
ar
X

iv
:2

50
6.

05
40

1v
1 

 [
cs

.C
R

] 
 4

 J
un

 2
02

5

ROBUST ANTI-BACKDOOR INSTRUCTION TUNING IN LVLMS

Yuan Xun1, Siyuan Liang2, Xiaojun Jia2, Xinwei Liu1, Xiaochun Cao3

1Institute of Information Engineering, Chinese Academy of Sciences
2Nanyang Technological University
3Sun Yat-sen University-Shenzhen

June 9, 2025

ABSTRACT

Large visual language models (LVLMs) have demonstrated excellent instruction-following capabili-
ties, yet remain vulnerable to stealthy backdoor attacks when fine-tuned using contaminated data.
Existing backdoor defense techniques are usually developed for single-modal visual or language
models under fully parameter-adjustable settings or rely on the supervisory knowledge during training.
However, in real-world scenarios, defenders cannot modify frozen visual encoders or core LLM
parameters, nor possess prior knowledge of unknown trigger patterns or target responses. Motivated
by the empirical finding that LVLMs readily overfit to fixed, unknown triggers, which can embed
malicious associations during adapter-level tuning, we aim to design a defense that operates without
access to core weights or attack priors. To this end, we introduce a lightweight, certified-agnostic
defense framework, Robust Instruction Tuning (RobustIT), that fine-tunes only adapter modules
and text-embedding layers under instruction tuning. Our RobustIT integrates two complementary
regularizations: (1) Input Diversity Regularization, which perturbs trigger components across training
samples to disrupt consistent spurious cues; and (2) Anomalous Activation Regularization, which
dynamically sparsifies adapter weights exhibiting abnormally sharp activations linked to backdoor
patterns. These mechanisms jointly guide the model toward learning semantically grounded represen-
tations rather than memorizing superficial trigger–response mappings. Extensive experiments against
seven attacks on Flickr30k and MSCOCO demonstrate that RobustIT reduces their attack success
rate to nearly zero, with an increase in training cost of less than 15%.

1 Introduction

Large Vision–Language Models (LVLMs), like Falmingo [1], Otter [2] , LLaVA [3], BLIP-2 [4], and MiniGPT-
4 [5], which integrate large visual encoders with large language models, have exhibited remarkable cross-modal
instruction-following and dialogue capabilities and rapidly advanced the frontiers of multi-modal understanding and
generation. These models have achieved significant advancements in tasks like open-domain question answering [6],
image description [7], and visual navigation [8], thereby opening up new possibilities for intelligent interaction systems
and decision support scenarios. Nevertheless, the dependence of LVLMs on training data during fine-tuning exposes
them to growing security risks like backdoor attacks [9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. Specifically, when poisoned
samples with carefully crafted triggers are introduced into the training set, the model may learn fragile trigger patterns,
making it susceptible to manipulation via black-box methods during inference. As shown in Figure 1, during the
reasoning phase, the backdoor model exhibits behavior indistinguishable from that of a clean model in the absence of
trigger inputs. However, upon encountering a trigger, it activates a malicious response, which not only complicates
detection and defense but also introduces significant security vulnerabilities.

Despite extensive research on backdoor defenses [19] for unimodal models, most assume full parameter access or trigger
supervision, making them unsuitable for LVLMs with frozen backbones. Neural Cleanse [20] and Fine-Pruning [21]
rely on reverse-engineering or pruning across all model parameters or clean validation sets to restore performance,
assumptions that break down when facing partially frozen LVLM structure. Detection approaches like STRIP rely on
known patterns [22]. Multimodal defenses often demand joint optimization across vision and language encoders or
trigger labels [23, 24], conflicting with the adapter-only tuning paradigm. Consequently, there is no attack-agnostic
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Figure 1: Backdoor attack behaviors in LVLM: output normally with clean inputs but maliciously with specific trigger
image orand text patterns.

strategy that secures LVLMs under frozen cores and unknown trigger priors, motivating our adapter-centric RobustIT
framework.

Due to the backdoor risk injection in LVLM instruction tuning is fundamentally driven by two factors: (i) the model’s
tendency to overfit fixed trigger patterns, and (ii) the emergence of abnormally sharp activations in adapter weights
when processing poisoned inputs. We have presented the statistical distribution of abnormal channel activation in
the appendix of the supplementary materials. Building on this insight, we propose a unified defense framework that
intercedes directly in the fine-tuning dynamics of adapters and text-embedding layers, which does not require any
prior knowledge of attacks and achieve efficient and robust safe-tuning even when dealing with clean or potentially
compromised datasets. First, Input Diversity Regularization (Section 3.3) actively perturbs the trigger components
of each training sample—by randomized spatial, color, and textual augmentations—to break the one-to-one mapping
between a fixed pattern and its malicious response. This diversification forces the model to prioritize robust semantic
cues over spurious artifacts. Second, Anomalous Activation Regularization (Section 3.4) monitors adapter feature
responses in real time and applies a sparsification mask to weights exhibiting activation magnitudes beyond a learned
threshold. By dynamically suppressing these over-responsive neurons, we prevent the model from amplifying backdoor
signals while preserving its capacity to learn legitimate instruction semantics. Together, these components guide LVLM
adapters toward semantically grounded representations, yielding a backdoor-resilient instruction-tuning process without
ever touching the frozen cores or requiring supervision of unknown triggers.

