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Abstract
Clustering is a cornerstone of data analysis that
is particularly suited to identifying coherent sub-
groups or substructures in unlabeled data, as are
generated continuously in large amounts these
days. However, in many cases traditional clus-
tering methods are not applicable, because data
are increasingly being produced and stored in a
distributed way, e.g. on edge devices, and pri-
vacy concerns prevent it from being transferred
to a central server. To address this challenge, we
present FedDP-KMeans, a new algorithm for k-
means clustering that is fully-federated as well as
differentially private. Our approach leverages (po-
tentially small and out-of-distribution) server-side
data to overcome the primary challenge of differ-
entially private clustering methods: the need for a
good initialization. Combining our initialization
with a simple federated DP-Lloyds algorithm we
obtain an algorithm that achieves excellent results
on synthetic and real-world benchmark tasks. Our
code can be found at https://github.com/
jonnyascott/fed-dp-kmeans. We also
provide a theoretical analysis of our method that
provides bounds on the convergence speed and
cluster identification success.

1. Introduction
Clustering has long been the technique of choice for under-
standing and identifying groups and structures in unlabeled
data. Effective algorithms to cluster non-private centralized
data have been around for decades (Lloyd, 1982; Shi & Ma-
lik, 2000; Ng et al., 2001). However, the major paradigm
shift in how data are generated nowadays presents new chal-
lenges that often prevent the use of traditional methods.
For instance, the proliferation of smart phones and other
wearable devices, has led to large amounts of data being
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generated in a decentralized manner. Moreover, the nature
of these devices means that the generated data are often
highly sensitive to users and should remain private. While
public data of the same kind usually exists, typically there
is much less of it, and it does not follow the same data dis-
tribution as the private client data, meaning that it cannot be
used to solve the clustering task directly.

These observations have triggered the development of tech-
niques for learning from decentralized data, most popularly
federated learning (FL) (McMahan et al., 2017). Origi-
nally proposed as an efficient means of training supervised
models on data distributed over a large number of mobile
devices (Hard et al., 2019), FL has become the de facto
standard approach to distributed learning in a wide range
of privacy-sensitive applications (Brisimi et al., 2018; Ra-
maswamy et al., 2019; Rieke et al., 2020; Kairouz et al.,
2021). However, it has been observed that, on its own, FL
is not sufficient to maintain the privacy of client data (Wang
et al., 2019; Geiping et al., 2020; Boenisch et al., 2023). The
reason is that information about the client data, or even some
data items themselves, might be extractable from the learned
model weights. This is obvious in the case of clustering:
imagine a cluster emerges that consists of a single data point.
Then, this data could be read off from the corresponding
cluster center, even if FL was used for training. Therefore,
in privacy-sensitive applications, it is essential to combine
FL with other privacy preserving techniques. The most
common among these is differential privacy (DP) (Dwork,
2006), which we introduce in Section 2. DP masks infor-
mation about individual data points with carefully crafted
noise. This can, however, lead to a reduction in the quality
of results, called the privacy-utility trade-off.

Several methods have been proposed for clustering private
data that are either federated, but not DP compatible, or
which are DP but don’t work in FL settings, see Section 6. In
this paper we close this gap by introducing FedDP-KMeans,
a fully federated and differentially private k-means clus-
tering algorithm. Our main innovation is a new initializa-
tion method, FedDP-Init, that leverages server-side data
to find good initial centers. Crucially, we do not require
the server data to follow the same distribution as the client
data, making FedDP-Init applicable to a wide range of prac-
tical FL scenarios. The initial centers serve as input to
FedDP-Lloyds, a simple federated and differentially private

1

https://github.com/jonnyascott/fed-dp-kmeans
https://github.com/jonnyascott/fed-dp-kmeans
https://arxiv.org/abs/2506.05408v2


Differentially Private Federated k-Means Clustering with Server-Side Data

variant of Lloyds algorithm (Lloyd, 1982). As we expand
upon in Section 2, a good initialization is critical to ob-
taining a good final clustering. While this is already true
for non-private, centralized clustering, it is especially the
case in the differentially private, federated setting, where
we are further limited by privacy and communication con-
straints in the number of times we can access client data
and thereby refine our initialization. We report on experi-
ments for synthetic as well as real datasets in two settings:
when we wish to preserve individual data point privacy,
as is common for cross-silo federated learning settings (Li
et al., 2020), and client-level privacy, as is typically used in
cross-device learning settings (McMahan et al., 2017). In
both cases, FedDP-KMeans achieves clearly better results
than all baseline techniques. We also provide a theoretical
analysis, proving that under standard assumptions for the
analysis of clustering algorithms (Gaussian mixture data
with well-separated components), the cluster centers found
by FedDP-KMeans converge exponentially fast to the true
component means and the ground truth clusters are identi-
fied after only logarithmically many steps.

To summarise, our main contributions are as follows:

• We propose a novel differentially private and feder-
ated initialization method that leverages small, out-of-
distribution server-side data to generate high-quality
initializations for federated k-means.

• We introduce the first fully federated and differentially
private k-means algorithm by combining this initializa-
tion with a simple DP federated Lloyd’s variant.

• We provide theoretical guarantees showing exponential
convergence to ground truth clusters under standard
assumptions.

• We conduct extensive empirical evaluations, demon-
strating strong performance across data-point and user-
level privacy settings on both synthetic and real feder-
ated data.

2. Background
k-Means Clustering Given a set of data points, P =
(p1, . . . , pn) and any 2 ≤ k ≤ n, the goal of k-means
clustering is to find cluster centers, ν1, . . . , νk that minimize

n∑
i=1

min
j=1,...,k

∥pi − νj∥2. (1)

The cluster centers induce a partition of the data points: a
point p belongs to cluster j, if ∥p− νj∥ ≤ ∥p− νj′∥ for all
j, j′, with ties broken arbitrarily (but deterministically). It is
well established that solving the k-means problem optimally
is NP-hard in general (Dasgupta, 2008). However, efficient

approximate algorithms are available, the most popular be-
ing Lloyd’s algorithm (Lloyd, 1982). Given an initial set of
centers, it iteratively refines their positions until a local min-
imum of (1) is found. A characteristic property of Lloyd’s
algorithm is that the number of steps required to converge
and the quality of the resulting solution depend strongly on
the initialization: the most commonly used initialization is
the k-means++ algorithm (Arthur & Vassilvitskii, 2007).

Federated Learning Federated learning is a design prin-
ciple for training a joint model from data that is stored in
a decentralized way on local clients, without those clients
ever having to share their data with anybody else. The com-
putation is coordinated by a central server which typically
employs an iterative protocol: first, the server sends inter-
mediate model parameters to the clients. Then, the clients
compute local updates based on their own data. Finally,
the updates are aggregated, e.g. as their sum across clients,
either by a trusted intermediate or using cryptographic pro-
tocols, such as multi-party computation (Bonawitz et al.,
2016; Talwar et al., 2024). The server receives the aggre-
gate and uses it to improve the current model, then it starts
the next iteration. Although this framework enables better
privacy, by keeping client data stored locally, each iteration
incurs significant communication costs. Consequently, to
make FL practical, it is important to design algorithms that
require as few such iterations as possible.

While the primary focus of FL is on decentralized client data,
the server itself can also possess data of its own, though usu-
ally far less than the clients in total and not of the same data
distribution. Such a setting is in fact common in practice,
where e.g. data from public sources, synthetically generated
data, anonymized data, or data from some consenting clients
is available to the server (Hard et al., 2019; Dimitriadis et al.,
2020; Gao et al., 2022; Scott & Cahill, 2024).

Differential Privacy (DP) DP is a mathematically rigor-
ous framework for computing summary information about a
dataset (for us, its cluster centers) in such a way that the pri-
vacy of individual data items is preserved. Formally, for any
ε, δ > 0, a (necessarily randomized) algorithm A : P → S
that takes as input a data collection P ∈ P and outputs some
values in a space S, is called (ϵ, δ) differentially private, if
it fulfills that for every S ⊂ S

Pr[A(P ) ∈ S] ≤ eε Pr[A(P ′) ∈ S] + δ, (2)

where P and P ′ are two arbitrary neighboring datasets. We
consider two notions of neighboring in this work: for stan-
dard data-point-level privacy, two datasets are neighbors if
they are identical except that one of them contains an addi-
tional element compared to the other. In the more restrictive
client-level privacy, we think of two datasets as a collection
of per-client contributions, and two datasets are neighbors
if they are identical, except that all data points of one of the
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individual client are missing in one of them. Condition (2)
then ensures that no individual data item (a data point or
a client’s data set) can influence the algorithm output very
much. As a consequence, from the output of the algorithm
it is not possible to reliably infer if any specific data item
occurred in the client data or not. An important property of
DP is its compositionality: if algorithms A1, . . . ,At are DP
with corresponding privacy parameters (ε1, δ1), . . . , (εt, δt),
then any combination or concatenation of their outputs is
DP at least with privacy parameters (

∑t
s=1 εs,

∑t
s=1 δs).

In fact, stronger guarantees hold, which in addition allows
trading off between ε and δ, see (Kairouz et al., 2015). These
cannot, however, be easily stated in closed form. Due to
compositionality, DP algorithms can be designed easily by
designing individually private steps and composing them.

In this work, we use two mechanisms to make computa-
tional steps DP: The Laplace mechanism (Dwork et al.,
2006) achieves (ε, 0) privacy by adding Laplace-distributed
noise with scale parameter S

ε to the output of the computa-
tion. Here, S is the sensitivity of the step, i.e. the maximal
amount by which its output can change when operating on
two neighboring datasets, measured by the L1-distance. The
Gaussian mechanism (Dwork & Roth, 2014) instead adds
Gaussian noise of variance σ2

G(ε, δ;S) = 2 log(1.25/δ)S2

ε2

to ensure (ε, δ)-privacy Here, the sensitivity, S, is mea-
sured with respect to L2-distance. The above formulas show
that stronger privacy guarantees, i.e. a smaller privacy bud-
get (ε, δ), require more noise to be added. This, however,
might reduce the accuracy of the output. Additionally, the
more processing steps there are that access private data, the
smaller the privacy budget of each step has to be in order
to not exceed an overall target budget. In combination, this
causes a counter-intuitive trade-off for DP algorithms that
does not exist in this form for ordinary algorithms: accessing
the data more often, e.g. more rounds of Lloyd’s algorithm,
might lead to lower accuracy results, because the larger
number of steps has to be compensated by more noise per
step. Consequently, a careful analysis of the privacy-utility
trade-off is crucial for DP algorithms. In general, however,
algorithms are preferable that access the private data as
rarely as possible. In the context of k-means clustering this
means that one can only expect good results by avoiding
having to run many iterations of Lloyd’s. Consequently, a
good initialization is crucial for achieving high accuracy.

3. Method
We assume a setting of m clients. Each client, j, possesses
a dataset, P j ∈ Rd×nj , where each column is a data point.
The server also has some data, Q, which can be freely
shared with the clients, but that is potentially small and
out-of-distribution (i.e. not following the client data dis-
tribution). The goal is to determine a k-means clustering

of the joint clients’ dataset P :=
⋃m

j=1 P
j in a federated

and differentially private way. We propose FedDP-KMeans,
which solves this task in two stages. the first, FedDP-Init
(Algorithm 1), is our main contribution: it constructs an
initialization to k-means by exploiting server-side data. The
second, FedDP-Lloyds (Algorithm 2), is a simple federated
DP-Lloyds algorithm, which refines the initialization.

3.1. FedDP-Init

Sketch: FedDP-Init has three steps: Step 1 computes
a projection matrix onto the space spanned by the top k
singular vectors of the client data matrix P . Step 2 projects
the server data onto that subspace, and computes a weight
for each server point q that reflects how many client points
have q as their nearest neighbor. Step 3 computes initial
cluster centers in the original data space by first cluster-
ing the weighted server data in the projected space and
then refining these centers by a step resembling one step
of Lloyd’s algorithm on the clients, but with the similarity
computed in the projected space. To ensure the privacy of
the client data all above computations are performed with
sufficient amounts of additive noise, and the server only
ever receives noised aggregates of the computed quantities
across all clients. Consequently, FedDP-Init is differentially
private and fully compatible with standard FL and secure
aggregation setups, as described in Section 2.

Intuitively, the goal of Step 1 is to project the data onto a
lower-dimensional subspace that preserves the important
variance (i.e. distance between the means) but reduces the
variance in nuisance direction (in particular the intra-cluster
variance). This construction is common for clustering algo-
rithm that strive for theoretical guarantees, and was popu-
larized by Kumar & Kannan (2010). Our key novelty lies
in Step 2 and 3: here, we exploit the server data, essentially
turning it into a proxy dataset on which the server can op-
erate without any privacy cost. After one more interaction
with the clients, the resulting cluster centers are typically
so close to the optimal ones, that only very few (sometimes
none at all) steps of Lloyd’s algorithm are required to refine
them. Our theoretical analysis (Section 4) quantifies this
effect: for suitably separated Gaussian Mixture data, the
necessary number of steps to find the ground truth clusters
is at most logarithmic in the total number of data points.

