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Abstract

With the widespread adoption of Artificial intelligence (AI), AI-based tools

and components are becoming omnipresent in today’s solutions. However, these

components and tools are posing a significant threat when it comes to adversar-

ial attacks. Mobile Crowdsensing (MCS) is a sensing paradigm that leverages

the collective participation of workers and their smart devices to collect data.

One of the key challenges faced at the selection stage is ensuring task com-

pletion due to workers’ varying behavior. AI has been utilized to tackle this

challenge by building unique models for each worker to predict their behavior.

However, the integration of AI into the system introduces vulnerabilities that

can be exploited by malicious insiders to reduce the revenue obtained by victim

workers. This work proposes an adversarial attack targeting behavioral-based

selection models in MCS. The proposed attack leverages Generative Adversarial

Networks (GANs) to generate poisoning points that can mislead the models dur-

ing the training stage without being detected. This way, the potential damage

introduced by GANs on worker selection in MCS can be anticipated. Simulation

results using a real-life dataset show the effectiveness of the proposed attack in

compromising the victim workers’ model and evading detection by an outlier

detector, compared to a benchmark. In addition, the impact of the attack on
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reducing the payment obtained by victim workers is evaluated.

Keywords: Mobile Crowdsensing, Generative Adversarial Networks,

Adversarial Machine learning

1. Introduction

Mobile Crowdsensing (MCS) is a sensing approach that utilizes the col-

lective involvement of mobile workers and their smart devices to collect data.

The management platform first receives sensing tasks from task requesters and

subsequently performs worker selection so that the quality of service (QoS) is

maximized. The workers collect the requested data and send it back to the

platform, which then pays the workers back for their contributed data. Artifi-

cial Intelligence (AI) based solutions have been widely adopted to optimize the

performance of MCS. A notable real-world example is Uber, which leverages

deep learning methods to optimize the Quality of Service (QoS) by predicting

workers’ estimated arrival times [1]. Waze is another well-known MCS applica-

tion that utilizes data contributed by workers to enhance the driving experience

by using AI methods to predict traffic and crash locations and timings [2], [3].

One of the key challenges faced in MCS systems is selecting workers who are

more likely to complete the tasks assigned. While they may initially accept these

tasks, their behavior can vary significantly, leading to potential cancellations

influenced by various contextual factors, such as the day of the task and the

weather conditions. AI techniques have shown great potential in addressing

this challenge. Using historical task data, supervised learning methods can

be adopted to build behavioral models for each worker. These models can

then be leveraged to predict the willingness of the workers to perform the task

[4]. Despite the effectiveness of AI in optimizing MCS worker selection, their

adoption introduces vulnerabilities that can be exploited by insider adversaries

during the training phase [5], [6]. Insider adversaries are individuals who have

access to the management platform and exploit their trusted positions to alter

the training process of the AI models by injecting malicious data [7]. This causes
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the models to behave incorrectly when deployed, ultimately undermining the

system’s fairness.

This work proposes an adversarial attack aimed at compromising behavior-

based worker selection in MCS systems. The proposed attack bridges the theo-

retical advancements in adversarial machine learning by providing a novel appli-

cation in practical settings like MCS worker selection and further highlights its

real-world impact on the workers. In addition, one of the primary motivations

for developing this attack model is to explore the risks presented by insider

adversaries who have trusted access to the MCS platform and leverage it to

manipulate the training process of the AI models. The proposed attack also

highlights critical concerns about the reliability of AI-based selection systems

due to their inherent vulnerabilities to malicious exploitation. These concerns

are not merely theoretical; real-world cases have demonstrated the consequences

of untrustworthy AI decisions. For example, Amazon had to discontinue its AI-

based selection algorithm after discovering that it favored male over female

candidates [8].

To this end, we propose a novel attack on behavioral-based MCS where ma-

licious insiders leverage Generative Adversarial Networks (GANs) to generate

poisoning points that can degrade the performance of victim workers’ mod-

els by identifying vulnerable regions in the feature space of their data. GANs

are powerful tools for data generation due to their unique adversarial training

mechanism. A typical GAN architecture comprises two neural networks: the

generator and the discriminator, trained simultaneously with opposing objec-

tives in a minimax framework. The generator aims to produce synthetic data

that closely resembles real data, while the discriminator learns to differentiate

between genuine and generated samples [9]. Numerous GAN variants have been

developed by incorporating additional components, and by modifying the loss

functions to guide the generation process toward specific features or desired

characteristics. In this study, we extrapolate on the method proposed in [10]

and build upon its framework to tailor the Poisoning GAN (PGAN) approach

specifically for insider attacks on behavioral-based selection in MCS. The PGAN
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utilized in this study consists of a generator that tries to minimize the losses of

both a discriminator and the victim worker’s behavioral model during training

[10]. The insider then utilizes the trained PGAN to generate poisoning points

and replaces a portion of the victim workers’ data with the generated data.

Subsequently, the platform uses the poisoned models to perform the selection,

resulting in fewer task assignments to victim workers and a significant reduc-

tion in their overall revenue. While the attack can degrade the performance of

the targeted models, it also considers the detectability constraints by generating

poisoning points that can bypass outlier detectors. In addition, it does not com-

promise the QoS achieved for the tasks. Using a GAN-based approach makes

the attack effective in terms of stealthiness, as it regulates the generation of at-

tack samples in a way that makes them unnoticeable. This allows the generated

poisoning points to bypass anomaly detection models that can be adopted in

the MCS system before the training stage. Overall, the main contributions of

this work are summarized below:

• A novel adversarial attack on behavioral-based MCS worker selection is

proposed. In this attack, insider adversaries use PGANs to generate poi-

soning data to compromise victim workers’ behavioral models during the

training phase.

• Propose a targeted attack on MCS that specifically aims to lower the

overall revenue of victim workers by decreasing the number of tasks they

get assigned by the platform.

• Propose a novel framework that demonstrates how PGANs can be de-

ployed at the worker selection stage to poison victim workers’ models in

MCS systems. The framework can be adopted to assess the efficacy of

adversarial attacks against a resilient selection system that incorporates

outlier detection and a QoS-based selection mechanism.

This work demonstrates how GAN-based poisoning attacks can be effectively

adapted and leveraged against behavioral-based worker selection models in MCS
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systems, a scenario that, to the best of our knowledge, has not been previously

explored. Furthermore, by integrating and extrapolating PGAN in the MCS

pipeline, this work reveals unique vulnerabilities in real-world worker selection

systems, which have received limited attention in adversarial machine learning

literature. Few studies investigated adversarial attacks on AI-based MCS, fo-

cusing mainly on the models adopted to improve the system’s performance at

the data aggregation stage and enhance its security [11],[12]. To the best of our

knowledge, this is the first work that proposes an adversarial attack specifically

targeting behavioral-based selection models in MCS. Simulation results using

a real-life dataset show the effectiveness of the proposed attack in compromis-

ing the victim workers’ models and evading detection by an outlier detector,

compared to a benchmark.

