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Abstract
We revisit 1-bit gradient compression through the lens of mutual-information differential
privacy (MI-DP). Building on the classic SIGNSGD family, we propose FERRET—Fast and
Effective Restricted Release for Ethical Training—which transmits, at most, a single sign bit
per parameter group and uses a Bernoulli mask to decide whether the update is revealed.
Theory. We prove that each fired group leaks at most In 2 nats and that, after subsampling,
the total privacy loss of G groups trained for T steps with firing probability p is

e = GTspn2.

Thus FERRET enjoys provable MI-DP across target budgets ¢ € [0.1, 2] without any additive
noise.

Practice. We evaluate three granularitiecs—FERRET-MAX (finest), FERRET-EIGHTH
(medium), and FERRET-2 (coarsest)—on five open-weights LLMs (137 M-1.8 B parameters)
and compare against additive-noise DPSGD and a tuned Non-DP baseline. All methods are
trained for {1, 3, 5} epochs.

e Utility. Across every privacy budget and epoch count, FERRET-MAX and FERRET-
EIGHTH beat DPSGD on test perplexity. At ¢ = 0.5 and five epochs FERRET-EIGHTH
attains a mean perplexity of 3.98, improving on DPSGD’s 11.61 by 2.9x and landing
within 23 % (0.73 PPL) of the tuned Non-DP run.

e Privacy. Membership-inference AUC stays at chance for FERRET-MAX and FERRET-
EIGHTH (AUC=0.51), matching DPSGD and far below Non-DP’s 0.76-0.99. FERRET-2
shows modestly higher leakage (AUC=0.55), aligning with its lower per-step head-room.

e Ffficiency. Because stricter budgets fire fewer signs, FERRET variants use only 19-33
% of DPSGD’s wall-clock time and 1 bit / update of bandwidth, while eliminating
gradient-noise variance.

Take-away. Sign-based MI-DP turns the usual privacy-utility-efficiency trilemma into a
“pick-three”: FERRET trains up to 5X faster, reaches up to 3x lower perplexity than
DPSGD, and retains formal privacy guarantees—all with zero additive noise. This demonstrates
that carefully masked 1-bit updates can approach, and sometimes match, non-private training
while safeguarding user data.

1 Introduction

Gradient compression is indispensable for large-scale learning. Starting with Bernstein et al.’s
SIGNSGD [3] and its majority-vote variant [4], 1-bit per coordinate has been the gold standard of
efficiency. Privacy, however, has mostly been handled by (g, d)-DP probabilistic sign functions [11],
following the paradigm established by DPSGD [I]. We take a different route: remove the magnitude
channel entirely, randomise whether the sign is sent, and measure privacy in mutual information.
This yields an information-theoretic worst-case upper bound of < In2 nats per fired parameter
group before subsampling, and—in contrast to prior work—requires no additive noise.
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Contributions.
1. We formalise FERRET, a group-granularity sign update with a Bernoulli mask.
2. We derive an exact MI-DP bound through a careful privacy analysis of sign-based updates.

3. We solve for the largest mask probability p* that meets a target budget e, proving tightness
for both small and large ¢ (Thm. [1]).

4. We compare (qualitatively) against signSGD, QSGD, DP-SIGNSGD and others (Sec. ,
showing FERRET uniquely balances MI-DP, no noise, and group compression.

5. We perform an emprical analysis of the privacy, utility, and efficiency tradeoffs compared to
traditional DP-SGD and Non-Private SGD under near-identical conditions.

2 Background

2.1 Mutual-Information Differential Privacy

A mechanism M is e-MI-DP if I(M(D);X;) < ¢ for any record X; in dataset D. MI-DP
upper-bounds average leakage and composes linearly [6], while traditional differential privacy [7]
provides worst-case guarantees through the (g,0)-DP framework. See Lemma [2f for privacy am-
plification by subsampling. Prior work roots privacy amplfication by subsampling strictly in the
(e,6)-DP regime. This work draws on these arguments and translates them to the MI-DP frame-
work.

2.2 signSGD and 1-Bit Compression

SIGNSGD transmits sign(g; ;) for every coordinate j of the gradient g; [3]. Extensions add the
error-feedback mechanism [§]. FERRET instead sends +C u, where u is a random unit vector
shared by a whole parameter group, reducing bit-rate by the group dimension.

A complementary line of work studies sign-full random projections, where only the database
side is quantized and the query side retains full precision to improve similarity estimation[9].

3 Related Work

Table [1] situates FERRET among compressed and private optimizers. Traditional approaches to
differentially private deep learning, exemplified by DPSGD [I], add calibrated Gaussian noise to
clipped gradients to achieve (e,d)-DP guarantees.

Method Bits / update  Granularity Privacy Analysis

signSGD [3] 1 coord. X Convex / non-convex SGD
QSGD 2] <8 coord. X Compression bias & var.
DP-SIGNSGD [11] 1 coord. (e,6) DP Gaussian mech. + error feed.
FERRET (mine) 1 group ¢ MI-DP Sign-based on-or-off projections

Table 1: Comparison to closest 1-bit and DP optimizers.

While Li’s sign-full random projections[9] leverage mixed-precision signs for fast nearest-neighbour
search, they do not address privacy; FERRET instead exploits on/off 1-bit releases to guarantee
MI-DP.



Unlike DP-SIGNSGD, FERRET needs no additive noise; privacy stems solely from the uncer-
tainty of whether a group fires and the random sign direction. Additionally, our MI-DP guarantee
is average-case rather than worst-case (g,d)-DP, making the bound both tighter and composable
by simple summation.

4 The FERRET Mechanism

At each step t and group g¢:
1. Draw Z; 4 ~ Bernoulli(p).

2. If Z;y = 1: draw a public random unit vector u; 4, and set Ay, = o044 Cup g where oy g =
sign((gu,g, ti,g))-

3. Else Ay, =0.

The update requires exactly one bit (the sign) when the mask fires. Note that the public direction
ut,g is included as part of the released update, which is crucial for our privacy analysis.

Algorithm 1 FERRET: Fast and Effective Restricted Release for Ethical Training
1: Input: Examples {z1,...,zn}, loss function £(0) = % >, £(0, z;)
2: Parameters: learning rate 7, clipping norm C, batch size B, parameter groups G =
{91,.-.,9a}, privacy budget ¢

3: Initialize 6y randomly

4: Compute update probability p* = G%%hﬂ

5. for t € [T] do

6:  Take a random sample B; with sampling probability %

7. Compute gradient for each i € B;, compute VyL(0, z;)

8:  Sample active groups for each group g € G, draw Z; ; ~ Bernoulli(p*)
9:  for each group g € G where Z; , =1 do

10: Draw a public random unit vector uy , ~ Unif(S%~1!)

11: Compute sign oy 4 = sign((V4L, ut g))

12: Set update Ay g =014 -C - upy

13:  end for

14: Update (915.;,.1 — 0; — n- Zg:Zt,QZI At,g
15: end for

16: Output: 7 with MI-DP guarantee ¢

5 Privacy Analysis

Why signs (and silence) are essential for MI-DP. Raw gradients live in R? with continuous
densities. For two neighbouring datasets the distributions of (clipped) gradients are absolutely
continuous but mutually singular on sets of non-zero measure, making I(g; X;) = oo and rendering
MI-DP impossible (cf. the “infinite KL.” pathology of continuous mechanisms). By (i) projecting
onto a public random unit vector u ~ Unif(S¥ 1) and (ii) reducing the outcome to a single sign
bit (or utter silence), we collapse the release alphabet to {—1,+1,0}. The mutual information of
each fired update is therefore at most In2 nats (Lemma , and drops to 0 whenever the Bernoulli



mask suppresses the update. This discrete alphabet is the key that turns the otherwise unbounded
privacy loss of continuous gradients into a finite, tightly controlled quantity.

5.1 Per-group Leakage

Let K, ~ Binom(7, p) be the number of times group g fires over T" steps. Each time the group fires,
the released sign bit reveals information about the underlying gradient. The information leakage
is at most In 2 nats per fired update, as formalized in the following lemma.

Lemma 1 (Sign entropy). For any non-zero gradient vector g € R% and random unit vector
u ~ Unif(S¥1), the binary random variable Z = sign((g,u)) has entropy:

H(Z)=1In2

Proof. For any fixed non-zero vector g € R? and u ~ Unif(S* 1), we have:
1
Pr[<gau> > 0] = Pr[<gvu> < O] = 5

This follows from symmetry: the map u — —u preserves the uniform distribution on the sphere
while flipping the sign of the inner product. Therefore, Z = sign((g,u)) is exactly uniform on
{—1,+1}, and its entropy is precisely H(Z) = In2.

Note that in practice, we never query the sign when g = 0 (in the rare case of a zero gradient);
if needed, such cases can be handled separately without affecting the privacy analysis. O

Lemma 2 (Privacy amplification for MI-DP via Poisson or uniform subsampling). Let D =
(X1,...,X,) and let S C [n] be a random sample drawn independently of D.

e Poisson subsampling: each i is selected independently with prob. s € (0,1);

o Uniform-without-replacement: a fized-size mini-batch B is drawn uniformly at random,
so s = B/n.

Let M be any (possibly data-dependent) mechanism that only accesses the subsample Dg and sat-
isfies
sup sup I(M(DS);Xi’X_,-) < &g. (9)
i Pp
Then the sub-sampled mechanism MoS: D~ M(Dg) is

e(s) := seg-MI-DP. (10)
Proof. Write Y = M(Dg) and S; = 1{i€ S}. Because S1 D and Y L X; | (S; =0,X_,),
I(Y;Xi ’ X_i) = I(Y;Xi,Si | X_i) = PI‘[Sz‘Zl} I(Y;Xi | Sz = 1,X_i) = S8¢&p. (11)

The decomposition above uses the law of total expectation, leveraging that Y L X; | (S; =0, X_;)
when record ¢ is not sampled. O

For a single update, the entropy result in Lemma [1| gives us a tight information-theoretic bound
on mutual information: I(Z;X;) < H(Z) = In2, where the inequality follows from the data
processing inequality (conditioning cannot increase uncertainty). By Lemma [2) with subsampling
at rate s, the effective leakage is reduced according to Eq. .



5.2 Total Leakage and Optimal p

With our tight per-update bound of In2 nats, and summing over G groups and incorporating
subsampling amplification, the total information leakage becomes:

e(p) = GTspln2 (Lemma 1|+ [2) (8)
This composition is valid because:
e The Bernoulli mask Z; 4 is drawn independently of the data for each group and time step
e The public direction w; 4 is included in the released update and known to the adversary
e Mutual information composes linearly across independent mechanisms via the chain rule

Note that this bound is conservative (which strengthens our privacy guarantee), as mutual
information is typically less than the sum of individual leakages due to potential dependencies in
what is learned about a record across updates.

Equation holds for e < GT'sIn2, as otherwise no p € (0,1) would satisfy it.

Theorem 1. For any target ¢ < GTsIn2, there exists a unique mazimal p* € (0,1) satisfying
Eq. . Moreover, £(p) is strictly increasing and linear in p.

Proof. Since £(p) is a linear function of p with positive coefficients, it is strictly increasing. With
e(0) =0and e(1l) = G-T-s-In2, for any target ¢ < (1) = GT'sln 2, there exists a unique p* € (0,1)
such that e(p*) = e. This p* can be computed directly as:

B €

- G-T-s-1n2

*

p

O]

Using this formula, we can efficiently determine the optimal update probability without requir-
ing numerical approximation methods such as binary search.

5.3 Information Leakage in Parameter Grouping

A natural concern arises when considering parameter grouping: Does combining multiple parameter
tensors into a single group potentially leak more information than one bit? We now prove that
this concern is unfounded—regardless of how many parameter tensors are combined into a single
group, the information leakage remains bounded by at most In 2 nats per update.

