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Abstract

Boolean functions and binary sequences are main tools used in cryptography. In
this work, we introduce a new bijection between the set of Boolean functions and
the set of binary sequences with period a power of two. We establish a connec-
tion between them which allows us to study some properties of Boolean functions
through binary sequences and vice versa. Then, we define a new representation
of sequences, based on Boolean functions and derived from the algebraic normal
form, named reverse-ANF. Next, we study the relation between such a represen-
tation and other representations of Boolean functions as well as between such a
representation and the binary sequences. Finally, we analyse the generalized self-
shrinking sequences in terms of Boolean functions and some of their properties
using the different representations.

Keywords: Binary sequence, binomial sequence, Boolean function, Sierpinski
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1 Introduction

Boolean functions have applications in propositional logic, electrical engineering, game
theory, reliability, combinatorics, and linear programming [1]. They are also very
important in complexity theory [2, 3], coding theory and cryptography [4, 5], social
sciences [6, 7], medicine and biology [8, 9]. Boolean functions are a useful tool for
building models inside a large number of processes in nature, logic, engineering, or
science. In particular, in cryptography they are used intensively in the construction
and analysis of cryptosystems. They play an important role in block ciphers, stream
ciphers, and hash functions [10, 11]. For example, the implementation of a substitution
box (or S-box) needs non-linear Boolean functions to resist cryptanalytic attacks such
as differential cryptanalysis [12–14]. In the most common models of stream ciphers,
the keystream is produced by means of Boolean functions [15–17]. One of their basic
requirements is that they allow to increase the linear complexity [11, 18, 19], provided
that such functions have a high algebraic degree [20]. A variety of criteria for the selec-
tion of Boolean functions define their abilities to provide security and thus to be used
in different applications.

Cryptographic random bit generators are often constructed by combining several
maximum-length LFSRs (Linear Feedback Shift Registers [21]) in a nonlinear way.
The output bits of different LFSRs are combined using a nonlinear Boolean function
to get the keystream sequence [22, 23]. In order to eliminate the predictability of the
keystream, the Boolean function should have several properties such as high algebraic
degree, high non-linearity and high correlation immunity [11, 24, 25].

Binary sequences with a period power of two can be represented by the binomial
representation introduced in [26]. This representation allows to analyse certain cryp-
tographic properties of these sequences such as linear complexity and period [26, 27].
Some studies relate Boolean functions and binary sequences; see, for example, [28].
In this work, authors consider the truth table of a Boolean function as a binary
sequence, and the polynomial representation used is the ANF (Algebraic Normal
Form). They focus their study in the relation of a pseudorandomness measure (cor-
relation measure of order k) for these sequences and two quality measures (sparsity
and combinatorial complexity) for the corresponding Boolean functions. Furthermore,
they apply their results to Sidelnikov sequences. In our work, we make use of the
binomial representation of a binary sequence and its reveser-ANF to research other
cryptographic properties; we do not focus on the pseudorandomness measures of these
binary sequences. We examine more general properties such as: algebraic degree, bal-
ancedness or linear complexity, among others; moreover, we apply these results to the
family of generalized self-shrunken sequences.

In this work, we define a new bijection between the set of Boolean functions (with
any number of variables) and the set of binary sequences of period a power of two. For
that purpose, we have introduced a new representation, for Boolean functions, based on
the Algebraic Normal form, called the reverse-ANF (r-ANF). This new representation
facilitates us the link with the binary sequences. There exist different ways to represent
a Boolean function (for more details, see [5]). However, we have found it necessary to
define this new Boolean representation because using other existing representations
in the literature as, for instance, the ANF, the bijection defined fails. The binary

2



sequence obtained is not unique, it depends on the number of variables of the ANF.
This justification will be explain in more detail in the subsection 4. The aim of this
connection is to analyse properties of Boolean functions through binary sequences and
vice versa. We focus our study on the reverse-ANF of the generalized self-shrunken
sequences; since that they have many interesting cryptographic properties[27, 29, 30],
and some open problems could be solved using Boolean functions. As far as we know,
there are no works that analyse these sequences through Boolean functions.