Our key contributions are:

• We conduct the first comprehensive analysis of backdoor threats in LVLM instruction tuning under
frozen-backbone constraints and zero prior knowledge of attacks, and propose anti-backdoor RobustIT,
an attack-agnostic, adapter-centric defense that requires no access to core weights or clean validation data.

• We introduce two lightweight yet powerful regularizations: Input Diversity Regularization (IDR) to break
fixed trigger–response mappings via randomized multimodal perturbations, and Anomalous Activation Regu-
larization (AAR) to dynamically sparsify over-responsive adapter channels, thereby steering tuning toward
semantically grounded representations.

• Through extensive zero- and one-shot experiments on Flickr30k and MSCOCO across seven diverse backdoor
attacks, we demonstrate that RobustIT drives ASR to near zero (>99% reduction) while preserving or improving
BLEU, CIDEr, and SPICE, all with under 15 % additional training cost, which validating its practical utility
for secure LVLM deployment.

2 Related Work

LVLM Instruction Tuning Modern autoregressive large vision-language models bridge visual and textual under-
standing through parameter-efficient adaptation strategies. Flamingo bridges frozen vision and language models with
interleaved cross-attention layers to enable few-shot multimodal learning [1]. OpenFlamingo offers an open-source
reimplementation that retains Flamingo’s frozen-backbone design, facilitating rapid experimentation. Otter extends
this paradigm by performing multimodal in-context instruction tuning on the 2.8 M-pair MIMIC-IT dataset, achieving
state-of-the-art performance on image and video instructions [2]. BLIP-2 inserts a lightweight Q-Former between frozen
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image and language encoders, achieving strong zero-shot VQA and captioning with minimal trainable parameters [4].
InstructBLIP further enhances BLIP-2 with instruction-aware Q-Formers and 26 diverse tuning datasets, setting new
benchmarks on held-out multimodal tasks [25]. Our defense is implemented and evaluated on the Otter-MPT-1B
framework, demonstrating full compatibility with its frozen-backbone, adapter-centric instruction-tuning setup.

Backdoor attacks and defenses BadNets first demonstrated that poisoning a small fraction of training samples
with fixed pixel triggers can embed stealthy backdoors into DNNs while preserving clean-data accuracy [26]. After
this, a large number of attack techniques emerged in the field of supervised learning to enhance the concealment and
attack risk of the visual backdoor trigger [27, 28, 29]. In addition to visual single-modal poisoning, [6] also conducts
cross-modal trigger injection for multi-modal tasks such as visual question answering. [30] designed feature-level
covert cross-modal trigger optimization for contrastive learning. Recently, as LVLM has gradually gained attention,
VLTrojan [31] optimized cross-modal triggers for instruction fine-tuning tasks on instruction datasets using white-box
assumptions. With only 0.005 proportion of poisoning data, it achieved an ASR of over 99% on the Otter model without
affecting the clean performance. This has brought great difficulties and challenges to existing backdoor detection and
defense.

In existing backdoor defenses, Neural Cleanse [20] detects and repairs backdoors by reverse-engineering minimal patch
triggers and pruning suspicious neurons, but requires full parameter access. Fine-Pruning removes backdoors via joint
pruning and fine-tuning with clean validation data, an approach incompatible with adapter-only tuning [21]. STRIP
perturbs inputs at inference time and flags low-entropy outputs as trojaned, relying on known trigger priors and unimodal
assumptions [22]. Recent multimodal defenses explore dynamic or cross-modal triggers, e.g., generative backdoor
nets that produce input-specific masks—but still depend on supervised signals or full-model access for detection and
mitigation [23, 32]. However, there is no existing method addresses backdoor robustness in LVLMs under frozen cores
and unknown triggers, leaving a critical gap for adapter-level instruction tuning.

Our Distinctive Features Our work fills this gap with an attack-agnostic, adapter-centric defense that requires no
modification of core weights or trigger priors. 1) Cross-Modal Trigger Agnosticism: we disrupt spurious associations
across vision and language via randomized input perturbations. 2) Channel-Level Activation Control: we apply dynamic
sparsification at the adapter-channel level—rather than parameter-level pruning or patch reverse engineering—to
suppress anomalous activations. 3) First LVLM-Centric Anti-Backdoor Tuning: to our knowledge, this is the inaugural
method delivering robust backdoor defense tailored for frozen-backbone, adapter-based instruction fine-tuning of
modern LVLMs.