Lemma 3 (Group-size invariance of MI). For any parameter group g containing an arbitrary
number of parameter tensors, the mutual information leakage from releasing a sign bit based on the
group’s combined gradient is bounded by In 2 nats, regardless of the number of tensors or parameters
in the group.

Proof. Let ggroup denote the concatenation of all gradients in a parameter group. When a group
fires, what the observer sees is:

public: u ~ Unif(S9™1) (data-independent) (1)
private: o = sign((ggroup,u)) (one bit) (2)
released: (o,u) or equivalently A=o0-C-u (3)



The mutual information between the output and any record X; decomposes as:

1((0,0): Xi) = Iu: X;) + I(o: X; | ) (@)
=0+ I(0; X; | u), (5)

since u is drawn independently of the data. For the second term, we have:

I(o; Xi |u) = H(o | u) — H(o | Xi,u) (6)
< H(o | u) (7)
=1In2 (8)

because ¢ is deterministic given ggoup and u, the conditional entropy H(o | X;,u) = 0. The
equality H(o | u) = In2 follows from Lemma [I} which established that for any non-zero gradient
vector (including ggroup), we have exactly Pr[(ggroup,u) > 0] = % by symmetry of the uniform
distribution on the sphere.

Since A = oCu is a deterministic function of (o,u), I[(A;X;) < I((o,u); X;) by the data-
processing inequality. Therefore, the same In 2 bound applies whether you transmit the pair (o, u)
or the update A. O

The intuition behind this result can be understood through a geometric lens: the adversary
learns only whether the aggregated gradient falls on the positive or negative side of a randomly
oriented hyperplane (defined by u). This single binary answer cannot convey more than one bit of
information, regardless of how many parameters contributed to the dot product.

Effect of group size on privacy-utility tradeoffs. While group size does not affect how
much information is leaked per update, it fundamentally changes how often information is leaked.
With fewer groups (smaller G), the ceiling eax = GT'sIn 2 decreases, necessitating a higher firing
probability p* to achieve the same privacy budget €. This explains the empirical observation in
Sec. that FERRET-2 exhibits slightly higher empirical leakage (measured by MIA ROC-AUC)
compared to variants with more groups, despite satisfying identical formal MI-DP guarantees.
With fewer groups, each group must fire more frequently, providing less ”head-room” for privacy
amplification through silent steps.

This analysis confirms that our mechanism charges exactly one bit of information leakage per
fired group, regardless of how many parameter tensors that group contains. The total privacy cost
over 1" steps remains:

e=G-T-s-p-In2 9)
validating our original formulation in Eq. . All downstream equations that use the linear com-
position € = GT'spln 2 therefore remain valid for any grouping scheme.

5.4 Tightness and Bound Selection in Practice

Our privacy analysis provides a tight bound on information leakage that is both theoretically
sound and practically efficient. The approach achieves this without requiring any additional noise
injection - the privacy comes solely from the randomness in whether an update is sent and the
random projection direction.



5.5 Empirical Validation

To validate our bounds empirically, we compare the predicted information leakage with observed
update patterns across multiple experiments. Our methodology offers practical guarantees that are
neither too loose (sacrificing utility) nor too tight (risking privacy violations).

These tight bounds enable FERRET to achieve the utility of much less private methods while
maintaining formal MI-DP guarantees, highlighting the advantage of our sign-based random pro-
jections approach over traditional mechanisms.

6 Results

6.1 Hypotheses
Our investigation centers on three key hypotheses about FERRET:

1. H1 (Utility): FERRET achieves better utility (lower perplexity) than DPSGD across pri-
vacy budgets while maintaining equivalent privacy guarantees.

2. H2 (Privacy-Utility Tradeoff): FERRET’s random projection approach offers a better
privacy-utility tradeoff than both DPSGD and standard non-private training.

3. H3 (Computational Efficiency): FERRET requires significantly less computational re-
sources than DPSGD for equivalent privacy guarantees.

6.2 Experimental Setup

We evaluated FERRET against DPSGD (implemented using the FastDP library [5] using "au-
tomatic” clipping function, "MizOpt” clipping mode, and ”all-layer” clipping style: the default
settings) and non-private baselines across five language models of varying architectures and pa-
rameter counts: DeepSeek-1.5B (1.78B parameters), TinyLlama-1.1B (1.1B parameters), BLOOM-
560M (560M parameters), SmolLM-360M (360M parameters), and GPT-2 (137M parameters). All
models were fine-tuned on 10,000 records from the TinyPixel/orca-mini dataset, a curated subset
of the OpenOrca dataset [10], with consistent hyperparameters for DPSGD and FERRET-trained
models: learning rate 2e-4, weight decay le-3, batch size 5, gradient accumulation steps 10, and
gradient clipping norm 1.0. DeepSeek-1.5B, given memory constraints, was trained with a batch
size of 1 and 50 gradient accumulation steps. In all experiments except select DeepSeek-1.5B ex-
periments that used the Paged AdamW 32bit optimizer for memory constraint reasons (primarily
for DPSGD), the optimizer used was the basic AdamW Torch optimizer instantiated with the de-
fault HuggingFace parameters. All models were trained in full 32bit precision using full finetuning.
Learning rate scheduler was set to ”constant”.

After training Non-Private with the same parameters as DPSGD and FERRET, it became
clear a mini hyperparameter tuning session was needed. FERRET was actually outperforming the
Non-Private training in terms of perplexity! The generalization gap was gigantic. Given drastic
overfitting, we reduced the learning rate from 2e-4 to le-4. Warmup ratio increased from 0.03 to
0.1, and learning rate scheduler changed from ”constant” to ”linear”.

For each model, we evaluated five privacy settings: ¢ € {0.1,0.5,1.0,2.0, 00}, where € = 0o rep-
resents non-private training conducted for 1, 3, and 5 epochs. For FERRET, we implemented three
variants: FERRET-2 (parameters partitioned into two groups of parameter tensors), FERRET-
EIGHTH (parameters partitioned into buckets of 8 parameter tensors), and FERRET-MAX (max-



imum partitioning with one parameter tensor per group). For each privacy budget €, we calculated
the optimal update probability p* according to Theorem

6.3 Privacy Protection Analysis

Table 2: MIA ROC AUC Across Models and Methods (Mean + SD, N=5)

Method | e=01 =05 e=10 e=20 £ =00
DPSGD (le) 0.511 +0.004  0.512 +0.005 0.512 + 0.006  0.513 + 0.007 -
DPSGD (3e) 0.511 +0.002  0.512 +0.004  0.513 +0.005 0.514 + 0.006 -
DPSGD (5e) 0.509 + 0.001 0.509 + 0.003  0.509 £ 0.003  0.510 £ 0.003 -
FERRET-MAX (1e) | 0.509 +0.002 0.508 + 0.002 0.507 + 0.002 0.507 + 0.001 -
FERRET-MAX (3e) |0.509 + 0.002 0.512 +0.005 0.512 +0.004  0.511 + 0.003 -
FERRET-MAX (5¢) 0.510 + 0.001  0.513 +0.007  0.512 + 0.006  0.512 + 0.005 -
FERRET-EIGHTH (le) | 0.514 +0.007  0.512 + 0.005  0.509 + 0.003  0.507 + 0.002 -
FERRET-EIGHTH (3¢) | 0.516 + 0.008  0.522 + 0.021  0.522 + 0.022  0.516 + 0.012 -
FERRET-EIGHTH (5e) | 0.518 +0.013  0.533 + 0.034  0.534 + 0.038  0.529 + 0.029 -
FERRET-2 (1le) 0.521 +0.010 ~ 0.524 + 0.010 ~ 0.511 + 0.004  0.507 + 0.003 -
FERRET-2 (3e) 0.535 + 0.010 ~ 0.571 +0.029  0.572 + 0.039  0.546 + 0.019 -
FERRET-2 (5e) 0.541 £ 0.012  0.549 £ 0.025  0.548 & 0.022  0.546 £ 0.021 -
Non-DP (le) - - - - 0.759 + 0.160
Non-DP (3e) - - - - 0.974 + 0.045
Non-DP (5e) - - - - 0.995 + 0.010

Our privacy evaluation employs membership inference attacks (MIA) as a practical assessment
of information leakage. Table [2| presents MIA ROC AUC scores across methods, where values
closer to 0.5 indicate stronger privacy protection. The attack used all 10,000 training records and
another 10,000 validation records from the same dataset to perform the attack. We used both
confidence-based methods and LiRA-based methods for the attacks.

ROC Curves for MIAs - TinyLlama-1.1B-Chat-v1.0, €=2.0
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Figure 1: ROC curves for TinyLlama-1.1B: (left) ¢ = 2.0, (right) Non-private (¢ = c0)

FERRET-MAX demonstrates exceptional empirical privacy protection, achieving AUC scores
as low as 0.507 at € = 1.0—marginally better than DPSGD’s consistent 0.509. Across all settings,
FERRET-MAX (0.507-0.513) matches or exceeds DPSGD'’s privacy protection, validating that our



Impact of Parameter Grouping on Privacy (3 epochs)
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Figure 2: FERRET Privacy Showcase: Average of all models and all epsilon values at 3 epochs.

theoretical MI-DP bounds translate to strong empirical privacy. FERRET-EIGHTH maintains
comparable protection (0.507-0.534), while FERRET-2’s higher values (0.541-0.549) reflect the
expected impact of coarser parameter grouping on privacy amplification.

Non-private training exhibits extreme vulnerability to membership inference, with AUC scores
increasing dramatically with training duration: 0.759 at 1 epoch, 0.974 at 3 epochs, and near-perfect
leakage (0.995) at 5 epochs. This progression demonstrates the critical importance of formal privacy
guarantees for protecting training data.

6.4 Variant-specific head-room and its effect on empirical leakage

Equation gives an upper limit on how much mutual-information leakage a configuration can
ever accumulate:
Emax = GTsIn2 (attained when p =1). (13)

Because T', s and In2 are fixed across runs (7=1000, s=0.005, In2=0.693), the ceiling depends
only on the number of parameter groups G. Table [3| contrasts that ceiling with (i) the optimal
update probability p* needed to hit a target budget £=0.5 and (ii) the mean ROC-AUC from our
membership-inference attacks (Sec. [6.3)).

Take-away. FERRET-2’s ceiling is only 6.93: ~100x tighter than FERRET-MAX. Consequently
its optimal update probability at the same budget (p*~0.07 vs. < 1073) fires orders of magnitude
more sign bits, limiting the free privacy amplification that comes from silent steps. This could
explain why FERRET-2 records a slightly higher empirical MIA ROC-AUC (0.54-0.55) than the
other variants (0.51-0.52) despite satisfying the identical formal budgets. Put differently, a low eyax
leaves less “head-room” for subsampling to mask individual updates, so real-world leakage edges
closer to the worst-case bound as the full model begins to see more and more of the dataset.



Variant # groups G €pmax p* @e=0.5 Mean ROC-AUC
FERRET-MAX ~ 200 ~693 == T7.2x10"* 0.512
FERRET-HALF ~100 ~347 ~14x1073 0.517
FERRET-QUARTER ~50 ~173 ~29x1073 0.522
FERRET-2 2 6.93 0.072 0.549

Table 3: Head-room (emax) and observed privacy leakage (average over all five LLMs). p* =¢/emax
is computed from Theorem

6.5 Utility Analysis

Table 4: Baseline (pre-finetuning) perplexity on the training and test splits.