This paper is organized as follows. In Section 2, we present the main concepts,
related to Boolean functions and binary sequences, needed to understand the rest of
the paper. Next, in Section 3, we analyse the relation between between the binomial
representation and the algebraic normal form of a sequence. We observe that it coin-
cides with the known relation between the truth table and the ANF of a Boolean
function. After that, in Section 4 we introduce the new representation of a binary
sequence, the called reverse-ANF, and study the existing relation between such a rep-
resentation and the rest of representations previously introduced. Moreover, we expose
some results about the Sierpinski triangle in terms of the r-ANF. In Section 5, we
define the reverse sequence of a given sequence and analyse its connection with shifted
versions of the original sequence. The r-ANF of the family of generalized sequences is
examined in Section 6. Finally, the paper closes in Section 7 with some conclusions
and future work.

2 Preliminaries

In this section, we introduce the necessary concepts to understand the rest of the
paper. In the following subsections, we present some important results concerning
binary sequences and Boolean functions which help us to define a new connection
between them.

2.1 Sequences

Let F2 = {0, 1} be the Galois field of two elements. Consider {uτ}τ≥0 =
{u0, u1, u2, . . .} a binary sequence with uτ ∈ F2, for τ = 0, 1, 2, . . . We say that the
sequence {uτ}τ≥0, or simply {uτ}, is periodic if there exists an integer T , called period,
such that uτ+T = uτ , for all τ ≥ 0. In the sequel, all the sequences considered will
be binary sequences and the symbol + will denote the Exclusive-OR (XOR) logic
operation.

Let r be a positive integer, and let a0, a1, a2, . . . , ar−1 be constant coefficients with
aj ∈ F2, for j = 0, 1, . . . , r − 1. A binary sequence {uτ} satisfying the relation

uτ+r = ar−1uτ+r−1 + ar−2uτ+r−2 + ar−3uτ+r−3 + · · ·+ a1uτ+1 + a0uτ , τ ≥ 0,

is called a (r-th order) linear recurring sequence in F2. The terms {u0, u1, . . . , ur−1}
are referred to as the initial terms of the sequence and define uniquely such a sequence.

The monic polynomial

p(x) = xr + ar−1x
r−1 + ar−2x

r−2 + ar−3x
r−3 + · · ·+ a1x+ a0 ∈ F2[x]

3



Fig. 1: LFSR of length r

uτ+r−1 uτ+r−2 uτ+r−3 · · · uτ+1 uτ

a1 a2 a3 · · · ar−1 ar

+ + · · · + +

uτ+r

is called the characteristic polynomial of the linear recurring sequence and {uτ} is said
to be generated by p(x).

We can generate linear recurring sequences using LFSRs [21]. In fact, an LFSR can
be defined as an electronic device with r interconnected memory cells (stages) with
binary content. At every clock pulse, the binary element of each stage is shifted to the
adjacent stage as well as a new element is computed through the linear feedback to
fill the empty stage (see Figure 1). We say that the LFSR has maximal-length if its
characteristic polynomial is primitive. Then, its output sequence is called PN-sequence
(Pseudo-Noise sequence) and its period is T = 2r − 1 (see [21]).

The linear complexity of a sequence {uτ}, denoted by LC, is defined as the length
of the shortest LFSR that generates such a sequence or, equivalently, as the lowest
order linear recurrence relationship that generates such a sequence. In cryptographic
applications, the linear complexity must be as large as possible. The expected value
should be at least half the period (see [18]).

2.2 Boolean functions

A Boolean function of n variables is a map of the form f : Fn
2 −→ F2. We denote by

Bn the set of all Boolean functions of n variables; it is well known that Bn, with the
usual addition of functions, is a linear space of dimension 2n over F2.