2. Background and Related Work

This section introduces GANs and discusses the related literature encom-

passing works on behavioral-based worker selection in MCS and adversarial

attacks on AI-based MCS and IoT systems.

2.1. Background: Generative Adversarial Networks

GANs are a class of deep learning frameworks designed to generate new data

samples that resemble a given training dataset. The typical GAN model con-

sists of two neural networks: a generator G and a discriminator D, trained in

a competitive setting. The generator produces synthetic data samples, while

the discriminator tries to distinguish between genuine and synthetic data. The

training process continues until the generator produces samples that are indistin-

guishable from real data, effectively capturing the underlying data distribution.

The interaction between G and D can be modeled as a 2-player min-max

game as shown in (1), where VGAN (D,G) is the objective function for D that

also depends on G. As defined in (2), VGAN (D,G) is the sum of the expected

log-likelihood that the discriminator correctly identifies real and generated data,
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where x is sampled from the real data distribution px(x) and z is sampled from

a prior normal distribution pz(z) [13].

min
G

max
D

VGAN (D,G) (1)

VGAN (D,G) = Ex∼px(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2)

In GANs, the generator uses random noise as input, which can limit the

model’s performance and the quality of the generated data. To overcome

this limitation, researchers have introduced auxiliary information to the input

noise, enabling the generator to produce higher-quality data. Conditional GAN

(CGAN) is one of the widely used types of GANs, and it uses class labels as

input to both the generator and discriminator. Similar to GANs, the min-max

game can be formulated as shown in (3), where the objective function for CGAN

VCGAN (D,G) is defined in (4). The main difference between GAN and CGAN,

is that in CGAN, x is sampled from the real data distribution conditioned on

class c px(x|c) and z is sampled from a prior normal distribution conditioned

on the same class pz(z|c) [14].

min
G

max
D

VCGAN (D,G) (3)

VCGAN (D,G) = Ex∼px(x|c)[logD(x|c)] + Ez∼pz(z|c)[log(1−D(G(z|c)))] (4)

2.2. GAN-based adversarial attacks

The unique capabilities of GANs can be leveraged to manipulate and deceive

machine learning models at various stages, including the pre-deployment or the

post-deployment stage of the targeted models. In the pre-deployment stage,

GANs are used to poison the training datasets by generating fake samples and

injecting them into the datasets with flipped labels. Such techniques have been

widely adopted in the computer vision domains [15] and in federated learning
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systems [16], [17], [18]. On the other hand, in the post-deployment stage, GANs

can be utilized in multiple ways. The first is adversarial example generation,

where the generator creates adversarial samples specifically designed to fool the

trained classifier [19], [20], [21], [22]. The other approach includes perturbation

addition, where the generator creates subtle noise that, when added to the real

data sample, results in increased classification error [23], [24]. These methods

are predominantly explored within the computer vision domain, where mini-

mal alterations to test images often go unnoticed by human observers, yet can

drastically impact model performance.

2.3. Behavioral-based Worker Selection in MCS

Several studies in the literature proposed AI techniques to perform behavioral-

based worker selection in MCS systems. In [25], unique models were trained for

each worker to predict their willingness to perform the tasks. The models were

trained using task-related data, such as the task start time, and worker-related

data, such as the number of tasks completed per day. In [26], an auctioning

technique that adopts AI to predict workers’ ability to complete sensing tasks

was proposed. A Long Short-Term Memory (LSTM) model was leveraged to

predict the battery levels and internet connectivity status of workers’ devices

throughout the sensing period. In [27], a biometrics-based selection framework

was proposed, where a unique model for each MCS worker is built based on their

unique interaction patterns with the smartphone’s touching screen. By leverag-

ing machine learning techniques, these behavioral traits were used in order to

detect impersonators in the system.

Moreover, in [28], [29], and [30], historical mobility traces were used to pre-

dict workers’ future location to improve worker selection in MCS. In [28], a deep

learning-based approach was adopted to predict the future location values; then

a greedy algorithm was used to perform the worker selection, such that the sens-

ing coverage is maximized. In [29], deep learning was also used to perform the

location prediction, and a weighted utility-based worker selection algorithm was

proposed to perform the worker selection. Finally, in [30], a machine learning-
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based approach was proposed to predict workers’ future locations, which were

then subsequently utilized in a continuous worker selection process based on a

genetic algorithm.

Overall, the main advantages of the works discussed in this section include

the use of AI-based methods that leverage historical worker data to predict

their future behavior, thus optimizing the performance of MCS worker selec-

tion. However, these methods are vulnerable to insider threats who can manip-

ulate training data. This introduces risks that could significantly diminish the

performance and reliability of the worker selection process.

2.4. Adversarial Attacks on AI-based MCS and IoT Systems

Adversarial machine learning is the study of how machine learning models

can be manipulated by carefully crafted input. These inputs are intentionally

designed by malicious adversaries to exploit the vulnerabilities of learning algo-

rithms while causing models to make incorrect predictions. Adversarial attacks

can be classified based on the phase of the machine learning pipeline in which

they occur. In poisoning attacks, the adversary manipulates the training data

to corrupt the learning process and degrade model performance. In contrast,

evasion attacks involve crafting inputs that deceive a trained model during de-

ployment without altering the training data [31].

Several studies explored insider attacks on AI models adopted in Internet

of Things (IoT) systems, either before or after the model deployment. For

instance, the attack proposed by [32] targeted ML-based intrusion detection

systems in smart home networks. The authors proposed an approach to gen-

erate adversarial attack samples targeting the model after deployment, with

the aim of misclassifying malicious network packets as normal. The techniques

used to generate the adversarial samples include the Fast Gradient Sign Method

(FGSM) and Jacobian Saliency Map Attack methods (JSMA). Another study,

[33], proposed an adversarial attack on a machine learning-based malware de-

tection system. The attack specifically targeted the model after deployment

with the goal of successfully delivering the malware to smart devices. Tech-
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niques such as FGSM, JSMA, Carlini and Wagner (C&W), and DeepFool were

leveraged.

Moreover, in [34], an insider attack on AI models deployed for medical diag-

nostic applications was proposed. The attack was conducted during the testing

phase, and methods such as FGSM, DeepFool, C&W, and JSMA were employed.

The main goal of the attack is to increase the classification error of identifying

Covid-19 cases. Finally, the attack proposed in [35] targeted models during the

training phase, focusing on air quality monitoring applications. The utilized

attack method is label-flipping, where the main goal is to degrade the perfor-

mance of the ML model deployed to predict the impact of certain chemicals on

the overall air quality.

A limited number of studies have proposed adversarial attacks on AI-based

MCS systems. These works either aim to bypass security defense measures

or degrade the quality of sensing achieved. In [12], an unsupervised learning

approach to generate poisoning data that degrades the performance of human

activity recognition classifiers was proposed. The attack targets the models

during the training phase and uses Self-Organizing Maps (SOM) to generate

the poisoning data [12]. Furthermore, in [11], GANs were used to generate fake

tasks that can successfully bypass machine learning-based fake task detection

models. These models were trained to classify tasks into real and fake based

on certain features such as task duration, battery requirement, and start time.