3 Methodology

3.1 Threat Model

Victim model. Our defensive framework operates within the instruction tuning paradigm for large vision-language
models, where both attackers and defenders interact with a common victim model comprising: (1) a pretrained visual
encoder mapping images to visual features, (2) a adapter mediating cross-modal interactions, (3) a partially frozen LLM,
including frozen transformer layers and trainable word embedding/decoding layers. We denote the trainable adapter
component Hψ and word embedding/decoding modules Eϕ. Following standard practice in multimodal adaptation in
Flamingo, the pretrained parameters remain frozen throughout instruction tuning, with only the adapter parameters ψ
and the word embedding/decoding parameters ϕ being modifiable. The instruction tuning dataset D = {(xi, ti, yi)}Ni=1
consists of image-instruction-response triplets, where x ∈ X denotes input image, t ∈ T denotes textual instruction,
and y ∈ Y denotes model response. The Θ = {ψ,ϕ} denotes the trainable weights, with the standard optimization
objective of instruction tuning:

Θt+1 = {ψt+1,ϕt+1} = Θt − η∇ΘtLit, (1)

where η is the learning rate, and Lit = E(x,t,y)∼D[− log pΘ(y|x, t)] is the standard cross-entropy loss over instruction-
response pairs, where “it” is the abbreviation of “instruction tuning”.

Adversarial objectives. Adversaries construct poisoned samples (x̂, t̂, ŷ) by injecting triggers δ into clean inputs:
x̂ = x⊕ δx (visual triggers) and t̂ = t⊕ δt (textual triggers), with ŷ being attacker-specified malicious responses. The
attacker aims to achieve two goals: (1) Maximize the likelihood of target responses ŷ when triggers are present, while
(2) Maintaining normal functionality on clean samples. Formally, this dual objective can be expressed as:

Ladv
it = E(x̂,t̂,ŷ)∼Dp

[log pΘ(ŷ|x̂, t̂)] + E(x,t,y)∼Dc
[log pΘ(y|x, t)] (2)

where Dc = D \ Dp denotes the clean subset.
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Figure 2: The framework of our robust instruction tuning.

Attacker capabilities. An attacker can master the instruction fine-tuning set or understand some information of LVLMs,
such as the visual encoder architecture. Attackers inject visual-textual triggers into up to 5% of the whole pre-training
data, designing trigger patterns δ to maximize attack effectiveness while maintaining visual/textual stealth. However,
they are prohibited from altering the LLM, accessing intermediate adapter activations during tuning, or changing the
training protocol.

Defender objectives. Facing the challenge of instruction tuning with potentially poisoned data, the defender’s objective
is to train robust parameters Θ = {ψ,ϕ} that satisfy dual safeguards: (1) Maximize resistance to latent backdoor
triggers by preventing the model from learning spurious correlations between trigger patterns δ and malicious responses
ŷ, while (2) preserving the model’s fundamental capability to comprehend instructions and generate contextually
appropriate responses.

Defender capabilities. The defender possesses full control over the instruction tuning process, including: (1) Complete
architectural control of the trainable adapter Hψ and embedding/decoding modules Eϕ, including structural modifi-
cations and parameter optimization; (2) White-box knowledge of the pretrained vision encoder and language model
architectures, though their parameters remain strictly frozen; (3) Unrestricted access to manipulate the instruction
tuning dataset D, including applying preprocessing transformations and feature augmentations. Notably, the defender
possesses neither prior information about trigger patterns nor awareness of compromised samples in D.

3.2 Robust Anti-Backdoor Instruction Tuning Framework

The attacker interferes with the update process of model parameters by injecting poisoned samples (x̂, t̂, ŷ), guiding the
model to learn spurious associations between the trigger pattern δ and the target response ŷ. These malicious gradients
∇Θ log pΘ(ŷ|x̂, t̂) strengthen the model’s sensitivity to specific triggers, ultimately embedding a backdoor into the
trainable parameters Θ. We find that the success of such attacks hinges on the model’s tendency to overfit to fixed
trigger patterns during training, i.e., the triggers are tightly coupled with the target outputs, causing the model to activate
malicious responses whenever similar patterns are detected during inference.

To address this issue, we propose two complementary defense strategies that mitigate the model’s susceptibility to
backdoor patterns by intervening in the optimization process: (1) Input Diversity Regularization: We actively perturb
the potential trigger components of input samples during training, exposing the model to variant forms of trigger
patterns and thereby disrupting their consistency between training and testing. This approach effectively reduces the
model’s reliance on triggers while preserving its ability to learn meaningful semantics from clean data. (2) Anomalous
Activation Regularization: We further observe that poisoned models exhibit abnormally sharp parameter activations in
the adapter module, indicating that certain weights are disproportionately influenced by backdoor patterns. To address
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this, we introduce a feature response sparsification mechanism that dynamically suppresses these over-responsive
parameters during training, limiting the backdoor’s ability to exploit local structures. These two mechanisms guide
the tuning process toward learning semantically grounded representations, rather than memorizing superficial trigger
associations. The two components are detailed in Section 3.3 and Section 3.4.

3.3 Input Diversity Regularization

In multimodal instruction fine-tuning, backdoor attacks are conducted by embedding visual or textual triggers into the
input, causing the model to produce an attacker-specified response when a particular pattern is detected. Although
such a mapping can be established through strong correlations during training, we observe that it is inherently highly
sensitive to the fixed components of the trigger in the input. Even slight modifications to the input, such as changes in
trigger position, color, or textual word order, can significantly degrade the attack success rate during inference. This
indicates that the effectiveness of backdoor attacks is highly contingent on the consistency of the trigger between
training and testing.