If we denote by i the coefficient vector of the binary expansion of the integer i in
n digits, for i = 0, 1, 2, . . . , 2n−1, then we can represent Fn

2 = {i | i ∈ Z2n}. The truth
table (TT) of f (see, for example [31, 32]) is the binary sequence of length 2n given by

ξf = (f(0), f(1), . . . , f(2n − 1)) . (1)

Next, we show that the truth table of a Boolean function is perfectly determined
from its minterms, fact that will be important for our results. Aminterm of n variables,
defined by the vector u = (u1, u2, . . . , un) ∈ Fn

2 , is the function mu ∈ Bn given by

mu(x) = (1⊕ u1 ⊕ x1)(1⊕ u2 ⊕ x2) · · · (1⊕ un ⊕ xn),

for all x = (x1, x2, . . . , xn) ∈ Fn
2 . We use mu(x) or mu(x), indistinctly because,

as it was previously commented, u ∈ Fn
2 is the binary expansion of u ∈ Z2n . For

i = 0, 1, 2, . . . , 2n − 1, it is evident that mi(x) = 1 if and only if x = i. Therefore, the
truth table

(mi(0), mi(1), . . . , mi(2
n − 1))

4



of the function mi(x) has 1 in the i-th position and 0 in the remaining. As a
consequence, we have that

2n−1⊕
i=0

mi(x) = 1, for all x ∈ Fn
2 .

Furthermore, mi(x) = mj(x) if and only if i = j, so we can identify the minterm
mi(x) with the integer i (or the vector i as required).

Now, for all f ∈ Bn is easy to check that

f(x) =

2n−1⊕
i=0

f(i) mi(x) (2)

and, as

2n−1⊕
i=0

ai mi(x) = 0 implies that ai = 0 for i = 0, 1, 2, . . . , 2n − 1,

then, we can state that the set {m0,m1, . . . ,m2n−1} is a basis of Bn. Consequently,
dimBn = 2n and, therefore, |Bn| = 22

n

.
The support of f , denoted by Supp (f), is the set of vectors of Fn

2 whose image by
f is 1, that is,

Supp (f) = {a ∈ Fn
2 | f(a) = 1} . (3)

Therefore, Supp (f) is composed by the vectors of Fn
2 corresponding to the components

of ξf equal to 1. Due to the identification given between the elements of Fn
2 and Z2n ,

through the binary representation, we can rewrite:

Supp (f) = {i ∈ Z2n | f(i) = 1} .

Thus, according to expression (2), we can express f(x) as follows:

f(x) =
⊕

i∈Supp(f)

mi(x) (4)

which allows us to identify Supp (f) with the set of indices of the minterms of f(x).
If f ∈ Bn, then we call weight of f , denoted by w(f), to the number of 1s in its

truth table. Therefore, w(f) = |Supp (f)| and, clearly

w(f) =
∑
a∈Zn

2

f(a).

We said that f is balanced if w(f) = 2n−1.
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There exist several ways to represent a Boolean function (see [5]). For example, we
can write f(x) uniquely (see [31, 32]) as

f(x) = f(x1, x2, . . . , xn) =
∑
u∈Fn

2

µf (u)x
u, (5)

where µf (u) ∈ F2 is also a Boolean function, called the Möbius transform of f (see,
[33]). If u = (u1, u2, . . . , un), then

xu = xu1
1 xu2

2 · · ·xun
n with x

uj

j =

{
xj , if uj = 1,

1, if uj = 0.

Observe that in equation (5) each one of the terms xu is a monomial whose degree is
w(u), corresponding to the number of variables appearing in the product. Note that
w(u) is the number of nonzero components of the vector u. This representation of f
is known as the algebraic normal form (ANF) of f(x) [1]. Denote by mµf

the vector
composed by the coefficients of the ANF of f(x) given in expression (5), that is,

mµf
= (µf (0), µf (1), . . . , µf (2

n − 1)) . (6)

We call degree of f(x), denoted by deg f , to the maximum of degrees of the
monomials of its ANF, that is

deg f = max{w(u) | µf (u) = 1}.

2.3 Relation between the TT and the ANF

In this section, we summarise the well-known relation between the truth table and
the ANF of f using Hadamard matrices (see [34]). This connection will be crucial
in order to understand the new Boolean representation for binary sequences named
reverse-ANF and introduced later in Section 4.

