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Abstract
Model stealing poses a significant security risk in
machine learning by enabling attackers to repli-
cate a black-box model without access to its
training data, thus jeopardizing intellectual prop-
erty and exposing sensitive information. Recent
methods that use pre-trained diffusion models
for data synthesis improve efficiency and per-
formance but rely heavily on manually crafted
prompts, limiting automation and scalability, es-
pecially for attackers with little expertise. To as-
sess the risks posed by open-source pre-trained
models, we propose a more realistic threat model
that eliminates the need for prompt design skills
or knowledge of class names. In this context,
we introduce Stealix, the first approach to per-
form model stealing without predefined prompts.
Stealix uses two open-source pre-trained mod-
els to infer the victim model’s data distribu-
tion, and iteratively refines prompts through a ge-
netic algorithm, progressively improving the pre-
cision and diversity of synthetic images. Our
experimental results demonstrate that Stealix
significantly outperforms other methods, even
those with access to class names or fine-grained
prompts, while operating under the same query
budget. These findings highlight the scalability
of our approach and suggest that the risks posed
by pre-trained generative models in model steal-
ing may be greater than previously recognized.1

1. Introduction
Model stealing allows attackers to replicate the function-
ality of machine learning models without direct access
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Figure 1: Impact of query datasets on stealing a satellite
image classifier: performance drops occur with dissimi-
lar datasets (Knockoff Nets + CIFAR-10) and challenging
prompt design (SD + manual). Stealix mitigates these is-
sues by leveraging victim-aware automatic prompt tuning.

to training data or model weights. By querying the vic-
tim model with hold-out datasets, the attacker can con-
struct a proxy model that behaves similarly to the origi-
nal by mimicking its predictions. This attack vector com-
promises the model owner’s intellectual property and may
expose sensitive information, posing both security and pri-
vacy risks (Beetham et al., 2022; Carlini et al., 2024).

Current model stealing methods for image classification
can be categorized based on the source of the queried im-
ages: (1) using publicly available images like Knockoff
Nets (Orekondy et al., 2019), (2) generating images by
training a Generative Adversarial Network (GAN) from
scratch (Truong et al., 2021; Sanyal et al., 2022), or
(3) synthesizing images by prompting pre-trained open-
source generative models (Shao et al., 2023; Hondru &
Ionescu, 2023). The latter uses models like stable diffu-
sion (SD) (Rombach et al., 2022) to achieve superior effi-
ciency by reducing the dependence on online data sources
and by eliminating the high computational cost of training
new generators. However, previous approaches often rely
on human-crafted prompts or class names to generate im-
ages. These methods fall short when the class names lack
context or fail to represent the victim’s data features accu-
rately. Attackers may also struggle to describe the target
data distribution due to limited knowledge or vague artic-
ulation. Furthermore, reliance on human intervention hin-
ders scalability and automation. These challenges are espe-
cially pronounced in specialized fields, where high-value
models are the most common. Therefore, research under
the current assumptions may oversimplify the problem and
underestimate the threat of model stealing facilitated by
pre-trained models, as shown in Figure 1.
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Figure 2: Overview of Stealix. Stealix begins with a real image as a seed and synthesizes images to aid model stealing by
iteratively refining prompts based on the victim’s responses. The synthesized images are then used to train a proxy model.

To address these limitations and accurately assess the risk,
we propose a more realistic threat model in which the
attacker lacks prior knowledge or expertise in designing
prompts for the victim’s data. This setup reflects practi-
cal attack scenarios, such as competitors or malicious ac-
tors with limited data but access to black-box model APIs.
Under these constraints, existing prompt-based approaches
struggle to generate diverse, class-specific queries, limiting
their ability to extract the victim model effectively.

In this context, we introduce Stealix, the first model
stealing attack that removes the need for human-crafted
prompts. Our method employs a text-to-image generative
model and a vision-language model to iteratively gener-
ate multiple refined prompts for each class, as depicted in
Figure 2. Unlike prior prompt optimization works (Wen
et al., 2024; Gal et al., 2023; Trabucco et al., 2024), which
do not consider the victim model’s predictions in optimiz-
ing prompts, our approach incorporates these predictions
during the optimization to address inconsistencies in im-
age classification and improve image diversity. We achieve
this with contrastive learning and evolutionary algorithms.
Specifically, the prompt describing the target class is opti-
mized under a contrastive loss using features extracted by
the vision-language model from the prompt itself and from
image triplets. To further improve the precision and diver-
sity of the prompts, we propose a proxy metric as the fitness
function to evaluate and evolve the prompts. In practice,
our approach requires only a single real image per class.
We show that this is sufficient to achieve new state-of-
the-art performance without requiring manual prompt engi-
neering; this assumption is realistic, as potential attackers,
typically competitors, often have limited data available, but
fail to synthesize more.

Contributions. (i) We present a practical threat model
that removes the need for prompt design expertise, reflect-
ing scalability needs in real-world settings. (ii) We pro-
pose Stealix, the first prompt-agnostic approach that iter-
atively refines prompts using a proxy metric. Statistical

analysis demonstrates a high correlation between the proxy
metric and the feature distance to the victim data. (iii)
Stealix surpasses methods using class names or human-
crafted prompts, improving attacker model accuracy by up
to 22.2% under a low query budget. (iv) Our findings reveal
critical risks in model stealing with open-source models,
underscoring the need for stronger defenses.

2. Related Works
Knowledge distillation. Knowledge distillation (KD) is
a model compression technique that trains smaller student
models to replicate the performance of larger teacher mod-
els, thereby reducing resource demands (Ba & Caruana,
2014; Hinton et al., 2015). Traditional KD relies on the
teacher’s training data to align the student with the same
distribution. When this data is unavailable due to practi-
cal constraints, surrogate datasets (Lopes et al., 2017) or
data-free KD with generators (Fang et al., 2019; Micaelli
& Storkey, 2019) are commonly used, which typically re-
quire white-box access for back-propagation. In contrast,
model stealing operates in a black-box setting, where the
attacker has limited knowledge of the victim model.

Model stealing. Model stealing seeks to replicate a vic-
tim model’s attributes, such as parameters, hyperparam-
eters (Wang & Gong, 2018; Tramèr et al., 2016), and
functionality (Oliynyk et al., 2023). Functionality steal-
ing involves training a proxy model to mimic the vic-
tim’s outputs, raising security concerns in image recog-
nition (Truong et al., 2021), natural language process-
ing (Krishna et al., 2020), robotics (Zhuang et al., 2024),
and multimodal radiology report generation (Shen et al.,
2025). Our work focuses on functionality stealing in im-
ages, where traditional methods achieve it by querying vic-
tim models using public datasets (Orekondy et al., 2019) or
synthetic images (Truong et al., 2021; Sanyal et al., 2022;
Beetham et al., 2022). As illustrated in Figure 1, these ap-
proaches are either constrained by query dataset similar-
ity or require millions of queries with substantial compu-
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tational costs. Recent approaches use pre-trained diffusion
models to reduce the query costs (Shao et al., 2023; Hondru
& Ionescu, 2023). For instance, Active Self-Paced Knowl-
edge Distillation (ASPKD) (Hondru & Ionescu, 2023) gen-
erates images using diffusion models, queries a subset
through the victim model, and pseudo-labels samples via
nearest-neighbor matching. However, these methods still
depend on class names or manual prompts, limiting their
practicality in specialized domains. Our approach intro-
duces automatic prompt refinement to minimize human in-
tervention and thus enhance effectiveness and scalability.