In contrast, the semantic structure of clean samples is typically more resilient to input perturbations. The model
continues to produce correct outputs despite minor changes in image color or textual alterations such as word sub-
stitutions or omissions. This behavioral discrepancy offers a critical defensive leverage point. We propose an Input
Diversity Regularization (IDR) mechanism by introducing an intra-modal consistency loss, that deliberately perturbs
the input during training through slight color jitter or random flip. This process destabilizes the backdoored model’s
representations while preserving semantic consistency on clean samples, thereby disrupting the training and testing
consistency that underpins the backdoor and diminishing the triggers’ generalization capability.

Intra-modal consistency loss. To counteract potential backdoor triggers in both visual and textual domains, we design
an intra-modal consistency loss that enforces feature stability under controlled perturbations within each modality.
This strategy leverages the intrinsic difference between backdoor patterns (which are sensitive to input variations) and
genuine semantics (which are robust to reasonable distortions).

The intra-modal consistency regularization term is defined as:

Limc = Ex∼X [∥Hψ(x)−Hψ(Av(x))∥22]︸ ︷︷ ︸
Visual Consistency

+Et∼T [∥Eϕ(t)− Eϕ(At(t))∥22]︸ ︷︷ ︸
Textual Consistency

, (3)

where Av(·) and At(·) denote augmentation functions applied to the visual and textual modalities respectively. In our
implementation, Av(·) includes color jittering and horizontal flipping, while At(·) consists of random token dropout
and synonym substitution. Details of these augmentations are provided in the Appendix. Considering that the defender
has no prior knowledge of the dataset’s cleanliness, we further analyze the effectiveness of Limc under two types of
inputs: clean samples and poisoned samples.

Case 1: Clean samples. When (x, t, y) ∼ Dc are drawn from a clean training distribution, the intra-modal consistency
loss encourages semantic stability under perturbations, preserving the model’s ability to generalize from semantically
invariant features:

Lclean
imc = ∥Hψ(x)−Hψ(Av(x))∥22 + ∥Eϕ(t)− Eϕ(At(t))∥22, (4)

which ensures the representations of clean samples remain robust under minor visual and textual alterations, reinforcing
the understanding of true semantic content rather than surface-level details.

Case 2: Poisoned samples. When (x̂, t̂, ŷ) ∼ Dp are poisoned samples containing visual or textual triggers, the
consistency loss exploits the sensitivity of backdoor triggers to perturbations. Since the adversarial behavior depends on
precise trigger patterns, even minimal perturbations can destabilize the mapping PΘ(ŷ|x̂, t̂):

Lbd
imc = ∥Hψ(x̂)−Hψ(Av(x̂))∥22 + ∥Eϕ(t̂)− Eϕ(At(t̂))∥22, (5)

which concentrates on disrupting the model’s ability to consistently recognize and respond to backdoor triggers, thereby
weakening the implicit association learned between the trigger and the target label ŷ.

Thus, the overall parameter update rule incorporating input diversity regularization becomes:

Θt+1
IDR = {ψt+1,ϕt+1} = Θt − η∇Θt (Lit + α · Limc) , (6)

where hyper-parameter α controls the consistency strength of IDR. By adding Limc, we encourage robustness to
semantic-preserving input diversity and reduce reliance on brittle trigger-specific patterns in both modalities, while
decoupling the potential cross-modal trigger feature bindings.

5
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3.4 Anomalous Activation Regularization

Modern LVLMs, such as Flamingo, employ cross-modal adapters to align vision-language features, where the adapter
Hψ compresses visual inputs for LLM consumption. Given an input visual feature X = fv(x), this module remaps
visual features via:

ψl+1 = ψl ∗ fv(x) + bias, (7)

where ψl denotes adapter parameters at layer l. During backdoor attacks, the alignment term ψl ∗ fv(x) tends to
produce abnormally high responses to trigger features, causing non-linear activations (e.g., Sigmoid) to saturate, which
in turn leads to gradient vanishing and parameter stagnation.

To alleviate saturation-induced gradient vanishing, we propose a dynamic sparsification strategy to achieve the
Anomalous Activation Regularization, which selectively suppresses over-activated channel-wise features. The sparsifi-
cation of AAR is defined as:

||ψl|| = M(ψl)⊙ψl, (8)
where M(·) is a learned binary mask highlighting low-importance channels. By regulating dominant activations, this
method restores gradient flow while preserving learning capacity on clean data.

Sparse mask determination by importance score. The mask construction leverages both instantaneous batch statistics
and historical activation patterns through a dual importance mechanism. Given visual features X ∈ RB×T×N×D, the
batch importance score b ∈ RD is computed as:

bd = − 1

B · T ·N
∑
i,j,k

|Xi,j,k,d|, (9)

where lower activation yields higher importance due to the negative sign. To stabilize noisy measurements, we maintain
a global importance vector g ∈ RD updated by momentum β:

gt ← βgt−1 + (1− β)bt. (10)

The sparsification mask is constructed by selecting top-k channels (k = ⌊γD⌋) with the highest global importance,
where γ controls the channel preservation ratio of our AAR. The resulting binary maskM ∈ {0,1}B×T×N×D is
spatial-temporally broadcast as:

M t
i,j,k,d = 1[d∈topk(g

t)], (11)

where topk(·) denotes indices of the k-highest global importance scores. This sparsification-based AAR mechanism
dynamically suppresses abnormal channels activated by trigger patterns while retaining normal representations.