The transformation of f into its ANF can be performed by using its corresponding
truth table (see [5, 34]). We call binomial matrix to the binary Hadamard matrix of
size 2t × 2t defined by

Ht =

[
Ht−1 Ht−1

0t−1 Ht−1

]
and H0 = [1] ,

with 0t−1 the null matrix of size 2t−1 × 2t−1 and t > 0 a positive integer. It is well
known that the binomial matrix Ht provides a relation between the ANF of a Boolean
function and its truth table through the following equation

ξf = mµf
·Ht mod 2, (7)

where the vector ξf corresponds to the truth table of f(x), given in equation (1),
and mµf

is the vector associated with the ANF of f(x), defined in expression(6). As
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the inverse of Ht is the same matrix (Ht is a idempotent matrix), we can rewrite the
equation (7) as

ξf ·Ht mod 2 = mµf
. (8)

The previous expression allows us to compute the coefficients of the ANF in terms of
the binomial matrix Ht and of the elements of the truth table of f(x).

Observe that, from expression (2), we have that a Boolean function f can be
expressed as a linear combination of its minterms, that is, ξf can be interpreted as
the vector of the coefficients of the representation of f from minterms. Moreover, from
expressions (3) and (4), the Supp (f) is the set of minterms of f . It means that we can
obtain the support of a Boolean function (equivalently, the set of its minterms) from
its ANF, and vice versa.

The following examples clarify this relation.
Example 1: Consider the truth table of a Boolean function of 4 variables given by

ξf = (0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0)

and the Hadamard matrix

H4 =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



.

We can obtain the ANF from the truth table ξf by means of equation (8) as follows

mµf
= ξf ·Ht mod 2 = (0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1).

In order to obtain the ANF, we need the positions of the 1s in the vector mµf
(we

assume that this vector starts in position 0 from left to right). Therefore, we have 1s
in positions {3, 4, 5, 8, 11, 12, 14, 15}, which means that the ANF is given by

f(x) = x3 + x4 + x5 + x8 + x11 + x12 + x14 + x15

= x0
1x

0
2x

1
3x

1
4 + x0

1x
1
2x

0
3x

0
4 + x0

1x
1
2x

0
3x

1
4 + x1

1x
0
2x

0
3x

0
4 + x1

1x
0
2x

1
3x

1
4 + x1

1x
1
2x

0
3x

0
4 + x1

1x
1
2x

1
3x

0
4 + x1

1x
1
2x

1
3x

1
4
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= x3x4 + x2 + x2x4 + x1 + x1x3x4 + x1x2 + x1x2x3 + x1x2x3x4

Next example proceeds in a reverse way.
Example 2: Consider the Boolean function of 4 variables given by

f(x) = f(x1, x2, x3, x4) = 1 + x4 + x2x3x4 + x1x2.

We have that its ANF is f(x) = x0 + x1 + x7 + x12 and, therefore, mµf
=

(1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0). Applying equation (7), we have that the truth
table of f(x) is

ξf = mµf
·H4 mod 2 = (1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0),

and, therefore, we can represent f(x) through its minterms as follows

f(x) =m0(x) +m2(x) +m4(x) +m6(x) +m7(x) +m8(x) +m10(x) +m13(x).

2.4 B-representation

From now on, we always consider sequences {sτ} of period a power of 2.
The binomial representation (B-representation) of binary sequences was first intro-

duced in [26, 27]. In fact, every binary sequence {sτ} with period 2t can be expressed
as a linear combination of binomial sequences as

b({sτ}) =
2t−1∑
i=0

ci

{(
n

i

)}
, (9)

where ci ∈ F2 for i = 0, 1, . . . , 2t−1 and
{(

n
i

)}
is the i-th binomial sequence [26]. This

sequence can be computed as{(
n

i

)}
=

{(
0

i

)
,

(
1

i

)
,

(
2

i

)
, . . .

}
,

where the coefficients
(
j
i

)
, for j = 0, 1, . . ., are reduced modulo 2 and

(
j
i

)
= 0 if i > j.

If there is no ambiguity, we can make an abuse of notation and simply denote the
binomial sequence by

(
n
i

)
. In Table 1, one can find the first 16 binomial sequences.