Personalized image synthesis. Prompt optimization can
capture the essence of specific images, enabling pre-trained
text-to-image models to generate personalized outputs.
Textual inversion (Gal et al., 2023) updates prompt embed-
dings with text-to-image models, while PEZ (Wen et al.,
2024) optimizes discrete prompts with vision-language
model. Notably, DA-Fusion (Trabucco et al., 2024) lever-
ages textual inversion to synthesize visually similar images
for data augmentation. While DA-Fusion is not designed
for model stealing, we extend it by replacing the origi-
nal class label with the victim model’s prediction. Un-
like existing approaches, which lack awareness of the vic-
tim model’s outputs and generate suboptimal queries, our
method explicitly incorporates victim feedback.

3. Threat Model
In this section, we formalize the threat model for model
stealing. We start with notations and definitions, describe
the victim’s capabilities, and outline the attacker’s goals
and knowledge, emphasizing the constraints that make
model stealing challenging.

Notations. Let D = {(xi, yi)} be the dataset used to
train an image classification model, where xi ∈ RH×W×C

represents input images with height H , width W , and
C channels, and yi ∈ {1, 2, . . . ,K} denotes the corre-
sponding class labels, with K being the total number of
classes. Each class is indexed by c ∈ {1, 2, . . . ,K}.
The pre-trained generative model G generates an image
x ∼ G(p, ϵ) from a given prompt p by denoising noise
ϵ drawn from a standard normal distribution ϵ ∼ N (0, 1).
For brevity, we denote this process as x ∼ G(p).

Victim model. The victim trains a classification model
V with parameters θv on a dataset DV , where images are
drawn from the victim data distribution x ∼ PV . Once
deployed, it operates as a black-box accessible for queries.
We assume the victim model provides only the top-1 pre-
dicted class as answer, thus already reducing the model
stealing risks by limiting the attack surface (Sanyal et al.,
2022). For a given input image x, y∗ = V (x; θv) ∈

{1, 2, . . . ,K} is the predicted class label.

Goal and knowledge of the attacker. The attacker’s ob-
jective is to train a surrogate model A(x; θa), parameter-
ized by θa that replicates the behavior of the victim model
V . The attacker has black-box access to V , allowing them
to query the model with images and receive the predicted
class labels. The attacker is constrained by a query bud-
get, representing the total number of queries available per
class, denoted as B. The attacker lacks knowledge of (i)
the architecture and parameters of V , (ii) the dataset DV

used to train V , and (iii) prompt design expertise. We also
limit the use of class names, as they may by chance serve as
good prompts; using them would diverge from the assump-
tion that the attacker lacks prompt design expertise. This
constraint significantly limits the attacker from leveraging
a generative model for efficient model stealing.

4. Approach: Stealix
This section details Stealix, formalizing the problem and
providing an overview in Section 4.1, followed by explana-
tions of its components in Sections 4.2 to 4.4.

4.1. Method Overview

The attacker’s goal is to optimize the parameters θa of a
surrogate model A to replicate the behavior of the victim
model V on the victim data distribution PV , achieving
comparable performance. This can be expressed by min-
imizing the loss between the outputs of the victim and sur-
rogate models over the victim’s data distribution under the
cross-entropy loss:

argmin
θa

E
x∼PV

[LCE (V (x), A(x))] . (1)

Without access to the victim data distribution PV , previous
methods (Shao et al., 2023; Hondru & Ionescu, 2023) turn
to generate high-quality images using a pre-trained text-to-
image model G with a prompt p. By designing prompts
to synthesize images similar to the victim data, the attacker
can effectively steal the model by minimizing loss on these
generated images:

argmin
θa

E
x∼G(p)

[LCE (V (x), A(x))] . (2)

Recall that for specialized tasks and models, the attacker
might be lacking the knowledge to design relevant prompts;
to address this challenge, we propose Stealix. Through
the use of genetic algorithms (Zames, 1981), Stealix itera-
tively generates multiple prompts that capture the diversity
of class-specific features recognized by the victim model.
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Figure 3: Prompt refinement (left) optimizes the prompt p using encoders T and I via Equation (3) to capture features
from seed image xs and positive image x+ while filtering out negatives from x−. Prompt consistency (right) evaluates p
with Equation (5) by prompting generative model G to synthesize images, which are classified by the victim model V to
update positive and negative sets. In the example, the negative feature “pool” is removed for class “bottle”.

More precisely, each iteration of our attack consists of three
steps. Prompt refinement uses a population of image
triplets St to optimize corresponding prompts. One ran-
domly initialized prompt is optimized per image triplet to
capture the target class features. The resulting prompts are
evaluated using prompt consistency, a fitness metric based
on how consistently the victim model classifies synthesized
images as the target class. Finally, prompt reproduction
evolves the next population of image triplets using a ge-
netic algorithm. For each iteration t, the population St =
{(xs

c,x
+
c ,x

−
c )

t
i}Ni=1, consisting of N image triplets, is built

using the image sets X s
c , X+

c , and X−
c , such that xs

c ∈ X s
c ,

x+
c ∈ X+

c , and x−
c ∈ X−

c . These sets are defined for each
class c: the seed set X s

c = {xs
c | V (xs

c) = c} contains real
images classified as c by the victim model; the positive set
X+

c = {x+
c | V (x+

c ) = c} has synthetic images classi-
fied as c; and the negative set X−

c = {x−
c | V (x−

c ) ̸= c}
includes synthetic images classified into other classes than
c. X+

c and X−
c are initially empty, and generated synthetic

images are added to these sets over iterations.

The three steps of the method are repeated until the query
budget B per class is exhausted (where B = |X+

c |+ |X−
c |)

(see Algorithm 1). Across K classes, this produces K ×
B synthetic images, which are used along with the seed
images to train the attacker model. We limit the number of
seed images the attacker needs to possess from each class
to one (|X s

c | = 1). The method steps are detailed below.

4.2. Prompt Refinement

Efficient model stealing requires synthesizing images that
are similar to the victim data, which in turn needs prompts
that capture the class-specific features learned by the vic-
tim model. To achieve this, we optimize the prompt to
emphasize attributes leading to correct classifications while

minimizing misleading features that cause incorrect predic-
tions, with a triplet of images {xs

c,x
+
c ,x

−
c }. This triplet,

along with a random prompt, is projected into a shared fea-
ture space using an image encoder I and a text encoder T
from a pre-trained vision-language model (Figure 3 left).
The prompt is then optimized by minimizing the similarity
loss between the prompt and image features, with guidance
from the victim model’s predictions:

min
p

∑
x∈{xs

c,x
+
c ,x−

c }

LSIM(I(x), T (p), V (x)), (3)

where the similarity loss LSIM is defined as:

LSIM =

{
1− cos(I(x), T (p)), if V (x) = c

max(0, cos(I(x), T (p))), if V (x) ̸= c.
(4)

If the triplet of images contains only the seed image,
the optimization objective degrades to PEZ (Wen et al.,
2024). We compare ours with PEZ in the ablative study
(Appendix D). This refinement process ensures that the
prompt captures salient attributes for accurate classification
while eliminating features that may lead to misclassifica-
tion. See Algorithm 2 in Appendix A for more details.