Since the features that characterize the fake tasks follow a certain distribu-

tion, the machine learning models can successfully identify them. However, the

authors argue that adversaries could utilize CGANs to generate another type

of fake tasks that are similar to real tasks, making them undetectable by the

machine learning models and potentially overwhelming workers’ devices.

The works discussed in this section emphasize the significant risks posed

by insider threats within IoT and MCS environments. They proposed various

attacks on AI models in various domains, including smart home networks, mal-

ware detection, medical diagnostics, environmental monitoring, and security.

However, none of these studies specifically address the vulnerabilities related to
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insider adversaries targeting MCS worker selection and the subsequent implica-

tions for the overall revenue generated by workers from MCS tasks.

Table 1 compares the works proposing adversarial attacks on machine learn-

ing models in MCS and IoT systems. As illustrated in the table, none of the

existing works focused on developing an attack targeting MCS behavioral pre-

diction models. This paper proposes an insider attack targeting victim workers

to lower their revenue. The proposed attack uses PGANs, where the generator

tries to increase the error of both the discriminator and the victim workers’

behavioral models. Consequently, the trained generator can be used to craft

poisoning data that are then injected by the insider into the victims’ training

datasets without being detected.

Table 1: Summary of adversarial attacks on machine learning models in MCS and IoT systems

Reference Application Phase Method

[11] MCS fake task de-

tection

Post-deployment CGAN

[12] Activity recogni-

tion

Pre-deployment SOM

[32] Intrusion detection Post-deployment FGSM and JSMA

[33] Malware detection Post-deployment FGSM, JSMA, C&W,

DeepFool

[34] Medical diagnosis Post-deployment FGSM, JSMA, C&W,

DeepFool

[35] Air quality moni-

toring

Pre-deployment Label flipping

Proposed

work

Behavioral-based

worker selection

Pre-deployment PGAN
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Figure 1: Overview of the proposed attack in the MCS platform, including 4 different modules:

Data preprocessing, insider attack, behavioral model training, and behavioral-based selection

module.

3. MCS Insider Attack Overview

One of the main reasons AI is adopted at the selection stage is to understand

the behavior of the workers, which is done by collecting workers’ data from pre-

vious tasks and training models to predict their willingness to perform future

tasks. However, in this paper, we argue that malicious insiders can generate

poisoning data to bias the worker selection using GANs. By replacing a por-

tion of the historical data of the workers with the generated data, insiders can

degrade the performance of victim workers’ behavioral models by introducing

misclassifications specifically related to the target class, without being detected.

An overview of the proposed insider attack in the MCS platform is illustrated

in Figure 1. Overall, the system includes the following modules:

• Data preprocessing: This module is responsible for collecting data and

preparing it for training. Initially, contextual data obtained from historical

tasks is collected and stored in the platform. This data provides insights

into various factors influencing task completion by the workers, and can

be further categorized into worker-related features and task-related fea-
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tures. Each training point is labeled based on whether or not the tasks

were canceled by the workers. Then, the training data undergoes pre-

processing steps, which include data balancing using Synthetic Minority

Over-sampling Technique (SMOTE), replacing missing values using Prin-

cipal Component Analysis (PCA), and normalization. These steps are

essential to ensure that the dataset is ready for training and the models

yield optimal performance [25].

• Insider attack: In this module, an insider generates and injects poison-

ing points into the victim workers’ training data to reduce their chances

of being selected by the platform. First, a PGAN model is trained to gen-

erate poisoning points that are hard to detect by an outlier detector for

each victim worker. The dataset used to train the PGAN model includes

worker-related and task-related features, which provide insights into the

workers’ past performance and the context that can influence the workers’

participation. The insider then uses the trained PGAN models to generate

poisoning data and injects them into the victim workers’ training datasets

before their behavioral models are trained.

• Behavioral model training: This module is responsible for training

workers’ behavioral models, taking into consideration that malicious ad-

versaries could inject poisoning data to skew the models’ learning. There-

fore, to ensure that the training data remains reliable and unbiased, the

platform employs an Autoencoder-based outlier detection model to iden-

tify and remove anomalies from the workers’ training datasets. Then, a

deep learning model is built and trained for each worker to predict their

behavior.

• Behavioral-based selection: This module uses the previously trained

models to predict the workers’ likelihood of canceling the task. Subse-

quently, a selection algorithm is executed to select a subset of workers

such that the QoS of the task is maximized. After the task is completed,

a feedback mechanism is deployed to update the selection metrics used
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based on the workers’ performance. The feedback mechanism adopted also

evaluates the QoS achieved by the selected workers to ensure it meets a

satisfactory value for the task publisher. Moreover, the platform evaluates

the selected workers’ contributions and performs the payment accordingly.

4. The Proposed Poisoning Attack

This section presents the proposed attack model, demonstrating the vulner-

ability of the behavioral models in MCS systems. It also describes the features

used, the preprocessing steps performed, and the training process of the PGAN

model, as described in the following subsections.

4.1. Threat Model

Let W = {w1, w2, . . . , wk} be a set of workers in the MCS system, where

each worker i has a training dataset Di = {(xj , yj) | xj ∈ Rn, yj ∈ {0, 1}, j =

1, . . . ,m} that captures their behavior in terms of the willingness to complete

the tasks assigned. The dataset consists of n-dimensional feature vectors xj

and their corresponding class labels yj , where yj = 1 indicates that the task

was canceled by the worker and yj = 0 indicates otherwise. The platform trains

a behavioral model Mi for each worker, using their dataset Di. In the proposed

attack, an insider adversary seeks to compromise the models of a set of victim

workers V , where V ⊂ W , by injecting poisoning points Pi to the training

dataset Di. The objective is to classify data points belonging to class yj = 0 as

yj = 1, i.e. predict that a worker will cancel the task when they actually are

more likely to accept it.

4.2. Features Description and Data Preprocessing

For each victim worker i, the insider trains a PGAN model using the orig-

inal dataset Di. The features used in each dataset Di can be classified into

worker-related features and task-related features, both of which can be used for

effectively predicting the likelihood of task cancellation by the worker i. The
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former provides insights into the workers’ past performance and ability to com-

plete the tasks, such as the cumulative rating and assigned workload on the day

of the task. On the other hand, the latter includes features related to the tasks

assigned and provides context that can influence the likelihood of successful

completion, such as the weather conditions and the starting time of the task.

In this work, the dataset, including the behavioral data of all workers utilized

for training the PGAN models, is explained in Section 6.

