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FedShield-LLM: A Secure and Scalable
Federated Fine-Tuned Large Language Model
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Abstract—Federated Learning (FL) offers a
decentralized framework for training and fine-tuning Large
Language Models (LLMs) by leveraging computational
resources across organizations while keeping sensitive data
on local devices. It addresses privacy and security concerns
while navigating challenges associated with the substantial
computational demands of LLMs, which can be prohibitive
for small and medium-sized organizations. FL supports
the development of task-specific LLMs for cross-silo
applications through fine-tuning but remains vulnerable
to inference attacks, such as membership inference and
gradient inversion, which threaten data privacy. Prior
studies have utilized Differential Privacy (DP) in LLM fine-
tuning, which, despite being effective at preserving privacy,
can degrade model performance. To overcome these
challenges, we propose a novel method, FedShield-LLM,
that uses pruning with Fully Homomorphic Encryption
(FHE) for Low-Rank Adaptation (LoRA) parameters,
enabling secure computations on encrypted model updates
while mitigating the attack surface by deactivating less
important LoRA parameters. Furthermore, optimized
federated algorithms for cross-silo environments enhance
scalability and efficiency. Parameter-efficient fine-tuning
techniques like LoRA substantially reduce computational
and communication overhead, making FL feasible for
resource-constrained clients. Experimental results show
that the proposed method outperforms existing methods
while maintaining robust privacy protection, enabling
organizations to collaboratively train secure and efficient
LLMs.
The code and data are available at
https://github.com/solidlabnetwork/fedshield-llm.

Index Terms—Federated Learning, Large Language
Models, Security, Cross-Silo Applications, Fully Homomor-
phic Encryption, Low-Rank Adaptation.

I. INTRODUCTION

LARGE Language Models (LLMs) such as GPT [8],
PaLM [11], and ChatGPT [31] have revolutionized

natural language processing by achieving state-of-the-art
results across a wide array of language understanding
and generation tasks. These foundation models, trained
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on massive public datasets, exhibit exceptional perfor-
mance in domains like dialogue generation, summa-
rization, and question answering. However, as LLMs
are increasingly fine-tuned for specific domains such as
healthcare and finance, they must incorporate sensitive or
proprietary data, raising critical privacy and compliance
concerns. Regulations like the GDPR and CCPA restrict
data sharing and impose legal obligations on organiza-
tions handling private information [3, 7, 12]. Moreover,
recent studies show that LLMs can memorize and leak
training data [9], which presents significant risks when
models are trained or fine-tuned on confidential inputs.
This makes it imperative to develop solutions that pre-
serve data locality and ensure privacy during domain
adaptation.

Training and fine-tuning LLMs also pose substantial
computational challenges. Models like GPT-3 require
hundreds of GPU-years and millions of dollars in com-
pute resources [22], limiting accessibility to large tech
firms. Even with the release of open-source LLMs like
LLaMA [37], resource bottlenecks remain, especially
for smaller organizations or in distributed collaborative
scenarios. Traditional full-model fine-tuning methods in-
volve transmitting large model updates or datasets, which
can be impractical in resource-constrained environments
typically found in centralized training scenarios. Feder-
ated Learning (FL) [28] addresses these challenges by
enabling decentralized training, where clients perform
local updates on private data and only share model
gradients or parameters with a central server. FL sup-
ports privacy by design and allows organizations to
jointly train models without centralizing data. FL has
been explored in resource-constrained and edge scenar-
ios [20, 23], and recent works like OpenFedLLM [43]
and FederatedScope-LLM [21] have shown that FL can
be adapted for LLM instruction tuning and domain-
specific applications.

However, standard FL remains vulnerable to efficiency
and security issues. Transmitting full-model updates for
large models is bandwidth-intensive and often infeasible.
Additionally, model updates can leak private information
via inference or gradient inversion attacks (GIA) [16,
51]. To address the communication overhead, researchers
have proposed parameter-efficient tuning methods such
as Low-Rank Adaptation (LoRA) [19], which inserts
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low-rank matrices into transformer layers to reduce train-
able parameters. LoRA enables clients to only update
lightweight adapter layers instead of the full model, dras-
tically reducing computation and communication costs.
This makes LoRA highly compatible with federated fine-
tuning frameworks [38]. Nonetheless, privacy concerns
persist even with reduced update sizes, as model updates
can still be exploited by malicious servers or compro-
mised clients.

To ensure end-to-end privacy in federated LLM train-
ing, several advanced privacy-preserving techniques have
been proposed. Differential Privacy (DP) [13] introduces
noise to model updates to provide statistical guarantees
but often compromises model accuracy, especially in
high-dimensional settings like LLMs [27, 42]. Fully
Homomorphic Encryption (FHE) [10] enables compu-
tation over encrypted data, offering stronger confiden-
tiality without requiring noise, though at the cost of
increased computation. Secure Multi-Party Computation
(MPC) [6] enables joint computation without revealing
data but also faces scalability limitations. Meanwhile,
model pruning [39] can improve efficiency and mitigate
attack surfaces by eliminating redundant parameters. Al-
though most prior privacy-preserving LLM frameworks
focus on inference-time security in centralized settings,
they offer complementary insights relevant to secure
model design. For instance, PrivacyAsst [50] leverages
HE to safeguard sensitive user inputs during tool-based
LLM inference, illustrating how encrypted computation
can be integrated into LLM workflows at runtime. Sim-
ilarly, InferDPT [36] applies local DP to perturb user
prompts submitted to black-box LLMs and reconstructs
coherent outputs using a local extraction model. Build-
ing on these insights, we propose FedShield-LLM, a
novel federated fine-tuning framework that combines FL,
LoRA, FHE, and pruning to ensure scalable, secure, and
regulation-compliant training of LLMs across decentral-
ized private datasets. In this work, we detail the design
of FedShield-LLM and demonstrate its effectiveness in
achieving high performance with strong privacy guar-
antees. The main contributions of our study are listed
below.

• We propose and implement a novel federated fine-
tuning mechanism, FedShield-LLM, for LLMs,
which integrates FHE with model pruning. To the
best of our knowledge, this is the first exploration
of combining FHE with pruning in federated LLM
fine-tuning to mitigate vulnerabilities during both
the training and inference phases. Our approach
enhances security against inference attacks in ad-
versarial settings including an honest-but-curious
server.