4.3. Prompt Consistency

To evaluate whether the optimized prompt effectively cap-
tures the features learned by the victim model, we propose
a proxy metric, prompt consistency (PC). Since direct ac-
cess to the victim data distribution is unavailable, this met-
ric serves as an indicator of distribution similarity and is
used for prompt reproduction. We assume that if a prompt
captures the latent features of the target class learned by
the victim model, the synthetic images will be consistently
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classified as the target class by the victim model, implying
a closer resemblance with the victim data. Based on this
assumption, PC measures how well a prompt generates im-
ages that match the target class c (Figure 3 right). Given
a prompt p, a batch of synthetic images {xi}Mi=1 ∼ G(p)
is generated, where M is the number of images. Prompt
consistency is computed as:

PC =
1

M

M∑
i=1

I(V (xi) = c), (5)

where I(V (xi) = c) is 1 if the victim model classifies xi as
class c, and 0 otherwise. In Section 5.2, we show there is a
strong correlation between PC and the L2 distance between
the feature vectors of real and generated images, validating
PC as an effective proxy metric for monitoring data similar-
ity and for prompt reproduction. The synthetic images are
also used to update the image sets X+

c and X−
c , while the

PC value is added to the fitness set F t. Since the prompt
is optimized with a triplet of images, the fitness value can
also be assigned to the corresponding triplet in St.

4.4. Prompt Reproduction

To generate diverse prompts that capture a broad range of
class-specific features recognized by the victim model, we
evolve the image triplet set St with X s

c , X+
c , and X−

c as
candidate set. The triplet with the highest fitness value
(PC) in St is selected as the elite, carried forward to the
next generation St+1 to guide the production of improved
triplets. To generate new triplets, Np triplets are selected
from St, where Np denotes the number of parents. This
is done by repeatedly sampling k triplets and selecting the
one with the highest fitness to form the parent set Sp, a pro-
cess known as tournament selection (Zames, 1981), where
k is the tournament size. Once the parent set is formed, two
parent triplets are selected, and their images are randomly
exchanged to create a new triplet. Each image in the new
triplet is replaced with a random sample from X s

c , X+
c , or

X−
c with a probability pm, encouraging exploration of the

candidate set. The newly generated triplet is added to St+1,
and this process is repeated until the population is fully up-
dated. See Algorithm 3 in Appendix A for details on the
prompt reproduction step.

5. Experiments
In this section, we introduce our experimental results, start-
ing with the experimental setup in Section 5.1, followed
by the results and analyses in Section 5.2. Finally, we ex-
emplify real-world model stealing on a model trained with
proprietary data in Section 5.3.

Algorithm 1 Stealix

1: Input: seed image set {X s
c }Kc=1, synthetic images amount M

for PC calculation, total query budget B per class, population
size N , victim model V , generative model G, image encoder
I and text encoder T

2: Output: Attacker model A
3: Initialize attacker model A
4: for each class c do
5: X+

c ← ∅, X−
c ← ∅, population index t ← 0, consumed

budget b← 0
6: // Initial S0 = {(xs

c)
0
i }Ni=1 as X+

c ,X−
c are empty.

7: St ← {(xs
c,x

+
c ,x

−
c )

t
i}Ni=1 from X s

c ,X+
c ,X−

c

8: while b < B do
9: Initialize the fitness score set F t ← ∅

10: for each triplet (xs
c,x

+
c ,x

−
c )

t
i in St do

11: if b ≥ B then
12: break
13: end if
14: // Optimize the prompt (Section 4.2)
15: pt

i ← PromptRefinement((xs
c,x

+
c ,x

−
c )

t
i, I, T )

16: // Synthesize images and get PC fitness (Section 4.3)
17: {xi}Mi=1 ∼ G(pt

i)

18: F t ← F t ∪ { 1
M

∑M
i=1 I(V (xi) = c)}

19: b← b+M
20: // Update the positive and negative sets
21: X+

c ← X+
c ∪ {xi | V (xi) = c, i ∈ {1, . . . ,M}}

22: X−
c ← X−

c ∪ {xi | V (xi) ̸= c, i ∈ {1, . . . ,M}}
23: end for
24: // Generate the next population (Section 4.4).
25: St+1 ← PromptReproduction(St,F t,X s

c ,X+
c ,X−

c )
26: t← t+ 1
27: end while
28: end for
29: Train model A with {X+

c ,X−
c ,X s

c }Kc=1 and their labels
30: return Attacker model A

5.1. Experimental Setup

Dataset. We train the victim model on four datasets:
EuroSAT (Helber et al., 2019), PASCAL VOC (Evering-
ham et al., 2010), DomainNet (Peng et al., 2019), and CI-
FAR10 (Alex, 2009). Each dataset is chosen for its spe-
cific challenges in evaluating model stealing attacks. Eu-
roSAT requires specialized prompts for satellite-based land
use classification, as class names alone fail to generate rel-
evant images. In PASCAL VOC, images are labeled by
the largest object, testing the ability to identify the pri-
mary target from the victim model’s prediction. Domain-
Net evaluates transfer learning across six diverse domains:
clipart, infograph, paintings, quickdraw, real images, and
sketches. A seed image is randomly chosen from one do-
main to test cross-domain generalization, using 10 of 345
classes for manageability. In CIFAR10, class names can
guide image synthesis, leading to strong baselines when
used by other methods, compared to ours, which does not.
See Appendix B for more details. We also introduce results
on two medical datasets in Appendix L, highlighting the
challenges when the diffusion model has limited domain-
specific knowledge.
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Victim model. All models use ResNet-34 follow-
ing Truong et al. (2021), with PASCAL using an ImageNet-
pretrained weights. Victim models are trained with SGD,
Nesterov with momentum 0.9, a 0.01 learning rate, 5 ×
10−4 weight decay, and cosine annealing for 50 epochs.

Stealix. We use OpenCLIP-ViT/H as the vision-language
model (Cherti et al., 2023) for prompt refinement, with a
learning rate of 0.1 and 500 optimization steps using the
AdamW optimizer. We employ Stable Diffusion-v2 (Rom-
bach et al., 2022) as the generative model, with a guid-
ance scale of 9 and 25 inference steps. PC evaluation uses
M = 10 images. Stable Diffusion-v2 is used across all
methods. In prompt reproduction, we set the population
size to N = 10, with Np = 5 parents selected via tour-
nament selection with a tournament size of k = 5, and
retain one elite per generation. The mutation probability
is set to pm = 0.6. Following prior work (Truong et al.,
2021), we use ResNet-18 as the attacker model. To fo-
cus on the impact of query data quality and ensure a fair
comparison across methods, we train the attacker model
using the same hyperparameters as the victim model with-
out tuning: 50 epochs with SGD. More attacker and victim
architectures are shown in Appendix G and Appendix H.
The experiments are run on a NVIDIA V100 GPU and an
AMD EPYC 7543 32-Core CPU. The computation time is
provided in Appendix C.