Every dataset Di stored in the platform undergoes the following preprocess-

ing steps. Firstly, PCA is employed to address the issue of missing values in the

dataset. Initially, the mean is used to replace the missing values, and then PCA

is applied to transform the data to a lower dimensional space. Missing values are

estimated after the data is transformed back to the original space based on the

relationship identified between the variables when PCA was applied. Secondly,

SMOTE is used to balance the dataset. This technique generates synthetic sam-

ples for the minority class through interpolation between existing instances and

their nearest neighbors. Finally, Min-Max normalization is applied to scale all

feature values within the range [0, 1] [25].

4.3. Poisoning Points Generation using GANs

The proposed attack targets a deep learning behavioral model Mi that out-

puts the probability of task cancellation PCi by a victim worker i ∈ V . The

model takes a feature vector x as input and returns the probability of cancella-

tion, as defined in (5).

Mi(x) = PCi (5)

The predicted class label ŷi is determined by applying a threshold to the model’s

output, as given by (6).

ŷi =

1 , if PCi ≥ 0.5,

0 , otherwise

(6)
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Figure 2: PGAN model representation

Before Mi is trained in the MCS platform, an insider uses Di to train a

PGAN model and leverages it to generate a set of poisoning points Pi. The

main goal of the attack is to degrade the performance of Mi when trained using

the poisoned dataset by increasing the error rate of misclassifying points from

class 0 into the target class yt = 1. The attacker injects the points Pi into the

training dataset Di by replacing a portion of the data points belonging to target

class yt = 1 with Pi.

As discussed in Section 2.1, GANs and CGANs can be used to generate real-

istic data. This functionality can be exploited for malicious purposes by adding

a third component to the GAN model, enabling the generation of adversarial

data. The PGAN model used in this work comprises 3 main components: a

generator Gi, a discriminator Di, and a classifier Ci, as shown in Figure 2. The

PGAN model is trained adversarially, where Gi competes against both Ci and

Di. During training, Gi aims to create points that increase the losses of both

Ci and Di. As a result, Di exhibits a higher error at distinguishing between

original and generated points, and Ci’s error in predicting workers’ behavior in-

creases. On the other hand, Di and Ci aim to minimize their respective losses,

despite the Gi’s attempts to disrupt their performance.

The interaction between Gi, Di, and Ci can be modeled as min-max game
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as shown in (7), where VPGAN (Di, Gi) is the objective function for Di and

WPGAN (Ci, Gi) is the objective function for Ci.

min
Gi

max
Di,Ci

αVPGAN (Di, Gi) + (1− α)WPGAN (Ci, Gi) (7)

According to the formula in (7), Di tries to maximize its objective function

VPGAN (Di, Gi) and Ci tries to maximize its objective function WPGAN (Ci, Gi).

Note that both objective functions depend onGi. Moreover, Gi tries to minimize

the weighted sum of the objective functions VPGAN (Di, Gi) andWPGAN (Ci, Gi),

where α is the weighting factor that determines the relative contribution of both.

By minimizing the combined objectives, Gi generates points that increase the

error of Di, and Ci, making Di less effective at distinguishing genuine and

generated points, while degrading Ci’s ability to predict the worker behavior

correctly.

The parameter α plays a crucial role on the attack effectiveness and in shap-

ing the distribution of the generated points. At α = 1, the PGAN model behaves

as a CGAN and its generator generates points that are highly similar to the tar-

get class yt. However, this comes at the cost of reduced attack effectiveness as

the generated data points fail to degrade the behavioral model’s performance.

On the other hand, when α = 0, the PGAN’s generator generates points that

are further from the target class yt and exhibit greater similarity to the other

class, thus making the attack more effective. By carefully selecting the optimal

value of α, which lies between 0 and 1, the attacker can train a PGAN model

to generate subtle poisoning points that compromise the worker’s behavioral

model. Moreover, the attacker can identify the α value, which effectively ex-

ploits the decision boundary of the behavioral model, enabling the poisoning

points to successfully execute the targeted attack by misclassifying data points

from class 0 as 1.

As defined in (8), VPGAN (Di, Gi) is the sum of the expected log-likelihood

that the discriminator correctly identifies real and generated data, where x

is sampled from the real data distribution px(x|yt) conditioned on the target
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class yt and z is sampled from a prior normal distribution pz(z|yt) conditioned

on the same class yt. The first term represents the log-likelihood that the

discriminator correctly classifies real points, where Di(x|yt) is the probability

that the x is real. On the other hand, the second term represents the log-

likelihood that the discriminator identifies the generated data Gi(z|yt) as fake,

where 1−D(Gi(z|yt)) is the probability that the generated data are fake.

VPGAN (Di, Gi) =Ex∼pdata(x|yt)[logDi(x|yt)]

+ Ez∼pz(z|yt)[log(1−D(Gi(z|yt)))].
(8)

In addition, WPGAN (Ci, Gi), is expressed in (9), where LCi
is the loss func-

tion used to train the classifier Ci and λ ∈ [0, 1] is a weighting factor that

balances the classifier’s performance between classifying the poisoning points

and the original training samples. During PGAN training, the classifier Ci

is exposed to both poisoning points and original training points. The term

Ez∼pz(z|yt)[LCi(Gi(z|yt))] evaluates the expected loss of the classifier on the poi-

soning points generated by the generator. In addition, the term Ex∼px(x)[LCi(x)]

represents the expected loss of the classifier on the original points. The best

value of λ should be chosen such that the classifier’s goal is to perform well on

both original and poisoning points.

WPGAN (Ci, Gi) =− (λEz∼pz(z|yt)[LCi
(Gi(z|yt))]

+ (1− λ)Ex∼px(x)[LCi(x)])
(9)

Algorithm 1 shows the pseudocode of the training process of the PGAN

model, where the models Gi, Di, and Ci are iteratively trained. In each itera-

tion, a mini-batch of random noise samples z is sampled, which is then used by

Gi to generate the points x̃. The discriminator then uses the generated data x̃

and a mini-batch of training samples xyt
, which belong to class yt, and learns

to differentiate between real and generated data by minimizing a loss function

LDi . LDi is formulated as shown in (10), where yf denotes the labels of the

fake data generated by G, set to 0, yr denotes the labels of the real data, set to

1, and LCE represents the binary cross-entropy loss function.
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Algorithm 1: Training Process for PGAN

Input: target class yt, mini-batch size m, λ, α, number of iterations M

Output: Trained generator Gi, discriminator Di, and classifier Ci

Build Gi, Di, and Ci models

for iteration j = 1, 2, . . . ,M do
Sample a mini-batch of m random noise samples z

Use Gi to generate points x̃, where x̃ = Gi(z|yt)

Select a mini-batch of m samples xyt belonging to class yt

Use Di to make predictions on xyt
and x̃

Compute discriminator loss LDi
using (10)

Update Di by minimizing LDi

Select a mini-batch of m training features x and labels y

Use Ci to predict the behavior of worker i using x̃ and x

Compute the classifier loss LCi
using (11)

Update Ci by minimizing LCi

Compute generator loss using (12)

Update Gi by minimizing LG

Return trained Gi, Di, and Ci

LDi
= LCE(Di(x̃), yf ) + LCE(Di(xyt

), yr) (10)

Subsequently, the classifier uses a mini-batch of training features x, their

corresponding class labels y, and the generated data x̃, to learn the behavior of

the victim worker. This is achieved by minimizing a loss function LCi
, which is

formulated in (11).