• FedShield-LLM minimizes computational and
memory overhead by updating only LoRA adapter

layers instead of full model parameters. This
design makes secure fine-tuning feasible in
resource-constrained environments such as edge
devices.

• We validate the effectiveness of FedShield-
LLM through extensive experiments using the
base models meta-llama/Llama-2-7b-hf and
meta-llama/Llama-2-13b-hf across four datasets:
medalpaca/medical meadow medical flashcards,
vicgalle/alpaca-gpt4, TIGER-Lab/MathInstruct,
and FinGPT/fingpt-sentiment-train. Results
demonstrate that our framework consistently
outperforms existing methods in terms of both
model performance and security across various
domains.

The remainder of this paper is structured as follows:
Section II provides a comprehensive review of the re-
lated literature. Section III introduces the preliminaries
essential for understanding the proposed method. Section
IV details the proposed FedShield-LLM methodology,
followed by Section V, which presents the experimental
setup and results. Section VI offers further discussion,
including limitations and implications. Finally, Section
VII concludes the paper and outlines directions for future
work.

II. LITERATURE REVIEW

Recent advancements in machine learning have
sparked significant interest in combining FL with LLMs
to enable collaborative model development while pre-
serving data privacy. Researchers have explored various
approaches to make this integration practical and secure,
including federated and distributed fine-tuning strategies,
differential privacy techniques to safeguard individual
data contributions, homomorphic encryption to ensure
confidentiality during model aggregation, and secure
multi-party computation to prevent information leakage
during collaborative training. While each of these meth-
ods contributes valuable capabilities, they also come with
limitations highlighting the need for a comprehensive
framework like FedShield-LLM that unifies efficiency,
privacy, and robustness.

Recent works have introduced efficient frameworks
for distributed and federated LLM adaptation. This in-
cludes leveraging decentralized private data across user
devices without transferring it to a central server, which
enhances privacy and communication efficiency in large-
scale LLM adaptation [1]. OpenFedLLM [43] proposes a
comprehensive pipeline integrating federated instruction
tuning and value alignment for adapting models like
LLaMA2-7B across multiple clients without data central-
ization. It supports various FL strategies, including Fe-
dAvg, and demonstrates that federated fine-tuned models
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can match the performance of central LLMs like GPT-
4 on specialized tasks. FedBiOT [40] addresses client-
side limitations using a bi-level optimization scheme
in which clients fine-tune compressed LLM emulators
(lightweight LoRA modules), while servers maintain
alignment with full models. This drastically reduces local
resource demands. FederatedScope-LLM [21] is a mod-
ular open-source framework that provides unified sup-
port for various LLM FL scenarios, including adapter-
based tuning and diverse FL algorithms. Separately,
FlexLoRA [2] proposes an adaptive LoRA strategy in
heterogeneous FL environments: each client trains with a
custom LoRA rank, and the server merges these updates
using singular value decomposition (SVD) to synthesize
a full-rank global model. This avoids bottlenecks from
underpowered clients and improves performance across
diverse clients and tasks. FedCoLLM [14] further ex-
tends this line by co-tuning LLMs and smaller SLMs
using LoRA, Secure Aggregation [5], and Knowledge
Distillation [18], achieving less than 0.25% of full model
communication while preserving performance. Yun et
al. [47] introduce a hierarchical clustered sampling
method to address non-IID data, combining within-
cluster aggregation and multinomial participation to im-
prove fairness and stability. A recent survey [41] cate-
gorizes distributed fine-tuning strategies like knowledge
distillation and split learning, which offer trade-offs be-
tween privacy, performance, and communication. While
these frameworks enable distributed LLM adaptation,
most assume honest clients and servers, and lack robust
protections against inference attacks.

DP has been widely explored for protecting data con-
tributions in FL. DP-LoRA [27] applies Gaussian noise
to LoRA adapter weights, enabling formal (ϵ, δ) pri-
vacy guarantees while maintaining model accuracy. This
works well due to LoRA’s compressed structure, which
reduces the noise scale required. DP-DyLoRA [42] ex-
tends this by dynamically adjusting adapter ranks, inte-
grating rank-sensitive noise mechanisms to further opti-
mize the privacy-utility tradeoff. Cross-domain evalua-
tions (e.g., speech, vision, text) show that DP-DyLoRA
maintains < 2% loss in performance even at ϵ = 2 with
one million clients. Yu et al. [44] found that parameter-
efficient fine-tuning (PEFT) techniques (e.g., adapters)
inherently offer stronger DP tradeoffs versus full fine-
tuning. Despite these innovations, DP does not prevent
poisoning attacks or information leakage through the
model’s structure and gradients, suggesting a need for
complementary cryptographic protections.

HE offers an orthogonal privacy defense by allowing
secure aggregation of encrypted model updates. Frame-
works such as PrivTuner [24] a centralized fine-tuning
framework that integrates FHE with LoRA to enable
secure and efficient fine-tuning of AI foundation models.

Unlike FL, which relies on decentralized training, Priv-
Tuner ensures data privacy by performing computations
on encrypted client data directly on the server, eliminat-
ing the need for raw data transmission while maintaining
model performance. FHE offers robust security against
inference attacks during LLM fine-tuning in an FL envi-
ronment. However, security challenges can arise in cross-
silo FL scenarios, particularly when the server evaluates
the performance of the LLM. In such cases, honest-but-
curious clients or servers may attempt to infer sensitive
information by analyzing the LoRA parameters, which
contain knowledge learned from private data.

MPC protocols such as secret sharing and garbled cir-
cuits enable joint computation without revealing private
data. In FL, systems like S++ [32] and SecureML [30]
show that secure aggregation and backpropagation are
feasible under encryption. Google’s secure aggregation
protocol [6] masks individual updates so only the final
sum is revealed to the server. These systems strengthen
client privacy but suffer from high latency and are hard
to scale to models with billions of parameters.