In the rest of this section, we describe the individual steps in
more detail. For the sake of simpler exposition, we describe
only the setting of data-point-level DP. However, only minor
changes are needed for client-level DP, see Section 5. As
private budget, we treat δ as fixed for all steps, and denote
the individual budgets of the three steps as ε1, ε2 and ε3.
We provide recommendations how to set these values given
an overall privacy budget in Appendix H.1.

Algorithm details – Step 1: The server aims to compute
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Algorithm 1 FedDP-Init
1: Input: Client data sets P 1, . . . , Pm, # of clusters k,

privacy parameters ε1, ε2, ε3G, ε3L, δ

2: Step 1: / / Projection onto top k singular vectors
3: for client j = 1, . . . ,m do
4: Client j computes outer product P j(P j)T

5: end for
6: Server receives noisy aggregate P̂PT =∑m

j=1 P
j(P j)T +Nd×d(0, σ

2(ε1, δ; ∆
2))

7: Server forms a projection matrix Π from top k eigen-
vectors of P̂PT

8: Step 2: / / Determine importance weights
9: for client j = 1, . . . ,m do

10: Client j receives Π and ΠQ from server
11: for every point q ∈ ΠQ do
12: Client j computes weight wq(ΠP j) :=

∣∣{p ∈
ΠP j | ∀q′ ∈ ΠQ, ∥p− q∥ ≤ ∥p− q′∥}

∣∣
13: end for
14: end for
15: Server receives noisy aggregate ŵq(ΠP ) =∑m

j=1 wq(ΠP
j) + Lap(0, 1

ε2
) for each q ∈ ΠQ

16: Step 3: / / Cluster projected server points and initialize
17: Server computes cluster centers ξ1, .., ξk by running

k-means clustering of ΠQ with per-sample weights
ŵq(ΠP )

18: for client j = 1, . . . ,m do
19: Client j receives ξ1, .., ξk from server
20: Client j computes Sj

r = {p ∈ P j : ∀s, ∥Πp− ξr∥ ≤
∥Πp− ξs∥}, for r = 1, . . . , k

21: Client j computes mj
r =

∑
p∈Sj

r
p and nr

j = |Sj
r |

22: end for
23: Server receives noisy aggregates m̂r =∑m

j=1 m
j
r + Nd(0, σ

2(ε3G, δ; ∆)) and n̂r =∑m
j=1 n

j
r + Lap(0, 1

ε3L
)

24: Server computes initial centers νr = m̂r/n̂r for r =
1, . . . , k

25: Output: Initial cluster centers ν1, .., νk

the top k eigenvectors of the clients’ data outer product
matrix PPT . However, in the federated setup, it cannot do
so directly because it does not have access to the matrix P .
Instead, the algorithm exploits that the overall outer product
matrix can be decomposed as the sum of the outer products
of each client data matrix, i.e. PPT =

∑m
j=1 P

j(P j)T .
Therefore, each client can locally compute their outer prod-
uct matrix and the server only receives their noisy across-
client aggregate, P̂PT . We ensure the privacy of this com-
putation by the Gaussian mechanism. The associated sen-
sitivity is the maximum squared norm of any single data
point, which is upper bounded by the square of the dataset

radius, ∆. Consequently, a noise variance of σ2
G(ε1, δ; ∆

2)
ensures (ε1, δ)-privacy, as shown by Dwork et al. (2014).

The remaining operations the server can perform noise-free:
it computes the top k eigenvectors of P̂PT and forms the
matrix Π ∈ Rd×d from them, which allows projecting to the
k-dimensional subspace spanned by these vectors (which
we call data subspace). The projection provides a data-
adjusted way of reducing the dimension of data vectors
from potentially large d to the much smaller k. This is an
important ingredient to our algorithm, because in low di-
mension typically less noise is required to ensure privacy.
The lower dimension also helps keep the communication
between server and client small. The dimension k is chosen,
because for sufficiently separated clusters, one can expect
the subspace to align well with the subspace spanned by
the cluster centers. In that case, the projection will pre-
serve inter-cluster variance but reduce intra-cluster variance,
which improves the signal-to-noise ratio of the data.

Step 2: Next, the server computes per-point weights for
its own data such that it can serve as a proxy for the data of
the clients. The server shares with the clients the computed
projection matrix Π, and its own projected dataset ΠQ. Each
client uses Π to project its own data to the data subspace.
Then, it computes a weight for each server point q ∈ ΠQ as,
wq(ΠP

j) =
∣∣{p ∈ ΠP j | ∀q′ ∈ ΠQ, ∥p−q∥ ≤ ∥p−q′∥}

∣∣,
that is, the count of how many of the client’s projected points
are closer to q than to any other q′ ∈ ΠQ, breaking ties
arbitrarily. The weights are sent to the server in aggregated
and noised form. As an unnormalized histogram over the
client data, the point weight has L1-sensitivity 1. Therefore,
the Laplace mechanism with noise scale 1/ε2 makes this
step (ε2, 0)-DP. The noisy total weights, ŵq(ΠP ) for q ∈
ΠQ, provide the server with a (noisy) estimate of how many
client data points each of its data points represents. It then
runs k-means clustering on its projected data ΠQ, where
each point q receives weight ŵq(ΠP ) in the k-means cost
function, to obtain centers ξ1, . . . , ξk in the data subspace.

Step 3: In the final step the server constructs centers
in the original space. For this, it sends the projected cen-
ters ξ1, . . . , ξk to the clients. For each projected cluster
center ξr, each client j computes the set of all points
p ∈ P j whose closest center in the projected space is ξr,
i.e. Sj

r := {p ∈ P j : ∀s, ∥Πp − ξr∥ ≤ ∥Πp − ξs∥}. For
any r, the union of these sets across all clients would form a
cluster in the client data. We want the mean vector of this to
constitute the r-th initialization center. For this, each client
j computes the sum, and the number, of their points in each
cluster, mj

r =
∑

p∈Sj
r
p, nr

j = |Sj
r |. Aggregated across all

clients one obtains the global sum and count of the points
in each cluster: mr =

∑m
j=1 m

j
r and nr =

∑m
j=1 n

j
r. To

make this step private, we first split ε3 = ε3G + ε3L. For
mj

r, which has L2-sensitivity ∆, we apply the Gaussian
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mechanism with variance σ2(ε3G, δ; ∆). For nr, which has
the L1-sensitivity is 1, we use the Laplace mechanisms with
scale 1/ε3L. This ensures (ε3G, δ) and (ε3L, 0) privacy, re-
spectively, and therefore (at least) (ε, δ) privacy overall for
this step. Finally, the server uses the noisy estimates of the
total sums and counts, m̂r and n̂r, to compute approximate
means νr = m̂r/n̂r, and outputs these as initial centers.

3.2. FedDP-Lloyds

The second step of FedDP-KMeans is a variant of Lloyd’s
algorithm that we adapt to a private FL setting. The basic
observation here is that a step of Lloyd’s algorithm can be
expressed only as summations and counts of data points.
Consequently, all quantities that the server requires can be
expressed as aggregates over client statistics which allows
us to preserve user privacy with secure aggregation and
DP. Specifically, assume that we are given initial centers
ν01 , . . . , ν

0
k , and a privacy budget (ε4, δ4), which we split as

ε4 = ε4G+ε4L. For rounds t = 1, . . . , T , we repeat the fol-
lowing steps. The server sends the latest estimate of the cen-
ters to the clients. Each client j computes, for r = 1, . . . , k,
Sj
r := {p ∈ P j : ∀s, ∥p− νt−1

r ∥ ≤ ∥p− νt−1
s ∥}, the set of

points whose closest center is νt−1
r . Note that in contrast to

the initialization, the distance is measured in the full data
space here, not the data subspace. The remaining steps co-
incide with the end of Step 3 above. Each client j computes
the summations and counts of their points in each cluster:
mj

r =
∑

p∈Sj
r
p and nr

j = |Sj
r |. These are aggregated to

mr =
∑m

j=1 m
j
r and nr =

∑m
j=1 n

j
r, and made private by

the Gaussian mechanisms with variance σ2(ε4G/T, δ/T,∆)
and the Laplacian mechanism with scale T/ε4L, respec-
tively. The server receives the noisy total sums and counts
m̂r and n̂r, and it updates its estimate of the centers as
νtr = m̂r/n̂r. Overall, the composition property of DP
ensures that FedDP-Lloyds is at least (ε4, δ)-private.

The choice of noise parameters ensure that the combination
of our two algorithms is differentially private:

Theorem 1. FedDP-KMeans followed with FedDP-Lloyds
is (ε, δ)-DP for ε = ε1 + ε2 + ε3G + ε3L + ε4G + ε4L

4. Theoretical analysis
We analyze the theoretical properties of FedDP-KMeans
in the standard setting of data from a k-component Gaus-
sian mixture, i.e. the data P is sampled from a distribution
D(x) =

∑k
j=1 wjGj(x) with means µj , covariance matrix

Σj and cluster weight wj . The data is partitioned arbitrarily
among the clients, i.e. each clients data is not necessarily
distributed according toD itself. We denote by Gj the set of
samples from the j-th component Gj : the goal is to recover
the clustering G1, ..., Gk. The server data, Q ⊂ Rd, can be
small and not of the same distribution as P .

Algorithm 2 FedDP-Lloyds
1: Input: Initial centers ν01 , . . . , ν

0
k , P , steps T , privacy

parameters εG, εL, δ
2: for t = 1, . . . , T do
3: for client j = 1, . . . ,m do
4: Client j receives νt−1

1 , . . . , νt−1
k from Server

5: for r = 1, . . . , k do
6: Client j computes Sj

r := {p ∈ P j : ∀s, ∥p −
νt−1
r ∥ ≤ ∥p− νt−1

s ∥}
7: Client j computes mj

r =
∑

p∈Sj
r
p, nr

j = |Sj
r |

8: end for
9: end for

10: Server receives m̂r =
∑m

j=1 m
j
r +

Nd(0, T∆
2σ2(εG/T, δ)) and n̂r =

∑m
j=1 n

j
r +

Lap(0, T
εL

)

11: Server computes centers νtr = m̂r/n̂r, r = 1, . . . , k
12: end for
13: Output: Final cluster centers νT1 , .., ν

T
k

Our main result is Theorem 3, which states that FedDP-
KMeans successfully clusters such data, in the sense that
the cluster centers it computes converge to the ground truth
centers, i.e. the means of the Gaussian parameters, and the
induced clustering becomes the ground truth one. In doing
so, the algorithm respects data-point differential privacy.
For this result to hold, a separation condition is required
(Definition 2). It ensures that the ground truth cluster centers
are separated far enough from each other to be identifiable.
We first introduce and discuss the separation condition and
then state the theorem. The proof is in Appendix E and F.

Definition 2 (Separation Condition). For a constant c, a
Gaussian mixture

(
(µi,Σi, wi)

)
i=1,...,k

with n samples is
called c-separated if

∀i ̸= j, ∥µi − µj∥ ≥ c

√
k

wi
σmax log(n),

where σmax is the maximum variance of any Gaussian along
any direction. For some large enough constant c fixed inde-
pendently of the input, we say that the mixture is separated1

Note that the dependency in log(n) is unavoidable, because
with growing n also the chance grows that outliers occur
from the Gaussian distributions: assigning each data point
to its nearest mean would not be identical to the ground
truth clustering anymore.

To prove the main theorem, two additional assumptions on
P are required: (1) the diameter of the dataset is bounded
by ∆ := O

(k log2(n)
√
dσmax

εwmin

)
– so that the noise added to

1The constant c is determined by prior work: see Awasthi &
Sheffet (2012)
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compute a private SVD preserves enough signal.2 (2): there
is not too many server data, namely |Q| ≤ εnkσ2

max
∆2 . This en-

sures the noise added Step 2 is not overwhelming compared
to the signal. Note that conditions (1) and (2) can always
be enforced by two preprocessing steps, which we present
as part of the proof in Appendix E. In practice, however,
they are typically satisfied automatically, see Appendix G.2.
This allows use of the algorithm directly as stated.
Theorem 3. Suppose that the client dataset P is gen-
erated from a separated Gaussian mixtures with n ≥
ζ1

k log3 n
√
dσmax

ε2w2
min

samples, where ζ1 is a universal constant,
and that Q contains a least one sample from each compo-
nent of the mixture. Then, there is a constant ζ2 such that,
under assumptions (1) and (2), the centers ν1, ..., νk that
are computed after T steps of FedDP-Lloyds satisfy with
high probability

∥µi − νi∥ ≤ ζ2 ·

(
2−T ·

√
nσ2

max

|Gi|
+

T∆ log(n)

εnwmin

)
. (3)

Furthermore, there is a constant ζ3 such that, after
ζ3 log(n) rounds of communication, the clustering induced
by ν1, ..., νk is the ground-truth clustering G1, ..., Gk.