LCi = λLCE(Ci(x̃, yt) + (1− λ)LCE(Ci(x), y) (11)

Finally, the generator model parameters are updated by minimizing the loss

function LGi , defined in (12), where α ∈ [0, 1] controls the shape of the distri-

bution of the generated points [10].
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LGi
= αLCE(Di(x̃), yr) + (1− α)LCE(Ci(x̃), (1− yt)) (12)

4.4. Behavioral models training and outlier detection

After training a PGAN model for each victim worker, the insider utilizes

the trained generator Gi to produce poisoning data Pi. This generated data is

then injected into the training dataset Di by replacing the original data points

belonging to class yt with Pi. Before training the workers’ behavioral models,

the platform attempts to detect and remove outliers from each class in Di to

prevent biased model decisions.

To achieve this, an autoencoder was trained on the target class data, where

an encoder learns a lower dimensional representation of the input, and then a

decoder reconstructs the original data from the encoded vector. The target class

data is then passed to the trained autoencoder model, and the reconstruction

error for each data point is computed. Data points with high reconstruction

errors are identified as outliers, based on a predefined threshold [36].

After removing outliers, every dataset Di = {(xj , yj) | xj ∈ R12, yj ∈

{0, 1}, j = 1, . . . , ni} is used to train a deep learning model Mi to predict

the behavior of the corresponding worker wi. The training process involves

minimizing a loss function Li, which evaluates the classification error, given the

predicted output ŷj and the true output yj . The loss function used in this work

is Binary Cross Entropy (BCE), which is also shown in (13). As a result, the

parameters of the model Mi are adjusted so that the model can be used to make

accurate predictions on new data.

Li = −
1

ni

ni∑
j=1

yj log ŷj + (1− yj) log(1− ŷj) (13)

After training, each model is used at the selection stage to predict the task

cancellation probability pci. The platform uses this probability along with other

parameters to select a group of workers, as described in the following section.
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5. Behavioral-based selection

Let W = {w1, w2, . . . , wn} denote the set of workers in the MCS system,

where i can be mathematically represented as a tuple: i = (idi, ri, li,Mi). Every

worker is characterized by the following attributes: a unique identifier idi, a

reputation score ri ∈ [0, 1], the geographic location li, and the trained behavioral

model Mi. The platform aims to select a subset of workers g, where g ⊂ W ,

to perform a given task k, such that the QoS is maximized. Each task k is

represented as a tuple k = (idk, tk, tdk, lk), where idk is the task id, tk is the

task’s starting time, tdk is the task deadline, and lk is the task’s location.

5.1. The selection approach

The main contribution of this work is to propose a novel framework that

shows how existing behavioral-based worker selection can be compromised through

adversarial attacks using GANs. Therefore, a greedy selection algorithm is em-

ployed to find the subset of selected workers g based on their QoS values, as

described in Algorithm 2. The QoS score for each worker QoSi considers multi-

ple factors, including latency τi, reputation ri, and completion confidence confi,

as defined in (14).

QoSi = τi × ri × conf i (14)

The parameter τi represents how quickly the worker can arrive at the task

location and has a decreasing value with the increase in the time required to

reach the task. It can be evaluated as shown in (15), where ttki is the worker’s

traveling time to the task estimated based on the current location li and tdk is

the deadline by which task k should be completed.

τi = [1−max(0,min(logtdk
(ttki ), 1))] (15)

Additionally, ri denotes the reputation value, reflecting the workers’ current and

historical performance, as shown in (16).

ri = γri + (1− γ)Ωi (16)
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ri denotes the reputation value before the completion of the task, whereas

Ωi represents the worker’s most recent performance and is calculated as the

percentage of successfully completed tasks, as shown in (17). The reputation

score is updated by taking the weighted sum of these 2 parameters, where γ is

the weight value given to the old reputation value.

Ωi =
Num of successfully completed tasks by worker i

Num of assigned tasks to worker i
(17)

The third parameter used in the calculation of the QoS is confi, which

represents the worker’s confidence in completing the task. It can be evaluated

as shown in (18) [25].

confi = 1− pci (18)

Algorithm 2: Greedy Worker Selection

Input: Set of workers W , task k, group size GroupSize

Output: Selected subset of workers S to perform task k

Initialize g ← ∅ ; // Start with an empty set of selected

workers

for each worker i ∈W do

Evaluate worker latency τi using Equation (15);

Calculate worker reputation ri using Equation (17);

Compute QoS for worker i using Equation (14);

end

Sort workers in W by their QoSi values in descending order;

while |S| < GroupSize and W is not empty do

Select the worker i with the highest QoSi from W ;

Add i to g;

Remove i from W ;

end
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5.2. Feedback mechanism and payment evaluation

After completing a task, the system updates the reputation values based on

the workers’ performance, as shown in (16). In addition, the feedback mecha-

nism also includes evaluating and monitoring the QoS of the selected group of

workers QoSg, to identify potential security breaches that may have occurred

[37]. The QoS metric is evaluated for a group of workers rather than for in-

dividual workers because MCS tasks are typically carried out collaboratively.

Therefore, the service quality and reliability of the sensing outcome depend

on the combined efforts and collective contributions of all members within the

group. This step is critical to ensure the reliability of the system and support

early detection of insider threats. Therefore, the value of QoSg can serve as feed-

back, triggering an alarm for potential manipulation in the platform. However,

the proposed attack does not affect the QoS values, demonstrating its ability to

bypass this additional layer of detection. QoSg can be evaluated as illustrated

in (19), where rg, τg, and confg are the reputation, time score, and confidence

of the selected group, respectively.

QoSg = w1rg + w2τg + w3confg (19)

rg and confg can be evaluated as shown in (20) and (21), respectively, by

taking the minimum value of the reputation and confidence of the workers in

the group.

rg = min
i∈g
{ri} (20)

confg = min
i∈g
{confi} (21)

In addition, the latency of the group is evaluated as shown in (22), where |g|

is the group size. It is calculated by taking the product of the average latency

and the exponential of its negative standard deviation. This approach ensures

that the overall value decreases if there is more variability in the individual

scores [25].
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τg = (
1

|g|
×
∑
i∈g

τi)× e−σ(τi) (22)

After the evaluation of Qosg, workers are paid based on their contributions

to the sensing task. The payment for each user is calculated as in (23).

Payment = µ+

(
QoSg −QoSi

QoSg
× BP

)
(23)

The payment value is determined by multiplying a base payment BP by

the worker’s contribution to the task, which is calculated as the ratio of the

difference between QoSg and QoSi to QoSg. This amount is then added to a

fee µ that adjusts the price based on traffic conditions to encourage workers to

participate [30].