Unlike DP-LoRA, which uses noise to guarantee
privacy at some cost to utility, our method avoids
accuracy loss by using FHE for exact aggregation.
Moreover, whereas PrivTuner applies FHE+LoRA in a
single-server setting, FedShield-LLM extends this to a
federated multi-client setting and introduces pruning to
further reduce risk and overhead. It integrates LoRA-
based efficient fine-tuning with FHE and model pruning:
LoRA minimizes the size of model updates, making
FHE computationally feasible, while pruning compresses
the model and reduces the attack surface. Together,
these techniques form a cohesive framework for secure,
efficient, and robust collaborative fine-tuning of LLMs
in adversarial environments.

III. PRELIMINARIES

A. Federated Fine-Tuning of LLMs

FL enables a set of N clients {C1, C2, . . . , CN}
to collaboratively fine-tune a shared global LLM with
parameters wt at round t, using decentralized datasets
{D1, D2, . . . , DN}, without sharing raw data. Each
client Ci receives the current global model wt and
performs local training to compute a LoRA-based model
update ∆wi, which represents the client-specific param-
eter change:

∆wi := argmin
∆w

Li

(
fwt +∆w,Di

)
, (1)

where Li is the local loss computed over dataset Di.
After local updates, the server aggregates the received
client updates using a method such as FedAvg [28].
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Assuming equal weight for each client, the global model
is updated as:

wt+1 := wt +
1

N

N∑
i=1

∆wi, (2)

and the updated model wt+1 is redistributed to clients
for the next communication round.

In practice, transmitting full gradients or model up-
dates is resource-intensive, especially for large LLMs.
To mitigate this, recent FL methods adopt PEFT strate-
gies such as LoRA [19], which restrict training to
low-dimensional subspaces within transformer layers.
In LoRA, the update ∆wi for each weight matrix is
represented as a low-rank factorization: ∆wi = Ai ·Bi,
where Ai ∈ Rd×r and Bi ∈ Rr×k. Since r ≪ min(d, k),
this reduces the number of trainable parameters

B. Threat Model

Even though raw data never leaves local devices in
FL, the exchanged model updates ∆wi can leak sensitive
information about client Ci’s dataset Di. We consider
an inference attack threat model wherein an adversary
observes gradients or model updates and attempts to infer
private data. The adversary can be an honest-but-curious
server (a semi-honest aggregator that faithfully executes
FL but analyzes received updates for information) or
dishonest clients that deviate from the protocol. For
example, a curious central server could try to invert gra-
dients to reconstruct a client’s training examples. Attacks
such as Deep Leakage from Gradients (DLG) [51] and
other GIA [15] have demonstrated that given ∆wi, an
attacker can often reconstruct the original inputs used
to compute that update. Similarly, an adversary might
perform membership inference to determine if a certain
sample was in Di.

We can formalize the privacy breach by the probability
Pr[A(∆wi) = x] that an adversary A, given model
update ∆wi, correctly infers a private data point x ∈ Di.
An effective attack means this probability is much higher
than random chance (i.e.,≫ 1/|X| for input domain X):

Pr
[
A(∆wi) = x

]
≫ 1

|X|
, (3)

indicating a significant privacy risk.
To mitigate such threats, a strong privacy-preserving

approach is the cryptographic encryption of model up-
dates using FHE. FHE schemes—such as CKKS, based
on the Ring Learning With Errors (Ring-LWE) prob-
lem [10]; enable computations directly over encrypted
data. In the context of FL, each client encrypts its
model update ∆wi and sends it to the server, which
then performs aggregation (e.g., summing or averaging)
without ever decrypting the individual updates. The

result is a ciphertext of the aggregated model, which can
then be decrypted by an authorized party. This process
ensures that even an honest-but-curious server or external
adversary cannot infer any client’s private information
from the model updates. Since FHE prevents direct
access to individual gradients or parameter updates,
it is highly effective at mitigating gradient inversion
attacks and membership inference threats, offering strong
confidentiality guarantees in adversarial FL settings.

C. Applications

Secure federated fine-tuning of LLMs is highly valu-
able for real-world scenarios where data is sensitive,
proprietary, or subject to privacy regulations. Below we
highlight a few domains and use-cases:

1) Healthcare: Hospitals and clinics can collabora-
tively fine-tune an LLM on electronic health records
(EHR) to build medical question-answering systems
or decision support tools, while complying with strict
privacy laws like HIPAA and GDPR. For example,
federated training on patient records can enable a model
to learn medical knowledge without any hospital sharing
raw data. Prior works have shown the feasibility of
FL for clinical natural language tasks, achieving near-
centralized performance while preserving privacy [48].

2) Finance: Banks and financial institutions may
jointly train LLMs on sensitive data such as transaction
logs, fraud detection alerts, or risk assessment reports
without exposing their proprietary data to competitors.
Federated fine-tuning allows learning from a wider data
pool (e.g. several bank’s records) to improve models for
financial analysis or credit scoring, all while keeping
each institution’s data siloed. Studies indicate that FL can
be applied in the financial domain to enhance models like
fraud detectors or credit risk predictors, with appropriate
privacy safeguards in place [25].

3) Autonomous Vehicles (AV):: FL enables intelligent
vehicles to collaboratively train perception and decision-
making models by sharing learned representations from
diverse driving contexts such as urban intersections,
expressways, and varying weather conditions without
transmitting raw sensor data (e.g., LiDAR, radar, camera
feeds) to a centralized server. This paradigm preserves
user privacy and enhances model robustness across edge
devices. Federated approaches have been shown to sup-
port critical AV tasks such as lane detection, obstacle
avoidance, and traffic sign recognition [49]. The integra-
tion of LLMs into AV systems via federated fine-tuning
may further enable natural language reasoning and se-
mantic understanding of complex driving commands,
improving both safety and human–machine interaction
under strict privacy constraints.
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TABLE I: Notation

Notation Representation

N Total number of clients in the FL setup
Ci Client i participating in federated training
Di Local dataset of client Ci

D Set of all local datasets
x ∈ Di Private data sample from client Ci

X Input domain of the training data
pi Client aggregation weight, e.g., pi =

ni∑
j nj

wt Global model parameters at round t
wi Local model initialized with global model wt on client i
∆wi LoRA update from client i
∆wp

i Pruned LoRA update of client i
w̄t Aggregated model update at round t
Ai, Bi Low-rank matrices where ∆wi = AiBi

d, k, r Dimensions of Ai ∈ Rd×r , Bi ∈ Rr×k

P Total number of parameters in the LLM
PLoRA Number of trainable LoRA parameters
mi Pruning mask for client i’s LoRA parameters
t Current communication round
R Total number of communication rounds
Li Local loss function of client Ci

eri Pruning error introduced at round r for client i
A Adversarial algorithm or attacker
Pr[A(∆wi) = x] Probability adversary reconstructs private data x from ∆wi