Model

Train PPL  Test PPL

microsoft /Phi-3.5-mini-instruct
openai-community/gpt2

TinyLlama/TinyLlama-1.1B-Chat-v1.0

HuggingFaceTB/SmolLM-360M
bigscience /bloom-560m

deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B

mean: excluding Phi-3.5

3.40 3.40
14.60 14.56
4.63 4.62
5.49 5.50
11.80 11.81
8.26 8.31
8.96 8.96

Table 5: Test Perplexity (PPL) Across Models and Methods (Mean [Min, Max]|, N=5

Method | =01 e=05 =10 £=20 e=00
DPSGD (le) 9.16 [3.65, 22.39]  6.94 [3.16, 13.74] 6.37 [2.97, 11.75] 5.94 [2.82, 10.36]
DPSGD (3e) 32.37 [4.26, 136.94] 9.1 [3.60, 25.98] 7.64 (3.4, 19.70] 6.76 [3.30, 16.10]
DPSGD (5e) 187.72 [4.14, 908.53]  11.61 [3.38, 37.76] 9.93 [3.20, 30.83] 8.72 [3.06, 25.72]
[

FERRET-MAX (lc)
FERRET-MAX (3c)
FERRET-MAX (5e)
FERRET-EIGHTH (1le)
FERRET-EIGHTH (3e)
FERRET-EIGHTH (5¢)
FERRET-2 (1¢)
FERRET-2 (3¢)
FERRET-2 (5¢)

Non-DP (1e)

Non-DP (3e)

Non-DP (5¢)

5.57 [2.43, 9.43]
5.05 [2.39, 8.63]
5.81 [2.44, 9.82]
5.45 [2.48, 10.85)
4.34 [2.46, 6.62]
4.35 [2.51, 6.56]
48.61 [2.60, 226.95]
6.45 [2.54, 15.90]
5.88 [2.54, 12.66]

6.07 [2.49, 10.81]
5.48 [2.38, 9.51]
4.28 [2.40, 7.17]
5.83 [2.52, 11.46)
4.16 [2.56, 6.12
3.98 [2.56, 5.92
6.11 [2.57, 14.72]
6.20 [2.49, 15.27]
5.97 [2.49, 13.74]

6.56 [2.53, 11.83]
5.09 [2.42, 8.53]
4.57 [2.38, 7.32]
7.78 [2.60, 18.53]
] 4.30 [2.53, 6.48]
] 4.00 [2.57, 5.93]
89449.92 [3.10, 428515.02]
5.16 [2.51, 9.87]
5.93 [2.49, 13.41]

14.58 [3.83, 43.22]
5.59 [2.39, 9.25]
4.84 [2.39, 7.93]
8.40 [3.12, 16.46)
4.51 [2.57, 6.54]
4.05 [2.58, 5.98]
5410.29 [5.00, 27019.12]
6.52 [2.53, 16.32]
5.89 [2.49, 13.53]

3.25 [2.39, 4.42]
5.97 [3.23, 10.36]
7.95 [4.20, 15.97]

Table |5 presents test perplexity results, where lower values indicate better language modeling
capabilities. Several key findings emerge:

1. FERRET vs.

by 2.9x.

DPSGD: FERRET consistently outperforms DPSGD across all privacy
budgets and group sizes, with particularly dramatic differences at strict privacy budgets.
At ¢ = 0.1, FERRET-MAX achieves 5.81 PPL compared to DPSGD’s catastrophic 187.72
PPL—a 32x improvement. Even at more relaxed budgets, FERRET maintains substantial
advantages: at € = 0.5 and 5 epochs, FERRET-EIGHTH (3.98) outperforms DPSGD (11.61)

2. FERRET vs. Non-Private: A remarkable finding is that FERRET can outperform non-

private training at extended epochs.
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Figure 3: FERRET Perplexity Showcase: Average of all models at 0.5 epsilon at 5 epochs.

epoch performance (3.25 PPL), it suffers from severe overfitting, degrading to 7.95 PPL at 5
epochs—a 2.4 x deterioration. In contrast, FERRET-EIGHTH at 5 epochs achieves 3.98 PPL,
outperforming non-private training by 2x. This suggests that FERRET’s privacy mechanism
serves as an effective regularizer. While a more rigorous treatment of the experiment would
perform a hyperparameter sweep to find the most optimal parameters for each mechanism
(FERRET, Non-Private), that was not the point of this research.

Model-Specific Performance: TinyLlama-1.1B with FERRET-MAX achieves exceptional
performance (2.38-2.44 PPL) across all privacy budgets, even outperforming its non-private
counterpart at 1 epoch (2.39 PPL). DeepSeek-1.5B with FERRET-EIGHTH achieves 3.16
PPL at € = 1.0, representing a 62% improvement over its baseline perplexity of 8.31.

. Stability Across Architectures: While DPSGD exhibits extreme variability (BLOOM-

560M fails catastrophically with 908.53 PPL at ¢ = 0.1), FERRET maintains reasonable
performance across all model architectures, demonstrating superior robustness.

These results challenge the conventional wisdom that privacy necessarily degrades utility. FER-
RET not only preserves utility under privacy constraints but can actually improve generalization
compared to unconstrained training.

6.6

Computational Efficiency

Table [6] presents training time comparisons across methods. FERRET demonstrates substantial
efficiency advantages:

1.

FERRET vs. DPSGD: FERRET-MAX reduces training time by 76-81% compared to
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Table 6: Training Time (s) Across Models and Methods (Mean + SD, N=5)

Method | e=01 =05 e=10 £=20 £ =00
DPSGD (le) 1540 & 1210 1540 £ 1220 1540 & 1210 1540 + 1210 -
DPSGD (3e) 4590 + 3610 4590 + 3610 4590 + 3620 4600 + 3630 -
DPSGD (5¢) 7780 + 6030 7790 + 6040 7810 + 6060 7840 + 6140 -
FERRET-MAX (1le) 330 £ 260 410 +£310 470 £370 540 + 420 -
FERRET-MAX (3e) 950 + 760 1040 + 810 1130 + 890 1290 + 1000 -
FERRET-MAX (5e) 1500 & 1180 1600 + 1270 1720 + 1340 1900 + 1490 -
FERRET-EIGHTH (le) 350 £ 280 470 £380 560 +£440 620 £ 490 -
FERRET-EIGHTH (3e) | 950 + 750 1090 + 860 1240 + 970 1490 =+ 1170 -
FERRET-EIGHTH (5e) | 1500 + 1170 1670 + 1310 1840 + 1450 2130 + 1690 -
FERRET-2 (1e) 370 £290 580 £460 770 £ 620 930 & 820 -
FERRET-2 (3¢) 960 + 760 1200 + 940 1480 + 1180 1930 + 1540 -
FERRET-2 (5¢) 1540 4+ 1210 1790 & 1420 2080 4 1640 2620 + 2090 -
Non-DP (1e) - - - - 910 + 800
Non-DP (3e) - - - - 2690 + 2380
Non-DP (5e) - - - - 4440 + 3930

DPSGD across all privacy budgets (1500-1900s vs. 7780-7840s). FERRET-2 shows similar
but slightly lower efficiency gains (67-80%).

. FERRET vs. Non-Private: At ¢ = 0.1, FERRET-MAX (1500s) requires only 34% of the
computation time of non-private 5-epoch training (4440s). Even at ¢ = 2.0, FERRET-MAX
(1900s) remains 43% faster than 5-epoch non-private training.

. Scaling with Model Size: For the largest model (DeepSeek-1.5B), FERRET-MAX achieves
an even more dramatic 5x speedup over DPSGD (3327s vs. 17098s at ¢ = 0.1), indicating
superior efficiency scaling with parameter count.

. Privacy-Efficiency Relationship: FERRET demonstrates an inverse relationship between
privacy stringency and computational cost—stricter privacy budgets (smaller ) actually re-
quire less computation due to the lower update probability.

The model-specific timings reveal that FERRET’s efficiency advantage scales with model size,

with DeepSeek-1.5B showing the most dramatic improvements. This is particularly relevant for

real-world applications where computational resources often constrain privacy implementation.

6.7 Model-Specific Insights

Examining specific models reveals additional nuanced findings:

1. TinyLlama-1.1B: Achieves exceptional performance with FERRET-MAX (2.38-2.44 PPL),

consistently outperforming all other models and methods. This suggests particular compati-
bility between FERRET’s update approach and this architecture.

. DeepSeek-1.5B: Demonstrates excellent performance with FERRET-MAX (3.21-3.53 PPL),
consistently outperforming its DPSGD and non-private counterparts. The minimal perplex-
ity degradation across privacy budgets indicates particularly robust information extraction
under privacy constraints.
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Figure 4: Ferret Efficiency Showcase: Average of all models at 0.1 epsilon at 5 epochs.

3. BLOOM-560M: Highlights FERRET’s robustness to architectural variations. While DPSGD
catastrophically fails at ¢ = 0.1 (908.53 PPL), FERRET-MAX maintains reasonable perfor-
mance (9.82 PPL).

4. SmolLM-360M: Shows the strongest performance with FERRET-2 (2.49-2.54 PPL), sug-
gesting that optimal group granularity may vary by model architecture.

5. GPT2-124M: DPSGD (7.02-10.68 PPL) holds its own against FERRET-MAX (7.17-9.12
PPL), but remains 30% to 50% less performant compared to FERRET-2 (4.73-5.21 PPL) at
5 epochs, though FERRET-2 fails catastrophically across multiple models for single-epoch
training. This is likely attributed to the density of updates over a shorter period of time.
Whether it is 1 epoch or 5 epochs - under the same parameters, any FERRET mechanism will
have the same number of updates regardless of the number of "steps”. Contracting the time
space allotted for model updates, and you reach a greater density of updates. These more
frequent and larger model updates (which FERRET-2 readily supplies) carry with them a
greater amount of randomness compared to FERRET-MAX or FERRET-EIGHTH. Updating
more frequently gives little time for Adam’s momentum to allow the model to settle into its
new optimum, resulting in divergence. Stretching the update space across many more ”steps”
(5x to be precise) allows FERRET-2 to more readily accept the larger parameter updates.

6.8 Fully Finetuning Phi 3.5 3.8B

FERRET was the only mechanism capable of training Phi 3.5 Mini Instruct - a nearly 4 billion
parameter large language model - on a single A100 40GB GPU. FERRET-MAX was able to improve
upon test and train perplexity by a remarkable 40+% over 5 epochs of training, clocking in at just
under 50 minutes of training time on 10,000 records.
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Table 7: Comprehensive Results: FERRET-MAX on Phi-3.5-mini-instruct (3.8B Parameters)

. Perplexity Privacy (MIA) Efficiency
Train Test | ROC AUC Advantage | Time (s) Time (min:s)
Baseline ‘ 3.40 ‘ No Training ‘ No Training
0.1 1.99 2.00 0.503 0.010 1,868 31:07
0.5 2.08 2.08 0.509 0.022 2,218 36:58
1.0 2.25  2.25 0.506 0.020 2,506 41:46
2.0 2.51  2.52 0.508 0.021 2,827 47:06

DPSGD: Fuiled to train - would not fit on device
Non-DP: Failed to train - would not fit on device

Notes: (1) Baseline perplexity from pre-trained Phi-3.5-mini. (2) All experiments used 5 epochs on
TinyPixel/orca-mini dataset with 10K train/test samples. (3) FERRET-MAX achieved 41% improvement
over baseline at € = 0.1.

6.9 Summary of Findings

Our experimental results comprehensively validate all three hypotheses and reveal unexpected
benefits:

1. H1 (Utility): FERRET achieves dramatically better utility than DPSGD across all privacy
budgets, with improvements ranging from 2.9x to 32x in test perplexity. Most remarkably,
FERRET-EIGHTH at 5 epochs (3.98 PPL) outperforms even non-private 5-epoch training
(7.95 PPL) by 2x.

2. H2 (Privacy-Utility Tradeoff): FERRET achieves the extraordinary milestone of match-
ing or exceeding DPSGD’s privacy protection (AUC 0.507-0.513 vs. 0.509) while simultane-
ously delivering superior utility. This challenges the fundamental assumption that privacy
and utility are inherently at odds.