Note that assumption (1) implies that ∆ log(n)
εwmin

is negligible
compared to n. That means, the estimated centers converge
exponentially fast towards the ground truth.

5. Experiments
We now present our empirical evaluation of FedDP-KMeans,
which we implemented using the pfl-research frame-
work (Granqvist et al., 2024). Our code can be found
at https://github.com/jonnyascott/fed-dp-
kmeans.

To verify the broad applicability of our method we run ex-
periments in both the setting of data-point-level privacy, see
Section 5.1, and client-level privacy, see Section 5.2. The
appropriate level of privacy in FL is typically determined by
which data unit corresponds to a human. In cross-silo FL we
typically have a smaller number of large clients, e.g. hospi-
tals, with each data point corresponding to some individual,
so data point-level privacy is appropriate. In cross-device
FL, we typically have a large number of clients, where each
client is a user device such as a smartphone, so client-level
privacy is preferable. Our chosen evaluation datasets reflect
these dynamics.

Appendix G contains additional details regarding the ex-
perimental evaluation and Appendix H contains additional

2It may be surprising to see that the diameter is allowed to
increase when the privacy budget ε gets smaller. However, The-
orem 3 also requires the sample size to increase with 1/ε, which
counterbalances the growth of ∆.

experiments and ablation studies. In particular, in H.1, we
investigate how to set important hyperparameters of FedDP-
KMeans, such as the privacy budgets of the individual steps.
In H.2, we examine what happens when not all target clus-
ters are present in the server data. Finally, in H.3, we discuss
how to use existing methods for choosing k, based on the
data, in the context of FedDP-KMeans.

Baselines As natural alternatives to FedDP-KMeans we
consider different initializations of k-means combined with
FedDP-Lloyds. Two baselines methods use the server data
to produce initialization: ServerKMeans++ runs k-means++
on the server data, while ServerLloyds runs a full k-means
clustering of the server data. The baselines can be expected
to work well when the server data is large and of the same
distribution as the client data. This, however, is exactly the
situation where the server data would suffice anyway, so any
following FL would be wasteful. In the more realistic setting
where the server data is small and/or out-of-distribution, the
baselines might produce biased and therefore suboptimal
results. As a third baseline, we include the SpherePacking
initialization of (Su et al., 2017). This data-independent
technique constructs initial centroids that are suitably spaced
out and cover the data space, see Appendix G.3 for details.
None of the above baselines use client data for initialization.
Therefore, they consume none of their privacy budget for
this step, leaving all of it for the subsequent FedDP-Lloyds.
We also report results for two methods that do not actually
adhere to the differentially-private federated paradigm. k-
FED (Dennis et al., 2021) is the most popular federated
k-means algorithm. As we will discuss in Section 6 it does
not exploit server data and does not offer privacy guarantees.
Optimal we call the method of transferring all client data to a
central location and running non-private k-means clustering.
This provides neither the guarantees of FL nor of DP, but is
a lower bound on the k-means cost for all other methods.

Evaluation Procedure We compare FedDP-KMeans
with the baselines over a range of privacy budgets. Specifi-
cally, if a method has s steps that are (ε1, δ), . . . , (εs, δ)
DP then the total privacy cost of the method is com-
puted as (εtotal, δ) by strong composition using Google’s
dp accounting library 3. We fix δ = 10−6 for all pri-
vacy costs. We vary the εi of individual steps as well as
other hyperparameters, e.g. the number of steps of FedDP-
Lloyds, and measure the k-means cost of the final clustering.
For each method we plot the Pareto front of the results in
(k-means cost, εtotal) space. When plotting we scale the
k-means cost by the dataset size, so the value computed
in Equation 1 is scaled by 1/n. This evaluation procedure
gives us a good overview of the performance of each method
at a range of privacy budgets. However, on its own it does
not tell us how to set hyperparameters for FedDP-KMeans,

3
https://github.com/google/differential-privacy/tree/

main/python/dp_accounting
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Figure 1. Results with data-point-level privacy (k = 10). Left: synthetic mixture of Gaussians data with 100 clients. Right: US census
dataset. The 51 clients are US states, each client has the data of individuals with employment type “Federal government employee”.

such how much privacy budget to assign to each step. Know-
ing how to do this is important for using FedDP-KMeans in
practice and we address this in Appendix H.1.

5.1. Data-point-level Privacy Experiments

Privacy Implementation details In our theoretical dis-
cussion we assumed that no individual data point has norm
larger than ∆ in order to compute the sensitivity of certain
steps. As ∆ is typically not known in practice, in our experi-
ments we ensure the desired sensitivity by clipping the norm
of each data point to be at most ∆, before using it in any
computation. ∆ is now a hyperparameter of the algorithm,
which we set to be the radius of the server dataset.

Datasets We evaluate on synthetic and real federated
datasets that resemble a cross-silo FL setting. Our synthetic
data comes from a mixture of Gaussians, as assumed for
our theoretical results in Section 4. The client data is of this
mixture distribution. To simulate related, but OOD data, the
server data consists of two thirds data from the true mix-
ture and one third data that is uniformly distributed. We
additionally evaluate on US census data using the folktables
(Ding et al., 2021) package. The dataset has 51 clients, each
corresponding to a US state. Each data point contains the in-
formation about a person in the census. We create a number
of clustering tasks by filtering the client data to contain only
those individuals with some chosen employment type. The
server then recieves a small amount of data of individuals
with a different employment type, to simulate related but
OOD data. Full details on the datasets are in Appendix G.1.

Results See Figure 1. The left panel shows results for

the Gaussian mixture and the right panel for the US census
dataset when the clients hold the data of federal employees.
The other two categories are shown in Figures 8 and 9 of
Appendix I. On synthetic data, FedDP-KMeans outperforms
all DP baselines by a wide margin. These baselines can-
not overcome their poor initializations, with performance
plateauing even as the privacy budget grows. In contrast
FedDP-KMeans obtains optimal (non-private) performance
at a low privacy budget of around εtotal = 0.4. The non-
private k-FED also performs optimally in this setting as
is to be expected given that the synthetic data fulfills the
assumptions of Dennis et al. (2021). On the US census
datasets we observe a more interesting picture. Over all
three settings FedDP-KMeans outperforms the baselines,
except in the very low privacy budget regime. The latter is
to be expected since for sufficiently low privacy budgets a
client-based initialization will become very noisy, whereas
the initialization with only server data (which requires no pri-
vacy budget) stays reasonable. With a high enough privacy
budget FedDP-KMeans recovers the optimal non-private
clustering. Among the baselines we observe similar perfor-
mance between the two methods that initialize using server
data, with ServerLloyds performing slightly better overall.
The data independent SpherePacking performs poorly, em-
phasizing the importance of leveraging related server data to
initialize. We attribute FedDP-KMeans’s good performance
predominantly to the excellent quality of its initialization.
As evidence, Table 4 in Appendix G shows how many steps
of Lloyd’s had to be performed for Pareto-optimal behavior:
this is never more than 2, and often none at all.
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Figure 2. Results with client-level privacy (k = 10). Left: synthetic mixture of Gaussians data with 2000 clients. Right: stackoverflow
dataset with 9237 clients, topic tags github and pdf.

5.2. Client-level Privacy Experiments

Privacy Implementation details Moving to client-level
differential privacy changes the sensitivities of the steps of
our algorithms, which now depend not only on the max-
imum norm of a client data point norm, but also on the
maximum number of data points a client has. Rather than
placing assumptions on this, and deriving corresponding
bounds on the sensitivity of each step, we instead simply
enforce sensitivity by clipping client statistics prior to ag-
gregation. This is a standard technique to enforce a given
sensitivity in private FL, where it is typically applied to
model/gradient updates. For full details on our implementa-
tion in the client-level privacy setting see Appendix G.4

Datasets We evaluate on both synthetic and real federated
datasets in a cross-device FL setting. For synthetic data we
again use a mixture of Gaussians, but with more clients than
in Section 5.1. We also use the Stack Overflow dataset from
Tensorflow Federated. This is a large scale text dataset of
questions posted by users on stackoverflow.com. We pre-
process this dataset by embedding it with a pre-trainined
sentence embedding model. Thus each client dataset con-
sists of small number of text embedding vectors. The server
data consists of embedding vectors from questions asked
about different topics to the client data. See Appendix G.1.

Results In Figure 2 we report the outcomes. The left
shows results for the synthetic Gaussian mixture dataset
with 2000 clients, and the right for the stackoverflow dataset,
with topics github and pdf. Further results are in Appendix
I: synthetic data with 1000 and 5000 clients in Figures 10
and 11, and the other stackoverflow topics are shown in

Figures 12, 13 and 14. For the synthetic data we observe
that the baselines that use only server data are unable to
overcome their poor initialization, even with more generous
privacy budgets. As the total number of clients grows, from
1000 to 2000 to 5000, FedDP-KMeans exhibits better perfor-
mance for the same privacy budget and the budget at which
FedDP-KMeans outperforms server initialization becomes
smaller. This is to be expected since the more clients we
have the better our amplification by sub-sampling becomes.
For stackoverflow we observe that FedDP-KMeans exhibits
the best performance, except for in a few cases in the low
privacy budget regime. k-FED performs quite poorly over-
all, tending to be outperformed by the private baselines. As
in data-point-level privacy, we find the quality of FedDP-
Init’s initialization to be excellent: few, if any, Lloyd’s steps
are required for optimality (see Table 5, Appendix G).

6. Related Work
Within FL, clustering appears primarily for the purpose of
grouping clients together. Such clustered FL techniques
find a clustering of the clients while training a separate ML
model on each cluster (Sattler et al., 2020; Ghosh et al.,
2020; Xia et al., 2020). In contrast, in this work we are
interested in the task of clustering the clients’ data points,
rather than the clients. In Dennis et al. (2021), the one-shot
scheme k-Fed is proposed for this task: first all clients clus-
ter their data locally. Then, they share their cluster centers
with the server, which clusters the set of client centers to
obtain a global clustering of the data. However, due to the
absence of aggregation of the quantities that clients share

8
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with the server, the method has no privacy guarantees. Liu
et al. (2020) propose using federated averaging (McMahan
et al., 2017) to minimize the k-means objective in combina-
tion with multi-party computation. Similarly, Mohassel et al.
(2020) describe an efficient multi-party computation tech-
nique for distance computations. This will avoid the server
seeing individual client contributions before aggregation,
but the resulting clustering still exposes private information.

For private clustering, many methods have been proposed
based on DPLloyd’s (Blum et al., 2005), i.e. Lloyd’s algo-
rithm with noise added to intermediate steps. The methods
differ typically in the data representation and initialization.
For example, Su et al. (2016) creates and clusters a proxy
dataset by binning the data space. This is, however, tractable
only in very low dimensions. Ren et al. (2017) chooses ini-
tial centers by forming subsets of the original data and clus-
tering those. Zhang et al. (2022) initializes with randomly
selected data points and uses multi-party computation to
securely aggregate client contributions. None of the meth-
ods are compatible with the FL setting. On the other hand,
algorithms designed for Local Differential Privacy Chang
et al. (2021); Dupré la Tour et al. (2024) could directly work
in FL; albeit with an additive error so large that it makes
any implementation impractical (Chaturvedi et al., 2022).
DP algorithms that work in parallel environment, such as
in (Cohen-Addad et al., 2022) could potentially be adapted
to FL, however requiring a large number of communica-
tion rounds. Zhang et al. (2025) also work on federated
clustering but with a focus on an asynchronous and hetero-
geneous setting rather than on differential privacy. To our
knowledge, only two prior works combine the advantages
of DP and FL. Li et al. (2023) is orthogonal to our work, as
it targets vertical FL (all clients posses the same data points,
but different subsets of the features). Diaa et al. (2024) stud-
ies the same problem as we do, but they propose a custom
aggregation scheme that does not fit standard security re-
quirements of FL. It uses SpherePacking to initialize, which
in our experiments led to poor results.

7. Conclusion
In this paper we presented FedDP-KMeans, a federated and
differentially private k-means clustering algorithm. FedDP-
KMeans uses out-of-distribution server data to obtain a good
initialization. Combined with a simple federated, DP, vari-
ant of Lloyd’s algorithm we obtain an efficient and practical
clustering algorithm. We show that FedDP-KMeans per-
forms well in practice with both data-point-level and client-
level privacy. FedDP-KMeans comes with theoretical guar-
antees showing exponential convergence to the true cluster
centers in the Gaussian mixture setting. A shortcoming of
our method is the need to choose hyperparameters, which is
difficult when privacy is meant to be ensured. While we pro-

vide heuristics for this in Appendix H.1, a more principled
solution would be preferable. It would also be interesting to
explore if the server data could be replaced with a private
mechanism based on client data.
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A. Extended related work
Clustering Gaussian mixture The problem of clustering Gaussian mixtures is a fundamental of statistics, perhaps dating
back from the work of Pearson (1894).