FHE Fully Homomorphic Encryption
CKKS Homomorphic encryption scheme based on Ring-LWE
C Encryption context used in CKKS
nc Number of ciphertexts in CKKS encryption
Npoly Polynomial degree in CKKS ciphertexts
F (w) Global objective function in FL
Fi(w) Local objective function of client i
η Learning rate
F ∗ Optimal (minimum) value of the objective F (w)

IV. METHODOLOGY

A. Method

Fine-tuning LLMs in federated environments presents
challenges related to data privacy, computational ef-
ficiency, and scalability. To address these issues,
FedShield-LLM integrates FHE for secure computations
and unstructured pruning to enhance model security
by limiting the attack surface. Additionally, LoRA is
employed to reduce the number of trainable parameters
during fine-tuning, minimizing computational and mem-
ory demands for resource-constrained clients. Based on
the FL LLM fine-tuning process from the OpenFedLLM
framework [43], our mechanism ensures a secure and
efficient fine-tuning process, as illustrated in Figure 1
and detailed in Algorithm 1. All notations are presented
in Table I.

As part of the FL task, we integrate FedIT to improve
the instruction-following capabilities of LLMs. FedIT
enables each client to fine-tune its local model using
instruction-response pairs from private datasets, ensur-
ing the model learns to generate responses that align
precisely with given instructions. This supervised fine-
tuning process enhances the LLM’s ability to handle

diverse instructions while maintaining strict privacy stan-
dards by decentralizing and securing client data [43].

The server begins by distributing the global model
wt to the selected clients. Each client synchronizes the
global model with their local model and fine-tunes it
on their private dataset Di using LoRA. LoRA reduces
computational and memory demands by updating only
the LoRA parameters. The LoRA parameter update is
expressed as:

∆wi = Ai,t ·Bi,t, (4)

where Ai,t ∈ Rd×r and Bi,t ∈ Rr×d represent the
low-rank matrices for the client i at time t.

After extracting the trainable LoRA parameters,
clients apply L1 unstructured pruning to enhance model
efficiency and security. This technique identifies and de-
activates less significant weights in the LoRA parameters
by generating binary masks based on the magnitude of
each weight. Binary mask is generated based on the
pruning rate as stated in [29]. Specifically, the pruning
mask mi is computed as:

mi ← mask(∆wi, pt,L1 norm),
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Fig. 1: Overview of our proposed framework.

where ∆wi represents the LoRA parameter updates,
pt is the pruning rate at time t, and the mask function
zeroes out weights with the smallest L1 norm, retaining
only the most important parameters. The pruned updates
∆wp

i are then computed by applying the mask:

∆wp
i ← ∆wi ⊙mi,

where ⊙ denotes element-wise multiplication. This
process ensures that smaller, less impactful weights are
set to zero, focusing computational resources on the most
influential parameters.

To ensure secure communication, clients encrypt their
pruned LoRA parameters using the CKKS encryption
scheme as:

∆wp
i ← Enc(∆wp

i , C),

where C denotes the encryption context. This approach
enables computations to be carried out directly on en-
crypted parameters, safeguarding sensitive information
throughout the transmission and aggregation processes.
The encrypted updates are then sent to the server,
where a secure aggregation method, such as FedAvg,
is employed to update the global LoRA parameters
without requiring decryption. The LoRA parameters are
aggregated as:

w̄t ←
1

|nt|
∑
i∈nt

∆wp
i ,

where w̄t represents the aggregated global parameters
at time t, nt is the set of participating clients, and ∆wp

i

are the pruned and encrypted updates from client i. After
aggregation, the server decrypts the aggregated updates
to obtain the global LoRA parameters w̄t, which are then
applied to the global model. This updated global model
is redistributed to clients for the next round of training.

Algorithm 1 represents the secure distributed LLM
fine-tuning process. This process fine-tunes only the
parameters based on LoRA. After the final round of com-
munication, the updated LoRA parameters are merged
with the base model. This updated base model can then
be used as task specific LLM.

The proposed methodology demonstrates how secure,
scalable, and efficient FL can be achieved by integrat-
ing FHE with pruning and LoRA. Experimental results
validate its ability to maintain competitive performance
while preserving strict privacy standards, making it suit-
able for sensitive applications in domains like health-
care, finance, and autonomous systems. The high level
overview of our framework is visualized in Figure 2.

B. Convergence Analysis

We provide a convergence guarantee for the
FedShield-LLM training algorithm. In essence,
FedShield-LLM performs an encrypted and sparsified
variant of the standard FedAvg procedure [28]. The
added encryption does not alter the numerical update
values, and the pruning step can be viewed as a form of
gradient sparsification, which has been shown to retain
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Fig. 2: High-level overview of the proposed mechanism.

convergence properties under certain conditions [23].
Below we formalize the convergence result.

Theorem 1 (Convergence of FedShield-LLM). Let
F (w) =

∑N
i=1 piFi(w) be the global objective, where

Fi(w) is the local loss on client i and pi is a weighting
factor (e.g., pi = ni∑

j nj
for local dataset size ni).

Suppose each Fi is L-smooth and bounded below, and
that stochastic gradients have bounded variance. As-
sume FedShield-LLM uses (1) LoRA-based local updates
∆wr

i = Ar
iB

r
i , (2) dynamic unstructured pruning with

bounded error ∥eri ∥ ≤ ϵr, and (3) secure aggregation
via CKKS encryption. If the learning rate η is sufficiently
small, then after R rounds of communication,

min
0≤r<R

E
[
∥∇F (wr)∥2

]
≤ C√

R
,

for some constant C > 0. Therefore, FedShield-LLM
converges sublinearly to a stationary point of F (w).

Proof Sketch. Our proof builds on the classical conver-
gence analysis of federated SGD [28] and techniques
from compressed (sparsified) distributed optimization
[23].