Baselines. We focus on a new, practical threat model that
lacks both prompt expertise and detailed class information.
Nevertheless, we compare our method with existing ap-
proaches designed for other threat models. Specifically,
we consider the following baselines. (i) DA-Fusion (Tra-
bucco et al., 2024) is adapted to train a soft prompt from
the seed image using textual inversion, then synthesize
query images with strength 1 and the same guidance scale
as our method; (ii) Real Guidance (He et al., 2023) uses
the prompt “a photo of a {class name}” to synthesize im-
ages given the seed image with strength 1 and same guid-
ance scale; (iii) ASPKD (Hondru & Ionescu, 2023) fol-
lows a three-stage process, first generating 5000 images per
class using Real Guidance, then querying the victim model
with a limited budget B, and finally pseudo-labeling the
remaining images with a nearest neighbors approach with
the attacker model; (iv) Knockoff Nets (Orekondy et al.,
2019) evaluates performance with randomly collected im-
ages by querying the CIFAR-10 victim model with Eu-
roSAT images and other victim models with CIFAR-10;
(v) DFME (Truong et al., 2021) is a data-free model steal-
ing method based on GANs that trains a generator from
scratch to adversarially generate samples to query the vic-
tim model. We report the result of DFME using a query
budget of 2 million per class. (vi) KD (Hinton et al.,
2015) serves as a reference upper bound, where the attacker
queries the victim model using its training data to evalu-

ate the best possible performance with data access. While
data augmentation without querying the victim model is
not model stealing, we include a comparison of attacker
model accuracy between model stealing and data augmen-
tation setups in Appendix K.

Evaluation metrics. We rely on two metrics: (i) the accu-
racy of the attacker model on the test set of the victim data,
which is standard for stealing classifiers (Orekondy et al.,
2019), and (ii) the prompt consistency (PC) of the synthe-
sized images. For Stealix, we report the best PC achieved
across varying query budgets. For Real Guidance and DA-
Fusion, where the prompt remains fixed, PC is measured
by querying 500 images per class. For ASPKD that uses
images synthesized by Real Guidance, PC is identical to
Real Guidance. PC is not applicable for KD, Knockoff,
and DFME, which do not involve text-to-image synthesis.
All experiments are repeated three times, with mean values
in the table and confidence intervals in the figure.

5.2. Experimental Results

Comparison with baselines. Table 1 compares the accu-
racy of the attacker model across methods for a query bud-
get of 500 per class (2M per class for DFME). Stealix con-
sistently outperforms all other methods. E.g., in CIFAR-
10, Stealix achieves 49.6% accuracy, a 22.2% improve-
ment over the second-best method, Real Guidance. In con-
trast, DFME has near-random accuracy on EuroSAT and
PASCAL due to its reliance on training a generator from
scratch with small perturbations, which are quantized when
interacting with real-world victim APIs (discussed in Ap-
pendix I). In PASCAL, Stealix even surpasses KD, where
the attacker has access to the victim data. This is because
KD is constrained by the limited victim data size (around
73 images per class), whereas Stealix generates additional
images and issues more queries. In Figure 4 we illus-
trate both the stolen model accuracy and PC across varying
query budgets. Stealix consistently achieves higher PC as
the query budget increases, particularly in EuroSAT, where
class names alone are insufficient for generating relevant
images. Although Real Guidance initially attains higher
PC in PASCAL and DomainNet, Stealix ultimately sur-
passes it with larger query budgets. In CIFAR-10, Stealix
reaches nearly 100% PC. In Appendix G and Appendix H,
our method consistently outperforms others with different
attacker and victim architectures.

Limitations of human-crafted prompts. Even when at-
tackers can craft prompts for the seed image based on the
prior knowledge of class names, these prompts, though log-
ically accurate from a human perspective, may still fail to
capture the nuanced features learned by the victim model.
To evaluate this, we utilize InstructBLIP (Dai et al., 2023),
a pre-trained vision-language model, as a proxy for a hu-
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Table 1: Attacker model accuracy with a query budget of 500 per class; DFME uses 2M.

Method #Seed images Class name EuroSAT PASCAL CIFAR10 DomainNet

Victim - - 98.2% (1.00x) 82.7% (1.00x) 93.8% (1.00x) 83.9% (1.00x)
(KD) - - 95.6% (0.97x) 34.6% (0.42x) 76.7% (0.82x) 74.6% (0.89x)

Knockoff 0 ✗ 40.1% (0.41x) 22.3% (0.27x) 24.4% (0.26x) 39.3% (0.47x)
DFME 0 ✗ 11.1% (0.11x) 6.6% (0.08x) 23.7% (0.25x) 18.5% (0.22x)
ASPKD 0 ✓ 39.2% (0.40x) 25.7% (0.31x) 27.1% (0.29x) 27.3% (0.32x)

Real Guidance 1 ✓ 51.2% (0.52x) 24.0% (0.29x) 27.4% (0.29x) 31.9% (0.38x)
DA-Fusion 1 ✗ 59.0% (0.60x) 16.4% (0.20x) 26.7% (0.28x) 28.4% (0.34x)

Stealix (ours) 1 ✗ 65.9% (0.67x) 40.0% (0.48x) 49.6% (0.53x) 48.4% (0.58x)

Figure 4: PC and attacker model accuracy comparison across datasets with varying query budgets per class. DFME uses
2M per class. Besides the baselines, we provide KD and victim accuracy for reference.

man attacker. InstructBLIP is instructed with, “It is a photo
of a {class name}. Give me a prompt to synthesize sim-
ilar images,” alongside the seed image from the challeng-
ing EuroSAT dataset. We synthesize 500 images per class
based on these prompts and train the attacker model. The
comparison of generated prompts between InstructBLIP
and Stealix for all classes is provided in Appendix F, along
with examples of generated images. Stealix outperforms
InstructBLIP, achieving an accuracy of 65.9% compared to
55.2%. Despite InstructBLIP incorporating relevant terms
like “aerial view” and “satellite view,” its average PC score
is 41.0%, compared to Stealix’s 73.7%.

Qualitative comparison. Figure 5 presents qualitative
comparisons on EuroSAT and PASCAL datasets. In Eu-
roSAT, class names alone miss attributes like the satellite
view, leading Real Guidance to generate generic images
that differ from the victim data. Additionally, DA-Fusion
struggles to interpret blurred seed images, generating ran-
dom color blocks. For PASCAL, when multiple objects
are present in the seed image, Stealix successfully identi-
fies the target object. For instance, the seed image for the
“PASCAL Person” class includes a prominent dog, lead-
ing to the first-generation prompt, “chilean vaw breton ce-
cilia hands console redux woodpecker northwestern beagle

sytracker collie relaxing celticsped”, which generates dog
images and results in prompt consistency of 0. Stealix then
uses the misclassified image as a negative example and re-
fines the prompt to, “syrian helene pasquspock hands thum-
bcuddling sheffield stuck smritihouseholds vulnerable ker-
swednesday humormindy intestin”, removing dog-related
features and achieving PC = 1. Similarly, Stealix correctly
identifies the dining table as the target in a crowded scene,
while DA-Fusion incorrectly focuses on the human. These
examples show how Stealix evolves prompts by filtering
out misleading features using victim feedback.

