 1, noisy histograms are generated only for the |𝐶 | × ℓ selected
attributes.

However, the drawback of this approach is that the set of all pos-

sible attribute combinations, after the filtering performed in Stage-1,

now has a size of

(𝑘
ℓ

) |𝐶 |
. This size can be large, and computing the

global score for all attribute combinations may require significant

computational time. While the utility guarantee of Algorithm 1

remains the same, the candidate set provided to the exponential

mechanism in Algorithm 2 now has a size of

(𝑘
ℓ

) |𝐶 |
instead of 𝑘 |𝐶 | ,

resulting in a larger additive error term of the EM utility bound.

Indeed, letting OPT be the highest score of an attribute combination

AC : 𝐶 → {𝑆 ⊆ A | |𝑆 | = ℓ} and AC be the one selected by the

EM in Algorithm 2, Theorem 3.11 in [19] implies that

Pr
[
GlScore𝜆 (AC) ≤ OPT − 2 |𝐶 |

𝜀

(
ln

(
𝑘

ℓ

)
+ 𝑡

)]
≤ 𝑒−𝑡

C Supplementary Experiments
Pre-processing of the Diabetes dataset. To ensure the inter-

pretability of the generated histograms with a bounded number

of bins, we apply several preprocessing steps to the Diabetes dataset

[7].We remove the unique identifiers ‘patient_nbr‘ and ‘encounter
_id‘. Numerical attributes including ‘num_lab_procedures‘ and

‘num_medications‘ are binned. The attribute ‘medical_specialty‘
is mapped to broader categories such as “General Practice" and

“Surgery", following the categorization in [63] that introduced the

dataset. Additionally, each ICD code in the attributes ‘diag_1‘,
‘diag_2‘, and ‘diag_3‘ is replaced with its corresponding diag-

nostic category (e.g., values in the range 390–459 are mapped to

"Circulatory") according to the mapping defined in [63]. The pre-

processing code is publicly available in [1].

Pre-processing of the Stack Overflow dataset. We chose the

2018 Survey due to its larger sample size compared to more recent

years. Both numerical and categorical attributes were considered,

while attributes containing textual values or multiple-choice combi-

nations were excluded. One potential approach was to expand the

multiple-choice answers into binary attributes. However, this led

to a significant increase in dimensionality, causing the DP-k-means

algorithm to fail in clustering the data within a reasonable privacy

budget, and other methods to fail due to scalability limitations.

Additionally, we discard attributes with more than 60% of missing

values. The numerical attribute ‘ConvertedSalary‘ is binned. The
preprocessing code is available in [1].

C.1 Selected Attributes Quality score and Error
We present additional results for the Diabetes dataset with 3 and 7

clusters. Figure 11 shows the trend of𝑄𝑢𝑎𝑙𝑖𝑡𝑦 values of the selected

attribute combination as the total privacy budget 𝜀 varies. Figure 12

shows the trend ofMAE values of the selected attribute combination

as the total privacy budget 𝜀 varies.

C.2 Quality for different choices of weights
We present the missing empirical results on the Diabetes and the

Census datasets in Table 1.
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Figure 11: 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 values of the selected attribute combination for the Diabetes dataset, as the total privacy budget 𝜀 varies.
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Figure 12:MAE values of the selected attribute combination for the Diabetes dataset, as the total privacy budget 𝜀 varies.
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# Clusters Clustering Explainer Equal 𝜆Int = 0 𝜆Suf = 0 𝜆Div = 0

3 𝑘-means DPClustX 0.8176 0.9208 0.7882 0.7439

TabEE 0.8176 0.9208 0.7882 0.7439

𝑘-modes DPClustX 0.6076 0.7493 0.6618 0.4114

TabEE 0.6076 0.7493 0.6621 0.4114

Agglomerative DPClustX 0.7281 0.8291 0.7362 0.6547

TabEE 0.7281 0.8291 0.7362 0.6547

DP-𝑘-means DPClustX 0.7735 0.8701 0.7494 0.7010

TabEE 0.7735 0.8701 0.7662 0.7010

GMMs DPClustX 0.7515 0.8709 0.7563 0.6294

TabEE 0.7515 0.8709 0.7563 0.6294

5 𝑘-means DPClustX 0.6874 0.7498 0.7805 0.5319

TabEE 0.6874 0.7498 0.7805 0.5319

𝑘-modes DPClustX 0.5592 0.6615 0.6821 0.3500

TabEE 0.5639 0.6641 0.6828 0.3503

Agglomerative DPClustX 0.7255 0.7804 0.7899 0.6061

TabEE 0.7255 0.7836 0.7899 0.6061

DP-𝑘-means DPClustX 0.7735 0.8263 0.8310 0.6633

TabEE 0.7735 0.8263 0.8310 0.6633

GMMs DPClustX 0.8164 0.8708 0.8518 0.7267

TabEE 0.8164 0.8708 0.8518 0.7267

7 𝑘-means DPClustX 0.6664 0.7040 0.7893 0.5304

TabEE 0.6706 0.7063 0.7893 0.5307

𝑘-modes DPClustX 0.5613 0.6380 0.6994 0.3527

TabEE 0.5673 0.6461 0.7049 0.3533

Agglomerative DPClustX 0.6396 0.6957 0.7481 0.5068

TabEE 0.6438 0.6926 0.7630 0.5068

DP-𝑘-means DPClustX 0.7442 0.7696 0.8340 0.6429

TabEE 0.7474 0.7798 0.8340 0.6429

GMMs DPClustX 0.8440 0.8694 0.8967 0.7660

TabEE 0.8440 0.8694 0.8967 0.7660

(a) Diabetes dataset.

# Clusters Clustering Explainer Equal 𝜆Int = 0 𝜆Suf = 0 𝜆Div = 0

3 𝑘-means DPClustX 0.8785 0.9888 0.8289 0.8187

TabEE 0.8785 0.9888 0.8289 0.8187

𝑘-modes DPClustX 0.8749 0.9859 0.8265 0.8131

TabEE 0.8749 0.9859 0.8265 0.8131

DP-𝑘-means DPClustX 0.8889 1.0000 0.8333 0.8333

TabEE 0.8889 1.0000 0.8333 0.8333

GMMs DPClustX 0.5438 0.7122 0.6066 0.3157

TabEE 0.5438 0.7122 0.6066 0.3157

5 𝑘-means DPClustX 0.8637 0.9195 0.8768 0.7987

TabEE 0.8643 0.9197 0.8768 0.7987

𝑘-modes DPClustX 0.8247 0.8981 0.8390 0.7449

TabEE 0.8248 0.8981 0.8390 0.7449

DP-𝑘-means DPClustX 0.8827 0.9552 0.8541 0.8451

TabEE 0.8828 0.9658 0.8619 0.8451

GMMs DPClustX 0.4822 0.6296 0.6009 0.2258

TabEE 0.4820 0.6296 0.6009 0.2258

7 𝑘-means DPClustX 0.8521 0.8825 0.8995 0.7922

TabEE 0.8538 0.8865 0.9016 0.7922

𝑘-modes DPClustX 0.7798 0.8506 0.8293 0.6719

TabEE 0.7806 0.8513 0.8293 0.6726

DP-𝑘-means DPClustX 0.8981 0.9376 0.9053 0.8515

TabEE 0.8985 0.9376 0.9064 0.8515

GMMs DPClustX 0.4944 0.6174 0.6271 0.2430

TabEE 0.4944 0.6174 0.6271 0.2430

(b) Census dataset.

Table 1: 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 values for with different choices of parameters 𝜆Int, 𝜆Suf , and 𝜆Div.
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