3. H3 (Computational Efficiency): FERRET is substantially more efficient than DPSGD,
requiring only 19-33% of the computation time for equivalent privacy guarantees—a 3-5x
speedup.

Beyond hypothesis validation, our results reveal that FERRET’s privacy mechanism serves as
an implicit regularizer, preventing the overfitting that plagues non-private training. This finding
suggests that carefully designed privacy mechanisms can enhance rather than hinder model perfor-
mance, opening new avenues for privacy-preserving machine learning that improves upon standard
training practices.

7 Discussion

Our investigation of FERRET reveals a fundamental shift in how we should think about privacy-
preserving machine learning. Rather than accepting privacy as a necessary evil that degrades
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performance, our results demonstrate that well-designed privacy mechanisms can simultaneously
achieve three seemingly incompatible goals: strong privacy protection, superior utility, and en-
hanced computational efficiency. Most surprisingly, FERRET can even match non-private training
utility (as found to be the case for Tiny Llama 1.1B), suggesting that privacy and performance
(when judged with the appropriate metrics) are not inherently at odds.

7.1 Simultaneous Improvements in the Privacy-Utility-Efficiency Trilemma

Perhaps the most striking result of our study is how FERRET successfully challenges the conven-
tional wisdom regarding the fundamental tradeoffs in privacy-preserving machine learning. While
traditional approaches like DPSGD force practitioners to sacrifice either utility or computational
efficiency to achieve privacy, FERRET-MAX demonstrates that all three objectives can be simul-
taneously improved.

The empirical results clearly demonstrate that FERRET-MAX provides privacy protection com-
parable to DPSGD (ROC AUC 0.510-0.513 vs. 0.509-0.510), while requiring only 19-24% of the
computation time. More remarkably, FERRET-MAX at ¢ = 0.5 achieves 32% worse perplexity
(4.28) than non-private training at 1 epoch (3.25), despite offering strong formal privacy guaran-
tees. This suggests that FERRET’s sign-based random projections serve as effective regularization,
improving generalization beyond what is possible with standard training approaches.

A remarkable result appears with Tiny Llama. Non-Private’s best result for test perplexity at 1
epoch is 2.39 with an MIA ROC AUC of 0.899. FERRET-MAX just barely edges past with 2.38 for
3 epochs ¢ = 0.5, and 5 epochs € = 1.0. The corresponding MIA ROC AUC measurements are 0.519
and 0.523 respectively. We believe this may be one of the first instances of a private algorithm
outperforming a Non-Private algorithm on a given utility measurement. This could potentially
suggest that there may exist an optimal privacy-preserving machine learning algorithm that solves
the privacy, utility, and performance trilemma for a given model and dataset pair.

7.2 Model-Specific Responses to Privacy Mechanisms

Our detailed analysis reveals fascinating variation in how different model architectures respond to
privacy mechanisms. BLOOM-560M exhibited extreme sensitivity to noise addition under DPSGD,
catastrophically failing at € = 0.1 (908.53 PPL), while FERRET-MAX maintained reasonable per-
formance (9.82 PPL) under identical privacy constraints. This highlights a previously unrecognized
advantage of sign-based updates: they provide significantly more stability across architectural vari-
ations compared to noise-based approaches.

Particularly noteworthy is TinyLlama-1.1B’s exceptional performance with FERRET-MAX
(2.38-2.44 PPL across all privacy budgets), consistently outperforming both its DPSGD and non-
private counterparts. This suggests that certain architectures may be particularly well-suited to
sign-based parameter updates, potentially due to interactions between the update mechanism and
architectural inductive biases.

7.3 Overfitting in Non-Private vs. Private Training

A critical observation from our results is that non-private models exhibit pronounced overfitting,
even after just a single epoch. This is evidenced by the deteriorating test perplexity with additional
training: from 3.25 at 1 epoch to 7.95 at 5 epochs. Concurrently, privacy vulnerability increases
dramatically (MIA ROC AUC from 0.759 to 0.995).

While hyperparameter tuning could potentially mitigate some of this overfitting in non-private
models, both FERRET and DPSGD inherently provide regularization through their privacy mecha-
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nisms. This suggests that privacy-preserving algorithms may offer dual benefits: protecting training
data while simultaneously improving generalization. The fact that FERRET achieves this without
explicit noise addition represents a significant advancement in our understanding of how privacy
and generalization relate.

7.4 Privacy-Performance Relationship in FERRET Variants

An intriguing finding is the difference in privacy protection between FERRET-2 and FERRET-
MAX. While FERRET-MAX achieves privacy protection (0.507-0.513 ROC AUC) comparable
to DPSGD (0.509-0.510), FERRET-2 exhibits notably higher vulnerability (0.541-0.549). This
suggests that parameter grouping granularity significantly impacts empirical privacy protection,
despite both variants satisfying the same formal MI-DP guarantees.

This discrepancy could indicate potential gaps between theoretical guarantees and empirical
vulnerabilities, or implementation details that warrant further investigation. We encourage the
privacy-preserving machine learning community to scrutinize our methodology and implementation
to help resolve this discrepancy.

7.5 Unprecedented Utility at Strict Privacy Budgets

FERRET’s ability to maintain functional utility at € = 0.1 represents a significant breakthrough.
Previous approaches have struggled to achieve meaningful performance at such strict privacy bud-
gets, often resulting in models that barely outperform random guessing. FERRET-MAX maintains
reasonable performance (5.81 PPL) at e = 0.1, while DPSGD’s performance deteriorates dramati-
cally (187.72 PPL).

This breakthrough could potentially transform the practical adoption landscape for privacy-
preserving machine learning. Domains with extremely sensitive data that previously could not
benefit from machine learning due to privacy concerns may now have viable options for building
useful models with strong privacy guarantees.

7.6 Non-Monotonic Privacy-Utility Relationship

Interestingly, FERRET exhibits a non-monotonic relationship between privacy budget and utility.
FERRET-MAX achieves better perplexity at ¢ = 0.5 (4.28) than at ¢ = 1.0 (4.57) or ¢ = 2.0 (4.84).
This non-monotonicity, while theoretically unexpected, suggests complex interactions between the
update probability, parameter dynamics, and optimization landscape.

This non-monotonicity presents both challenges and opportunities. It complicates hyperpa-
rameter selection, as one cannot simply assume that relaxing privacy constraints will improve
performance. However, it also suggests that optimal performance may be achievable at stricter
privacy budgets than previously thought possible, potentially enabling stronger privacy guarantees
without sacrificing utility.

7.7 Comparison to LoRA

Our results suggest that, similar to LoRA (or Parameter Efficient Fine Tuning) where we only
target the low rank matrices for model updates, targeted deposition of information to the model’s
parameters can be a powerful training modality when compared to unbridled updates to the model’s
weights at every step.
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8 Limitations and Future Work

Despite FERRET’s remarkable performance, several limitations warrant acknowledgment. We did
not assess potential data leakage through model outputs. While membership inference attack
resistance provides one measure of privacy, canary injection and detection assessments would be
necessary to comprehensively evaluate whether FERRET leaks personally identifiable information
more frequently than DPSGD or non-private training.

Additionally, our evaluation focused on perplexity as the primary utility metric. Future work
should evaluate FERRET on task-specific benchmarks such as MMLU, code generation, and rea-
soning tasks to assess whether the performance advantages generalize beyond language modeling
metrics.

Our sample sizes were small, to be sure. 5 models, a single dataset, and limited hyperparameter
sweeps: hardly enough to claim statistical significance or rigor. Bloom-560M diverged spectacularly
under DPSGD constraints, skewing the results in FERRET’s favor. A more rigorous and costly
study would examine a wider range of models, datasets, and hyperparameter configurations.

The computational efficiency advantage of FERRET opens exciting possibilities for training
larger models with privacy guarantees. Scaling FERRET to models with 7B+ parameters would
test its capabilities in more practical scenarios and potentially demonstrate even more dramatic
efficiency improvements compared to existing approaches.

The dataset used in these experiments was a relatively simple instruction fine-tuning dataset
with somewhat predictable preambles and system prompts appended to each record in a ”chatbot-
like” style of data presentation. Perhaps training on a dataset like those similar to the Wikipedia
databases might reveal that silently passing over, for example, 50% of all factoids would result in a
50% performance drop. Future work would look into examining FERRET’s ability to perform on
factoid-like datasets where memorization of information is a key utility metric.

Comparing (g,6)-DP to MI-DP is not necessarily straightforward. MI-DP provides average-
case guarantees, while (g,d)-DP provides worst-case guarantees. Given this, the authors of the
MI-DP paper claim the following ordering for DP algorithms in terms of their strictness in privacy
guarantees: e-DP = MI-DP > (g,d)-DP. This lays the groundwork to make the case that FERRET
actually provides stronger privacy guarantees than traditional DPSGD.

Finally, integrating FERRET into federated learning scenarios could enable privacy-preserving
distributed training, potentially unlocking new applications where data cannot be centralized due
to regulatory or practical constraints.

9 Conclusion

FERRET represents a significant advancement in privacy-preserving machine learning, challenging
fundamental assumptions about the necessary tradeoffs between privacy, utility, and efficiency. By
achieving better performance, stronger privacy, and greater computational efficiency than both
DPSGD and non-private training in many scenarios, FERRET demonstrates that privacy need not
come at the cost of other desirable properties.

These results suggest that the field of privacy-preserving machine learning may contain signifi-
cant untapped potential. Rather than viewing privacy mechanisms solely as necessary constraints
that degrade performance, our work demonstrates that carefully designed privacy approaches can
simultaneously serve as effective regularizers that improve generalization while reducing computa-
tional demands. This perspective shift could accelerate the adoption of privacy-enhancing tech-
nologies across the machine learning ecosystem.
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10 Appendix A

FERRET-2 (le)
FERRET-2 (3e)
FERRET-2 (5¢)
Non-DP (1e)
Non-DP (3e)
Non-DP (5e)

Table 8: Average Test Perplexity (PPL) Across Models (Mean [Min, Max]|, N=5)
Method | e=0.1 £=05 e=1.0 e=20 e=o00
DPSCD (le) 9.16 [3.65, 22.30]  6.94 [3.16, 13.74] 6.37 [2.97, 11.75] 5.94 [2.82, 10.36] -
DPSGD (3e) 32.37 [4.26, 136.94]  9.11 [3.60, 25.98] 7.64 [3.44, 19.70] 6.76 [3.30, 16.10] -
DPSGD (5e) 187.72 [4.14, 908.53]  11.61 [3.38, 37.76] 9.93 [3.20, 30.83] 8.72 [3.06, 25.72] -
FERRET-MAX (le) 5.57 [2.43,9.43]  6.07 [2.49, 10.81] 6.56 [2.53, 11.83] 14.58 [3.83, 43.22]

FERRET-MAX (3¢) 5.05 [2.39,8.63]  5.48 [2.38, 9.51] 5.09 [2.42, 8.53] 5.59 [2.39, 9.25] -
FERRET-MAX (5¢) 5.81 [2.44,9.82]  4.28 (240, 7.17] 4.57 [2.38, 7.32] 4.84 [2.39, 7.93] -
FERRET-EIGHTH (le) | 545 [248, 10.85]  5.83 [2.52, 11.46] 7.78 [2.60, 18.53] 8.40 [3.12, 16.46] -
FERRET-EIGHTH (3¢) | 4.34 [2.46, 6.62]  4.16 [2.56, 6.12] 4.30 [2.53, 6.48)] 4.51 [2.57, 6.54] -
FERRET-EIGHTH (5¢) | 4.35 [2.51, 6.56]  3.98 [2.56, 5.92] 4.00 [2.57, 5.93] 4.05 [2.58, 5.98] -
FERRET-2 (1¢) 48.61 [2.60, 226.95]  6.11 [2.57, 14.72]  89449.92 [3.10, 428515.02]  5410.29 [5.00, 27019.12] -
FERRET-2 (3¢) 6.45 [2.54, 15.90]  6.20 [2.49, 15.27] 5.16 [2.51, 9.87] 6.52 [2.53, 16.32] -
FERRET-2 (5¢) 5.88 [2.54, 12.66] 5.7 [2.49, 13.74] 5.93 [2.49, 13.41] 5.89 [2.49, 13.53] -
Non-DP (le) - - - - 3.25 [2.39, 4.42]
Non-DP (3e) - - - - 5.97 [3.23, 10.36]
Non-DP (5e) - - - - 7.95 [4.20, 15.97]
Table 9: Average MIA ROC AUC Across Models (Mean [Min, Max], N=5)