Step 1: Baseline dynamics. In the absence of pruning
and encryption, FedShield-LLM reduces to FedAvg. In
round r, each selected client computes a LoRA update
∆wr

i = Ar
iB

r
i and sends it to the server. The server

aggregates updates ∆̄r =
∑

i pi∆wr
i and updates the

model: wr+1 = wr + η∆̄r. Under smoothness and
bounded variance, this update rule is known to converge
at a rate of O(1/

√
R) for non-convex objectives [33, 45].

Step 2: Effect of encryption. CKKS encryption
allows the server to compute ∆̄r homomorphically,
without accessing plaintexts. Since encryption preserves
arithmetic operations, the effective update remains un-
changed. Thus, secure aggregation does not impact con-
vergence behavior.

Step 3: Impact of pruning. After comput-
ing ∆wr

i , each client applies a mask mr
i =

mask(∆wr
i , pt,L1 norm) that retains the top-pt entries

(by magnitude), yielding the sparse update ∆wr
i,prune =

∆wr
i ◦mr

i . Let eri = ∆wr
i −∆wr

i,prune denote the pruning
error. The server aggregates these pruned updates:

∆̄r =
∑
i

pi∆wr
i,prune =

∑
i

pi∆wr
i −

∑
i

pie
r
i .

Hence, the model update becomes: wr+1 = wr+η∆̄r =
wr + η

∑
i pi∆wr

i − η
∑

i pie
r
i .

Step 4: Smoothness-based descent. By L-
smoothness of F , we have

F (wr+1) ≤ F (wr) + η⟨∇F (wr), ∆̄r⟩+ Lη2

2
∥∆̄r∥2.

Substituting ∆̄r =
∑

i pi∆wr
i −

∑
i pie

r
i , we get:

E[F (wr+1) − F (wr)] ≤ −η∥∇F (wr)∥2 +
η∥∇F (wr)∥ · ∥ēr∥+ (higher-order terms).

Here, ēr =
∑

i pie
r
i and ∥ēr∥ ≤ ϵr by assumption.

Step 5: Bounded error and telescoping. Since prun-
ing error ϵr is small and gradually increases with the
pruning schedule

pt = max

(
0,

t− teff

ttarget − teff

)
· (ptarget − p0) + p0,

the additional error terms do not outweigh the descent.
Summing over r and using telescoping sums yields:

1
R

∑R−1
r=0 E[∥∇F (wr)∥2] ≤ 2[F (w0)−F∗]

ηR +
(bounded error terms).

This implies min0≤r<R E[∥∇F (wr)∥2] = O(1/
√
R).

Remark 1. The convergence guarantee applies in the
general non-convex setting, which is appropriate for
fine-tuning deep neural networks (including LLMs). If
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Algorithm 1 FedShield-LLM

Input: N : Number of clients, R: Number of rounds,
D: Local datasets, w0: Initial global model, C: CKKS
encryption context, p0: Initial pruning rate, ptarget:
Maximum pruning rate, teff: Pruning start round, ttarget:
Round for maximum pruning
Output: wT : Final global model, L: Training loss
history
Initialize global model w0

Set up CKKS encryption context C
for t = 1 to R do

Select a subset of clients nt ⊆ N

Compute pruning rate: pt ← max
(
0, t−teff

ttarget−teff

)
·

(ptarget − p0) + p0
for each client i ∈ nt do

Synchronize global model wt to local model wi

Load client dataset Di

Fine-tune wi using LoRA for 1 epoch on Di

Extract LoRA parameters ∆wi = Ai ·Bi

Calculate mask: mi ← mask(∆wi, pt,L1 norm)
Sparsed model updates: ∆wp

i ← ∆wi ⊙mi

Encrypt ∆wp
i using CKKS encryption

end for
Aggregate encrypted updates: w̄t ←
1

|nt|
∑

i∈nt
∆wp

i

Decrypt w̄t to obtain the aggregated update
Update global model: wt+1 ← wt + w̄t

Evaluate global model and compute training loss
Save model checkpoint periodically

end for
return wT : Final global model, L: Training loss
history

additional structure is assumed—such as µ-strong con-
vexity of F (w)—the convergence rate improves to lin-
ear. In practice, our experiments show that FedShield-
LLM achieves fast empirical convergence, with sharper
loss reduction in early rounds compared to Vanilla-FL.
The encryption layer ensures secure aggregation with-
out affecting numerical optimization, while the pruning
schedule preserves model quality by gradually increasing
sparsity.

C. Security and Robustness Analysis of FedShield-LLM

Theorem 2 (Security and Robustness of FedShield-
-LLM). Assuming the semantic security of CKKS under
the RLWE assumption and given that each client’s LoRA
update is sparsified via unstructured pruning with rate
pt, the FedShield-LLM protocol protects against infer-
ence attacks (e.g., gradient inversion) from both passive
adversaries and colluding servers, with negligible ad-
vantage for any polynomial-time attacker.

Proof. (1) Semantic Security via CKKS: Each client
encrypts its sparsified LoRA update ∆wp

i = ∆Ai ·∆Bi

using the CKKS encryption scheme before transmis-
sion. CKKS operates over the polynomial ring Rq =
Zq[x]/(x

N + 1), with a secret key s ← χ and a public
key pk = (b, a) where b = −a · s + e (mod q). The
message is first scaled and encoded, and then encrypted
as:

c0 = b · u+ e1 +m′, c1 = a · u+ e2

The server aggregates encrypted client updates homo-
morphically and holds only the public key. A trusted
party with the secret key performs decryption of the final
aggregated ciphertext. Under the RLWE assumption,
CKKS ensures IND-CPA security:

Enc(∆) ≈c Enc(∆′) ⇒ Pr[A distinguishes] ≤ negl(λ)

Thus, ciphertexts reveal no meaningful information to
adversaries, including honest-but-curious servers.