Correlation between PC and feature distance. Since the
attacker lacks access to the distribution of the victim data,
PC is proposed as a proxy for monitoring and optimizing
prompts, based on the hypothesis that more consistent pre-
dictions from the victim model indicate a closer match to
its data. To evaluate this assumption, we collect 150 PC
values per class corresponding to different prompts during
prompt evolution. For each PC, we compute the L2 dis-
tance between the mean feature vector of the synthetic im-
ages and that of the victim data. Feature vectors are ex-
tracted from the victim model before its final fully con-
nected layer. The Spearman’s rank correlation test shows a
strong, statistically significant negative correlation between
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Figure 5: Qualitative comparison of images generated by Real Guidance, DA-Fusion, and Stealix.

Table 2: Spearman’s rank correlation between PC and L2

feature distance.

Data Correlation ρ p-value

EuroSAT −0.63 7.04× 10−5

PASCAL −0.64 2.79× 10−4

CIFAR10 −0.73 1.20× 10−7

DomainNet −0.88 1.83× 10−26

Table 3: Diversity (recall) across methods that using text-
to-image generative models; higher scores indicate better
diversity relative to the victim data distribution.

Method EuroSAT PASCAL CIFAR10 DomainNet

Real Guidance 0.29 0.07 0.40 0.41
DA-Fusion 0.43 0.06 0.48 0.24

Stealix (ours) 0.49 0.30 0.76 0.66

PC and L2 (Table 2), supporting the use of PC as guid-
ing metric. We also evaluate whether higher PC leads to
higher attacker model performance with different PC val-
ues in Appendix E.

Diversity comparison. Figure 4 shows that although PC
values of Real Guidance are similar to ours for CIFAR10,
PASCAL and DomainNet, our attacker model performs
consistently better. This advantage stems from the greater
diversity in our synthetic data, achieved through prompt
evolution, where distinct images are used to construct dif-
ferent triplets. To quantify this, we use the diversity score
proposed by Kynkäänniemi et al. (2019), Recall, which
measures the likelihood that a random image from the vic-
tim data distribution falls within the support of the synthetic
image set. The higher the score, the more diverse the im-
ages. As shown in Table 3, our method generates more
diverse synthetic data with higher Recall score.

5.3. Stealing Model Based on Proprietary Data

We now apply Stealix to a large-scale Vision Transformer
(ViT) (Dosovitskiy et al., 2021) trained on proprietary and
non-public data, significantly differing from our previous
victims. This model is a ‘Not Safe For Work’ (NSFW)
binary classification model, publicly available from Hug-
gingFace (Team, 2023), and ranked among the top-4 most

downloaded models for image classification. We use a pub-
licly available NSFW dataset from HuggingFace (Lewis,
2024)2 to run this attack. The dataset contains 200 images
(100 “safe”, 100 “not safe”). The victim reaches 92.0%
accuracy on this data. The attack is initiated with one ran-
dom image per class, the same hyperparameters from Sec-
tion 5.1 and a ResNet-18 attacker. With a query budget
of 500 queries per class, Stealix achieves an accuracy of
73.0%, effectively replicating the victim model. In con-
trast, the Real Guidance method fails to synthesize “not
safe for work” images, resulting in an attacker model accu-
racy of 50.0%, equivalent to random guessing. DA-Fusion
demonstrates moderate performance, with 62.3% accuracy.
This result demonstrates that our approach can leverage
general priors in diffusion models to enhance model steal-
ing, even in the absence of diffusion models trained on spe-
cific datasets.

6. Discussion
Defense. Our threat model assumes that the victim em-
ploys a defense that returns only hard label outputs, which
is cheap and effective in limiting information leakage com-
pared to soft labels (Sanyal et al., 2022). Appendix J shows
that the attacker models’ accuracy improves with soft-label
access using images generated by Stealix, underscoring the
need for this defense. Similarly, previous works (Lee et al.,
2019; Mazeika et al., 2022) propose defenses that perturb
the posterior prediction to reduce the utility of stolen mod-
els, while keeping the predicted class (argmax) unchanged
to preserve original performance for benign users. These
approaches implicitly push attackers to rely on hard labels,
which are less informative but immune to such perturba-
tions. However, since our prompt evolution uses only hard
label feedback, this constraint impacts only the training of
the attacker model, not the optimization of prompts, sug-
gesting that stronger defenses may be required.

Limitations and future work. Unlike GAN-based meth-
ods, Stealix does not require backpropagation through the
victim model to train the generator, which enhances gen-

2Warning: This dataset contains sexual content. Viewer dis-
cretion is advised.

8



Stealix: Model Stealing via Prompt Evolution

eralization across victim architectures (Appendix H). Al-
though the attacker architecture can still influence the per-
formance (Appendix G), our method consistently outper-
forms the baselines. Since image synthesis and surrogate
training are decoupled, attackers can reuse synthetic im-
ages for, e.g., hyperparameter tuning. This key advantage
could be explored in future work to improve model accu-
racy. Finally, as open-source generative models advance,
integrating more powerful models into our framework of-
fers significant potential for further enhancements.

7. Conclusion
We showed that attackers can leverage open-source genera-
tive models to steal proprietary ones, even without prompt
expertise or class information. Using Stealix for prompt
evolution and aligning generated data with victim data sig-
nificantly boosts model extraction efficiency. This is the
first study to reveal the risks of publicly available pre-
trained generative models in model theft for realistic attack
scenarios. We urge the development of defenses against
this emerging threat.

Impact Statement
This work aims to raise awareness of the risks associated
with model stealing, particularly through the use of open-
source pre-trained generative models. While our work
demonstrates how such models can be exploited in adver-
sarial settings, it is intended to inform the development of
more robust defenses against model theft. We emphasize
that our approach is not designed to promote malicious be-
havior but to highlight vulnerabilities that need address-
ing within the AI community. We encourage practitioners,
model developers, and stakeholders to implement stronger
defenses, such as hard-label-only responses or adversarial
detection mechanisms, to mitigate potential risks. All ex-
periments were conducted with publicly available models
and data, and with the intent of advancing the security of
AI systems.
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A. Algorithms
We detail the algorithms for prompt refinement and prompt reproduction in Section 4.2 and Section 4.4.