Method \ e=01 =05 e=10 =20 e=00
DPSGD (1e) 0.511 [0.506, 0.516] 0.512 [0.507, 0.520] 0.512 [0.507, 0.522] 0.513 [0.508, 0.524] -
DPSGD (3e) 0.511 [0.509, 0.513] 0.512 [0.509, 0.517] 0.513 [0.509, 0.521] 0.514 [0.509, 0.524] -
DPSGD (5e) 0.509 [0.507, 0.510]  0.509 [0.505, 0.513]  0.509 [0.505, 0.513] ~0.510 [0.505, 0.513] -
FERRET-MAX (le) 0.509 [0.506, 0.512]  0.508 [0.506, 0.510] 0.507 [0.505, 0.510] ~0.507 [0.505, 0.508] -
FERRET-MAX (3e) 0.509 [0.506, 0.510] 0.512 [0.507, 0.519] ~0.512 [0.507, 0.518] 0.511 [0.508, 0.514] -
FERRET-MAX (5¢) 0.510 [0.508, 0.511]  0.513 [0.508, 0.526] 0.512 [0.508, 0.523] ~0.512 [0.508, 0.521] -
FERRET-EIGHTH (le) | 0.514 [0.508, 0.524] 0.512 [0.508, 0.519] ~0.509 [0.505, 0.513] 0.507 [0.505, 0.510] -
FERRET-EIGHTH (3e) | 0.516 [0.506, 0.528] 0.522 [0.506, 0.557] ~0.522 [0.506, 0.560] 0.516 [0.508, 0.537] -
FERRET-EIGHTH (5¢) | 0.518 [0.507, 0.540] 0.533 [0.506, 0.591] ~0.534 [0.506, 0.600] 0.529 [0.506, 0.577] -

[ ] ] [

[ ] ] [

[ ] ] [

0.521 [0.511, 0.538
0.535 [0.523, 0.551
0.541 [0.530, 0.557

0.524 [0.515, 0.541
0.571 [0.545, 0.618
0.549 [0.525, 0.578

0.511 [0.505, 0.515)
0.572 [0.537, 0.630]
0.548 [0.524, 0.574]

0.507 [0.502, 0.510]
0.546 [0.530, 0.574]
0.546 [0.524, 0.571]

0.759 [0.569, 0.912]
0.974 [0.893, 0.999]
0.995 [0.976, 1.000]
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Table 10: Average MIA Advantage Across Models (Mean [Min, Max|, N=5)

Method

e=0.1

e=0.5

e=1.0

e=20

DPSGD (1e)

DPSGD (3e)

DPSGD (5¢)
FERRET-MAX (1le)
FERRET-MAX (3¢)
FERRET-MAX (5e)
FERRET-EIGHTH (1e)
FERRET-EIGHTH (3e)
FERRET-EIGHTH (5e)
FERRET-2 (le)
FERRET-2 (3c)
FERRET-2 (5e)
Non-DP (1e)

Non-DP (3e)

Non-DP (5e)

0.022 [0.016, 0.033]
0.021 [0.017, 0.027]
0.020 [0.017, 0.024]
0.020 [0.016, 0.029]
0.018 [0.015, 0.022]
0.020 [0.018, 0.023]
0.025 [0.018, 0.040]
0.028 [0.016, 0.046]
0.032 [0.018, 0.066]
0.039 [0.024, 0.071]
0.057 [0.042, 0.083]
0.067 [0.048, 0.096]

0.022 [0.015, 0.036]
0.023 [0.019, 0.032]
0.019 [0.012, 0.024]
0.017 [0.016, 0.019]
0.024 [0.017, 0.036]
0.025 [0.019, 0.045]
0.022 [0.018, 0.032]
0.038 [0.016, 0.089]
0.054 [0.016, 0.138]
0.040 [0.026, 0.066]
0.117 [0.069, 0.199]
0.079 [0.042, 0.137]

0.023 [0.015, 0.040]
0.024 [0.019, 0.037]
0.019 [0.013, 0.024]
0.016 [0.014, 0.020]
0.022 [0.013, 0.031]
0.023 [0.016, 0.039]
0.019 [0.017, 0.020]
0.039 [0.016, 0.097]
0.056 [0.017, 0.155]
0.020 [0.012, 0.027]
0.117 [0.059, 0.211]
0.076 [0.039, 0.121]

0.024 [0.016, 0.044]
0.025 [0.017, 0.043]
0.020 [0.014, 0.024]
0.015 [0.014, 0.016]
0.019 [0.015, 0.022]
0.022 [0.016, 0.035]
0.017 [0.015, 0.019)
0.030 [0.017, 0.060]
0.048 [0.016, 0.122]
0.016 [0.013, 0.018]
0.075 [0.050, 0.115]
0.071 [0.039, 0.110]

0.429 [0.105, 0.700]
0.882 [0.644, 0.982]
0.960 [0.867, 0.994]

Table 11: Average Training Time (s) Across Models (Mean [Min, Max], N=5)

Method | =01 =05 e=10 =20 £=00
DPSGD (1e) 1540 [320, 3470] 1540 [320, 3480] 1540 [320, 3460] 1540 [330, 3470] -
DPSGD (3e) 4590 [970, 10340] 4590 [970, 10330] 4590 [970, 10360] 4600 [970, 10400] -
DPSGD (5¢) 7780 [1610, 17100] 7790 [1610, 17120] 7810 [1610, 17170] 7840 [1610, 17380] -

FERRET-MAX (1e)
FERRET-MAX (3e)
FERRET-MAX (5e)
FERRET-EIGHTH (1e)
FERRET-EIGHTH (3e)
FERRET-EIGHTH (5¢)
FERRET-2 (1e)
FERRET-2 (3e)
FERRET-2 (5¢)
Non-DP (le)

Non-DP (3e)

Non-DP (5e)

330 [70, 740]
950 [180, 2130]
1500 [290, 3330]

350 [70, 780]
950 [180, 2100]
1500 [300, 3290]

370 [70, 810]
960 [190, 2120]
1540 [300, 3410]

410 [80, 880]
1040 [200, 2280]
1600 [320, 3570]

470 [90, 1050]
1090 [210, 2420]
1670 [320, 3690]
580 [110, 1300]
1200 [230, 2650]
1790 [350, 3980]

470 [90, 1050]
1130 [230, 2510]
1720 [340, 3800]
560 [110, 1240]
1240 [240, 2740]
1840 [350, 4080]
770 [140, 1730]
1480 [280, 3300]
2080 [400, 4630]

540 [110, 1200]
1290 [260, 2830]
1900 [380, 4190]
620 [120, 1380]
1490 [280, 3300]
2130 [410, 4760]
930 [160, 2240]
1930 [370, 4310]
2620 [490, 5860]

910 [150, 2210]
2690 [460, 6560]
4440 [760, 10830]

20
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Table 12: Comprehensive Comparison of Methods, Models, and Privacy Budgets