6. Results

This section presents the simulation results showing the effectiveness of the

proposed poisoning attack. Firstly, the Ride Austin dataset was filtered by

worker ID, and each subset was treated as an individual training dataset. Sub-

sequently, 86 PGAN models were individually trained, one for each worker, to

generate the poisoning samples, which were then injected into the correspond-

ing worker’s training dataset. This is done to ensure that the robustness of the

attack is validated across a diverse set of 86 workers, and to prove that it is

generalizable across different behavioral patterns.

Four experiments were conducted, each designed to evaluate a distinct as-

pect. The first experiment examines the effect of α on the models’ performance

and on the distribution of the generated poisoning points. The second exper-

iment evaluates the impact of varying poisoning percentages on the models’

performance. The third experiment compares the proposed approach with two

existing benchmarks by assessing the detectability of the attack by an outlier

detector and evaluating the models’ performance for varying poisoning percent-

ages. Lastly, the fourth experiment analyzes how the attack affects worker

selection.
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6.1. Model architecture and training setup

The PGAN model used in our experiments consists of three main compo-

nents: a generator, a discriminator, and a classifier. The generator network

comprises four fully connected layers. The first layer combines the input noise

and conditional label information, mapping them to a 100-dimensional vector.

The subsequent layers are dense fully connected layers with 784 and 1024 neu-

rons, respectively. The final layer maps the output to 12 dimensions, matching

the dataset’s dimensionality. Each layer uses Leaky ReLU activations, and the

final layer applies a sigmoid activation.

The discriminator and classifier architectures are similar, each consisting

of four fully connected layers. The first layer combines the input data and

conditional label, mapping them to a 784-dimensional vector. The next two

layers are dense layers with 1024 and 512 neurons, respectively. The final layer

outputs a scalar value representing the probability that the input is real or fake.

Each layer uses Leaky ReLU activations, and the final output is passed through

a sigmoid activation to produce a probability between 0 and 1.

The total number of trainable parameters in the proposed GAN-based model

is approximately 4.29 million. This includes parameters from the Generator,

Discriminator, and Classifier networks. These values demonstrate the com-

plexity of the model, reflecting the number of learnable parameters that are

optimized during the training process. Therefore, the model used is considered

significantly less complex, compared to more advanced models, such as ResNet,

which includes up to 11 million parameters. To train the PGAN models, an

NVIDIA Tesla V100 GPU with memory of 32 GB was used. Moreover, the time

taken to train a PGAN model for one worker is around 30 minutes.

Each PGAN model was trained for a total of 2000 epochs and with λ = 0.8.

By setting the value of λ to 0.8, the classifier places more importance on mini-

mizing the loss obtained from the generated data points while still maintaining

some importance on the performance of the classifier on real data points. So

as the training progresses, it becomes better at classifying the poisoning points

correctly, which in turn drives the generator to enhance its ability to generate
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better poisoning points that can mislead the classifier.

6.2. Dataset

The experimental results presented in this section utilize a real-life dataset

to ensure that they effectively illustrate the impact of the attack on the models

of workers exhibiting diverse behaviors in real-life scenarios. The dataset used in

this work is the Ride Austin dataset [25]. It contains rides completed and can-

celed by a total of 86 workers over a period of 8 months in Austin, Texas, USA.

This dataset also includes features that can be classified into worker-related

or task-related features, as shown in Table 2. The worker-related features in-

clude the number of assigned and completed tasks on the day of the task, the

worker rating, and the car rating. The worker rating represents the cumula-

tive evaluation of the workers by the task requestors based on their historical

performance. Similarly, the car rating is the cumulative rating of the worker’s

vehicle over previous tasks. Furthermore, task-related features include the task

starting time, requestor’s rating, price adjustment fee, and features represent-

ing the weather conditions on the day of the task, such as the precipitation,

maximum and minimum temperature, wind speed, and wind gust. The re-

questor’s rating comprises the cumulative evaluation of the task requestor by

the workers, whereas the price adjustment fee represents the additional amount

of money added to the workers’ payment in response to real-time conditions,

such as traffic, to motivate them to perform the task.

Table 2: Features used in the dataset

Category Feature Description

Worker-

related

Number of as-

signed tasks

The total number of assigned tasks on the day of the task.

Number of

completed

tasks

The total number of completed tasks on the day of the

task.

Worker rating The cumulative evaluation of the workers by the task re-

questors.
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Category Feature Description

Car rating The cumulative evaluation of the worker’s vehicle condi-

tion by the task requestors.

Task-

related

Start time The tasks’ starting time.

Requestor rat-

ing

The cumulative evaluation of the task requestor by the

workers.

Price adjust-

ment fee

An additional amount added to the workers’ payment in

response to real-time conditions like traffic to encourage

them to participate.

Precipitation A measure of the amount of rain falling at the time of the

task.

Maximum tem-

perature

The maximum temperature on the day of the task.

Minimum tem-

perature

The minimum temperature on the day of the task.

Wind speed The speed of the wind at the time of the task.

Wind gust A sudden brief increase in wind speed beyond the average

speed at the time of the task.

6.3. Performance evaluation metrics

To evaluate the effectiveness of the proposed attack on the performance

of the models, the following metrics were used: False Positive Rate (FPR),

False Negative Rate (FNR), Accuracy, Precision, Recall, and F1 Score. FPR

measures the proportion of accepted tasks incorrectly predicted as canceled,

while FNR is the proportion of canceled tasks incorrectly predicted as accepted

(not canceled). Moreover, accuracy and F1 score measure the overall correctness

of the model’s predictions, where accuracy is the percentage of times the model

correctly predicted the workers’ behavior, and the F1 score is the harmonic mean

of the precision and recall metrics. Precision is the proportion of tasks correctly

predicted as canceled to the total number of tasks predicted as canceled. On

the other hand, recall is the proportion of tasks predicted as canceled to the

total number of canceled tasks.

Besides evaluating the behavioral models’ performance, the effectiveness of
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the attack in evading detection is assessed by finding the average number of

poisoning points detected as outliers by the autoencoder-based outlier detector

[38]. Furthermore, the impact of the attack on worker selection is evaluated

using the following metrics, as explained in section 5: the probability of task

cancellation by workers derived from the behavioral model, the total payments

made to victim workers, and the QoS achieved for the task.

6.4. Impact of α on the effectiveness of the attack

The main goal of the attack is to increase the FPR of the workers’ behavioral

models, causing them to mislabel more samples from class 0 as 1. To determine

the optimal value of alpha, a unique PGAN model was trained for each of the

86 workers in the dataset, across a range of α ∈ [0, 1] with increments of 0.1.

These models were used to generate poisoning points, which were then injected

into each worker’s training dataset by replacing features of the target class with

the generated data. The resulting poisoned datasets were used to train workers’

behavioral models, and the effectiveness of the attack was evaluated on each

worker’s test dataset.