Prompt refinement. We implement the hard prompt optimization method proposed by PEZ (Wen et al., 2024) to optimize
the prompt to capture target class features learnt by the victim model (Algorithm 2). The soft prompt, p̂, consists of L
embedding vectors and is initialized from the vocabulary embedding set E. The soft prompt is iteratively mapped to its
nearest neighbor embeddings using a projection function, ProjE(p̂), and converted into a hard prompt, p, via a function
Soft2Hard(p̂). During each iteration, the soft prompt is updated through gradient descent, guided by the similarity loss
LSIM, which aims to retain features in the positive image while reducing features in the negative image. This process is
repeated for s optimization steps, after which the final hard prompt is obtained. We follow the hyperparameters from Wen
et al. (2024), setting L = 16 and γ = 0.1, while reducing s from 5000 to 500 to save optimization time, e.g., on EuroSAT,
from approximately 3 minutes to 18 seconds. We further evaluate the impact of prompt lengths (4, 16, 32) on EuroSAT
with a query budget of 500 per class across three random seeds. The results show that Stealix achieves 62.5%, 65.9%, and
64.3% accuracy for prompt lengths 4, 16, and 32, respectively. This demonstrates that Stealix consistently outperforms
others (second-best method: 59.0% from DA-Fusion in Table 1), with prompt length 16 striking the best balance between
efficiency and accuracy.

Algorithm 2 Prompt Refinment

1: Input: image triplet (xs
c,x

+
c ,x

−
c ), text encoder T and image encoder I , optimization steps s, learning rate γ, soft

prompt length L
2: Output: hard prompt p
3: Initialize soft prompt p̂ from vocabulary E
4: for step = 1 to s do
5: // Project soft prompt to nearest neighbor embeddings and convert to hard prompt.
6: p̂′ ← ProjE(p̂)
7: p← Soft2Hard(p̂′)
8: // Compute gradient of the similarity loss and update soft prompt using gradient descent.
9: g ← ∇p̂′

∑
x∈(xs

c,x
+
c ,x−

c ) LSIM(I(x), T (p), V (x))

10: p̂← p̂− γg
11: end for
12: // Final projection to ensure the soft prompt is fully converted to hard tokens.
13: p̂′ ← ProjE(p̂)
14: p← Soft2Hard(p̂′)
15: return hard prompt p

Prompt reproduction. In Algorithm 3, we employ a genetic algorithm to iteratively refine prompts through tournament
selection, crossover and mutation. In tournament selection, we use prompt consistency as the fitness function.

B. Datasets
We provide an overview of the datasets introduced in our experiment setup (Section 5.1), detailing the sizes of the training
and validation sets and their respective image resolutions (see Table 4). For CIFAR-10, we utilize the standard training and
test splits provided by PyTorch, which consist of 50,000 training images and 10,000 test images at a resolution of 32× 32
pixels. In the case of PASCAL, we follow the preprocess from DA-Fusion (Trabucco et al., 2024) to assign classification
labels based on the largest object present in each image, resulting in 1,464 training images and 1,449 validation images
with an image size of 256 × 256 pixels. The EuroSAT dataset is split into training and validation sets using an 80/20
ratio while maintaining class distribution through stratified sampling, yielding 21,600 training images and 5,400 validation
images at a resolution of 64 × 64 pixels. For DomainNet, we select the first 10 classes in alphabetical order across six
diverse domains: clipart, infograph, paintings, quickdraw, real images, and sketches. We apply the same 80/20 stratified
split as used for EuroSAT, resulting in 11,449 training images and 2,863 validation images, each resized to 64× 64 pixels.
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Algorithm 3 Prompt Reproduction

1: Input: Current population St, fitness set F t, seed image set X s
c , positive image set X+

c , negative image set X−
c , tournament size

k, number of parents Np, number of populations N .
2: Output: Evolved population St+1

3: Select the elite triplet (xs
c, x

+
c , x

−
c )elite with the highest fitness from St given F t

4: Initialize next population St+1 ← {(xs
c, x

+
c , x

−
c )elite} // Keep the elite triplet in the next population

5: Initialize the parents set Sp ← ∅
6: // Perform tournament selection to select Np parents.
7: for i = 1 to Np do
8: Randomly select k triplets from St

9: Choose the triplet (xs
c, x

+
c , x

−
c ) with maximum fitness from the k triplets given F t

10: Sp ← Sp ∪ {(xs
c, x

+
c , x

−
c )}

11: end for
12: // Generate the next generation.
13: for i = 1 to N − 1 do
14: // Apply crossover using selected parents.
15: Select two parents from Sp cyclically, denoted as (xs

c,1, x
+
c,1, x

−
c,1) and (xs

c,2, x
+
c,2, x

−
c,2)

16: Split each parent at a random point and form a new triplet, e.g., (xs
c,1, x

+
c,1, x

−
c,2), as new triplet (xs

c, x
+
c , x

−
c )

17: // Apply mutation.
18: Replace each image in (xs

c, x
+
c , x

−
c ) with a random one from X s

c , X+
c , or X−

c with probability pm
19: St+1 ← St+1 ∪ {(xs

c, x
+
c , x

−
c )}

20: end for
21: St+1

Table 4: Overview of datasets.

Dataset Train/Val Image Size

EuroSAT 21.6K/5.4K 64× 64
PASCAL 1464/1449 256× 256
CIFAR10 50K/10K 32× 32

DomainNet 11449/2863 64× 64

C. Comparison of Computation Time
We present a comparison of the time required for various methods using the EuroSAT dataset as an example. All ex-
periments were conducted on a single machine with an NVIDIA V100 32GB GPU and an AMD EPYC 7543 32-Core
Processor. Table 5 summarizes the total time for the process under a 500-query budget per class (with DFME using 2M
queries per class). Stealix demonstrates state-of-the-art accuracy while maintaining reasonable computational efficiency.

Table 5: Comparison of computational time and accuracy across methods on the EuroSAT dataset. The victim model
accuracy 98.2%.

Knockoff DFME ASPKD Real Guidance DA-Fusion Stealix (ours)

Time (hours) 0.5 4.5 28.6 3.3 5.4 6.3
Accuracy 40.1% 11.1% 39.2% 51.2% 59.0% 65.9%
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D. Ablative Analysis
We evaluate the contribution of prompt reproduction to Stealix by conducting an ablation study, where prompts are opti-
mized using only CLIP from the seed image, without reproduction. This degrades our method to a version equivalent to
PEZ (Wen et al., 2024), which relies solely on a single image and does not consider the victim model’s predictions. More
specifically, PEZ optimizes prompts using only the seed image xs

c, while our prompt refinement reformulates prompt op-
timization as a contrastive loss over a triplet (xs

c, x
+
c , x

−
c ), guided by the victim model’s predictions. This enables Stealix

to capture class-relevant features more effectively. Stealix further introduce prompt consistency as a proxy for evaluation,
and prompt reproduction using genetic algorithms, forming a complete and victim-aware model stealing framework. As
shown in Table 6, the setup labeled “Stealix w/o reproduction (PEZ)” shows a significant accuracy drop, highlighting the
critical role of our victim-aware prompt optimization to evolve the prompts with prompt consistency. Note that PEZ is not
originally a model stealing method, but a prompt tuning technique. We include it as part of an ablation study instead of a
baseline comparison to isolate the impact of our proposed components.