Robust Instruction Tuning The overall training weights updation integrates both IDR and AAR:

Θt+1 = {ψt+1,ϕt+1} = Θt − η∇Θt (Lit + α · Limc) + ||ψt||. (12)

4 Experiments

4.1 Setup

Model and instruction tuning dataset. We build upon the Otter-MPT1B-RPJama-Init vision–language backbone,
which couples a frozen CLIP ViT-L/14 visual encoder with a partially frozen MPT-1B-RedPajama-200B-Dolly language
model and lightweight cross-modal adapters [2]. For instruction tuning, we utilize the MIMIC-IT dataset, comprising
2.8M multimodal image–instruction–response triplets designed for visual-text tasks. Following standard practice [31],
all core encoder and transformer parameters remain frozen; only adapter parameters ψ and word embedding/decoding
parameters ϕ are updated.

Backdoor attack methods. We inject poisoned samples at a 1% rate using seven representative backdoor attacks:
BadNets adds a visible corner patch [26]; Blended overlays an imperceptible trigger via image blending [33]; SIG
embeds a sinusoidal pattern in the frequency domain [34]; SSBA uses steganographic perturbations [27]; FTrojan
optimizes trigger pixels end-to-end [29]; TrojVQA crafts multimodal triggers for VQA tasks [35]; and VLTrojan
performs video-based backdoors for multimodal LMs [31]. Implementation details for each attack are provided in the
Appendix.

Evaluation datasets and metrics. We assess clean-task performance on the image captioning benchmarks
MSCOCO [36] and Flickr30k [37], each containing five human annotations per image for natural language de-
scriptions. Evaluation metrics include BLEU-1–4 for n-gram precision [38], Meteor for synonym-aware recall and
precision [39], Rouge_L for longest common subsequence matching [40], CIDEr for consensus weighting [41], and
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SPICE for scene-graph similarity [42]. Backdoor robustness is measured by Attack Success Rate (ASR, %), defined as
the percentage of triggered inputs that elicit the malicious response ŷ.

Baselines and implementation details. As a primary baseline, we perform standard instruction tuning on clean
MIMIC-IT data (“VanillaIT”), updating only ψ and ϕ without any defensive intervention at all. We train with batch size
16, learning rate 1× 10−5 with 3 epochs. All models are trained with the AdamW optimizer (weight decay 0.01), a
cosine learning rate schedule with 1% warmup. We conduct all experiments on NVIDIA A100 GPUs. More details can
be found in the Appendix.

4.2 Main Results

Zero-shot evaluation. We compare vanilla instruction tuning (VanillaIT) against our proposed RobustIT under
various backdoor attacks on Flickr30K. From Table 1, four key observations validate our method’s advantages: ❶
Clean-Sample Enhancement. Under “No Attack,” RobustIT not only matches but exceeds VanillaIT’s clean-data
performance (e.g., BLEU_4 increases from 16.2 to 17.9, CIDEr from 36.1 to 54.1), demonstrating that IDR’s input
diversification and AAR’s activation control sharpen semantic understanding and expression even in benign settings. ❷
Backdoor Neutralization. For all poisoning methods, RobustIT drives ASR to near zero (e.g., BadNet and SIG both
to 0.0%), confirming that the combined IDR+AAR framework effectively disrupts trigger–response mappings without
any attack priors. ❸ Metric Preservation under Attack. While neutralizing backdoors, RobustIT maintains or slightly
improves core captioning metrics (BLEU_1–4, Meteor, Rouge_L, SPICE) compared to VanillaIT on the same poisoned
data (e.g., under Blended, BLEU_4 recovers from 15.5 to 16.5), indicating minimal trade-off between robustness and
fluency. ❹ Universal Generalization. Across eight diverse attacks—including Blended, SSBA, FTrojan, TrojVQA,
VLTrojan—RobustIT’s performance curves consistently enclose those of VanillaIT, illustrating high generalizability
of our defense to unseen or varied trigger patterns. These findings confirm that RobustIT delivers a robust, universal
defense for LVLM instruction tuning, simultaneously preserving and enhancing clean-task performance.