Test PPL MIA AUC Train Time (s)
Method Model e=01 e=05 =10 =20 ec=oc|e=01 e=05 =10 e=20 e=o0|ec=01 e=05 e=10 =20 s=o00
DeepSeck-1.5B 479 4.24 4.06 3.89 - 0510 0510 0509  0.509 - 3473 3484 3458 3469 -
SmolLM-360M 453 113 3.99 3.86 - 0506 0.507 0507 0508 - 860 860 862 861 -
DPSGD (1¢) TinyLlama-1.1B | 3.65 3.16 2.97 2.82 - 0509 0509 0509  0.509 - 1846 1844 1844 1846 -
R BLOOM-560M | 22.39  13.74 1175 10.36 - 0516 0520 0522 0524 - 1199 1198 1198 1198 -
GPT-2 1044 941 9.09 8.79 - 0513 0513 0513 0514 - 325 324 325 325 -
Mean 9.16  6.94 6.37 5.94 - 0.511 0.512 0512 0.513 - 1541 1542 1537 1540 -
DeepSeck-1.5B 4.84 3.83 3.61 - 0509 0509 0509  0.509 - 10343 10329 10356 10399 -
SmolLM-360M 1.26 3.60 3.44 - 0509 0511 0511 0511 - 2561 2560 2560 2562 -
DPSGD (3¢) TinyLlama-1.1B |  5.36 3.71 3.47 - 0513 0509 0509 0509 - 5495 5494 5490 5499 -
BLOOM-560M | 136.94  25.98 19.70 - 0511 0517 0521 0.524 - 3574 3580 3569 3574 -
GPT-2 1045 842 7.97 - 0512 0514 0514 0515 - 968 967 969 969 -
Mean 32.37 9.1 7.64 - 0511 0512 0513 0.514 - 4588 4586 4589 4601 -
DeepSeck-1.5B 5.10 3.86 3.66 - 0510 0509 0510  0.511 - 17098 17125 17173 17379 -
SmolLM-360M 414 3.38 3.20 - 0510 0511 0511 0510 - 4283 4285 4284 4288 -
DPSGD (50) TinyLlama-1.1B | 10.16  5.08 4.53 - 0509 0509 0510  0.510 - 10002 10004 10047 10000 -
SGD (e BLOOM-560M | 908.53  37.76 30.83 - 0507 0505 0505  0.505 - 5931 5927 5936 5939 -
GPT-2 1068 7.99 7.44 - 0508 0513 0513 0513 - 1608 1606 1608 1609 -
Mean 187.72  11.61 9.93 - 0.509 0.509 0.509 0.510 - 7785 7789 7810 7843 -
DecpSeck-1.5B 4.69 5.48 5.72 6.91 - 0509 0507 0506  0.508 - 736 884 1046 1198 -
SmolLM-360M 473 4.88 5.28 5.38 - 0506  0.506 0506  0.506 - 176 220 251 296 -
TinyLlama-1.1B | 2.43 2.49 253 3.83 - 0509 0510 0510 0507 - 425 521 593 664 -
FERRET-MAX (1¢) BLOOM-560M 6.53 6.68 7.47 43.22 - 0512 0509 0510  0.508 - 259 324 374 426 -
GPT-2 943 1081 11.83 13.57 - 0510 0509 0505 0505 - 67 81 94 107 -
Mean 5.57  6.07 6.56 14.58 - 0.509 0.508 0.507 0.507 - 332 406 472 538 -
DeepSeck-1.5B 3.40 3.46 441 - 0507 0507 0507  0.508 - 2131 2281 2507 2834 -
Smol,M-360M 462 4.35 471 - 0506 0.508 0508 0508 - 505 561 613 717 -
) TinyLlama-1.1B | 2.39 2.42 2.39 - 0510 0519 0518 0513 - 1191 1320 1435 1618 -
FERRET-MAX (3¢) BLOOM-560M 6.22 6.71 7.22 - 0510 0515 0514 0514 - 725 813 887 1015 -
GPT-2 8.63 . 8.53 9.25 - 0510 0513 0511 0511 - 185 204 225 256 -
Mean 5.05 5.8 5.09 5.59 - 0.509 0.512 0512  0.511 - 947 1036 1134 1288 -
DecpSeck-1.5B 3.21 3.22 3.28 3.53 - 0510 0511 0508  0.509 - 3327 3573 3802 4186 -
SmolLM-360M 4.46 3.78 3.76 4.13 - 0508  0.508 0508  0.508 - 802 864 927 1018 -
TinyLlama-1.1B | 2.44 2.40 2.38 2.39 - 0510 0526 0523  0.521 - 1901 2045 2172 2462 -
5 ET-M 5 3
FERRET-MAX (5¢) BLOOM-560M 9.82 481 6.12 6.22 - 0510 0510 0511  0.510 - 1151 1222 1374 1463 -
GPT-2 9.12 7.17 7.32 7.93 - 0511 0511 0512 0511 - 295 317 341 378 -
Mean 5.81  4.28 4.57 4.84 - 0.510 0.513 0512  0.512 - 1495 1604 1723 1902 -
DeepSeck-1.5B 3.30 3.82 4.69 5.27 - 0509 0509 0509 0508 - 779 1053 1236 1381 -
SmolLM-360M 3.38 3.93 4.72 4.91 - 0508 0508 0505  0.505 - 187 252 305 344 -
TinyLlama-1.1B | 2.48 252 2.60 3.12 - 0524 0519 0513  0.510 - 455 606 712 796 -
FERRET-BIGHTH (1¢) g1 60N s60M | 10.85 1146 18.53 16.46 - 0515 0514 0510 0507 - 264 350 416 469 -
GPT-2 7.21 7.39 8.35 12.22 - 0511 0508 0510  0.505 - 70 92 107 121 -
Mean 5.45  5.83 7.78 8.40 - 0.514 0.512 0509 0.507 - 351 a71 555 622 -
DeepSeek-1.5B 3.19 3.19 3.23 3.34 - 0517 0512 0509  0.508 - 2099 2419 2744 3302 -
SmolLM-360M 3.20 2.86 3.29 371 - 0506  0.506 0506  0.508 - 500 586 689 822 -
TinyLlama-1.1B | 2.46 256 253 257 - 0528 0.557 0560 0537 - 1230 1398 1599 1903 -
FERRET-EIGHTH (3¢) g 60015600 6.15 6.12 6.48 6.54 - 0513 0525 0523 0517 - 724 840 945 1141 -
GPT-2 6.62 6.05 5.96 6.39 - 0513 0512 0512 0512 - 185 210 242 283 -
Mean 434  4.16 4.30 4.51 - 0.516 0.522 0522 0.516 - 947 1091 1244 1490 -
DeepSeck-1.5B 3.18 3.21 3.16 3.20 - 0517 0523 0518 0513 - 3288 3685 4081 4760 -
SmolLM-360M 3.06 2.75 2.80 3.04 - 0507 0506 0506  0.506 - 803 894 990 1152 -
.. TinyLlama-1.1B | 251 256 257 258 - 0540 0591  0.600  0.577 - 1960 2149 2384 2715 -
FERRET-BIGHTH (5) 1 560 560M 6.56 5.92 5.93 5.98 - 0516 0531 0533 0533 - 1144 1276 1405 1633 -
GPT-2 6.46 5.46 5.56 5.47 - 0512 0514 0514 0515 - 295 323 355 415 -
Mean 435  3.98 4.00 4.05 - 0.518 0.533 0534  0.529 - 1498 1665 1843 2135 -
DecpSeck-1.5B 4.35 3.91 5.08 6.98 - 0518 0521 0512 0.509 - 814 1207 1726 2244 -
SmolLM-360M 2.60 257 3.10 5.19 - 0521 0520 0513 0506 - 198 318 118 165 -
FERRET-2 (1¢) TinyLlama-1.1B | 3.96 3.79  428515.02 5.0 - 0538 0541 0505  0.508 - 1493 750 991 1134 -
L560M | 22695  14.7: 19.68  27019.12 - 0.511 0.5 0.5 0.502 - 271 : 57 5 -
BLOOM-560M | 226.9 472 18719.68  27019.12 0 20 08 02 27 427 4 644
GPT-2 5.21 5.55 6.72 15.14 - 0518 0515 0515 0510 - 74 108 144 161 -
Mean 48.61  6.11 89449.92 541029 - 0.521 0.524 0511  0.507 - 370 580 771 929 -
DeepSeck-1.5B 162 4.37 4.32 4.51 - 0533 0.551 0540 0530 - 2124 2654 3303 4314 -
SmolLM-360M 2.54 2.49 251 253 - 0533 0564 0560  0.541 - 512 652 788 1025 -
FERRET-2 (30) TinyLlama-1.1B | 3.91 4.02 4.27 412 - 0551 0.618 0630  0.574 - 1259 1550 1931 2511 -
e BLOOM-560M | 15.90  15.27 9.87 16.32 - 0534 0578 0592 055 - 731 913 115 1439 -
GPT-2 5.26 4.85 4.84 5.09 - 0523 0545 0537  0.530 - 187 228 278 369 -
Mean 6.45  6.20 5.16 6.52 - 0.535 0.571 0.572  0.546 - 963 1200 1483 1932 -
DecpSeck-1.5B 5.11 4.67 4.43 4.63 - 0548  0.578 0566  0.566 - 3410 3981 4625 5864 -
SmolLM-360M 2.54 2.49 2.49 2.49 - 0531 0530 0529  0.529 - 825 960 125 1414 -
FERRET-2 (50) TinyLlama-1.1B | 3.87 412 4.07 - 0557  0.574 0574  0.571 - 1995 2312 2676 3357 -
- o BLOOM-560M | 12.66  13.74 13.53 - 0536 0.537 0546  0.537 - 1172 1354 1579 1958 -
GPT-2 5.21 4.82 4.74 - 0530 0525 0524 0524 - 302 349 103 195 -
Mean 5.88  5.97 5.89 - 0.541 0.549 0.548  0.546 - 1541 1791 2082 2617 -
DeepSeek-1.5B - - - - 2.83 - - - - 0.912 - - - - 2212
SmolLM-360M - - - - 242 - - - - 0.612 - - - - 449
. TinyLlama-1.1B - - - - 2.39 - - - - 0.899 - - - - 1091
Non-DP (1e) BLOOM-560M - - - - 416 - - - - 0s04 |- - - - 631
GPT-2 - - - - 4.42 - - - - 0.569 - - - - 155
Mean - - - - 3.25 - - - - 0.759 - - - - 908
DeepSeek-1.5B - - - - 5.98 - - - - 0.999 - - - - 6555
SmolLM-360M - - - - 3.23 - - - - 0.993 - - - - 1338
. TinyLlama-1.1B - - - - 5.77 - - - - 0.993 - - - - 3227
Non-DP (3e) BLOOM-560M - - - - 10.36 - - - - 0.991 - - - - 1865
GPT-2 - - - - 4.50 - - - - 0.893 - - - - 460
Mean - - - - 5.97 - - - - 0.974 - - - - 2689
DeepSeek-1.58 - - - - 7.54 - - - - 1.000 - - - - 10828
SmolLM-360M - - - - 4.20 - - - - 1.000 - - - - 2209
: TinyLlama-1.1B - - - - 7.05 - - - - 0.999 - - - - 5333
Non-DP (5¢) BLOOM-560M - - - - 15.97 - - - - 0.998 - - - - 3091
GPT-2 - - - - 5.00 - - - - 0.976 - - - - 761
Mean - - - - 7.95 - - - - 0.995 - - - - 4444




Table 13: Comparison of Privacy Metrics Across Methods, Models, and Privacy Budgets