Estimating the parameters of the mixture, as we are trying to in this paper, has a rich history. Moitra & Valiant (2010) showed
that, even non-privately, the sample complexity has to be exponential in k; the standard way to bypass this hardness is to
require some separation between the means of the different components. If this separation is o(

√
log k), then any algorithm

still requires a non-polynomial number of samples (Regev & Vijayaraghavan, 2017). When the separation is just above
this threshold, namely O(log(k)1/2+c), Liu & Li (2022) present a polynomial-time algorithm based on Sum-of-Squares to
recover the means of spherical Gaussians.

For clustering general Gaussians, the historical approach is based solely on statistical properties of the data, and requires
a separation Ω(

√
k) times the maximal variance of each component (Achlioptas & McSherry, 2005; Awasthi & Sheffet,

2012). This separation is necessary for accurate clustering, namely, if one aims at determining from which component each
samples is from (Diakonikolas et al., 2022). This approach has been implemented privately by Kamath et al. (2019) (with
the additional assumption that the input is in a bounded area): this is the one we follow, as the simplicity of the algorithms
allows to have efficient implementation in a Federated Learning environment. Bie et al. (2022) studied how public data can
improve performances of this private algorithm: they assume access to a small set of samples from the distribution, which
improves the sample complexity and allows them to remove the assumption that the input lies in a bounded area.

We note that both private works of Kamath et al. (2019) and Bie et al. (2022) have a separation condition that grows with
log n, as ours.

To only recover the means of the Gaussians, and not the full clustering, a separation of kα (for any α > 0) is enough
(Hopkins & Li, 2018; Kothari et al., 2018; Steurer & Tiegel, 2021). This is also doable privately (when additionally the
input has bounded diameter) using the approach of Cohen et al. (2021) and Tsfadia et al. (2022). Those works are hard to
implement efficiently in our FL framework for two reasons: first, they rely on Sum-of-Square mechanisms, which does
not appear easy to implement efficiently. Second, they use Single Linkage as a subroutine: this does not seem possible to
implement in FL. Therefore, some new ideas would be necessary to get efficient algorithm for FL based on this approach.

A different and orthogonal way of approaching the problem of clustering Gaussian mixtures is to recover a distribution that
is ε-close to the mixture in total variation distance, in which case the algorithm of Ashtiani et al. (2020) has optimal sample
complexity Õ(kd2/ε2) – albeit with a running time ω(exp(kd2)).

On private k-means clustering The private k-means algorithm of Dupré la Tour et al. (2024), implemented in our FL
setting, would require either Ω(k) rounds of communication with the clients (for simulating their algorithm for central DP
algorithm), or a a very large amount of additive noise kO(1) (for their local DP algorithm, with an unspecified exponent in
k). Furthermore, the algorithm requires to compute a net of the underlying Euclidean space, which has size exponential
in the dimension, and does not seem implementable. To the best of our knowledge, the state-of-the-art implementation of
k-means clustering is from Chang & Kamath (2021): however, it has no theoretical guarantee, and is not tailored to FL.

B. Technical preliminaries
B.1. Differential Privacy definitions and basics

As mentioned in introduction, one of the most important properties of Differential Privacy is the ability to compose
mechanisms. There are two ways of doing so. First, parallel composition: if an (ε, δ)-DP algorithms is applied on two
distinct datasets, then the union of the two output is also (ε, δ)-DP. Formally, the mechanism that takes as input two elements
P1, P2 ∈ P and outputs (A(P1),A(P2)) is (ε, δ)-DP.

The second property is sequential composition: applying an (ε, δ)-DP algorithm to the output of another (ε, δ)-DP algorithm
is (2ε, 2δ)-DP. Formally: ifA : P → SA is (εA, δA)-DP and B : P ×SA → SB is (εB , δB)-DP, then B(A(·), ·) : P → SB
is (εA + εB , δA + δB)-DP.

Those are the composition theorem that we use for the theoretical analysis. We chose for simplicity not to use advanced
composition: the number of steps in our final algorithms Algorithm 4 and Algorithm 5 is logarithmic, hence the improvement
would be marginal. However, in practice, better bounds can be computed – although they don’t have closed-form expression.
We use a standard algorithm to estimate more precise upper-bounds on the privacy parameters of our algorithms (Kairouz
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et al., 2015).

The sensitivity of a function is a key element to know how much noise is needed to add in order to make the function DP.
Informally, the sensitivity measures how much the function can change between two neighboring datasets. Formally, we
have the following definition.
Definition 4 (Sensitivity). Given a norm ℓ : Rd → R, the ℓ-sensitivity of a function f : Xn → Rd is defined as

sup
x∼X′∈Xn

ℓ(f(X)− f(X ′)),

where X ∼ X ′ means that X and X ′ are neighboring datasets.

The two most basic private mechanism are the Laplace and Gaussian mechanism, that make a query private by adding a
simple noise. We use the Laplace mechanism for counting:
Lemma 5 (Laplace Mechanism for Counting.). Let X be a dataset. Then, the mechanism M(X) = |X|+ Lap(1/ε) is
(ε, 0)-DP, where Lap(1/ε) is a variable following a Laplace distribution with variance 1/ε.

We use the Gaussian mechanism for more general purposes (e.g., the PCA step). It is defined as follows:

Lemma 6. Gaussian Mechanism Let f : X → Rn be a function with ℓ2-sensitivity ∆f,2. Then, for σ(ε, δ) =
√

2 log(2/δ)

ε the

Gaussian mechanism M(X) = f(X) +Nd

(
0,∆2

f,2σ(ε, δ)
2
)

is (ε, δ)-DP, where Nd(0, σ
2) is a d-dimensional Gaussian

random variable, where each dimension is independent with mean 0 and variance σ2.

Combining those two mechanisms gives a private and accurate estimate for the average of a dataset

Lemma 7 (Private averaging). For dataset X in the ball B(0,∆), the mechanism M(X) :=
∑

x∈X X+Nd(0,∆f,2σ
2(ε/2,δ))

|X|+Lap(2/ε) is

(ε, δ)-DP. Additionally, |X| ≥, then it holds with probability 1−β that ∥M(X)−µ(X)∥2 ≤ ∆ ln(2/β)
|X|ε +

∆σ(ε/2,δ)
√

ln(2/β)

|X| .

B.2. Differentially Private tools for Gaussian mixtures

First, we review some properties of the private rank-k approximation: this algorithm was analyzed by Dwork et al. (2014),
and its properties when applied on Gaussian mixtures by Kamath et al. (2019). The guarantee that is verified by the
projection onto the noisy eigenvectors is the following:
Definition 8. Fix a matrix X ∈ Rd×n, and let Πk be the projection matrix onto the principal rank-k subspace of XXT .
For some B ≥ 0, we say that a matrix Π is a B-almost k-PCA of X if Π is a projection such that:

• ∥XXT − (ΠX)(ΠX)T ∥2 ≤ ∥XXT − (ΠkX)(ΠkX)T ∥2 +B, and

• ∥XXT − (ΠX)(ΠX)T ∥F ≤ ∥XXT − (ΠkX)(ΠkX)T ∥F + kB.

Dwork et al. (2014) shows how to compute a B-almost k-PCA, with a guarantee on B that depends on the diameter of the
dataset:
Theorem 9 (Theorem 9 of Dwork et al. (2014)). Let X ∈ Rd×n such that ∥Xi∥2 ≤ 1, and fix σ(ε, δ) =

√
2 ln(2/δ)/ε. Let

E ∈ Rd×d be a symmetric matrix, where each entry Ei,j with j ≥ i is an independent draw fromN (0, σ(ε, δ)2). Let Πk be
the rank-k approximation of XXT + E.

Then, Πk is a O(
√
d · σ(ε, δ))-almost k-PCA of X , and is (ε, δ)-DP.

Kamath et al. (2019) shows crucial properties of Gaussian mixtures: first, the projection of each empirical mean with a
B-almost k-PCA is close to the empirical mean:
Lemma 10 (Lemma 3.1 in Kamath et al. (2019)). Let X ∈ Rd×n be a collection of points from k clusters centered at
µ1, ..., µk. Let C be the cluster matrix, namely Cj = µi if Xj belongs to the i-th cluster, and Gi be the i-th cluster.

Let Πk be a B-almost k-PCA, and denote µ̄1, ..., µ̄k the empirical means of each cluster, and µ̃1, ..., µ̃k the projected
empirical means.

Then, ∥µ̄i − µ̃i∥ ≤ 1√
|Gi|
∥X − C∥2 +

√
B

|Gi| .
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Second – and this helps bounding the above – they provide bounds on the spectral norm of the clustering matrix X − C:

Lemma 11 (Lemma 3.2 in Kamath et al. (2019)). Let X ∈ Rd×n be a set of n samples from a mixture of k Gaussians. Let
σi be the maximal unidirectional variance of the i-th Gaussian, and σmax = maxσi. Let C be the cluster matrix, namely
Cj = µi if Xj is sampled from N (µi,Σi).

If n ≥ 1
wmin

(ζ1d+ ζ2 log2(k/β)), where ζ1, ζ2 are some universal constants, then with probability 1− β it holds that

√
nwminσmax

4
≤ ∥X − C∥2 ≤ 4

√√√√n

k∑
i=1

wiσ2
i .

B.3. Properties of Gaussian mixtures

Lemma 12. Consider a set P of n samples from a Gaussian mixtures {(µi,Σi, wi)}i∈[k]. Let Gi be the set of points
sampled from the i-th component. If n ≥ 24 log(k)

wmin
, then with probability 0.99 it holds that ∀i, |Gi| ≥ nwi/2

Proof. This is a direct application of Chernoff bounds: each sample s is in Gi with probability wi. Therefore, the
expected size of Gi is nwi, and with probability at least 1 − 2 exp(−nwi/12) it holds that

∣∣|Gi| − nwi

∣∣ ≤ nwi/2: for
n ≥ 24 log(k)/wmin, the probability is at least 1− 2/k2. A union-bound over all i concludes.

B.4. Clustering preliminaries

Our algorithm first replaces the full dataset P with a weighted version of Q, and then computes a k-means solution on this
dataset. The next lemma shows that, if cost(P,Q) is small, then the k-means solution on the weighted Q is a good solution
for P :

Lemma 13. Let P,C1 ⊂ Rd, and f : P → C1 be a mapping with Γ :=
∑

p∈P ∥p − f(p)∥2. Let wν be such that
|wν − |f−1(ν)|| ≤ |f−1(ν)|/2. Let P̃ be the multiset where each ν ∈ C1 appears wν many times, . Let C2 be such that
cost(P̃ , C2) ≤ αOPT(P̃ ). Then,

cost(P,C2) ≤ (2 + 12α)Γ + 12αOPT(P ).

Proof. Recall that C2(p) is the closest point in C2 to p. We have, using triangle inequality:

cost(P,C2) =
∑
p∈P

∥p− C2(p)∥2

≤
∑
p∈P

∥p− C2(f(p))∥2

≤
∑
p∈P

(∥p− f(p)∥+ ∥f(p)− C2(f(p))∥)2

≤
∑
p∈P

2∥p− f(p)∥2 + 2∥f(p)− C2(f(p))∥2

≤ 2Γ + 2
∑
ν∈C1

|f−1(ν)|∥ν − C2(ν)∥2

≤ 2Γ + 4
∑
ν∈C1

wν∥ν − C2(ν)∥2

≤ 2Γ + 4αOPT(P̃ ).

A similar argument bounds OPT(P̃ ): let C∗ be the optimal solution for P , then, for any point p we have ∥f(p)−C∗(f(p))∥ ≤
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∥f(p)− C∗(p)∥ ≤ ∥f(p)− p∥+ ∥p− C∗(p)∥. Therefore,

OPT(P̃ ) ≤
∑
ν∈C1

wν∥ν − C ∗ (ν)∥2

≤ 3

2

∑
ν∈C1

|f−1(ν)|∥ν − C ∗ (ν)∥2

≤ 3
∑
p∈P

2∥C1(p)− p∥2 + 2∥p− C∗(p)∥2

≤ 3Γ + 3OPT(P ).

Combining those two inequalities concludes the lemma.

C. The non-private, non-federated algorithm of Awasthi & Sheffet (2012)
The algorithm we take inspiration from is the following, from Awasthi & Sheffet (2012) and inspired by Kumar & Kannan
(2010): first, project the dataset onto the top-k eigenvectors of the dataset, and compute a constant-factor approximation
to k-means (e.g., using local search). Then, improve iteratively the solution with Lloyd’s steps. The pseudo-code of this
algorithm is given in Algorithm 3, and the main result of Awasthi & Sheffet (2012) is the following theorem:

Theorem 14 (Awasthi & Sheffet (2012)). For a separated Gaussian mixture, Algorithm 3 correctly classifies all point w.h.p.