As illustrated in Figure 3, the FPR of the behavioral models varies signif-

icantly with α. For instance, at α = 1, the injection of the generated points

to the workers’ training datasets results in the lowest FPR. This is because the

generated points closely resemble the target class. However, lower alpha val-

ues resulted in higher FPRs, with the peak value of 0.12 achieved at α = 0.1.

Therefore, this proves that this is the optimal value for α, as it most effectively

exploits the decision boundary of the behavioral models, thereby maximizing

the success of the attack. Figure 4 further illustrates the impact of the attack

on the performance of the behavioral models by presenting the F1 scores. It

can be observed that, at α = 0.1, the F1 reaches its lowest point, with a value

of 0.92, which further proofs the effectiveness of the attack at this α value.

The value of alpha also plays a crucial role in shaping the distribution of the

generated points. To further demonstrate its effect, the t-Distributed Stochastic

Neighbor Embedding (t-SNE) dimensionality reduction technique was applied
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Figure 3: Average FPR of the workers’ poisoned models for varying values of alpha

Figure 4: Average F1 scores of the workers’ poisoned models for varying values of alpha
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to one of the workers’ poisoned datasets. As shown in Figure 5a, when α = 0,

the generated poisoning points are positioned further from the target class (class

1) and exhibit more similarity to the other class (class 0). This is because, at

this α value, no importance is given to generating points that are similar to the

target class to evade detection. Instead, the model prioritizes generating points

that compromise the model’s performance. Figure 5b illustrates the distribution

of the original and poisoning points generated using α = 0.1. It can be observed

that the poisoning points are spread between class 0 and class 1, reflecting the

model’s goal is to generate points that both compromise the model’s perfor-

mance and partially resemble the target class to evade detection. Additionally,

the points generated with α = 1, as shown in Figure 5b, closely resemble the

target class. In this case, the PGAN behaves as a CGAN to generate points

similar to class 1 without compromising the model’s performance.

To further show the impact of alpha across different behavioral patterns,

t-SNE was applied to each worker’s poisoned dataset. After reducing the data

to two dimensions, the centroid of class 1 data was evaluated. Subsequently, the

Euclidean distance was calculated between each class 1 point and its centroid.

Finally, a threshold of 5% is applied to these distances to identify the most

dissimilar points to the target class.

Figure 6 shows the percentage of the poisoning points deviating from the

target class distribution, where each data point is the outcome of averaging the

results for all workers. As shown in the figure, the highest fraction is observed

at α = 0. This is because the generator prioritizes increasing the error of

the target classifier without any constraints related to the detectability of the

generated poisoning points. As the value of α increases, less weight is given

to reducing the error of the classifier, and more weight is given to increasing

the error of the discriminator. Therefore, the percentage of poisoning points

detected starts decreasing until it reaches its lowest value at α = 1. At this

value, the generator’s goal is to generate points that increase the error of the

discriminator only. Consequently, the generated points become more similar to

the points of the target class and the PGAN effectively behaves like a CGAN.
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(a) t-SNE plot with α = 0 (b) t-SNE plot with α = 0.1

(c) t-SNE plot with α = 1

Figure 5: T-sne plots showing the distribution of poisoning points for different α values: (a)

α = 0, (b) α = 0.1, and (c) α = 1.

6.5. Impact of varying poisoning percentages on the model performance

Next, the workers’ training datasets were poisoned with varying percentages

of the target class data. The poisoning points were generated by GAN models

trained using α = 0.1 and λ = 0.8. Figure 7 shows the average FPR and FNR of

the workers’ models for varying poisoning percentages. A clear increase in the

FPR is observed, starting at 7% with no poisoning points injected and rising to

33% at 80% poisoning. This highlights the effectiveness of the poisoning strategy

in degrading the model’s performance, resulting in the misclassification of inputs

belonging to class 0 as 1. Additionally, the FNR remains low and relatively

unaffected, ensuring the attack remains focused on increasing the FPR.

Additionally, Figure 8 shows that accuracy, F1 score, and precision decrease
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Figure 6: Fraction of poisoning points detected averaged for all workers’ models

significantly as a result of the attack. Compared to the model trained on clean

data, accuracy precision and F1 drop by 15%, 20%, and 13%, respectively, at

80% poisoning. However, recall remains relatively stable, decreasing by only

3% at 80% poisoning. This indicates that while the attack significantly affects

the model’s overall predictive performance, its ability to identify true positives

is only slightly impacted. This outcome aligns with the objective of the attack,

which focuses on flipping negative class labels to positive while minimizing in-

terference with the predictions of the positive class.

Besides looking at the class predictions, it is also important to consider the

impact of the attack on the task cancellation probabilities. Figure 9 shows

the cancellation probabilities averaged for all workers for varying poisoning per-

centages. As illustrated, these probabilities increase as the poisoning percentage

increases. This supports the attack’s objective of reducing the victim workers’

chances of selection. In addition, this also shows that even if the predicted labels

don’t change, the attack can still affect the selection process, as the algorithm

relies on probabilities rather than solely on labels.
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Figure 7: Models’ average error rates for varying poisoning percentages

6.6. Comparison with Benchmark: Detectability and Model Performance

In this section, the proposed attack is compared to [35], which utilized the

label-flipping attack method. Label flipping is a commonly used technique to

poison AI models during the training phase. The label-flipping attack was

implemented by randomly selecting a fraction of data points from class 0 and

flipping their labels to 1. The proposed attack is also compared against the

feature manipulation attack, where noise is added to randomly selected data

points from class 0 to shift them closer to the distribution of class 1. This

attack does not alter the original class labels [39].

The performance of the attacks is compared based on two aspects: their

detectability by an autoencoder-based outlier detector and their impact on the

models’ performance. A consistent approach in training the outlier detector

models was adopted for all attack methods to ensure a fair comparison of their

detectability. The training of all autoencoder models was conducted for the

same number of epochs and using the same architecture. The encoder network

includes a fully connected dense layer with a ReLU activation function, while

the decoder consists of another fully connected layer followed by a Sigmoid

activation function. Each autoencoder model was trained for a total of 50

epochs. Additionally, to assess the impact of the attacks on the performance of
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Figure 8: Models performance evaluation averaged for all workers for varying poisoning per-

centages

the workers’ poisoned models, all classifiers were trained for the same number

of epochs and using the same model architecture. The number of epochs used

in the simulations is 2000.

Figures 10a and 10b show the average number of poisoning points detected

by an autoencoder-based outlier detector using 5% and 10% thresholds, respec-

tively. This aligns with commonly used threshold values in the literature for

anomaly detection, as in [36]. As illustrated, the proposed PGAN-based attack

yields a lower average number of poisoning points detected at both threshold lev-

els, which demonstrates its effectiveness in generating subtle and less detectable

poisoning points, thus making it a more stealthy attack.