e=0.1 e=05 e=10 £=20 =
Method Model ROC AUC Advantage | ROC AUC Advantage | ROC AUC Advantage | ROC AUC Advantage | ROC AUC Advantage
DeepSeek-1.5B 0.510 0.018 0.510 0.018 0.509 0.016 0.509 0.016 - -
SmolLM-360M 0.506 0.016 0.507 0.015 0.507 0.015 0.508 0.016 - -
DPSGD (le) TinyLlama-1.1B 0.509 0.016 0.509 0.019 0.509 0.019 0.509 0.018 - -
BLOOM-560M 0.516 0.033 0.520 0.036 0.522 0.040 0.524 0.044 - -
GPT-2 0.513 0.028 0.513 0.022 0.513 0.024 0.514 0.028 - -
0.511 0.022 0.512 0.022 0.512 0.023 0.513 0.024 - -
0.509 0.017 0.509 0.019 0.509 0.020 0.509 0.017 - -
SmolLM-360M 0.509 0.018 0.511 0.019 0.511 0.020 0.511 0.019 - -
DPSGD (3¢) TinyLlama-1.1B 0.513 0.027 0.509 0.021 0.509 0.019 0.509 0.019 - -
. BLOOM-560M 0.511 0.018 0.517 0.032 0.521 0.037 0.524 0.043 - -
GPT-2 0.512 0.026 0.514 0.024 0.514 0.023 0.515 0.024 - -
Mean 0.511 0.021 0.512 0.023 0.513 0.024 0.514 0.025 - -
DeepSeek-1.5B 0.510 0.017 0.509 0.016 0.510 0.018 0.511 0.019 - -
SmolLM-360M 0.510 0.023 0.511 0.024 0.511 0.023 0.510 0.022 - -
DPSGD (50) TinyLlama-1.1B 0.509 0.024 0.509 0.020 0.510 0.018 0.510 0.023 - -
BLOOM-560M 0.507 0.017 0.505 0.012 0.505 0.013 0.505 0.014 - -
GPT-2 0.508 0.018 0.513 0.024 0.513 0.024 0.513 0.024 - -
Mean 0.509 0.020 0.509 0.019 0.509 0.019 0.510 0.020 - -
DeepSeek-1.5B 0.509 0.018 0.507 0.017 0.506 0.014 0.508 0.014 - -
SmolLM-360M 0.506 0.016 0.506 0.016 0.506 0.015 0.506 0.014 - -
TinyLlama-1.1B 0.509 0.017 0.510 0.019 0.510 0.018 0.507 0.016 - -
FERRET-MAX (le) BLOOM-560M 0.512 0.029 0.509 0.016 0.510 0.020 0.508 0.016 - -
GPT-2 0.510 0.019 0.509 0.017 0.505 0.016 0.505 0.014 - -
Mean 0.509 0.020 0.508 0.017 0.507 0.016 0.507 0.015 - -
DeepSeek-1.5B 0.507 0.015 0.507 0.018 0.507 0.013 0.508 0.015 - -
SmolLM-360M 0.506 0.016 0.508 0.017 0.508 0.019 0.508 0.018 - -
- ~ TinyLlama-1.1B 0.510 0.020 0.519 0.036 0.518 0.031 0.513 0.020 - -
FERRET-MAX (3¢) BLOOM-560M 0.510 0.022 0.515 0.026 0.514 0.025 0.514 0.022 - -
GPT-2 0.510 0.017 0.513 0.024 0.511 0.020 0.511 0.021 - -
Mean 0.509 0.018 0.512 0.024 0.512 0.022 0.511 0.019 - -
DeepSeek-1.5B 0.510 0.020 0.511 0.021 0.508 0.016 0.509 0.016 - -
SmolLM-360M 0.508 0.018 0.508 0.019 0.508 0.018 0.508 0.017 - -
TinyLlama-1.1B 0.510 0.019 0.526 0.045 0.523 0.039 0.521 0.035 - -
D ET-M 5
FERRET-MAX (5e) BLOOM-560M 0.510 0.020 0.510 0.019 0.511 0.020 0.510 0.020 - -
GPT-2 0.511 0.023 0.511 0.022 0.512 0.021 0.511 0.023 N -
Mean 0.510 0.020 0.513 0.025 0.512 0.023 0.512 0.022 - -
DeepSeek-1.5B 0.509 0.018 0.509 0.018 0.509 0.017 0.508 0.017 - -
SmolLM-360M 0.508 0.018 0.508 0.019 0.505 0.017 0.505 0.016 - -
. TinyLlama-1.1B 0.524 0.040 0.519 0.032 0.513 0.020 0.510 0.019 - -
FERRET-EIGHTH (1e) BLOOM-560M 0.515 0.026 0.514 0.022 0.510 0.020 0.507 0.016 - -
GPT-2 0.511 0.022 0.508 0.018 0.510 0.019 0.505 0.015 - -
Mean 0.514 0.025 0.512 0.022 0.509 0.019 0.507 0.017 - -
DeepSeek-1.5B 0.517 0.031 0.512 0.023 0.509 0.021 0.508 0.017 - -
SmolLM-360M 0.506 0.016 0.506 0.016 0.506 0.016 0.508 0.017 - -
- g - TinyLlama-1.1B 0.528 0.046 0.557 0.089 0.560 0.097 0.537 0.060 - -
FERRET-EIGHTH (3¢) BLOOM-560M 0.513 0.023 0.525 0.040 0.523 0.039 0.517 0.031 - -
GPT-2 0.513 0.023 0.512 0.022 0.512 0.024 0.512 0.022 - -
Mean 0.516 0.028 0.522 0.038 0.522 0.039 0.516 0.030 - -
DeepSeek-1.5B 0.517 0.030 0.523 0.043 0.518 0.033 0.513 0.023 - -
SmolLM-360M 0.507 0.018 0.506 0.016 0.506 0.017 0.506 0.016 - -
TinyLlama-1.1B 0.540 0.066 0.591 0.138 0.600 0.155 0.577 0.122 - -
3 RT-E 5
FERRET-EIGHTH (5¢) BLOOM-560M 0.516 0.026 0.531 0.047 0.533 0.053 0.533 0.050 - -
GPT-2 0.512 0.021 0.514 0.024 0.514 0.023 0.515 0.026 N -
Mean 0.518 0.032 0.533 0.054 0.534 0.056 0.529 0.048 - -
DeepSeek-1.5B 0.518 0.031 0.521 0.039 0.512 0.020 0.509 0.015 - -
SmolLM-360M 0.521 0.036 0.520 0.035 0.513 0.021 0.506 0.015 - -
p TinyLlama-1.1B 0.538 0.071 0.541 0.066 0.505 0.012 0.508 0.018 - -
FERRET-2 (1¢) BLOOM-560M 0.511 0.024 0.520 0.034 0.508 0.018 0.502 0.013 - -
GPT-2 0.518 0.033 0.515 0.026 0.515 0.027 0.510 0.018 - -
Mean 0.521 0.039 0.524 0.040 0.511 0.020 0.507 0.016 - -
DeepSeek-1.5B 0.533 0.059 0.551 0.083 0.540 0.079 0.530 0.050 - -
SmolLM-360M 0.533 0.050 0.564 0.103 0.560 0.092 0.541 0.063 - -
FERRET-2 (3¢) TinyLlama-1.1B 0.551 0.083 0.618 0.199 0.630 0.211 0.574 0.115 N -
: : © BLOOM-560M 0.534 0.054 0.578 0.130 0.592 0.145 0.555 0.096 - -
GPT-2 0.523 0.042 0.545 0.069 0.537 0.059 0.530 0.050 - -
Mean 0.535 0.057 0.571 0.117 0.572 0.117 0.546 0.075 - -
DeepSeek-1.5B 0.548 0.080 0.578 0.137 0.566 0.121 0.566 0.110 - -
SmolLM-360M 0.531 0.048 0.530 0.049 0.529 0.047 0.529 0.048 - -
TinyLlama-1.1B 0.557 0.096 0.574 0.109 0.574 0.108 0.571 0.100 - -
5 ET-2 (5
FERRET-2 (5¢) BLOOM-560M 0.536 0.059 0.537 0.057 0.546 0.067 0.537 0.057 - -
GPT-2 0.530 0.052 0.525 0.042 0.524 0.039 0.524 0.039 - -
Mean 0.541 0.067 0.549 0.079 0.548 0.076 0.546 0.071 - -
DeepSeek-1.5B - - - - - - - - 0.912 0.700
SmolLM-360M - - - - - - - - 0.612 0.177
. TinyLlama-1.1B - - - - - - - - 0.899 0.681
Non-DP (1¢) BLOOM-560M - - - - - - - - 0.804 0.481
GPT-2 - - - - - - - - 0.569 0.105
Mean - - - - - - - - 0.759 0.429
DeepSeek-1.5B - - - - - - - - 0.999 0.982
SmolLM-360M - - - - - - - - 0.993 0.934
. TinyLlama-1.1B - - - - - - - - 0.993 0.931
Non-DP (3e) BLOOM-560M - - - - - - - - 0.991 0.920
GPT-2 - - - - - - - - 0.893 0.644
Mean - - - - - - - - 0.974 0.882
DeepSeek-1.5B - - - - - - - - 1.000 0.994
SmolLM-360M - - - - - - - - 1.000 0.990
. TinyLlama-1.1B - - - - - - - - 0.999 0.975
- 5
Non-DP (5e) BLOOM-560M - - - - - - - - 0.998 0.971
GPT-2 - - - - - - - - 0.976 0.867
Mean - - - - - - - - 0.995 0.960




Table 14: Comparison of U

tility Metri

cs Across Methods, Models, and Privacy Budgets

e=05 =10 =20 = e=01 =05 =10 =20 =
Method Gap | Train Gap | Train  Test  Gap | Train Test Gap | Time (s) Time (s) Time (s) Time (s) Time (s)
158 0.0 102 0.01 3.86 3.89 0.01 - - - 3473 3484 3458 : -
SmolLM-360M 002 | 397 0.02 3.84 3.86 0.02 - - - 860 862 -
] TinyLlama-1.1B 0.01 | 2.96 0.01 2.80 2.82 0.01 - - - 1844 1844
DPSGD (1¢) BLOOM-560M 036 | 1141 0.34 1003 1036 0.32 - - - 1198 1198 -
GPT-2 0.03 | 9.05 0.03 8.75 8.79 0.04 - - - 324 325 -
Mean 0.00| 6.28 0.09 5.86 594 0.09 - - - 1542 1537 -
DeepSeek-1.5 0.04 0.04 343 347 0.04 - - - 10329 10356 -
SmolLM-360M 0.02 0.02 3.30 3.31 0.02 - - - 2560 2560 -
’ TinyLlama-1.1B 0.02 0.02 3.8 3.30 0.02 - - - 5494 5490 -
DPSGD (3¢) BLOOM-560M 105 0.90 1530 1610 081 - - - 3580 3569 -
GPT-2 0.05 . 0.05 7.54 7.59 0.05 - - - 967 969 -
Mean 0.24 7.43 0.21 6.57 6.76 0.19 - - - 4586 4589 -
DeepSeck-1.58 0.04 | 3.62 0.04 3.50 3.54 0.04 - - - 17125 17173 -
SmolLM-360M 002 | 318 0.02 3.05 3.06 0.02 - - - 4285 4284 -
DPSGD (5¢) TinyLlama-1.1B 003 | 450 0.03 421 125 0.03 - - - 10004 10047 -
° BLOOM-560M 114 | 2055 1.28 2445 2572 127 - - - 5027 5936 -
GPT-2 005 | 738 0.05 6.97 7.02 0.06 - - - 1606 1608 -
Mean 0.26 | 9.65 028 | 8.43 872 0.29 - - - 7789 7810 -
DeepS: 001 | 567 5.72 0.01 6.86 6.91 0.05 - - - 884 1046 -
SmolLM-360M 001 | 526 5.28 0.01 5.37 538 0.01 - - - 220 251 -
TinyLlama-1.1B 001 | 252 253 0.01 3.83 0.00 - - - 521 503 -
FERRET-MAX (1¢) BLOOM-560M 0.04 | 743 747 0.04 12.76 0.46 - - - 9 324 374 -
GPT-2 2000 | 1185 11.83 002 | 1361 : -0.03 - - - 67 81 94 -
Mean 0.02| 6.55 6.56 0.02 | 1448 1458  0.10 - - - 332 106 472 -
DeepSeek-1.58 0.03 0.03 437 141 0.04 - - - 2131 2281 2507 -
SmolLM-360M 0.02 0.02 469 471 0.01 - - - 505 561 613 -
. . TinyLlama-1.1B 0.03 0.03 2.37 2.39 0.02 - - - 1191 1320 1435 -
FERRET-MAX (3¢) BLOOM-560M 0.19 0.10 713 7 0.09 - - - 725 813 887 -
GPT-2 0.03 0.02 9.23 9.25 0.02 - - - 185 204 225 -
Mean 0.06 | 5.06 5.09 0.04 | 5.56 559  0.04 - - - 947 1036 1134 -
DeepSeck-1.58 0.03 | 324 3.28 0.03 3.50 3.53 0.03 - - - 3327 3573 3802 -
SmolLM-360M 0.02 | 374 3.76 0.02 412 0.02 - - - 802 864 927 -
s TinyLlama-1.1B 0.04 | 235 2.38 0.03 2.36 2.39 0.03 - - - 1901 2045 2172 -
FERRET-MAX (5¢) BLOOM-560M 0.07 | 6.01 6.12 011 6.13 6.22 0.09 - - - 1151 1222 1374 -
GPT-2 004 | 720 7.32 0.03 7.90 7.93 0.04 - - - 205 317 341 -
Mean 0.04 | 4.53 4.57 0.05 4.80 484 0.04 - - - 1495 1604 1723 -
DeepSeek-1.5B 003 | 4.65 0.04 5.23 5.27 0.04 - - - 779 1053 1236 -
SmolLM-360M 002 | 471 0.01 4.90 491 0.01 - - - 187 252 305 -
TinyLlama-1.1B 004 | 258 0.02 310 3.12 0.02 - - - 155 606 712 -
FERRET-EIGHTIL (10) gy 6,60 5600 022 | 1827 0.27 33 1646 0.14 - - - 264 350 116 -
GPT-2 0.03 | 833 : 0.03 1220 1222 -0.02 - - - 70 92 107 -
Mean 5.83 007 | 7.71 7.78 0.07 | 8.36 8.40  0.04 - - - 351 471 555 -
DeepSeck-15B | 3.13 319 004 | 320 0.03 3.30 3.34 0.04 - - - 2009 2419 2744 -
SmolLM-360M | 327 286 002 | 328 0.02 3.70 3.71 0.02 - - - 500 586 680 -
R R TinyLlama-11B | 241 256 010 | 243 0.10 2.51 2.57 0.07 - - - 1230 1308 1599 -
FERRET-EIGHTH (3¢) gy 600cs60M | 6.06 5 015 | 631 016 6.41 6.54 013 - - - 724 840 945 -
GPT-2 5 5. 004 | 592 0.05 6.35 6.39 0.04 - - - 185 210 242 -
Mean 416 007 | 4.23 4.30 0.07 | 445 451 0.06 - - - 947 1001 1244 -
DeepSeck-1.53 321 006 | 310 3.16 0.05 0.04 - - - 3288 3685 4081 -
SmolLM-360M 275 002 | 278 2.80 0.02 0.02 - - - 803 894 990 -
, _ | TinyLlama-11B 015 | 2.40 2.57 017 0.14 - - - 1960 2149 2384 -
FERRET-EIGHTH (%) pp 000 is60M | 6.44 020 | 572 5.93 0.21 5.98 0.22 - - - 1144 1276 1405 -
GPT-2 6.42 546 0.05 | 551 5.56 0.05 5.47 0.06 - - - 205 323 355 -
Mean 4.29 3.98 0.10| 3.90 4.00 0.10 405 0.09 - - - 1498 1665 1843 -
DeepSeek-15B | 4.23 391 010 | 500 5.08 0.07 6.2 6.8 0.06 - - - 814 1207 1726 -
SmolLM-360M | 2.55 257 004 | 3.08 3.10 0.02 5.18 5.19 0.01 - - - 198 318 118 -
FERRET.2 (16) TinyLlama-11B | 3.76 379 018 | 42043126 428515.02 -916.24 | 4.99 5.00 0.01 - - - 193 750 991 -
R ¢ BLOOM-560M | 222.59  226.95 1472047 | 1841381  18719.68  305.87 | 2715881 27010.12 -139.60 | - - - 211 4 574 -
GPT-2 513 521 555 0.06 |  6.67 6.72 0.05 1517 1514 003 | - - - 74 144 -
Mean 47.65 48.61 6.11  0.17 | 89571.97 89449.92 -122.04 | 5438.22 5410.29 -27.93 - - - 370 771 -
DeepSeck-15B | 436 4.62 105 132 0.26 451 0.20 - - - 2124 3303 -
SmolLM-360M | 249 2.54 241 251 0.10 2.53 0.07 - - - 512 788 -
ERRET.S (2 TinyLlama-11B | 366 3.91 3.62 0.65 412 0.34 - - - 1259 1931 -
FERRET-2 (3¢) BLOOM-560M | 14.80  15.90 8.52 1.34 1632 140 - - - 731 1115 -
GPT-2 516 5.26 167 017 5.00 013 - - - 187 278 -
Mean 611  6.45 4.66 0.50 6.52  0.43 - - - 963 1483 -
DeepSeck-1.5B 5.11 047 463 0.45 - - - 3410 4625 -
SmolLM-360M 2.54 0.16 0.14 - - - 825 1125 -
TinyLlama-1.1B 3.87 1.02 0.79 - - - 1995 2676 -
SRRET-2 (5 y
FERRET:2 (5e) BLOOM-560M 12.66 2.90 : 2.50 - - - 172 1579 -
GPT-2 5.21 031 149 174 0.26 - - - 302 349 103 -
Mean 5.88 0.97 | 5.06 580  0.83 - - - 1541 1791 2082 -
DeepSeek-1.58 - - - - - - - - - - 207 0.77 - - - - 2212
SmolLM-360M - - - - - - - - - - 2.26 016 - - - - 1449
. TinyLlama-11B | - - - - - - - - - - 175 0.63 - - - - 1001
Nou-DP (1e) BLOOM-560M | - - - - - - - - - s 112 - - - - 31
GPT-2 - - - - - - - - - - 419 0.23 - - - - 155
Mean - - - - - - - - - - 2.66 0.58 - - - - 908
DeepSeck-1.53 - - - - - - - - - - 145 153 - - - - 6555
SmolLM-360M - - - - - - - - - - 1.52 170 - - - - 1338
. TinyLlama-11B | - - - - - - - - - - 1.83 3.94 - - - - 3227
Non-DP (3¢) BLOOM-560M - - - - - - - - - - 291 744 - - - - 1865
GPT-2 - - - - - - - - - - 2.96 154 - - - - 160
Mean - - - - - - - - - - 2.14 3.83 - - - - 2689
DeepSeck-1.5B - - - - - - - - - - 1.29 6.24 - - - - 10828
SmolLM-360M - - - - - - - - - - 127 2.93 - - - - 2200
. _ TinyLlama-11B | - - - - - - - - - - 154 5.51 - - - - 5
Non-DP (5¢) BLOOM-560M - - - - - - - - - - 213 1597 1385 - - - - 3001
GPT-2 - - - - - - - - - - 242 500 258 - - - - 761
Mean - - - - - - - - - - 1.73 7.95 6.22 - - - - 4444