(2) Robustness from Sparsified Aggregation: Each
client applies a binary pruning mask mi ∈ {0, 1}d to
their LoRA update, yielding:

∆̃wi = mi ⊙∆wi, with ∥mi∥0 = (1− pt)d

After homomorphic aggregation and decryption, the
server observes only the combined sparse update:

∆̃wagg =
∑
i∈Ct

mi ⊙∆wi

This results in an underdetermined system, where:

∃ {∆w′
1, ...,∆w′

N} ≠ {∆w1, ...,∆wN} :∑
i

mi ⊙∆w′
i = ∆̃wagg

Due to:
• Sparsity, and
• Large client set size (N ≫ 1),

the inversion becomes ill-posed. Even in the worst-
case collusion scenario (server and N − 1 clients), the
remaining client’s update is both sparse and low-rank
due to LoRA, significantly limiting reconstructability.

Thus, FedShield-LLM integrates homomorphic en-
cryption with secure key separation and sparsified LoRA
updates to achieve a two-layered defense against gradient
inversion and data inference attacks, ensuring robustness
under standard cryptographic assumptions.

D. Computational Complexity Analysis

We analyze the computational and communication
complexity of each component in FedShield-LLM:
LoRA fine-tuning, homomorphic encryption with secure
aggregation, unstructured pruning, and communication
overhead.
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1) LoRA Fine-Tuning: Let P be the total model
parameters and PLoRA ≪ P the LoRA trainable parame-
ters. Each client trains only PLoRA = O(r ·d) parameters
(rank r, hidden size d). The per-iteration time complex-
ity is O(P + PLoRA), dominated by forward/backward
over P . Optimizer state and memory usage are only
for PLoRA, yielding substantial speed-up and efficiency.
Compared to full fine-tuning, LoRA reduces memory
and compute significantly, enabling client-side feasibility
for cross-silo FL.

2) FHE and Aggregation: Each client encrypts its
LoRA update using CKKS. Encryption complexity per
client is O(nc ·Npoly logNpoly), where nc is the number
of ciphertexts. With vector packing, updates (e.g., 30M
parameters) are reduced to a few thousand ciphertexts.
Encryption takes ∼15 seconds per client; decryption of
aggregated updates is < 1 second. Homomorphic addi-
tion on the server is O(Npoly) per ciphertext. Compared
to MPC-based schemes [6, 34], FHE trades higher com-
pute for simpler one-round communication and supports
post-aggregation operations.

3) Unstructured Pruning: Pruning selects a fraction
pt ∈ [0.2, 0.5] of smallest magnitude parameters. Thresh-
old selection via partial sort is O(PLoRA); zeroing is
linear. This introduces negligible runtime and can reduce
encryption cost. Since pruning is done after gradient
computation, it does not affect training dynamics.

4) Communication Overhead: LoRA reduces upload
size from P to PLoRA parameters (e.g., from 1200MB
to 120MB). Pruning further reduces payload size. En-
crypted updates (e.g., 30M values → ∼180MB) are
acceptable in cross-silo FL with high-bandwidth links.
While CKKS ciphertexts inflate size, fewer communi-
cation rounds and sparse updates reduce overall cost.
In contrast, MPC-based secure aggregation incurs lower
computational overhead but adds protocol complexity.
Overall, FedShield-LLM achieves computational effi-
ciency via LoRA, minimal pruning cost, and scalable
FHE-based aggregation. The end-to-end per-round time
is practical for cross-silo deployments (e.g., hospitals or
enterprises), and can be further optimized via quantized
encryption [29] or hardware acceleration.

V. EXPERIMENTS AND RESULT ANALYSIS

A. Experimental Setup

Our experiments were conducted on an Ubuntu server
equipped with two NVIDIA RTX A6000 GPUs, an
Intel Core i9 processor, and 128 GB of RAM. The
study explored FL under Independent and Identically
Distributed (IID) data scenarios, simulating 3 clients
per communication round. Each client performed local
training using the Adam optimizer with a learning rate of
5× 10−5, a batch size of 16, and gradient accumulation

steps set to 1. The sequence length was fixed at 512,
and each round consisted of a single local epoch per
client. The pruning rate was progressively increased from
20%, achieving the target value of 50% by round 200.
Pruning masks were applied to generate a sparsified
model by setting less important weights to zero based on
the pruning rate. This approach reduced computational
overhead while maintaining accuracy. To ensure robust
data privacy and security, we implemented HE from
TenSEAL [4], a library built on Microsoft SEAL. The
CKKS encryption scheme was configured with a polyno-
mial modulus degree of 16384 and coefficient modulus
sizes [60, 40, 40, 40, 60]. This setup enabled secure ag-
gregation of model updates, sharing only the public key
among clients and the server, thereby maintaining the
confidentiality of individual client data. Model evalua-
tion was conducted by decrypting the aggregated model
weights at the server using the private key when nec-
essary to assess performance. For fine-tuning efficiency,
we leveraged PEFT techniques, specifically LoRA, with
rank r = 32 and alpha α = 64. This configuration
optimized communication and computation, ensuring
scalability in large-scale federated settings.

B. Dataset and Model
Our experiments were conducted using four

diverse datasets obtained from Hugging Face:
vicgalle/alpaca-gpt4 (52,002 instruction-response pairs
for general-purpose fine-tuning) [35], FinGPT/fingpt-
sentiment-train (76,772 labeled examples for financial
sentiment analysis) [26], TIGER-Lab/MathInstruct
(262,039 tasks for mathematical reasoning) [46],
and medalpaca/medical meadow medical flashcards
(33,955 medical flashcard entries) [17]. These datasets
enabled evaluation across a wide range of domains,
including general, financial, instructional, and medical
tasks. To ensure fairness, data was distributed across
clients using an IID strategy. This involved shuffling
each dataset and partitioning it uniformly so that each
client received an equal portion of the data, ensuring all
clients handled representative shards.

For the model, we used meta-llama/Llama-2-7b-hf
and meta-llama/Llama-2-13b-hf, two transformer-based
pre-trained LLMs [37] known for their strong capabil-
ities in natural language understanding and generation
tasks. This setup enabled a comprehensive evaluation
of our FL framework, demonstrating its effectiveness
in securely and efficiently fine-tuning large language
models under uniform data distribution across clients.