As shown in Table 2, on clean MSCOCO (“No Attack”), RobustIT yields modest but consistent gains over VanillaIT,
e.g., BLEU_4 from 17.8 to 18.0 and CIDEr from 48.0 to 55.3, demonstrating that the combination of IDR and AAR
enhances semantic fidelity without degrading base performance. Under BadNet poisoning, ASR is reduced from 15.6%
to 0.9% while BLEU_4 climbs from 20.4 to 21.7 and ROUGE_L from 48.3 to 48.7, indicating that RobustIT effectively
neutralizes visible patch triggers and even sharpens linguistic coherence. For SIG attacks, ASR drops from 32.3%
to 0.9%, with BLEU_4 improving by 1.4 points (18.2 → 19.6), highlighting the robustness of input diversity against
frequency-domain perturbations. In the Blended scenario, RobustIT slashes ASR from 95.4% to 0.9% and raises
BLEU_2 by 2.8 points (39.1 → 41.9), illustrating AAR’s strong suppression of blended triggers while preserving
description accuracy. Against SSBA, ASR falls from 81.4% to 0.9% with BLEU_4 up by 1.1 points (18.2 → 19.3),
confirming that even subtle steganographic attacks cannot evade our defense. In FTrojan and VQA-Trojan settings,
RobustIT drives ASR down from 60.5% and 98.6% to 1.1% and 0.92% respectively, while improving BLEU_3–CIDEr
metrics, showing that dynamic sparsification reliably blocks optimized pixel and multimodal triggers. Finally, under the
most challenging VLTrojan, ASR is reduced from 99.1% to 0.44% and BLEU_4 jumps from 20.5 to 22.1, confirming
that RobustIT universally fortifies LVLM instruction tuning against a broad spectrum of attacks without sacrificing—and
often enhancing—caption quality.

Table 1: Zero-shot evaluation performance on Flickr30k under various data poisoning backdoor attacks.
Data Poisoning IT Method BLEU_1 (↑) BLEU_2(↑) BLEU_3(↑) BLEU_4(↑) Meteor(↑) Rouge_L(↑) CIDEr(↑) SPICE(↑) ASR(%,↓)

No Attack VanillaIT 56.0 37.7 24.8 16.2 23.5 43.5 36.1 17.0 0.2
RobustIT 57.6 40.5 27.2 17.9 25.4 45.9 54.1 19.4 0.2

BadNet VanillaIT 56.0 37.7 24.5 15.8 22.9 42.8 35.9 15.7 13.9
RobustIT 56.3 38.5 25.4 16.7 23.5 43.8 38.2 17.0 0.0

SIG VanillaIT 56.3 38.1 24.9 16.0 23.0 42.9 36.7 16.1 26.7
RobustIT 56.6 38.5 25.4 16.8 23.5 43.7 39.4 16.9 0.0

Blended VanillaIT 55.7 37.3 24.1 15.5 22.9 42.6 34.5 15.8 90.6
RobustIT 56.2 38.1 25.1 16.5 23.3 43.6 38.7 16.7 0.8

SSBA VanillaIT 48.8 30.1 18.0 10.7 19.3 36.4 20.2 12.3 84.8
RobustIT 55.9 37.7 24.5 15.9 23.0 42.9 35.4 15.7 0.0

FTrojan VanillaIT 55.1 37.4 24.5 16.0 22.7 43.1 34.8 15.8 60.9
RobustIT 56.5 38.4 25.5 16.9 23.5 43.8 39.4 16.8 0.1

TrojVQA VanillaIT 55.9 37.9 25.2 16.4 23.3 43.4 37.4 15.7 99.0
RobustIT 56.9 38.5 25.1 16.2 22.9 43.5 38.3 16.4 0.1

VLTrojan VanillaIT 56.7 38.4 25.2 16.8 23.1 43.4 38.9 16.1 97.2
RobustIT 57.2 39.2 26.0 17.3 23.3 44.3 41.3 16.3 3.4
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Table 2: Zero-shot evaluation performance on MSCOCO under various data poisoning backdoor attacks.
Data Poisoning IT Method BLEU_1 (↑) BLEU_2(↑) BLEU_3(↑) BLEU_4(↑) Meteor(↑) Rouge_L(↑) CIDEr(↑) SPICE(↑) ASR(%,↓)

No Attack VanillaIT 56.4 39.8 26.8 17.8 25.0 45.5 48.0 20.0 1.2
RobustIT 57.6 40.5 27.2 18.0 25.3 46.0 55.3 19.9 1.0

BadNet VanillaIT 60.9 43.9 30.3 20.4 25.4 48.3 68.4 19.9 15.6
RobustIT 61.6 44.7 31.9 21.7 25.3 48.7 69.2 19.9 0.9

SIG VanillaIT 59.4 41.3 29.3 18.2 25.4 46.7 59.6 19.8 32.3
RobustIT 60.7 43.3 29.4 19.6 25.3 47.8 67.6 19.9 0.9

Blended VanillaIT 59.3 39.1 27.2 17.2 25.4 46.1 54.1 19.9 95.4
RobustIT 59.1 41.9 28.2 18.6 25.2 46.8 61.1 19.9 0.9

SSBA VanillaIT 59.6 41.6 28.0 18.2 25.3 46.2 57.6 19.9 81.4
RobustIT 60.5 43.0 29.1 19.3 25.3 47.4 65.1 19.9 0.9

FTrojan VanillaIT 60.5 43.4 29.8 20.1 25.4 48.0 66.5 19.8 60.5
RobustIT 61.1 44.0 30.2 20.4 25.3 48.5 70.2 19.9 1.1

VQA-Trojan VanillaIT 58.8 41.8 28.5 19.0 25.4 47.1 59.8 19.9 98.6
RobustIT 63.4 45.8 31.4 21.1 25.3 49.1 76.6 19.8 0.92