Their result is more general, as they do not require the input to be randomly generated, and only requires a strict separation
between the clusters. In this paper, we focus specifically on Gaussian mixtures.

Algorithm 3 Cluster(P )
1: Part 1: find initial Clusters

a) Compute P̂ the projection of P onto the subspace spanned by the top k singular vectors of P .

b) Run a c-approximation algorithm for the k-means problem on P̂ to obtain centers ν1, ..., νk.

2: Part 2: For r = 1, ...k, set Sr ← {i : ∀s, ∥P̂i − νr∥ ≤ 1
3∥P̂i − νs∥} and θr ← µ(Sr)

3: Part 3: Repeat Lloyd’s steps until convergence:
for r = 1, ...k, set C(νr)← {i : ∀s, ∥Pi − νr∥ < ∥Pi − νs∥} , and θr ← µ(C(νr))

D. Our result
Our main theoretical results is to adapt Algorithm 3 to a private and federated setting. As mention in the main body, we
show a stronger version of Theorem 3, without assumptions on diameter and server data. More precisely, we show the
following theorem:

Theorem 15. There is an (ε, δ)-DP algorithm with the following accuracy guarantee. Suppose that the client dataset P is

generated from a separated Gaussian mixtures with n ≥ ζ1
kdT log2 n·

√
ln(1/δ)

ε2w2
min

samples, where ζ1 is some universal constant,
and that Q contains a least one sample from component of the mixture.

Then, the algorithm computes centers ν1, ..., νk such that, for some universal constants ζ2, ζ3, after T + ζ2 log
σmax log |Q|

εwmin

rounds of communications, it holds with high probability that:

∥µi − νi∥ ≤ ζ3 max

(
1

2T
,
kdT log2 nσmax

√
ln(T/δ)

nε2w2
min

)
.

Note that the precision increases with the number of samples: if n is larger than 2T log(σmax/wmin)kd log2 nσmax

ε2w2
min

, then the

dominating term is 1/2T .
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Corollary 16. There is an (ε, δ)-DP algorithm with O(log(n)) rounds of communications with the following accuracy

guarantee. Suppose that the client dataset P is generated from a separated Gaussian mixtures with n = Ω
(

k log2 n
√
dσmax

ε2w2
min

)
samples, that Q contains a least one sample from each component of the mixture and at most n data points. Suppose that
n = Ω

(
k log3 n

√
dσmax

ε2w2
min

)
, and that n = Ω

(
log(n)6·kd2

ε4w2
min

)
.

Then, the algorithm computes centers ν1, ..., νk such that, with high probability, the clustering induced by ν1, ..., νk is the
partition G1, ..., Gk.

Proof. Theorem 5.4 of Kumar & Kannan (2010) (applied to Gaussian mixtures) bounds the number of misclassified points
in a given cluster in terms of the distance between νi and µi. Define, for any i, Si as the cluster of νi, and δi = ∥µi − νi∥.
Then, for j ̸= i, Kumar & Kannan (2010) show that, for some constant c′:

|Gi ∩ Sj | ≤
c′nwmin(δ

2
i + δ2j )

∥µi − µj∥2
4

Since ∥µi − µj∥2 ≥ c2
kσ2

max log(n)
2

wmin
, we get that the number of points from Gi assigned to cluster j is at most

c′nw2
min(δ

2
i+δ2j )

kσ2
max log(n)

2 .

We aim at bounding δi and δj using Theorem 15. For T = log
(

10c′nwmin
kσmax

)
, it holds that 1

2T
≤

√
kσmax

10c′
√
nwmin

.

In addition, for this value of T and a number of samples n at least n ≥ 100c′2 log(n)2·kd2 log(n)4

ε4w2
min

, we also have
kdT log2 nσmax

√
ln(T/δ)

nε2w2
min

≤
√
kσmax

10c′
√
nwmin

.

Therefore, the upper bound on δi and δj from Theorem 15 after T + log (σmax log |Q|/wmin) = O(log(n)) rounds of
communications ensure that there is no point misclassified. This which concludes the statement.

In the case where the assumption of Theorem 3 are satisfied, namely, (1) the diameter is bounded and (2) the server data
are well spread, then the algorithm of Theorem 15 reduces directly to Algorithm 1 followed with T steps of Algorithm 2,
with only T rounds of communication. Indeed, the first O

(
log σmax log |Q|

εwmin

)
rounds of the algorithm from Theorem 15 are

dedicated to enforcing condition (1) and (2): if they are given, there is no need for those steps.

The organization of the proof is as follows. First, we give some standard technical preliminary tools about differential
privacy and Gaussian mixtures. Then, we show how to implement Algorithm 3: the bulk of the work is in the implementation
of its Part 1, computing a good solution for ΠP . The second part to iteratively improve the solution is very similar to the
non-private part.

E. Part 1: Computing centers close to the means
E.1. Reducing the diameter

Lemma 17. There is an ε-DP algorithm with one communication round that, given wmin and σmax, reduces the diameter of
the input to O

(
log |Q| logn

√
dσmax

εwmin

)
.

Proof. We fix a distance D = 4 log n
√
dσmax. First, the server identifies regions that contains many server points: if q is

such that |Q ∩B(q,D)| ≥ εnwmin
200 log |Q| , then q is marked frozen.

Then, each client assigns its points to their closest server point in Q, breaking ties arbitrarily. In one round of communication,
the server learns, for each server point q ∈ Q, the noisy number of points assigned to q, namely ŵq(P ) = wq(P )+Lap(1/ε).
For privacy, the noise added to each count follows a Laplace distribution with parameter 1/ε. Hence, with high probability,
the noise is at most O

(
log |Q|

ε

)
on each server data q.

4We simplified the original statement of Kumar & Kannan (2010) to directly adapt it to separated Gaussian mixtures: in this case,
∥P − C∥22 ≤ 4nσ2

max, and ∆i,j (defined in the original statement) is our separation value, c
√

k/wminσmax log(n).
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With high probability on the samples, for all i the B(µi, D) contains all the win samples from Gi. Therefore, any server point
q sampled from Gi is either frozen, or the noisy count in B(q,D) ball is at least nwmin/2−|Q∩B(µi, D)|· log |Q|

ε ≥ nwmin/3,
using Lemma 12.

Consider now an arbitrary point p ∈ Rd. Since Gi is fully contained in B(µi, D/2), either the ball B(p,D/2) doesn’t
intersect with Gi, or B(p,D) contains entirely Gi. Furthermore, by triangle inequality, for any q ∈ Gi ∩Q the ball B(q,D)
contains entirely Gi: if q is not frozen, it has noisy count at least nwmin/3, and therefore true count at least nwmin/6.

To reduce the diameter, we first remove all points from Q that are not frozen and for which the ball B(q,D) has noisy
count less than nwmin/3: by the previous discussion, those points are not sampled from any Gi and are part of the noise. In
addition, connect any pair of points that are at distance less than D.

We claim that each connected component has diameter at most O
(

log2 n
√
dσmax

εwmin

)
.

To prove this claim, we fix such a component, and consider the following iterative procedure. Pick an arbitrary point from
the component, and remove all points that are at distance 2D. Repeat those two steps until there are no more points.

Let q be a point selected at some step of this procedure. First, note that B(q,D) is disjoint from any ball B(q′, D), for
q′ previously selected – as B(q′, 2D) has been removed. Furthermore, either q is frozen and the ball contains εnwmin

200 log |Q|
many points of Q, or q is not frozen and B(q,D) contains at least nwmin/6 points of P . Therefore, there are at most
tmax := 6

wmin
+ 200 log |Q|

εwmin
iterations. So the connected component can be covered with tmax balls of radius 2D. Additionally,

since each edge has length at most D, the component has diameter at most O(tmaxD) = O
(

log |Q| logn
√
dσmax

εwmin

)
. This

concludes the claim.

The other key property of the connected component is that each Gi is fully contained in a single connected component, as
all points of Gi are at distance at most D of each other.

Therefore, we can transform the space such that the connected components get closer but do not interact, so that the diameter
reduces while the centers of Gaussians are still far apart. Formally, let D′ be the maximum diameter of the connected
components. Select an arbitrary representative in Q from each connected component, and apply a translation to the connected
component such that its representative has coordinate (100D′ · i, 0, 0, ..., 0). This affine transformation ensures that (1)
within each connected component, all means are still separated and the points are still drawn from Gaussian with the same
covariance matrix and (2) the separation between centers of different component is at least 50D′.

Therefore, the instance constructed still satisfy the separation conditions of Definition 2, and has diameter at most O(kD′) =

O
(

k logn log |Q|
√
dσmax

εwmin

)
E.2. A relaxation of Awathi-Sheffet’s conditions

The result of Awasthi & Sheffet (2012), applied to Gaussian, requires a slightly weaker separation between the centers than
what we enforce. They consider a dataset P sampled from a Gaussian mixtures, and with cluster matrix C (namely, Ci = µi

if Pi is sampled from the i-th component). They define for each cluster ∆AS
i := 1√

|Gi|
min(

√
k∥P − C∥2), ∥P − C∥F ),

and require ∥µi − µj∥ ≥ c(∆AS
i +∆AS

j ) for some large constant c.

In the Gaussian setting, we have |Gi| ≈ nwi (Lemma 12), ∥P − C∥2 = O(σmax
√
n) Lemma 11 and ∥A − C∥F =

Θ(
√
ndσmax). Thus, in most cases, min

(√
k∥P − C∥2, ∥P − C∥F

)
=
√
nkσmax polylog(d/wmin), except in some

degenerate cases – and we keep the minimum only to fit with the proof of Awasthi & Sheffet (2012).

We can define ∆i =
σmax

√
n√

|Gi|
min

(√
k polylog(d/wmin),

√
d
)

: our separation condition Definition 2 ensures that ∥µi −
µj∥ ≥ c(∆i +∆j), for some large c. We now show the two key lemmas from Awasthi & Sheffet (2012), adapted to our
private algorithm.

Fact 18 (Fact 1.1 in Awasthi & Sheffet (2012)). Let P ∈ Rd×n be a set of n points sampled from a Gaussian mixtures,
and let C be the cluster matrix, namely the j-th column is Cj = µi if Xj is sampled from N (µi,Σi). Let Π be a B-almost
k-PCA for P1, ..., Pn. Suppose that B satisfies B ≤

√
nwminσmax

4k . Then:

∥ΠP − C∥2F ≤ 20min(k∥A− C∥22, ∥A− C∥2F )(= nwi∆
2
i ).
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Proof. First, since both ΠP and C have rank k, it holds that ∥ΠP − C∥2F ≤ 2k∥ΠP − C∥22. By triangle inequality, this is
at most 2k (∥ΠP − P∥2 + ∥P − C∥2)2.

Now, we have that ∥ΠP − P∥22 = ∥(ΠP − P )T (ΠP − P )∥2: since Π is an orthogonal projection, Π = ΠT = Π2 and
therefore ∥ΠP − P∥22 = ∥PPT − (ΠP )(ΠP )T ∥2. Using that Π is a B-almost k-PCA of P , this is at most ∥(ΠkP −
P )(ΠkP − P )T ∥2 + B, where ΠkP is the best rank-k approximation to P . By definition of Πk, this is equal to ∥P −
ΠkP∥22 +B ≤ ∥P − C∥22 +B.

Overall, we get using
√
a+ b ≤

√
a+
√
b:

∥ΠP − C∥2F ≤ 2k (∥ΠP − P∥2 + ∥P − C∥2)2

≤ 2k
(
2∥P − C∥2 +

√
B
)2

≤ 16k∥P − C∥22 + 4kB.

Using Lemma 11 and the assumption that 4kB ≤ √nwminσmax concludes the first part of the lemma.

For the other term, we have ∥ΠP − C∥F ≤ ∥ΠP − P∥F + ∥P − C∥F . The fact that Π is a B-almost k-PCA ensures that
∥ΠP −P∥2F ≤ ∥P −C∥2F + kB; and the fact that ∥P −C∥2F ≥ ∥P −C∥22 ≥

nwminσ
2
max

16 ≥ B concludes (where the second
inequality is from Lemma 11).

Fact 19. [Analogous to Fact 1.2 in Awasthi & Sheffet (2012)] Let P ∈ Rd×n be a Gaussian mixtures, and Π be a
B-almost k-PCA for P1, ..., Pn. Suppose that B satisfies B2 ≤ nwminσ

2
max. Let S = {ν1, ..., νk} be centers such that

cost(ΠP, S) ≤ nkσ2
max · log

2 n.

Then, for each µi, there exists j such that ∥µi − νj∥ ≤ 6∆i, so that we can match each µi to a unique νj .