C. Result Analysis
In this section, we present a comprehensive evaluation

of our proposed FedShield-LLM framework. We visual-
ize and analyze training loss curves and text generation
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Fig. 3: Comparison of training loss for three clients in LLM fine tuning. Base Model: meta-llama/Llama-2-7b-hf.
Datasets: fingpt-sentiment-train and vicgalle/alpaca-gpt4. Each row represents the training loss for a specific dataset,
with subfigures (a)–(c) corresponding to fingpt-sentiment-train and (d)–(f) corresponding to vicgalle/alpaca-gpt4.

outputs produced by our fine-tuned models in compar-
ison with GPT-4o, Vanilla-FL, and DP-LoRA. Further-
more, we report BERT scores to quantitatively assess
the quality of generated text. Our main paper focuses
on results obtained using two base models—Llama-2-
7b-hf and Llama-2-13b-hf across two datasets: fingpt-
sentiment-train and alpaca-gpt4. In addition, we provide
a comparative analysis of model performance against
DP-LoRA and Vanilla-FL based on loss metrics.

Figures 3(a–c) illustrate the training loss trends on
the fingpt-sentiment-train dataset for three clients. In the
federated fine-tuning of LLMs, the proposed FedShield-
LLM consistently outperforms both Vanilla FL and DP-
LoRA in terms of training loss reduction and con-
vergence speed. Across Clients 1, 2, and 3, the pro-

posed method maintains lower and more stable train-
ing loss throughout the training process. Notably, it
achieves faster convergence, especially during the initial
communication rounds. In contrast, DP-LoRA exhibits
significantly higher loss across all rounds, indicating
reduced performance compared to both FedShield-LLM
and Vanilla FL. These results collectively demonstrate
the superior performance, robustness, and efficiency
of the proposed approach for federated fine-tuning of
LLMs, highlighting its adaptability and effectiveness
across diverse client datasets.

Figures 3(d–f) illustrate the results of fine-tuning
LLMs using the Alpaca-GPT4 dataset, demonstrating
consistent performance across all clients with mini-
mal variability in training loss trends. The proposed



11

25 50 75 100 125 150 175 200
Communication Rounds

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Tr

ai
ni

ng
 L

os
s

160 165 170 175 180 185 190 195 200
0.100

0.125

0.150

0.175

0.200

DP-LoRA
FedShield-LLM
Vanilla-FL

(a)

25 50 75 100 125 150 175 200
Communication Rounds

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

ni
ng

 L
os

s

160 165 170 175 180 185 190 195 200
0.10

0.15

0.20

0.25

DP-LoRA
FedShield-LLM
Vanilla-FL

(b)

25 50 75 100 125 150 175 200
Communication Rounds

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

ni
ng

 L
os

s

160 165 170 175 180 185 190 195 200

0.10

0.15

0.20

0.25

DP-LoRA
FedShield-LLM
Vanilla-FL

(c)

25 50 75 100 125 150 175 200
Communication Rounds

1.0

1.5

2.0

2.5

3.0

Tr
ai

ni
ng

 L
os

s

160 165 170 175 180 185 190 195 200

0.80

0.85

0.90

DP-LoRA
FedShield-LLM
Vanilla-FL

(d)

25 50 75 100 125 150 175 200
Communication Rounds

1.0

1.5

2.0

2.5

3.0

Tr
ai

ni
ng

 L
os

s

160 165 170 175 180 185 190 195 200

0.80

0.85

0.90

DP-LoRA
FedShield-LLM
Vanilla-FL

(e)

25 50 75 100 125 150 175 200
Communication Rounds

1.0

1.5

2.0

2.5

3.0

Tr
ai

ni
ng

 L
os

s

160 165 170 175 180 185 190 195 200

0.80

0.85

0.90

DP-LoRA
FedShield-LLM
Vanilla-FL

(f)

Fig. 4: Comparison of training loss for three clients in LLM fine tuning. Base Model: meta-llama/Llama-2-13b-hf.
Datasets: fingpt-sentiment-train and vicgalle/alpaca-gpt4. Each row represents the training loss for a specific dataset,
with subfigures (a)–(c) corresponding to fingpt-sentiment-train and (d)–(f) corresponding to vicgalle/alpaca-gpt4.

FedShield-LLM approach consistently achieved lower
training loss compared to both Vanilla FL and DP-
LoRA throughout all training rounds for Clients 1, 2,
and 3. Similar to the previous dataset, DP-LoRA ex-
hibited higher training loss across all rounds, indicating
less effective optimization. These results highlight the
superior optimization efficiency and training stability of
the proposed method. Furthermore, the uniform trends
observed across all clients underscore the robustness and
scalability of FedShield-LLM, reinforcing its effective-
ness in fine-tuning LLMs within a federated setting using
the Alpaca-GPT4 dataset.

Figure 4 presents a comparative analysis of train-
ing loss across three clients during the federated fine-
tuning of the LLaMA-2-13B model on two bench-

mark datasets: fingpt-sentiment-train (subfigures a–c)
and vicgalle/alpaca-gpt4 (subfigures d–f). The proposed
FedShield-LLM consistently achieves lower training
loss compared to Vanilla FL and DP-LoRA across all
communication rounds and clients. For both datasets,
FedShield-LLM demonstrates improved convergence be-
havior and reduced variance, indicating enhanced train-
ing stability and robustness under heterogeneous client
data distributions. Notably, DP-LoRA exhibits higher
and more fluctuating loss values, reflecting its vulner-
ability to optimization inefficiencies in federated setups.
The consistent performance of FedShield-LLM across
diverse datasets and clients highlights its effectiveness
in mitigating privacy-preserving fine-tuning challenges
and its scalability to large model architectures in FL
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environments.

The results of the reasoning task are summarized be-
low, comparing the performance of our proposed model
with Vanilla FL, DP-LoRA, and GPT-4o on generated
text based on sample questions. For this evaluation,
we utilized a fine-tuned model trained on the Alpaca-
GPT4 dataset, built upon the meta-llama/Llama-2-13b-
hf architecture. The findings indicate that our proposed
model achieves performance nearly comparable to GPT-
4o’s reference outputs on the evaluated questions, while
outperforming both Vanilla FL and DP-LoRA. Notably,
despite incorporating FHE and pruning for enhanced
security and communication efficiency, the proposed
method maintains high effectiveness. These results high-
light the robustness, privacy-preserving capability, and
practical utility of our approach in secure federated fine-
tuning of LLMs.