Moreover, Figures 11 and 12 show the FPR and FNR of the poisoned be-

havioral models using the proposed, label flipping, and feature manipulation

attacks, respectively. As illustrated in the figures, the proposed attack demon-

strates superior performance compared to both benchmark approaches. Firstly,

it achieves higher FPRs than the feature manipulation attack. In addition, al-

though the label flipping attack achieves higher FPRs compared to the PGAN-

based attack, the proposed method maintains the FNRs closer to the original

value obtained without any poisoning, thus achieving its intended goal more

effectively.
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Figure 9: Task cancellation probabilities averaged for all workers

(a) Average number of poisoning points de-

tected with 5% threshold.

(b) Average number of poisoning points de-

tected with 10% threshold.

Figure 10: Average number of poisoning points detected by an autoencoder

6.7. Impact of the attack on the selection

The experimental results presented in this section assess the impact of the

attack on worker selection across a range of tasks, thereby demonstrating that a

one-time poisoning of victim workers’ models can lead to significant long-term

effects. To assess the effectiveness of the attack, the total payment made to

the victim workers after completing 100 tasks was evaluated, thereby effectively

reflecting the diverse nature of tasks from the real-world. Additionally, 20% of

the total workers in the dataset were randomly selected as the victims.

The results were then compared with the payment values obtained under
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Figure 11: FPR of the proposed method and the benchmarks for varying poisoning percentages

the label flipping and feature manipulation attacks. Figure 13 presents the to-

tal payment received by the victim workers for 100 tasks, averaged across all

workers. As illustrated, in a normal scenario with no poisoning points injected

into the training dataset, the average payment received by the victim workers

is 120. As the poisoning percentage increases, the proposed attack significantly

reduces the total payment received due to being selected for fewer tasks. In

contrast, the feature manipulation attack does not achieve the same effect. Ad-

ditionally, although the PGAN-based attack results in higher payment values

than the label-flipping attack, it is less detectable because of its more gradual

reduction in payment as the poisoning percentage increases. The payment re-

duction can reach up to 47% at 80% poisoning, using the proposed PGAN-based

attack. On the other hand, the reduction in payment achieved by label flipping

at the same poisoning percentage can reach up to 93%. Consequently, the pro-

posed attack is considered to be more successful, as it reduces the payment of

victim workers while evading detection more effectively.

Figure 14 shows QoSg averaged for all tasks for varying poisoning percent-

ages. It can be seen that although more poisoning points are introduced, the

PGAN-based attack maintains relatively stable QoS values. On the other hand,
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Figure 12: FNR of the proposed method and the benchmarks for varying poisoning percentages

the decrease in the QoS values obtained with the label-flipping attack is more

significant. This proves the effectiveness of the proposed attack in bypassing

other layers of detection.

6.8. Discussion

6.8.1. Summary of key findings

Based on the results presented in sections 6.4-6.7, it was shown that the

proposed PGAN-based attack demonstrates superior performance compared to

existing benchmark methods in multiple aspects. Firstly, it generates more

subtle and less detectable poisoning points by an autoencoder outlier detector.

Secondly, unlike label flipping attack, the proposed method is able to meet the

objective of the attack more effectively by predicting that the victim workers

will cancel the task when they actually are more likely to accept it. This is

done while ensuring that the poisoned model does not erroneously predict task

acceptance when the victim worker is, in fact, more likely to cancel. In other

words, the proposed method effectively increases the FPR while preserving the

FNR.

Thirdly, the PGAN-based attack successfully reduces the total payment re-
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Figure 13: Payment received by the victim workers for 100 tasks, averaged across all workers

ceived by victim workers. However, unlike the benchmark label flipping attack,

which results in a sharp and easily detectable decline in payment, the proposed

method introduces this reduction more gradually. This further proves the supe-

rior performance of the proposed attack in terms of stealthiness, since a gradual

reduction in payment makes it less likely for system administrators to suspect

that an insider attack took place and can be attributed to normal fluctuations in

worker performance. For instance, consider a scenario where a malicious insider

poisons the victim workers’ models with 40% poisoning percentage. As shown

in Figure 13, using label flipping attack, the average payment received by the

victim workers after completing 100 tasks drops sharply to 40, compared to 120

in a normal scenario. In contrast, the PGAN-based attack reduces the payment

to 90, a decline that is less drastic and is, therefore, less likely to raise suspicion

from the victim workers or the management platform.

6.8.2. Deployment challenges and implications of the proposed attack

One of the key challenges in executing the proposed attack lies in tuning

PGAN parameters, such as α, to ensure the effectiveness and stealthiness of the

attack. Moreover, the proposed attack in this paper has broader implications
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Figure 14: QoSg averaged for all tasks

on the MCS system, beyond just the reduction in the revenue of the victim

workers. It also poses a serious threat to the platform as it can, over time, lead

to losing trust in the system’s reliability and trustworthiness. In fact, real-world

MCS systems already face challenges in earning and maintaining workers’ trust,

as workers may suspect that malicious insiders with access to sensitive resources

are manipulating the system’s decisions [40]. Prior studies further highlighted

this concern. For instance, in [41] and [42], workers in one of the ride-sharing

platforms have reported experiences suggesting possible bias in the selection

algorithm. For instance, some drivers shared that after completing nearly all

the trips needed to earn a $100 bonus, they faced an unusually long wait for the

final ride, despite being in a busy area. As a result, this lead them to question

the fairness of the system and caused them to start losing trust in the platform.

6.8.3. Defense mechanisms

To mitigate potential GAN-based attacks, several defense mechanisms can

be adopted. Some of them serve as generic countermeasures, including con-

ventional techniques like cryptographic methods and differential privacy ap-

proaches, which help protect sensitive data within the system. By implement-
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ing robust privacy-preserving measures, such as those used in federated learning

systems, the risks of GAN-based attacks can be mitigated, thus improving the

platform’s trustworthiness [43]. However, these approaches come with trade-

offs, which include increased computational cost and degradation in the perfor-

mance of the machine learning models. The platform can also utilize methods

that enhance the robustness of the system, such as ensemble learning and ad-

versarial training. In ensemble learning, multiple models are trained, and their

aggregated predictions are utilized after deployment, thus reducing the impact

of poisoning attacks. In addition, in adversarial training, GAN-generated data

are incorporated during the training stage to enhance the model’s robustness

against adversarial threats [14].

7. Conclusion

In this paper, a novel adversarial attack on behavioral-based MCS worker

selection is proposed, where insider adversaries inject stealthy poisoning points

into victim workers’ datasets to reduce their revenue. By leveraging GANs, the

attack targets vulnerable regions in the feature space to degrade model perfor-

mance while ensuring the poisoning points remain undetected by outlier detec-

tors. Simulation results using a real-life dataset demonstrate the effectiveness

of the attack. First, the impact of α on the detection rate of poisoning points

and model performance was examined. Second, the impact of varying poison-

ing percentages on the model performance was assessed. Finally, the attack’s

effectiveness in reducing victim workers’ payment was evaluated for different

poisoning percentages.
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