Proof. The proof closely follows the one in Awasthi & Sheffet (2012). Assume by contradiction that there is a i such that
∀j, ∥µi − νj∥ > 6∆i. For any point p ∈ P , let νp be its closest center. Then, the contribution of the points in Gi to the cost
is at least ∑

p∈Gi

∥µi − νp +Πp− µi∥2 >
|Gi|
2

(6∆i)
2 −

∑
p∈Gi

∥Πp− µi∥2 ≥ 18|Gi|∆2
i − ∥ΠP − C∥2F ,

where the first inequality follows from (a − b)2 ≥ a2

2 − b2. Using first that |Gi|∆2
i = 100nkσ2

max log
2(n), then Fact 18

combined with Lemma 11 yields that
∑

p∈Gi
∥Πp − νp∥2 > 1800nkσ2

max log
2(n) − 16nkσ2

max This contradicts the
assumption on the clustering cost.

Assuming there is a matching as in Fact 19, the proof of Awasthi & Sheffet (2012) directly goes through (when the Lloyd
steps in Parts 2 and 3 of the algorithm are implemented non-privately), and we can conclude in that case that the clustering
computed by Algorithm 1 is correct. Therefore, we first show that our algorithm computes a set of centers satisfying the
conditions of Fact 19; and will show afterwards that the remaining of the proof works even with the addition of private noise.

E.3. Computing a good k-means solution for ΠP

The goal of this section is to show the following lemma:

Lemma 20. There is an ε-DP algorithm with 10 log 4 log |Q|
εwmin

rounds of communications that computes a k-means solution S
with

cost(ΠP, S) = O

(
n · log2

(
1

εwmin

)
· kσ2

max log n

)
.

The proof of this lemma is divided into several parts: first, we show that the means of the projected Gaussians Πµ1, ...,Πµk

would be a satisfactory clustering. As points in Q are drawn independently from Π, there are points ΠQ close to each center
Πµi: our second step is therefore an algorithm that finds those points, in few communications rounds.

Lemma 21. Let Π be the private projection computed by the algorithm. With high probability, clustering the projected set
ΠGi to the projected mean Πµi has cost |Gi| log n · kσ2

max.
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Proof. We focus on a single Gaussian Gi, and denote for simplicity µ := µi its center and Σ̂ := ΠΣi the covariance matrix
of ΠGi. Standard arguments (see Proof of Corollary 5.15 in Kamath et al. (2019), or the blog post from McSherry (2014))
show that, with high probability, for all point it holds that ∥Π(p− µ)∥22 ≤

√
k log(n)σmax.

For a sketch of that argument, notice that if the projection Π was fixed independently of the samples, this inequality is direct
from the concentration of Gaussians around their means, as the projection of Gi via Π is still a Gaussian, with maximal
unidirectional variance at most σmax. This does not stay true when Π depends on the sample; however, since Π is computed
via a private mechanism, the dependency between Π and any fixed sample is limited, and we can show the concentration.

Combined with the fact that there are |Gi| samples from Gi, this concludes.

Lemma 20 in particular ensures that clustering ΠP to the full set ΠQ yields a cost nkσ2
max · log

2 n. Therefore, if we could
compute for each q ∈ Q the size wq(ΠP ) of Πq’s cluster in ΠP , namely, the number of points in ΠP closer to Πq than to
any other point in ΠQ (breaking ties arbitrarily), then Lemma 13 would ensure that computing an O(1)-approximation to
k-means on this weighted set yields a solution to k-means on ΠP with cost O

(
nkσ2

max · log
2 n
)
.

However, the privacy constraint forbids to compute wq(ΠP ) exactly, and the server only receives a noisy version ŵq(ΠP ) –
with a noise following a Laplace noise with parameter 1/ε. Hence, for all points q ∈ Q, the noise added is at most logn

ε
with high probability.

E.4. If assumption (2) is satisfied: the noise is negligible

Assumption (2) can be used to bound the total amount of noise added to the server data: we can show that the total
contribution of the noise is small compared to the actual k-means cost, in which case solving k-means on the noisy data set
yields a valid solution. We show the next lemma:

Lemma 22. For any set of k centers S, it holds that
∣∣∣∑q wq(ΠP ) cost(p, S)−

∑
q ŵq(ΠP ) cost(p, S)

∣∣∣ ≤ |Q| log |Q|∆2

ε

Proof. ∣∣∣∣∣∑
q

wq(ΠP ) cost(q, S)−
∑
q

ŵq(ΠP ) cost(q, S)

∣∣∣∣∣ =
∣∣∣∣∣∑

q

Lap(1/ε) cost(q, S)

∣∣∣∣∣
With high probability, each of the |Q| Laplace law is smaller than log |Q|

ε . In this case, we get
∣∣∣∑q Lap(1/ε) cost(q, S)

∣∣∣ ≤
|Q| log |Q|∆2

ε Therefore, the gap between the solution evaluated with true weight wq(ΠP ) and noisy weight ŵq(ΠP ) is at

most |Q| log |Q|∆2

ε

Using |Q| ≤ n, the assumption |Q| ≤ εnkσ2
max

∆2 therefore ensures that the upper bound of the previous lemma is at most
nk log(n)σ2

max.

Hence, if S is a solution that has cost O(1) times optimal on the noisy projected server data, it has cost O(nkσ2
max log(n))

on the projected server data. Combining this result with Lemma 13 concludes: cost(ΠP, S) = O
(
nkσ2

max log(n)
)
.

E.5. Enforcing Assumption (2)

In order to get rid of Assumption (2), we view the problem slightly differently: we will not try to reduce the number of
points in Q to the precise upper-bound, but will nonetheless manage to control the noise and show Lemma 20.

Indeed, if all points of Q get assigned more than 2 log n/ε many input points, then the estimates of wq are correct up to a
factor 2, and Lemma 13 shows that a k-means solution S for the dataset consisting of ΠQ with the noisy weights satisfies
cost(ΠP, S) = O

(
nkσ2

max · log
2 n
)
. However, it may be that some points of Q get assigned less than 2 log n/ε points,

in which case the noise would dominate the signal and Lemma 13 becomes inapplicable. Our first goal is therefore to
preprocess the set of hings Q to get Q̂ such that :

1. for each cluster, ΠQ̂ still contains one good center, and
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2. ∀q ∈ Q̂, ŵq ≥ 2 log n/ε (where the weight ŵ is computed by assigning each data point to its closest center of Q̂)

The first item ensures that cost(ΠP,ΠQ̂) = O
(
nkσ2

max · log
2 n
)
; the second one that the size of each cluster is well

approximated, even after adding noise.

Our intuition is the following. Removing all points q ∈ Q with estimated weight less than 2 log n/ε is too brutal: indeed,
it may be that one cluster is so over-represented in Q that all its points get assigned less than 2 log n/ε points from P .
However, in that case, there are many points in the cluster and in ΠQ: we can therefore remove each point with probability
1/2 and preserve (roughly) the property that there is a good center in ΠQ. Repeating this intuition, we obtain the algorithm
described in Algorithm 4.

Algorithm 4 SimplifyServerData
1: Input: Server data Q, client datasets P 1, ..., Pm, a projection matrix Π computed from P 1, ..., Pm, and privacy

parameter ε
2: Let F ← ∅, Q0 ← Q, T = 10 log

(
4 log |Q|
εwmin

)
3: for t = 0 to T do
4: Let C = F ∪Qt

5: for each q ∈ C, the server receives a noisy estimate ŵ
(t)
q of wΠq(ΠQt), with noise Lap(T/ε).

6: Server computes L := {q ∈ C : ŵ
(t)
q ≤ 2 log n/ε}.

7: F ← F ∪ (Qt \ L).
8: Server computes Qt+1, a subset of L where each point is sampled with probability 1/2.
9: end for

10: Return: F

We sketch briefly the properties of algorithm 4, before diving into details of the proof. First, the algorithm is ε-DP, as each
of the T steps is ε/T -DP.

Then, points in F are frozen: even after adding noise, their weight is well approximated. We will show by induction on the
time t that, for any cluster i that does not contain any frozen point at time t, then Qt ∩B(µi, 2t ·

√
k log nσmax) contains

many points: more precisely, |Qt ∩B(µi, 2t ·
√
k log nσmax)| ≥ ε|Gi|/2. Since at each time step only half of the points in L

are preserved in Qt+1 (line 7 of the algorithm), it implies that, at the beginning, |Q∩B(µi, 2t ·
√
k log nσmax)| ≳ 2tε/T |Gi|.

Therefore, for t = log(1/(εwmin)), we have for each cluster that either it contains a frozen point, or |Q ∩ B(µi, 2t ·√
k log nσmax)| ≥ |Gi|

wmin
> n: as the second option is not possible, all clusters contains a frozen point, which is a good center

for that cluster.

Our next goal is to formalize the argument above, and show:

Lemma 23. Let F be the output of Algorithm 4. Then, for each cluster i, there is a point νi ∈ F such that ∥Π(µi − νi)∥ ≤
log
(

4 log |Q|
εwmin

)
·
√
k log nσmax.

Furthermore, for each q ∈ F , define wq as the number of points closest to q than any other point in F : it holds that
wq ≥ 2 log n/ε.

For simplicity, we define ∆C :=
√
k log nσmax. To prove this lemma, we show inductively that after t iterations of the loop

in the algorithm, then either B(Πµi, 2t∆C) contains a frozen point, or |B(Πµi, (t+ 1)∆C) ∩ΠQt| ≥ ε|Gi|/2. Since the
number of points in ΠQt is divided by roughly 2 at every time step, the latter condition implies that there was initially at
least≈ 2tε|Gi| points in B(Πµi, (t+1)∆C)∩ΠQ. For t ≈ log(1/(εwmin), this is bigger than n and we get a contradiction:
the ball contains therefore a frozen point.

Our first observation to show this claim is that many points of P are close to µi:

Fact 24. With high probability on the samples, it holds that
∣∣B(Πµi,

√
k log nσmax) ∩ΠPi

∣∣ ≥ |Gi|

Proof. As in the proof of Lemma 21, the fact that Π is computed privately ensures that, with high probability, all points
p ∈ Gi satisfy ∥Π(p− µi)∥ ≤

√
k log nσmax. Thus,

∣∣B(Πµi,
√
k log nσmax) ∩ΠPi

∣∣ ≥ |Gi|.
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For the initial time step t = 0 we actually provide a weaker statement to initialize the induction, and show that there is at
least one point in B(Πµi,

√
k log nσmax) ∩ΠQt. This will be enough for the induction step.

Fact 25 (Initialization of the induction). With high probability, ∃q ∈ Q, ∥Π(µi − q)∥ ≤
√
k log nσmax.

Proof. This directly stems from the fact that there is some point q ∈ Q that is sampled according to Gi, and that Π is
independent of that point. Therefore, Πq follows the Gaussian law ΠGi, which is in a k dimensional space and has maximal
unidirectional variance σmax. Concentration of Gaussian random variables conclude.

To show our induction, the key lemma is the following:

Lemma 26. After t iteration of the loop, either B
(
Πµi, (t+ 1)

√
k log nσmax

)
contains a frozen point, or∣∣ΠQt ∩B(Πµi, 2(t+ 1)

√
k log nσmax)

∣∣ ≥ ε|Gi|
4T log(T |Q|) .

Proof. Let ∆C :=
√
k log nσmax.

First, it holds with high probability that all the noise added Line 5 satisfy
∣∣∣ŵ(t)

q − wΠq(ΠQt)
∣∣∣ ≤ T log(T |Q|)/ε. This

directly stems from concentration of Laplace random variables, and the fact that there are T |Q| many of them.

We prove the claim by induction. Fix a t ≥ 0. The induction statement at time t ensures that either there is a point frozen in
B(Πµi, (t+ 1)∆C), in which case we are done, or there is at least one point in ΠQt ∩B(Πµi, (t+ 1)∆C) (note that this
statement holds for t = 0 by Fact 25).

By triangle inequality, this means that all points of ΠGi ∩B(Πµi,∆C) are assigned at time t+ 1 to a point in B(Πµi, (t+
2)∆C) (in line 4 of Algorithm 4). Therefore, by Fact 24,

∑
q:Πq∈ΠQt∩B(Πµi,(t+2)∆C) w

t
q ≥ |Gi|.

Then, either ΠQt contains less than ε|Gi|
2T log(T |Q|) many points from B (Πµi, (t+ 2)∆C), and we are done, as one of them

must have wΠq(ΠQt+1) ≥ 2T log(|Q|T )/ε and will be frozen – as in this case ŵ
(t)
q ≥ T log(|Q|T )/ε. Or, there are more

than ε|Gi|
2T log(T |Q|) points, and they all have wt+1

q ≤ 2T log(T |Q|)/ε : Chernoff bounds ensure that, with high probability, at

least ε|Gi|
4T log(T |Q|) will be sampled in the set Qt+1, which concludes the lemma.