The expression (9) is called the B-representation of a sequence {sτ}, denoted by
b({sτ}). Sometimes, for simplicity, we will denote the B-representation by b({sτ}) ={∑2t−1

i=0 ci
(
n
i

)}
or simply b({sτ}) =

∑2t−1
i=0 ci

(
n
i

)
.

Consider cµf
the vector of length 2t composed by the coefficients of the B-

representation of {sτ}, that is, we have that

ci =

{
1 if

(
n
i

)
∈ b({sτ}),

0 if
(
n
i

)
/∈ b({sτ}),

(10)
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for i = 0, 1, . . . , 2t−1. For convenience, we can also denote the B-representation by the
vector (i1, i2, . . . , ik), where cij ̸= 0 in (10), with (i1 < i2 < · · · < ik) for j = 1, . . . , k.

Next, we present an example to clarify these two representations.
Example 3: Consider the sequence of period T = 8, {sτ} = (1, 1, 1, 0, 0, 0, 0, 1)
whose B-representation is given by b({sτ}) =

(
n
0

)
+
(
n
3

)
+
(
n
4

)
. We have that cµf

=
(1, 0, 0, 1, 1, 0, 0, 0). Moreover, this sequence can also be represented by the vector
b({sτ}) = (0, 3, 4).

Table 1: The first 16 binomial coefficients, their binomial
sequences

(
n
i

)
, periods and complexities

Binomial sequence Binary representation Period LC(n
0

)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1. . . 1 1(n

1

)
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 . . . 2 2(n

2

)
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 . . . 4 3(n

3

)
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 . . . 4 4(n

4

)
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1. . . 8 5(n

5

)
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 . . . 8 6(n

6

)
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1. . . 8 7(n

7

)
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1. . . 8 8(n

8

)
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 . . . 16 9(n

9

)
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 . . . 16 10(n

10

)
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 . . . 16 11(n

11

)
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 . . . 16 12(n

12

)
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 . . . 16 13(n

13

)
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 . . . 16 14(n

14

)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 . . . 16 15(n

15

)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 . . . 16 16

The coefficient cik and the B-representation provide us some information about
two fundamental parameters of the sequence: period and linear complexity (see [26]
for more details). Indeed, note that:

• The period of the sequence {sτ} is the same as that of the binomial sequence
(
n
ik

)
.

• The linear complexity of the sequence {sτ} is the same as that of the binomial
sequence

(
n
ik

)
, that is LC = ik + 1.

Fixed a linear complexity LC, the period of the sequence is uniquely determined.
Nevertheless, fixed a period there exist distinct sequences with such a period but
different linear complexities (see for example Table 1).

In [35], authors prove that there exists a relation between a binary sequence of
period a power of 2 and its B-representation. This connection is similar to the one
between ANF of a Boolean function and its truth table given in expression (7). Due to
the particular structure of the binomial sequences, the B-representation of a sequence
{sτ} can be turned into a matrix equation, as it is showed in the following theorem.
Theorem 1 (Theorem 2 of [35]): Consider the B-representation of a sequence
{sτ} of period T = 2t, with t a non-negative integer, and let Ht be the binomial matrix

9



of size 2t × 2t. Then,

(s0, s1, . . . , s2t−1) = (c0, c1, . . . , c2t−1) ·Ht mod 2, (11)

where the vector (s0, s1, . . . , s2t−1) corresponds to the first 2t terms of the sequence
{sτ}, and (c0, c1, . . . , c2t−1) is the vector cµf

given in expression (10).
As the matrix Ht is an idempotent matrix, we can write equation (11) as

(s0, s1, . . . , s2t−1) ·Ht mod 2 = (c0, c1, . . . , c2t−1). (12)

Therefore, the B-representation of a sequence {sτ} can be computed in terms of the
binomial matrix Ht and of the elements of the sequence {sτ}, and vice versa.

The following example clarifies this construction.
Example 4: Consider the sequence {sτ} with period T = 16 given by the vector

(s0, s1, . . . , s15) = (0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1).