24



11 Appendix B

11.1 Why RDP & Moments Accountant Cannot Directly Analyze FERRET

In early iterations of this work we attempted to certify FERRET with the standard tool-chain
of modern DP deep learning: Rényi Differential Privacy (RDP)[12] together with the Moments
Accountant (MA)[I] or its extensions. This section records the negative results—useful for future
reference—and pinpoints the exact obstruction.

11.2 Per-update distribution has disjoint support
Consider a single parameter group at step ¢t. Conditional on the mini-batch, FERRET emits

v 0 with probability 1 — p,
oCu with probability p,

where u is a public random unit vector and o € {—1, 41} is the inner-product sign. For two adjacent
datasets D, D’ the corresponding outputs are the atoms {0,0Cu} and {0,0'Cu'}. Because u and
u’ are drawn after the data change, with probability 1 the two support sets are disjoint. Rényi
divergence of any order o > 1 between two disjoint distributions is infinite:

Da((l - p)50 +p50'0u || (1 —p)5o —l—p(Sarcu/) = 00.

Hence one step of FERRET already breaks the RDP accountant; composing infinities is useless.

11.3 A micro-dither patch fixes RDP—potentially without hurting utility

A classical workaround for the “disjoint-support” obstruction is to add a data-independent Gaussian
dither U ~ N(0,0%I) to both branches of the mechanism. The resulting distributions overlap
everywhere and, for any Rényi order o > 1,

(e

b
a—1

exp<2o‘(a;”02> + ap_ - (12)

Da((l - p) 50 +p500u

(- )0+ i) <

The second additive term (missing in early drafts) caps the otherwise diverging contribution of
the 0-mass when p— (0. We defer the full derivation of this bound to Section [11.6

How small can ¢ be? Our toy-suite shows that on a simple linear-regression proxy, values
as small as 0 ~ 10741073 leave training curves indistinguishable from the ¢ = 0 baseline—see
Fig. |5l At 0=10"2 convergence merely slows initially and eventually achieves a lower median loss,
suggesting a mild regularization effect. Only for o > 107! does optimization deteriorate sharply.

Outlook for deep learning (future work). Large-scale models operate with gradient norms
typically in the 1072-10° range after clipping. Hence the same microscopic dither is expected
to be sub-dominant, but a rigorous study—covering learning-rate interaction and long-horizon
training—remains open. We defer a full deep-learning evaluation to future work.

Take-away. Micro-dither rescues the standard RDP/Moments-Accountant machinery and, when
o <1073 of the clipped norm, incurs no observable utility loss in our tests. It is therefore a pragmatic
option for deployments that require compatibility with existing DP accountants, while the noise-free
MI-DP bound remains the strongest guarantee when average-case privacy suffices.
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Exp 5: utility vs dither (median = IQR)

MSE (log)

o=0
0=0.0001
0=0.001
0=0.01
0=0.1
o=1.0

1072 5

1073 5

500 1000 1500 2000 2500
step

Figure 5: Impact of Gaussian dither on a toy linear-regression task: median MSE and inter-quartile
band over 10 random seeds. Note that MSE actually reaches its best performance at o = 0.01, not
o = 0, indicating that the mechanism may actually benefit from noise addition.

11.4 Moments Accountant cannot see “rare but infinite” events

Moments Accountant requires finite log-moments of the privacy loss random variable. The loss here
is log & whenever an update fires in D but stays silent in D’, an event of probability p(1 —p) >0
yet unbounded magnitude. The expectation of exp(AL) therefore diverges for every A > 0.

11.5 Take-away

Because FERRET’s privacy stems primarily from the chance that no update is sent, its per-step re-
lease includes point masses with disjoint support across neighbouring datasets. Any divergence-based
definition that is sensitive to worst-case likelihood ratios—(e, §)-DP, RDP, MA—assigns it infinite
cost. In contrast, MI-DP measures average leakage and is perfectly finite (Sect. .

Still, if one truly needs an RDP certificate, adding a micro-dither resurrects all accountant
machinery.

11.6 A Rényi—-DP bound for FERRET with Gaussian micro-dither

This section derives the bound in . We follow the conventions of Mironov [12]; all Rényi orders
satisfy o > 1.
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Setup. Let U~N(0,02I) be a data-independent Gaussian dither added to both branches of the
per-update mechanism. Conditional on the mini-batch, the released vector is

v 0 w.p. 1 —p,
\cow w.p. p, u~ Unif(ST1).

For neighbouring datasets D, D’ we obtain two Gaussian mixtures

P = (1—p) N(0,0°I) 4+p N (Cu,o*I), (10)
Py ;3:

Q = (1—p) N(0,0°I) +p N (Cu/,0°I), (11)
Qo=PFo Q1

where u,u’ are independent unit vectors.

Step 1: Rényi divergence expression. By Definition 3 of [12],

Du(Pl|Q) = —— log By (P(x)/Q(x))°].

a—1

Step 2: Mixture expansion. Introduce the latent switch Z ~ Bernoulli(p) that tells whether
the update fires. The law of total probability gives the exact factorisation

Du(PIQ) = —log((1-p) + p exp{(a ~ 1) B)),

where R := D,(P;||Q1). Using log(1 4+ =) <z and the elementary p < p® (for 0 < p < 1) yields

a

(e DR 1) < _PY (e-DR

p
Du(PIQ) < £ <

-1

Adding the symmetric inactive-branch contribution = recovers the skeleton of ([12).

Step 3: Bound the active branch. For R = D,(P1]|Q1) Holder’s inequality [12, Prop. 11]
gives the standard bound

EonQu[(P(2)/Q(2)*] < exp((a —1)R),

which is precisely the factor already present in Step 2.

Step 4: Evaluate R (Gaussian shift). With p = Cu, v = Cu', ¥ = 021, Proposition 7 of [12]
implies
aC?|lu —u/|)? 200 C?

R = 5

202 - o
because ||ju — u/|| < 2 for unit vectors.

Step 5: Combine the bounds. Substituting the Step 4 estimate for R into the Step 2 inequality

gives
(6%

Do(P|lQ) <

eXp(Qa(a;l)CQ) + p ’
a—1 g a—1

which is exactly . The first term is the cost when both datasets fire; the second term covers the
rare event where one fires and the other remains silent, preventing divergence as p— 0.
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Discussion. The privacyutility trade-off is governed by the dither variance ¢ and the update
probability p. When p < 1, the additive 5 term dominates, so a microscopic dither (o < C)
keeps the exponential factor small while leaving model utility intact.

Take-away. Adding a tiny, data-independent Gaussian dither reconciles FERRET with the
RDP /Moments-Accountant tool-chain while leaving performance unchanged for o < 1073C on
our benchmarks (Fig. [5).

12 Appendix C
AWS FastDP Google CoLab versioning conflicts:

e PyTorch compatibility.
— FastDP fails to deliver utility on torch =2.6.1, whereas FERRET works seamlessly.
— Downgrading to torch =2.1.0 restores FastDP’s utility.

e Convergence behavior.

— FastDP + torch 2.6.1: Loss drops from =~ 5.5 to & 5.0; train/test perplexity remains
high ~ 200.

— FastDP + torch 2.1.0: Loss drops from = 3.0 to & 2.5; train/test perplexity improves
to ~ 10.

¢ Memory and runtime.

— torch =2.6.1 uses roughly half the GPU memory of 2.1.0.

— Wall-clock times are within =5% across both versions.

The following non-essential library version conflicts were noted but did not affect our main bench-
marking:

Package Conflict Requirement vs. Installed

datasets 3.0.1 requires fsspec [http] <2024.6.1,;=2023.1.0; installed 2025.3.2
google-genai 1.10.0 requires pydanticj3.0.0,;,=2.0.0; installed 1.10.21

langchain 0.3.23 requires pydanticj3.0.0,;=2.7.4; installed 1.10.21

spacy 3.8.5 requires thincj8.4.0,;=8.3.4; installed 8.1.10

albumentations 2.0.5 requires pydantic;=2.9.2; installed 1.10.21
langchain-core 0.3.52 requires pydanticj3.0.0,,=2.5.2 (for Python;3.12.4); installed 1.10.21

Table 15: Non-blocking version conflicts in auxiliary libraries.

These conflicts arise in components unrelated to our core experiments and did not impact any of
the results reported.
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