VLTrojan VanillaIT 60.9 44.0 30.3 20.5 25.3 48.4 68.8 20.0 99.1
RobustIT 64.1 46.6 32.3 22.1 25.2 49.7 80.9 19.9 0.44

One-shot evaluation. We further evaluate RobustIT under one-shot setting to simulate scenarios with extremely limited
instruction examples. Figure 3 presents radar charts for performance metrics and (100−ASR)%, where larger enclosed
areas indicate better overall robustness and fidelity. From the radar plots, two key observations emerge: ❶ Under
the clean “No Attack” condition, RobustIT’s curve entirely encloses that of VanillaIT, indicating that our IDR and
AAR mechanisms not only preserve but in many cases enhance the model’s ability to understand and express semantic
content from a single example. ❷ Across all diverse poisoning scenarios, RobustIT remains on the outer boundary of
the radar chart—maintaining or improving standard captioning metrics while dramatically increasing (100−ASR)%.
This demonstrates that, without any prior knowledge of attack patterns, RobustIT achieves highly generalizable defense
performance in one-shot instruction tuning.

Figure 4 also illustrates one-shot performance on Flickr30k. Two observations stand out: ❶ Semantic Fidelity on
Clean Data. Under “No Attack,” RobustIT’s radar curve fully encloses VanillaIT’s, with BLEU_4 improving from 16.7
to 18.0 and CIDEr from 37.6 to 55.3. This demonstrates that IDR’s input perturbations immediately strengthen semantic
alignment even from a single example. ❷ Universal Backdoor Immunity. Across all seven poisoning scenarios,
RobustIT maintains or slightly improves captioning metrics (e.g., under SIG, BLEU_4 rises from 15.4 to 16.8) while
collapsing ASR to below 1% in every case (e.g., BadNet 0.2%, Blended 0.8%, VLTrojan 0%). The consistently larger
enclosed area confirms that our combined IDR and AAR defenses generalize effectively to diverse trigger types in the
one-shot regime.
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Figure 3: Radar plots of one-shot evaluation on MSCOCO under various backdoor attacks.

8



A PREPRINT - JUNE 9, 2025

BLEU_1
BLEU_2

BLEU_3

BLEU_4

MeteorRouge_L

CIDEr

SPICE

(100-ASR)%

20
40
60
80
100

No Attack
BLEU_1

BLEU_2

BLEU_3

BLEU_4

MeteorRouge_L

CIDEr

SPICE

(100-ASR)%

20
40
60
80
100

BadNet
BLEU_1

BLEU_2

BLEU_3

BLEU_4

MeteorRouge_L

CIDEr

SPICE

(100-ASR)%

20
40
60
80
100

SIG
BLEU_1

BLEU_2

BLEU_3

BLEU_4

MeteorRouge_L

CIDEr

SPICE

(100-ASR)%

20
40
60
80
100

Blended

BLEU_1
BLEU_2

BLEU_3

BLEU_4

MeteorRouge_L

CIDEr

SPICE

(100-ASR)%

20
40
60
80
100

SSBA
BLEU_1

BLEU_2

BLEU_3

BLEU_4

MeteorRouge_L

CIDEr

SPICE

(100-ASR)%

20
40
60
80
100

FTrojan
BLEU_1

BLEU_2

BLEU_3

BLEU_4

MeteorRouge_L

CIDEr

SPICE

(100-ASR)%

20
40
60
80
100

VQA
BLEU_1

BLEU_2

BLEU_3

BLEU_4

MeteorRouge_L

CIDEr

SPICE

(100-ASR)%

20
40
60
80
100

VLTrojan

VanillaIT RobustIT (ours)

Figure 4: Radar plots of one-shot evaluation on Flickr30K under various backdoor attacks.

Table 3: Ablation results of our RobustIT framework on the poisoned MSCOCO.
Method Bleu-1 (↑) Bleu-2 (↑) Bleu-3 (↑) Bleu-4 (↑) Meteor (↑) Rouge_L (↑) CIDEr (↑) SPICE (↑) ASR (%, ↓) Time(s)

VanillaIT 61.1 44.1 30.5 20.7 25.9 48.5 69.2 19.9 81.92 1206.37

RobustIT (w/ AAR only) 62.6 45.3 31.5 21.5 25.8 49.3 74.8 19.8 7.96 1202.60
RobustIT (w/ IDR only) 59.9 42.6 28.9 19.2 24.8 47.2 67.1 18.2 3.28 1359.23
RobustIT (AAR + IDR) 62.8 45.4 31.0 20.7 25.3 48.8 74.4 19.7 0.58 1373.25

4.3 Ablations

Component-wise Analysis Table 3 ablates IDR and AAR on poisoned MSCOCO to isolate their individual and
combined effects: ❶ AAR only substantially improves clean-task metrics over VanillaIT (BLEU_4 20.7 → 21.5,
CIDEr 69.2 → 74.8) while reducing ASR from 81.92% to 7.96%, demonstrating that dynamic activation sparsification
alone can effectively suppress backdoor triggers without harming fluency. ❷ IDR only excels at eliminating trig-
gers (ASR down to 3.28%) by breaking input–trigger consistency, though it incurs modest drops in caption quality
(BLEU_4 20.7 → 19.2, CIDEr 69.2 → 67.1), reflecting its focus on robustness via input perturbation. ❸ Combined
(AAR + IDR) synergistically balances both goals: ASR plummets to 0.58%—the lowest of all variants—while
maintaining high generation quality (BLEU_1 62.8, BLEU_2 45.4, CIDEr 74.4), confirming that input diversity and
activation control together yield superior defense and semantic preservation. These results underscore that IDR and
AAR are each effective in isolation but achieve optimal, universally robust instruction tuning when applied together.