Category: Reasoning
Question: One morning after sunrise, a person
was standing facing a pole. The shadow of the
pole fell exactly to that person’s right. Can you
tell me the direction towards which the shadow
was pointing — east, south, west, or north?
Explain your reasoning steps. To which direction
was that person facing? How do you solve this?

Ú GPT-4o

In the morning, the sun is in the east, so shadows
fall toward the west. Since the shadow of the pole
is falling to the person’s right, and the shadow is
pointing west, the person must be facing south.
Thus, the shadow is pointing west, and the person
is facing south.

Ú Vanilla-FL

The direction towards which the shadow was point-
ing is south. The reason for this is that the sun rises
in the east and sets in the west, so if the shadow is
falling to the right of the person, it means that the
sun is in the east, and the person is facing south.
To determine the direction towards which the person
was facing, we can use the following steps:
1. Determine the direction of the shadow: The
shadow is falling to the right of the person, so the
person is facing south.
2. Determine the direction of the sun: The sun is in
the east, so the person is facing south.
3. Confirm the direction: The person is facing south,
which is the opposite direction of the sun. This
confirms that the person is facing south.

Ú DP-LoRA

The direction towards which the shadow was point-
ing is south.
To solve this, we need to understand the direction
of the sun’s movement. The sun rises in the east and
sets in the west. During the day, the sun moves from
east to west, and its shadow moves in the opposite
direction.
Since the shadow of the pole fell to the person’s
right, it means that the sun was in the east, and the
person was facing east.
The person was facing east.

Ú FedShield-LLM

The direction towards which the shadow was point-
ing is south. The reason for this is that the sun rises
in the east and sets in the west, so if the shadow is
falling to the right of the person, it means that the
sun is in the east, and the person is facing south.
To determine the direction towards which the person
was facing, we can use the following steps:
1. Identify the direction of the shadow: The shadow
is falling to the right of the person, so the person is
facing south.
2. Identify the direction of the sun: The sun is in
the east, so the person is facing south.
3. Confirm the direction: The person is facing south,
as the sun is in the east and the shadow is falling to
the right.

Detailed results for other question categories, in-
cluding reasoning, generic, knowledge, common-sense,
Fermi, and coding tasks are available upon request.
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These comparisons showcased the versatility and con-
sistency of our proposed model across a wide range
of domains and question types, demonstrating its ef-
fective performance in generating accurate and coherent
responses.

TABLE II: Average BERTScore comparison across dif-
ferent methods while GPT-4o is baseline.

Model Precision Recall F1 Score

Vanilla-FL 0.5683 0.5867 0.5756
DP-LoRA 0.6287 0.6031 0.6130
FedShield-LLM 0.6738 0.7012 0.6865

For this evaluation, we used seven questions in
various categories. The response quality of Vanilla-
FL, DP-LoRA, and FedShield-LLM was assessed us-
ing BERTScore, which computes semantic similarity
between generated responses (candidates) and GPT-4o
outputs (references). Specifically, we employed the pre-
trained bert-base-uncased model for English text
to obtain precision, recall, and F1 scores for each re-
sponse. As shown in Table II, FedShield-LLM achieved
the highest average F1 score of 0.6865, outperforming
both DP-LoRA (0.6130) and Vanilla-FL (0.5756). In
terms of precision and recall, FedShield-LLM also led
with scores of 0.6738 and 0.7012, respectively, compared
to DP-LoRA’s 0.6287 precision and 0.6031 recall, and
Vanilla-FL’s 0.5683 precision and 0.5867 recall. While
GPT-4o a multimodal and significantly larger model
achieves a perfect BERTScore self-F1 of 1.0 on its
own outputs, these results indicate that FedShield-LLM,
a lightweight and privacy-preserving 7B and 13B pa-
rameter model, can produce responses that are nearly
comparable to GPT-4o’s within the evaluated scope.
This underscores the effectiveness of our approach in
semantically aligning with high-quality responses on
specialized tasks, despite substantial differences in model
scale and architecture.

Our proposed model defends against inference attacks
as the server can only access encrypted LoRA parame-
ters. In this case, the server has no knowledge of the
actual model parameters. However, even if we allow
the server to decrypt the model, an honest-but-curious
server with access to the model parameters will still be
unable to infer sensitive information through gradient
inversion or reverse engineering attacks. This is because
the attacker will only have access to the sparsified model.
Therefore, our proposed model provides robust security
against adversaries.

VI. DISCUSSION

The results of this study underscore the effectiveness
of FedShield-LLM in enhancing the performance and

security of LLMs in FL. With the same hyperparam-
eters and dataset, FedShield-LLM consistently outper-
formed Vanilla federated LLM and DP-LoRA, achiev-
ing lower training loss and generating text of higher
quality, nearly comparable to GPT-4o. Our method
demonstrated superior text generation across diverse
question types and proved to be particularly suitable
for cross-silo environments with resource constraints.
By leveraging parameter-efficient fine-tuning through
LoRA, FedShield-LLM significantly reduces computa-
tional and memory requirements, making it practical for
environments with limited resources. Additionally, the
integration of FHE with unstructured pruning optimized
model parameters while ensuring robust data privacy,
addressing critical challenges in secure distributed LLM
training. To our knowledge, this is the first implementa-
tion of such an approach, positioning FedShield-LLM
as a robust and efficient framework for sensitive and
resource-constrained FL. applications.

VII. CONCLUSION

In this study, we proposed a secure and efficient
mechanism, FedShield-LLM, for fine-tuning LLMs in
FL by integrating FHE with unstructured pruning. As
part of FHE, the CKKS encryption scheme ensures that
model parameters remain encrypted throughout training
and aggregation, protecting client data privacy. All model
parameters are encrypted layer-wise and shared with the
server to keep them secure during the communication
and aggregation process. Unstructured pruning enhances
security by deactivating less significant weights in LoRA
parameters, reducing the attack surface and mitigat-
ing risks from inference attacks. Experimental results
demonstrate that the proposed framework outperforms
existing methods in text generation performance, while
maintaining robust privacy guarantees and computational
efficiency. This makes the approach suitable for real-
world applications in sensitive domains. Future work
will focus on addressing other categories of adversarial
attacks during the training phase to further enhance the
robustness of the framework in distributed environments.
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