Lemma 23 is a mere corollary of those results:

Proof of Lemma 23. Again, we define ∆C :=
√
k log nσmax. At the end of Lemma 23, all points in F are frozen: let

f : P → F such that f(p) = argminq∈F ∥Π(p− q)∥, breaking ties arbitrarily. Since all points are frozen, it holds that for

all q, |f−1(q)| ≥ 2 log n/ε: therefore, their noisy weight ŵq satisfy |ŵq − |f−1(q)| ≤ |f−1(q)|
2 .

Furthermore, for T large enough it holds that T ≥ log
(

4T log(T |Q|)
εwmin

)
: this holds e.g. for T = 10 log

(
4 log(|Q|)

εwmin

)
.

Lemma 26 ensures that either B(Πµi, (T+1)∆C) contains a frozen point, or |ΠQT ∩B(Πµi, 2(T+1)∆C)| ≥ ε|Gi|
4T log(T |Q|) .

Suppose by contradiction that we are in the latter case. Since, at each time step, every point in Q is preserved with
probability 1/2, it holds with high probability that |ΠQ ∩ B(Πµi, 2(T + 1)∆C)| ≥ ε2T · |Gi|. Indeed, all points of
that ball are still present in QT with probability 1/T t: Chernoff bounds ensure that there must be initially at least
2T · ε|Gi|

4T log(T |Q|) points in that ball in order to preserve ε|Gi|
4T log(T |Q|) of them after the sampling. With our choice of T , this

means |ΠQ ∩B(Πµi, 2(t+ 1)∆C)| > |Q|, which is impossible.

Therefore, it must be that B(Πµi, (T + 1)∆C) contains a frozen point, which concludes the proof.

Proof of Lemma 20 We now have all the ingredients necessary to the proof of Lemma 20. The algorithm is a mere
combination of the previous results:

• Use Algorithm 4 to compute a set F .

• Server sends F to the clients, who define f : P → F such that f(p) = argminq∈F ∥Π(p − q)∥, breaking ties
arbitrarily.
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• Client i sends wΠq(ΠP
i) :=

∣∣{p ∈ P i : f(p) = q}
∣∣.

• Server receives ŵq , a noisy version of wq :=
∑

i w
i
q .

• Server computes an O(1)-approximation S to k-means on the dataset ΠF with weights ŵq .

To show that S has the desired clustering cost, we aim at applying Lemma 13. For this, we first bound
∑

p ∥Π(p− f(p))∥2.
For each cluster i, let νi be the point from F as defined in Lemma 23. We have, using the definition of f and triangle
inequality:

∑
p

∥Π(p− f(p))∥2 ≤
∑
i

∑
p∈Gi

∥Π(p− νi)∥2 ≤ 2
∑
i

∑
p∈Gi

∥Π(p− µi)∥2 + ∥Π(µi − νi)∥2.

From Lemma 21, we know that
∑

i

∑
p∈Gi

∥Π(p− µi)∥2 = O(n log n · kσ2
max). The guarantee of νi in Lemma 23 ensures∑

i

∑
p∈Gi

∥Π(µi − νi)∥2 = O
(
n · log2

(
1

εwmin

)
· kσ2

max log n
)

.

Thus,
∑

p ∥Π(p− f(p))∥2 = O
(
n · log2

(
1

εwmin

)
· kσ2

max log n
)

.

Since all points in F have an estimated that satisfies
∣∣ŵq − |f−1(q)|

∣∣ ≤ |f−1(q)|
2 , we can apply Lemma 13: the solution

computed by the above algorithm on the dataset ΠF with weights ŵq has cost at most O
(
n · log2

(
1

εwmin

)
· kσ2

max log n
)
+

O(OPT(ΠP )) = O
(
n · log2

(
1

εwmin

)
· kσ2

max log n
)

.

This concludes the proof of Lemma 20.

F. Part 2: Improving iteratively the solution
Our global algorithm is described in Algorithm 5: first, we use Lemma 17 to reduce the diameter of the input; then, we
compute a good initial solution using Lemma 20. Then, we implement privately Part 2 and Part 3 of Algorithm 3, using
private mean estimation. We note that this algorithm, when assumptions (1) and (2) are satisfied, is exactly Algorithm 1
followed with Algorithm 2. Hence, Theorem 3 follows directly from the proof of Theorem 15.

Algorithm 5 Cluster
1: Input: Server data Q, client datasets P 1, ..., Pm, and privacy parameters ε, δ
2: Process the input to reduce the diameter to ∆ using Lemma 17, with privacy parameter ε/4.
3: In one round of communication, compute a O(

√
d∆ · σ(ε/4, δ))-almost k-PCA using Theorem 9.

4: Part 1: find initial centers ν(1)1 , ..., ν
(1)
k using Lemma 20, with privacy parameter ε/4

5: Part 2:

a) Server sends ν(1)1 , .., ν
(1)
k to clients, and client c computes Sc

r := {Pi ∈ P c : ∀s, ∥P̂i − νr∥ ≤ 1
3∥P̂i − νs∥}.

b) Server receives, for all cluster r, ν(2)r := 1∑
client c |Sc

r |+Lap(T/ε)

(∑
client c

∑
Pi∈Sc

r
Pi +Nd

(
0, 2T 2∆ log(2T/δ)

ε2

))
6: Part 3: Repeat Lloyd’s steps for T steps, with privacy parameter (ε/T, δ/T ):

1. Server sends ν(t)1 , .., ν
(t)
k to clients, and client c computes Sc

r := {Pi ∈ P c : ∀s, ∥P̂i − νr∥ ≤ ∥P̂i − νs∥}.

2. Server receives, for all cluster r, ν(t+1)
r := 1∑

client c |Sc
r |+Lap(T/ε)

(∑
client c

∑
Pi∈Sc

r
Pi +Nd

(
0, 2T 2∆ log(2T/δ)

ε2

))

Given the mapping of Fact 19, the main result of Awasthi & Sheffet (2012) is that step 2 of the algorithm computes centers
that are very close to the µi:5

5Note that the original theorem of Awasthi & Sheffet (2012) is stated slightly differently: however, their proof only requires Fact 18
and the matching provided by Fact 19, and we modified the statement to fit our purposes.

23



Differentially Private Federated k-Means Clustering with Server-Side Data

Theorem 27 (Theorem 4.1 in Awasthi & Sheffet (2012)). Suppose that the solution ν1, ..., νk is as in Fact 19, namely, for
each µi, it holds that ∥µi − νi∥ ≤ 6∆i. Denote Si = {j : ∀r ̸= i, ∥ΠPj − νi∥ ≤ 1

3∥ΠPj − νr∥}. Then, for every i ∈ [k] it
holds that

∥µ(Si)− µi∥ = O

(
1

c
√
|Gi|

· ∥P − C∥2

)
,

where c is the separation constant from Definition 2.

Finally, the next result from Kumar & Kannan (2010) shows that the Lloyd’s steps converge towards the true means:
Theorem 28 (theorem 5.5 in Kumar & Kannan (2010)). If, for all i and a parameter γ ≤ ck/50,

∥µi − νi∥ ≤
γ∥P − C∥2√

|Gi|
,

then

∥µi − µ(C(νi))∥ ≤
γ∥P − C∥
2
√
|Gi|

,

where C(νi) is the set of points closer to νi than to any other νj .

This allows us to conclude the accuracy proof of Theorem 15

Proof of Theorem 15. The algorithm is (ε, δ)-DP: each of the 4 steps step – reducing the diameter, computing a PCA,
finding a good initial solution and running T Lloyd’s steps – is (ε/4, δ/4)-DP, and private composition concludes.

The first three steps require a total of 2 + 10 log 4 log |Q|
εwmin

many rounds of communication, the last one requires T + log
σ2

max
wmin

rounds. This simplifies to T + ζ2 log
σmax log |Q|

εwmin
, for some constant ζ2.

The first step reduces the diameter to ∆ = O
(

k log2 n
√
dσmax

εwmin

)
; therefore, Lemma 20 combined with Fact 19 ensures that

ν
(1)
1 , ..., ν

(1)
k satisfies the condition of Theorem 27. In addition, Lemma 4.2 of Awasthi & Sheffet (2012) ensures that the

size of each cluster |Sr| is at least |Gi|
2 at every time step.

Therefore, the private noise
Nd(∆2σ2(ε′,δ′))

|Sc
r |

is bounded with high probability by η := O
(

∆
√
dσ(ε/T,δ/T )

|Sc
r |

)
=

O

(
kdT log2 nσmax·

√
ln(1/δ)

nε2w2
min

)
, which for and n = Ω

(
kdT log2 n·

√
ln(1/δ)

ε2w2
min

)
is smaller than ∆i =

σmax√
wi

min
(√

k polylog(d/wmin), d
)

.

Hence, the conditions of Theorem 27 and Theorem 28 are still satisfied after adding noise, and the latter implies that the
noisy Lloyd steps converge exponentially fast towards B(µi, η).

More precisely, it holds with probability 1− 1/k2 that

∥∥∥∥∥µi − ν
T+log

σ2
max

wmin
i

∥∥∥∥∥ = O

(
1

c2
T+log

σ2
max

wmin

)
· ∥P−C∥2√

|Gi|
+ η.

From Lemma 11 ensures ∥P − C∥ ≤ O(
√
nσmax). Since |Gi| ≥ nwmin/2, the first term is at most O

(
1
2T

)
.

Therefore, ∥∥∥∥∥µi − ν
T+log

σ2
max

wmin
i

∥∥∥∥∥ = O

(
max

(
1

2T
,
kdT log2 nσmax

√
ln(T/δ)

nε2w2
min

))
.

G. Experiment Details
G.1. Dataset details

Mixture of Gaussians Datasets We generate a mixture of Gaussians in the following way. We set the data dimension
to d = 100 and we generate k = 10 mixtures by uniformly randomly sampling k means {µ1, . . . µk} from [0, 1]d. Each
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mixture has diagonal covariance matrix Σi = 0.5Id and equal mixture weights wi = 1/k. The server data is generated
by combining samples from the true mixture distribution together with additional data sampled uniformly randomly from
[0, 1]d representing related but out-of-distribution data. We sample 20 points from each mixture component, for a total of
20× k = 200 in distribution points and sample an additional 100 uniform points. For Section 5.1 we simulate a cross-silo
setting with 100 clients, with each client having 1000 datapoints sampled i.i.d from the Gaussian mixture. For Section 5.2
we simulate a cross-device setting with 1000, 2000 and 5000 clients, each client having 50 points i.i.d sampled from the
Gaussian mixture distribution. The server data is identical in both cases.

US Census Datasets We create individual datapoints coming from the ACSIncome task in folktables. Thus each datapoint
consists of d = 819 binary features describing an individual in the census, including details such as employment type, sex,
race etc. In order to create a realistic server dataset (of related but not not in-distribution data) we filter the client datasets
to contain only individuals of a given employment type. The server then receives a small amount (20) of datapoints with
the chosen employment type, and a larger amount (1000) of datapoints sampled i.i.d from the set of individuals with a
different employment type. We do this for 3 different employment types, namely “Employee of a private not-for-profit,
tax-exempt, or charitable organization”, “Federal government employee” and “Self-employed in own not incorporated
business, professional practice, or farm”. These give us three different federated datasets, each with 51 clients, with total
dataset sizes of 127491, 44720 and 98475 points respectively.

Stack Overflow Datasets Each client in the dataset is a stackoverflow user, with the data of each user being the questions
they posted. Each question also has a number of tags associated with it, describing the broad topic area under which the
question falls. We first preprocess the user questions by embedding them using a pre-trained sentence embedding model
(Reimers & Gurevych, 2019). Thus a user datapoint is now a d = 384 text embedding. Now we again wish to create a
scenario where the server can receive related but out of distribution data. We follow a similar approach to the creation of
the US census datasets. We select two tag topics and filter our clients to consist of only those users that have at least one
question that was tagged with one of the selected topics. For those clients we retain only the questions tagged with one of
the chosen topics. The server then receives 1000 randomly sampled questions with topic tags that do not overlap with the
selected client tags as well as 20 questions with the selected tags, 10 of each one. For our experiments we use the following
topic tag pairs to create clients [(machine-learning, math), (github, pdf), (facebook, hibernate), (plotting, cookies)]. These
result in federated clustering problems with [10394, 9237, 23266, 2720] clients respectively.

G.2. Verifying our assumptions

On each of the datasets used in our data-point-level experiments we compute the radius of the dataset ∆, shown in Table 1.

Dataset ∆
Gaussian Mixture (100 clients) 10.57
US Census (Not-for-profit Employees) 2.65
US Census (Federal Employees) 2.65
US Census (Self-Employed) 2.65

Table 1. Radius of each dataset.