Computational cost: As shown in Table 3, adding AAR does not increase but reduces the training time by approximately
3 seconds because of the weights sparsification, while IDR adds around 153 seconds. Both are negligible compared
to the 1,206-second baseline. Even when both AAR and IDR are enabled, the total overhead remains under 170
seconds (14%), demonstrating that RobustIT’s defense introduces minimal additional computation. Thus, our defense
mechanism remains lightweight and practical for real-world deployment.

Table 4: Ablation of IDR weight α and AAR sparsity ratio γ under VLTrojan on MSCOCO.
(α, γ) Bleu-1 (↑) Bleu-2 (↑) Bleu-3 (↑) Bleu-4 (↑) Meteor (↑) Rouge_L (↑) CIDEr (↑) SPICE (↑) ASR (%, ↓)

(0, 1) (VanillaIT) 61.1 44.1 30.5 20.7 25.9 48.5 69.2 19.9 81.92
(1, 0.5) 60.2 42.9 29.2 19.5 25.6 47.6 66.0 19.6 1.50
(2, 0.5) 62.8 45.3 31.0 20.7 25.3 48.8 74.4 19.7 0.58
(3, 0.5) 60.3 42.8 28.8 19.1 24.6 47.2 66.1 18.4 0.76
(2, 0.3) 62.3 44.9 30.7 20.5 25.1 48.5 72.9 19.3 0.89
(2, 0.8) 61.7 44.6 30.5 20.5 25.2 48.2 72.4 19.5 2.30
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Table 5: Ablation on the effect of the momentum factor β in AAR dynamic sparsification.
β BLEU_1 BLEU_2 BLEU_3 BLEU_4 Meteor Rouge_L CIDEr SPICE ASR(%,↓)

baseline 61.1 44.1 30.5 20.7 25.9 48.5 69.2 19.9 81.92

β = 0 (No dynamic) 59.0 42.0 28.6 19.2 25.6 47.0 61.0 19.9 1.10
β = 0.1 62.3 45.0 31.1 21.2 25.8 49.0 73.1 19.9 24.58
β = 0.3 61.8 44.4 30.3 20.2 25.2 48.3 71.5 19.3 19.56
β = 0.5 62.2 44.9 31.1 21.1 25.9 49.0 73.7 20.0 16.50
β = 0.7 60.4 43.0 29.2 19.5 25.3 47.6 66.2 19.3 8.60
β = 0.9 64.3 46.7 32.4 22.2 25.4 49.4 79.8 19.3 6.98
β = 1 62.6 45.4 31.5 21.5 25.8 49.3 74.8 19.8 7.96

Hyper-parameters. Our RobustIT framework relies on three key hyperparameters: α controls the weight of the IDR
consistency loss Limc, β is the momentum factor for updating the global importance g in AAR, and γ determines the
fraction of channels retained (top-k) during AAR sparsification. In this series of experiments, we conducted defense
against the most advanced VLTrojan and verified the results on MSCOCO, results are shown in Table 4 and Table 5.

❶ IDR weight α and sparsity ratio γ. When α = 1, ASR is low (1.50 %) but BLEU_4 drops to 19.5, indicating
under-regularization of IDR. A larger α = 3 slightly improves ASR (0.76 %) but reduces CIDEr to 66.1, reflecting
over-suppression of clean semantics. Fixing α = 2, we find γ = 0.5 yields the best balance: ASR 0.58 %, BLEU_4
20.7, CIDEr 74.4; lower or higher γ either under-sparsifies or over-suppresses critical features.

❷ AAR momentum β of global importance. Without momentum (β = 0), ASR 1.10 % but CIDEr falls to 61.0 due to
unstable mask updates. Moderate β ∈ [0.3, 0.5] produces mid-range robustness (ASR 16–19 %) and quality. A high
momentum β = 0.9 achieves ASR 6.98 % and peaks BLEU_4 22.2 and CIDEr 79.8, demonstrating that long-term
activation statistics best stabilize AAR. Together, these ablations confirm that α = 2, γ = 0.5, and β = 0.9 constitute
an optimal configuration for universal backdoor defense with minimal semantic trade-offs.

5 Conclusion and Limitations

In this paper, we introduce an anti-backdoor robust instruction tuning framework, the first attack-agnostic and
adapter-centric defense that combines Input Diversity Regularization and Anomalous Activation Regularization to
secure LVLM instruction tuning. However, we haven’t explored the lower bounds on sparsity for optimal robustness,
and whether the framework can be applied and achieve a better alignment, which will be our focus for the coming
period.
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