Table 6: Ablation study: comparison of attacker model accuracy without prompt reproduction.

Method EuroSAT PASCAL CIFAR10 DomainNet

Victim 98.2% (1.00x) 82.7% (1.00x) 93.8% (1.00x) 83.9% (1.00x)

Stealix w/o reproduction (PEZ) 60.1% (0.61x) 26.7% (0.32x) 33.8% (0.36x) 39.2% (0.47x)
Stealix (ours) 65.9% (0.67x) 40.0% (0.48x) 49.6% (0.53x) 48.4% (0.58x)

E. Linking Prompt Consistency to Model Accuracy
To evaluate whether higher PC leads to more effective model stealing, we compare attacker model performance using syn-
thetic images generated from two prompts with different PC values. Specifically, we select prompts at the 25th percentile
(lower PC) and the 100th percentile (higher PC) during the prompt evolution process. We generate 500 synthetic images
with each of the two prompts, query the victim model, and use only the positive images to train the attacker model. We ex-
clude the 0th percentile prompt because it yields no positive samples. Since the higher PC prompt generates more positive
images than the lower PC prompt, we reduce the number of positive images from the higher PC prompt to match that of
the lower PC prompt. The results, presented in Figure 6, demonstrate that higher PC values consistently lead to improved
attacker model accuracy across all datasets, confirming that higher PC enhances the effectiveness of model stealing attacks.

Figure 6: Comparison of attacker model accuracy using synthetic images generated from prompts with higher and lower
prompt consistency across four datasets.

14



Stealix: Model Stealing via Prompt Evolution

F. Simulating Attacker with InstructBLIP
The prompts generated by InstructBLIP (Dai et al., 2023) for the EuroSAT dataset are conditioned on seed images and
the instruction: “It is a photo of a {class name}. Give me a prompt to synthesize similar images.” In Figure 7, we show
the prompts produced by InstructBLIP and by Stealix with high PC. As discussed in Section 5.2 and shown in Table 7,
prompts generated by InstructBLIP result in lower PC values and reduced attacker model performance due to misalignment
with the latent features learned by the victim model, despite being human-readable. For example, in the “Residential” class
of EuroSAT (Figure 8), InstructBLIP’s prompt “an aerial view of a residential area” results in a PC of only 8.8%, while
Stealix reaches 71.0%.

As for Stealix, the optimized prompts are not always interpretable to humans, echoing our motivation that human-crafted
prompts may be suboptimal for model performance. Moreover, Stealix supplements class-specific details that may be
overlooked by humans. For example, as shown in Figure 7 (highlighted in red), gps crop emphasizes geospatial context
for AnnualCrop, jungle suggests dense vegetation for Forest, and floodsaved, port, and bahamas convey water-related
cues for River and SeaLake. These examples illustrate how Stealix uncovers latent features that the victim learns and
highlight the limitations of human-centric prompt design and the importance of automated prompt evolution in model
stealing.

Table 7: Comparison with InstructBLIP on EuroSAT at a query budget of 500 per class.

Method #Seed images Class name PC Accuracy

InstructBLIP 1 ✓ 41.0% 55.2%
Stealix (ours) 1 ✗ 73.7% 65.9%

Figure 7: Seed images and corresponding prompts generated by InstructBLIP and Stealix for the EuroSAT dataset. Each
pair shows the original seed image and the prompt used for image synthesis. Class names from top to bottom, left to right:
AnnualCrop, Forest, HerbaceousVegetation, Highway, Industrial, Pasture, PermanentCrop, Residential, River, SeaLake.
Feature words related to each class are highlighted in red for Stealix.

Figure 8: Synthetic images for the Residential class with the prompt from InstructBLIP and ours.
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G. Different Attacker Model Architectures
We analyze the performance of different attacker model architectures, including ResNet18, ResNet34, VGG16, and Mo-
bileNet, as shown in Table 8. Our method, Stealix, consistently outperforms all other baselines, regardless of the attacker
model architecture. However, the choice of architecture does impact performance: smaller models like MobileNet result
in lower accuracy due to their limited capacity, as seen in the KD baseline where MobileNet achieves only 89.2% accuracy
compared to 95.6% with ResNet. This suggests that architectural limitations, rather than the attack method, drive the per-
formance drop. Moreover, because Stealix decouples image synthesis from attacker model training, attackers can optimize
hyperparameters and architectures without re-querying the victim model, offering flexibility and efficiency.

Table 8: Performance comparison of different attacker architectures against a ResNet34 victim model (98.2% accuracy)
trained on EuroSAT, using a query budget of 500 queries per class.

Method #Seed images Class name Attacker architecture

ResNet18 ResNet34 VGG16 MobileNet

KD - - 95.6% (0.97x) 95.6% (0.97x) 95.7% (0.97x) 89.2% (0.91x)

Knockoff 0 ✗ 40.1% (0.41x) 40.3% (0.41x) 40.1% (0.41x) 29.3% (0.30x)
DFME 0 ✗ 11.1% (0.11x) 11.1% (0.11x) 11.1% (0.11x) 11.1% (0.11x)

ASPKD 0 ✓ 39.2% (0.40x) 39.0% (0.40x) 35.4% (0.36x) 32.0% (0.33x)
Real Guidance 1 ✓ 51.2% (0.52x) 52.0% (0.53x) 43.9% (0.45x) 40.6% (0.41x)

DA-Fusion 1 ✗ 59.0% (0.60x) 53.3% (0.54x) 58.8% (0.60x) 48.6% (0.50x)
Stealix (ours) 1 ✗ 65.9% (0.67x) 67.9% (0.69x) 66.0% (0.67x) 51.9% (0.53x)

H. Different Victim Model Architectures
We analyze the performance of Stealix across different victim model architectures on EuroSAT, including ResNet18,
ResNet34, VGG16, and MobileNet, as shown in Table 9. Using ResNet18 as the attacker architecture, Stealix consistently
performs well across these architectures, demonstrating its robustness to variations in the victim model. The ability to
generalize across diverse architectures highlights the adaptability and effectiveness of Stealix in real-world scenarios where
the attacker may not know the exact architecture of the victim model.

Table 9: Performance comparison of Stealix against different victim architectures (ResNet18, ResNet34, VGG16, Mo-
bileNet) with the attacker model architecture set to ResNet18 across all experiments on EuroSAT.

Method Victim architecture

ResNet18 ResNet34 VGG16 MobileNet

Victim 98.4% (1.00x) 98.2% (1.00x) 98.2% (1.00x) 96.9% (1.00x)
Stealix (ResNet18) 66.2% (0.67x) 65.9% (0.67x) 73.4% (0.75x) 66.0% (0.68x)

I. Limitations of DFME
We analyze the performance of DFME (Truong et al., 2021) under realistic attack scenarios. Following the original DFME
setup, we attempted to extract our ResNet34 victim model trained on CIFAR-10 using 2 million queries per class with soft-
label access, achieving an attacker model accuracy of 87.4%, which is comparable to the results reported in the original
work. However, DFME generates images with pixel values in the range (−1, 1) due to the use of Tanh activation, which is
incompatible with real-world APIs that expect standard image formats (e.g., pixel values in [0, 255]). After quantizing these
images to the standard format, the attacker model accuracy dropped to 76.4%, despite using the same query budget. This
performance degradation occurs because DFME relies on adding small perturbations to the generated images to estimate
gradients via forward differences (Wibisono et al., 2012). Quantization can negate these subtle perturbations. Furthermore,
when the victim model provides only hard-label outputs as a defense mechanism, the attacker model accuracy further
decreased to 23.7%. In this case, the output labels remain constant under small input perturbations, rendering forward
difference methods ineffective for gradient estimation and significantly limiting the attacker’s ability to train the generator.