Assumption (1) requires ∆ = O
(

k log2(n)σmax
√
d

εwmin

)
. For the Gaussian mixture, k = 10, d = 100, wmin = 1/10, n = 106 and

σmax = 0.5: thus ∆ clearly satisfies the condition.

For the US Census datasets, k = 10, d = 819, n ∈ {127491, 44720, 98475}. As we cannot estimate σmax and wmin(since
the dataset is not Gaussian), we use an upper-bound wmin = 1, and replace σmax with a proxy based on the optimal k-means
cost,

√
OPT/n: this is a priori a large upper-bound on the value of σmax, but it still gives an indication on the geometry of

each cluster. As can be seen in Figure 1, Figure 8, the average optimal cost is about 3.5 : thus,
√

OPT/n ≈ 1.87, and we

estimate k log2(n)σmax
√
d

εwmin
≈ 10·log2(105)·0.005·

√
819

0.5 ≈ 123000. This indicates that Condition (1) is satisfied as well for this
dataset.

Assumption 2 requires that the size of the server data is not too large: |Q| ≤ εnk log(n)σ2
max

∆2 . In the Gaussian case, we have
|Q| = 300, and the right-hand-side is about 29000.

In the US Census Dataset, we again upper-bound σ2
max = OPT

n . In that case, the right-hand-side is about 620000, while there
are 1020 server point. Although our estimate of σmax is only an upper-bound, this indicates that assumption (2) is also
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satisfied.

G.3. Baseline implementation details

SpherePacking We implement the data independent initialization described in Su et al. (2017) as follows. We estimate
the data radius ∆ using the server dataset. We set a = ∆

√
d, for i = 1, . . . , k, we randomly sample a center νi in [−∆,∆]d.

If νi is at least distance a from the corners of the hypercube [−∆,∆]d and at least distance 2a away from all previously
sampled centers ν1, . . . , νi−1, then we keep it. If not we resample νi. We allow 1000 attempts to sample νi, if we succeed
with sampling all k centers then we call the given a feasible. If not then a is infeasible. We find the largest feasible a by
binary search and use the corresponding centers as the initialization.

G.4. Adapting FedDP-KMeans to client-level privacy

As discussed in Section 5.2, moving to client-level DP changes the sensitivities of the algorithm steps that use client data.
To calibrate the noise correctly we enforce the sensitivity of each step by clipping the quantities sent by each client to the
server, prior to them being aggregated.

Concretely, suppose vj is a vector quantity owned by client j, and the server wishes to compute the aggregate v =
∑

j vj .
Then prior to aggregation the client vector is clipped to have maximum norm B so that

v̂j =

{
B

∥vj∥vj , if ∥vj∥ > B

vj , otherwise.

The aggregate is then computed as v̂ =
∑

j v̂j . This query now has sensitivity B, and noise can be added accordingly. Each
step of our algorithms can be expressed as such an aggregation over client statistics, the value of B for each step becomes a
hyperparameter of the algorithm.

We make one additional modification to Step 3 of FedDP-Init to make it better suited to the client-level DP setting. In
Algorithm 1 during Step 3 the clients compute the sum mj

r and count nj
r of the vectors in each cluster Sj

r . Rather than send
these to the server to be aggregated the client instead computes their cluster means locally as

uj
r =

{
mj

r

nj
r
, if nj

r > 0

0, otherwise,

as well as a histogram counting how many non-empty clusters the client has:

cjr =

{
1, if nj

r > 0

0, otherwise.

The server then receives the noised aggregates ûr and ĉr and computes the initial cluster centers as νr = ûr/ĉr. In other
words we use a mean of the means estimate of the true cluster mean.

H. Additional Experiments
H.1. Setting hyperparameters of FedDP-KMeans

In this section we analyze the hyperparameter settings of FedDP-KMeans that produced the Pareto optimal results shown in
the figures in Sections 5.1 and 5.2. These analyses give us some insights on the optimal ways to set the hyperparameters
when using FedDP-KMeans in practice.

Distributing the privacy budget The most important parameters to set are the values of epsilon in Parts 1-3 of Algorithm
1. Here we discuss how to set these.

Let ε1, ε2, ε3G and ε3L denote the epsilon we allow for part 1, part 2, the Gaussian query in part 3 and the Laplace query in
part 3 respectively. We let εinit = ε1 + ε2 + ε3G + ε3L. By strong composition the initialization will have a lower overall
budget than εinit, however, it serves as a useful proxy to the overall budget as we can think of what proportion of εinit we are
assigning to each step.
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Figure 3. Mixture of Gaussians data with k = 10 clusters and 100 clients. Performance of FedDP-KMeans when the server is missing 0,
1, 2 and 5 of the 10 total clusters.
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Figure 4. Mixture of Gaussians data with 100 clients. Server missing 1 of the k = 10 clusters.
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Figure 5. Mixture of Gaussians data with 100 clients. Server missing 2 of the k = 10 clusters.
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Figure 6. Mixture of Gaussians data with 100 clients. Server missing 5 of the k = 10 clusters.
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Shown in Tables 2 and 3 are the values from our experiments. Specifically, for each dataset we take the mean across the
Pareto optimal results that we plotted of the ε values used for each step. We then express this as a fraction of εinit. Loosely
speaking, we interpret these values as answering “What fraction of our overall privacy budget should we assign to each
step?”

The results paint a consistent picture when comparing values with the same unit-level of privacy with slight differences
between the two levels. For datapoint level privacy, clearly the most important step in terms of assigning budget is to the
Gaussian mechanism in Step 3 with the other steps being roughly even in term of importance. Therefore, as a rule of thumb
we would recommend assigning budget using the following approximate proportions [0.2, 0.2, 0.45, 0.15]. For user level
privacy we observe the same level of importance being placed on the Gaussian mechanism in Step 3 but additionally on
the Gaussian mechanism in Step 1. Based on these results we would assign budget following approximate proportions
[0.35, 0.1, 0.45, 0.1]. Clearly these are recommendations based only on the datasets we have experimented with and the
optimal settings will vary from dataset to dataset, most notably based on the number of clients and the number of datapoints
per client.

Dataset ϵ1/ϵinit ϵ2/ϵinit ϵ3G/ϵinit ϵ3L/ϵinit

Gaussian Mixture (100 clients) 0.18 0.23 0.43 0.17
US Census (Not-for-profit Employees) 0.24 0.17 0.41 0.18
US Census (Federal Employees) 0.15 0.16 0.52 0.17
US Census (Self-Employed) 0.20 0.23 0.47 0.10

Table 2. Amount of privacy budget, as a fraction of εinit, that is assigned to each step of FedDP-Init. Results shown are the mean of the
Pareto optimal results plotted for each of the data-point-level experiments in Figures 1, 8 and 9.

Dataset ε1/εinit ε2/εinit ε3G/εinit ε3L/εinit

Gaussian Mixture (1000 clients) 0.38 0.09 0.42 0.10
Gaussian Mixture (2000 clients) 0.43 0.10 0.36 0.11
Gaussian Mixture (5000 clients) 0.43 0.09 0.37 0.11
Stack Overflow (facebook, hibernate) 0.29 0.15 0.42 0.15
Stack Overflow (github, pdf) 0.37 0.12 0.40 0.10
Stack Overflow (machine-learning, math) 0.29 0.14 0.45 0.13
Stack Overflow (plotting, cookies) 0.33 0.11 0.47 0.09

Table 3. Amount of privacy budget, as a fraction of εinit, that is assigned to each step of FedDP-Init. Results shown are the mean of the
Pareto optimal results plotted for each of the client-level experiments in Figures 2, 10, 11, 12 and 13.

Number of steps of FedDP-Lloyds The other important parameter to set in FedDP-KMeans is the number of steps of
FedDP-Lloyds to run following the initialization obtained by FedDP-Init. As discussed already, this comes with the inherent
trade-off of number of iterations vs accuracy of each iteration. For a fixed overall budget, if we run many iterations, then
each iteration will have a lower privacy budget and will therefore be noisier. Not only that, but in fact the question of whether
we even want to run any iterations has the same trade-off. If we run no iterations of FedDP-Lloyds, then we use none of our
privacy budget here, and we have more available for FedDP-Init. To investigate this we do the following: for each dataset
we compute, for each number of steps T of FedDP-Lloyds, the fraction of the Pareto optimal runs that used T steps.

Dataset 0 steps 1 step 2 steps
Gaussian Mixture (100 clients) 0.61 0.39 0
US Census (Not-for-profit Employees) 0.8 0.1 0.1
US Census (Federal Employees) 0.91 0.09 0
US Census (Self-Employed) 0.92 0.08 0

Table 4. Fraction of the Pareto optimal results that used a given number of steps of FedDP-Lloyds for the data-point-level experiments.

The results, shown in Tables 4 and 5, are interesting. In all but one dataset more than 80% of the optimal runs used no
steps of FedDP-Lloyds, with many of the datasets being over 90%. The preference was to instead use all the budget for the
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Dataset 0 steps 1 step 2 steps
Gaussian Mixture (1000 clients) 0.86 0.11 0.04
Gaussian Mixture (2000 clients) 0.8 0.17 0.03
Gaussian Mixture (5000 clients) 0.81 0.1 0.1
Stack Overflow (facebook, hibernate) 1.0 0 0
Stack Overflow (github, pdf) 1.0 0 0
Stack Overflow (machine-learning, math) 0.94 0.06 0
Stack Overflow (plotting, cookies) 0.96 0.04 0

Table 5. Fraction of the Pareto optimal results that used a given number of steps of FedDP-Lloyds for the client-level experiments.

initialization. The reason for this is again the inherent trade-off between number of steps and accuracy of each step, with it
clearly here being the case that fewer more accurate steps were better. One point to note here is that FedDP-Init essentially
already has a step of Lloyds built into it, Step 3 is nearly identical to a Lloyds step but with points assigned by distance in
the projected space. Running this step once and to a higher degree of accuracy tended to outperform using more steps. This
in fact highlights the point made in our motivation, about the importance of finding an initialization that is already very
good, and does not require many follow up steps of Lloyds.

H.2. Missing clusters in the server data

In order for our theoretical guarantees to hold we required the assumption that the server data include at least one point
sampled from each of the components of the Gaussian mixture and this assumption was reflected in the experimental setup
of Sections 5.1 and 5.2. This is, however, not a requirement for FedDP-KMeans to run or work in practice.

To test this we run experiments in the setting that certain clusters are missing from the server data in our Gaussian mixtures
setting. Specifically, the server data is constructed by sampling from only a subset of the k = 10 Gaussian components of the
true distribution. Figure 3 shows the performance of FedDP-KMeans as we increase the number of clusters missing on the
server. As we can see performance deteriorates modestly as the number of clusters missing from the server dataset increases.
Figures 4-6 show that this also occurs in the other baselines that make use of the server data and that FedDP-KMeans is still
the best performing method in this scenario.

H.3. Choosing k using Weighted Server Data

While in practice, k-means is often used with a value of k determined by external factors, such as computational or memory
demands, k can also be chosen based on the data at hand. Existing methods can be incorporated into our setting quite simply,
by using the method on the weighted and projected server dataset ΠQ, with weights ˆwq(ΠP ). This dataset serves as a
proxy for the client data and we can operate on it without incurring any additional privacy costs. We illustrate this using the
popular elbow method. Concretely, we run lines 1-16 of Algorithm 1 using some large value k′, then we run line 17 for
k = 1, 2, 3, . . . and plot the k-means costs of the resulting clusterings. This is shown in Figure 7. Clearly, the elbow of the
curve occurs at k = 10 which is indeed the number of clusters in the true data distribution (we used the same Gaussian
mixture dataset as in the original experiments).

I. Additional figures
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Figure 7. Plotting the Within-Cluster Sum of Squares (aka k-means cost), against the number of clusters, when clustering the weighted
projected server data points. The true number of clusters in the data is k = 10, the prior steps of FedDP-Init were run with k′ = 20. The
“elbow” of the curve indeed occurs at k = 10.
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Figure 8. Results with data-point-level privacy on US census data. The 51 clients are US states, each client has the data of individuals
with employment type “Employee of a private not-for-profit, tax-exempt, or charitable organization”.
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Figure 9. Results with data-point-level privacy on US census data. The 51 clients are US states, each client has the data of individuals
with employment type “Self-employed in own not incorporated business, professional practice, or farm”.
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Figure 10. Results with client-level privacy on Synthetic mixture of Gaussians data with 1000 clients in total.
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Figure 11. Results with client-level privacy on Synthetic mixture of Gaussians data with 5000 clients in total.
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Figure 12. Results with client-level privacy on the stackoverflow dataset with 23266 clients with topic tags facebook and hibernate.
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Figure 13. Results with client-level privacy on the stackoverflow dataset with 2720 clients with topic tags plotting and cookies.
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Figure 14. Results with client-level privacy on the stackoverflow dataset with 10394 clients with topic tags machine-learning and math.
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