We present the results across all datasets in Table 10. In the case of PASCAL, we reduced the batch size from 256 to 64
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due to computational constraints imposed by the large image size (256 × 256 pixels). Notably, DFME fails to extract the
PASCAL victim model, likely due to this higher image resolution. Furthermore, for the fine-grained EuroSAT dataset,
even with soft-label access and without quantization, the attacker model achieves only 19.0% accuracy.

Table 10: Performance of DFME on various datasets under different settings with a query budget of 2M per class. Victim
model accuracies are provided for reference.

Method EuroSAT PASCAL CIFAR10 DomainNet

Victim 98.2% (1.00x) 82.7% (1.00x) 93.8% (1.00x) 83.9% (1.00x)

DFME 19.0% (0.19x) 6.6% (0.08x) 87.4% (0.93x) 83.0% (0.99x)
+ Quantization 10.2% (0.10x) 6.6% (0.08x) 76.4% (0.81x) 72.0% (0.86x)
+ Hard label 11.1% (0.11x) 6.6% (0.08x) 23.7% (0.25x) 18.5% (0.22x)

J. Stealix with Soft Labels
In this experiment, we evaluate the impact of soft-label access on the attacker model accuracy compared to the hard-label-
only scenario. Since Stealix’s prompt evolution only relies on hard labels for calculating prompt consistency, the same
synthetic images are used to train the attacker model under both conditions, with the only difference being whether the
labels are hard or soft (full probability predictions). As shown in Figure 9, Stealix consistently achieves higher accuracy
with soft-label access across all datasets, as soft labels provide richer information through confidence scores, resulting
in improved model performance. This underscores the importance of defenses like hard-label-only outputs to limit the
effectiveness of model stealing attacks. However, hard-label defenses merely slow down the attack, increasing the required
query budget without fully preventing model theft. Given the high quality and alignment of synthetic images with the
victim’s data, the attack remains viable over time. This highlights the need for more advanced defense strategies to better
address this threat in future research.

Figure 9: Performance comparison of Stealix with hard label and soft label access across EuroSAT, PASCAL, CIFAR-10,
and DomainNet at varying query budgets.

K. DA-Fusion as Data Augmentation
Having one image per class is a realistic setup and differs from having full access to victim data or its distribution. This
reflects real-world threats posed by competitors in the same field, aiming to provide similar services. While attackers can
use DA-Fusion to augment the seed images to train the attacker model without querying the victim model, we demonstrate
that model stealing still provides a substantial performance improvement. We compare the accuracy of attacker models
under a model stealing setup versus a data augmentation setup, with a query budget of 500 per class. Table 11 shows
that performance degrades significantly with DA-Fusion when relying solely on class labels for training instead of using
predictions from the victim model, highlighting that model stealing is essential, even with one image per class.
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Table 11: Comparison of attacker model training with and without victim queries, showing accuracy with a 500-query
budget per class; DFME uses 2M.

Method Query victim EuroSAT PASCAL CIFAR10 DomainNet

Victim - 98.2% (1.00x) 82.7% (1.00x) 93.8% (1.00x) 83.9% (1.00x)

Stealix (ours) ✓ 65.9% (0.67x) 40.0% (0.48x) 49.6% (0.53x) 48.4% (0.58x)
DA-Fusion ✓ 59.0% (0.60x) 16.4% (0.20x) 26.7% (0.28x) 28.4% (0.34x)
DA-Fusion ✗ 29.9% (0.30x) 10.7% (0.13x) 18.9% (0.20x) 17.9% (0.21x)

L. Limited Medical Knowledge
As generative priors like diffusion models are trained on publicly available data, the absence or limited presence of domain-
specific knowledge, such as medical expertise, would have impact on the performance of model stealing relies on these
models. However, this issue applies universally to all model stealing methods that rely on diffusion models, not specifically
to ours. Our experiment results in Table 1 show that diffusion models can be leveraged more effectively in model stealing
when they describe the data well but are not properly prompted. In other words, our approach shares the same lower-
bound as existing methods but significantly improves the upper-bound, achieving an approximate 7–22% improvement
compared to the second-best method, as shown in Table 1.

With that being said, we conducted an experiment analyzing performance when diffusion models have limited domain-
specific knowledge. We consider two medical datasets: PatchCamelyon (PCAM) (Veeling et al., 2018) and RetinaM-
NIST (Yang et al., 2023). In PCAM, class names are “benign tissue” and “tumor tissue”. RetinaMNIST involves a
five-level grading system for diabetic retinopathy severity, with class names as “diabetic retinopathy i,” where i ranges
from 0 to 4 for severity. We conduct experiments using three random seeds and report the mean attacker accuracy below,
following the setup described in Section 5.1. The victim model uses the ResNet34 architecture, while the attacker model is
based on ResNet18. The qualitative comparison in Figure 10 shows that the diffusion model struggles to synthesize Retina-
like images, highlighting its limited knowledge. However, the results in Table 12 show that methods with generative priors
still outperform Knockoff Nets and DFME, confirming the value of priors, though the improvements decrease as the data
deviates from the diffusion model’s distribution, resulting in only modest gains of Stealix in such cases.

In summary, our approach provides (1) significant improvement when diffusion models can describe the data and (2)
comparable or slightly better performance when they have limited domain knowledge.

Figure 10: Qualitative comparison of images generated by Real Guidance, DA-Fusion, and Stealix on the PCAM and
RetinaMNIST datasets. Other baselines include: Knockoff uses CIFAR10 as query data, DFME synthesizes noise images,
and ASPKD uses the same images as Real Guidance.

Table 12: Attacker model accuracy for medical dataset with a query budget of 500 per class; DFME uses 2M.

Method #Seed images Class name PCAM RetinaMNIST

Victim - - 91.2% (1.00x) 61.7% (1.00x)
(KD) - - 76.3% (0.84x) 59.4% (0.96x)

Knockoff 0 ✗ 50.0% (0.55x) 56.1% (0.91x)
DFME 0 ✗ 50.0% (0.55x) 46.1% (0.75x)
ASPKD 0 ✓ 60.1% (0.66x) 55.3% (0.90x)

Real Guidance 1 ✓ 61.8% (0.68x) 56.1% (0.91x)
DA-Fusion 1 ✗ 61.5% (0.68x) 56.7% (0.92x)

Stealix (ours) 1 ✗ 62.2% (0.68x) 58.0% (0.94x)
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