From equation (12), we have that

(c0, c1, . . . , c15) = (s0, s1, . . . , s15) ·H4 mod 2 = (0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0),

and, therefore, the B-representation of {sτ} is

b({sτ}) =
(
n

3

)
+

(
n

4

)
+

(
n

6

)
+

(
n

7

)
+

(
n

8

)
+

(
n

9

)
+

(
n

10

)
+

(
n

11

)
+

(
n

12

)
.

3 Relation between B-representation and ANF

Due to the close relation between expressions (8) and (11), we will provide a connec-
tion between binary sequences {sτ} and Boolean functions. This link will allows us
to analyse some parameters of the Boolean functions from the study of the binary
sequences, and vice versa. In particular, in this section, we analyse the relation between
the B-representation of a sequence {sτ} and the ANF of a Boolean function.

An important fact which helps us to understand this relation is that the rows of
the binomial matrix Ht are the first 2t binomial sequences (see, [35, 36]), that is, we
can express

Ht =
[ {(

n
0

)} {(
n
1

)}
· · ·
{(

n
2t−2

)} {(
n

2t−1

)} ]T
.

Therefore, from expression (9), we have that every binary sequence {sτ} with period
2t can be expressed as a linear combination of the rows of Ht.

On the one hand, we have that equation (7), ξf = mµf
·Ht, means that the vector

ξf is obtained as the linear combination of the rows of Ht which is determined by the
elements of mµf

. Therefore, the vector ξf is obtained summing up binomial sequences.
Observe that we can define a relation between minterms and binomial sequences.
Moreover, as the support of a Boolean function is the set of its minterms, and the set

10



Truth Table = ANF · Hadamard matrix

B-representation = Sequence · Hadamard matrix

ξf = mµf
·Ht

cµf
= {sτ} ·Ht

Fig. 2: Relation between B-representation and ANF

of the binomial sequences is the B-representation, we can relate both representations.
Later, we will go into detail about this idea.

On the other hand, we have that cµf
, the vector of coefficients of the B-

representation of {sτ}, is determined by the coefficients of the linear combination
of the binomial sequences of b({sτ}). That is, from equation (12) we have that,
cµf

= {sτ} ·Ht, and we can deduce that the vector cµf
is obtained as the linear com-

bination of the rows of Ht which is determined by the elements of {sτ}. Moreover,
the vector b({sτ}) = (i1, i2, . . . , ik) indicates the positions of the 1s in cµf

, i.e., the
binomial sequences which form the B-representation. Note that this vector is closely
related with the concept of the support of a Boolean function.

Therefore, we can deduce that there exists a connection between the vectors ξf
and cµf

, since both provide the B-representation associated to certain sequence. It
implies that the ANF of a function f , with vector mµf

, and the sequence {sτ} are
related too. In Figure 2, we show the different connections.

From now on, we work indistinctly with the sequence {sτ} of length 2t (which can
be expressed by a vector s) and f the Boolean function of t variables whose ANF is
determined by the vector mµf

, which coincides with the sequence s. In this case, we
say that the sequence {sτ} is associated with f .

Through these relations, we can state that the set of minterms of a Boolean func-
tion f coincides with the vector b({sτ}) of the B-representation of the sequence {sτ}
associated with f .

The following example shows this relation.
Example 5: Consider again Example 4. We have that b({sτ}) =
(3, 4, 6, 7, 8, 9, 10, 11, 12). We can identify this set of indices with the set of minterms
of a Boolean function f(x) of 4 variables, that is, we have that

ξf = (0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0).

On the one hand, from equation (11), we obtain the sequence

(s0, s1, . . . , s15) = (0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1).

11



On the other hand, from equation (8), we have that

mµf
= (0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1) = {sτ}.

Therefore, the ANF of f is given by f(x) = x333 + x444 + x555 + x888 + x111111 + x121212 + x141414 + x151515.
We have related a sequence with a Boolean function.

4 New representation of sequences

In this section, we introduce a new representation of sequences, named reverse-ANF,
based on the ANF of a Boolean function and the B-representation of such sequences.
We study this representation and analyse its relation with the rest of representations
studied in this paper.

4.1 Reverse-ANF of a sequence

In order to introduce this new representation of a sequence, we need to consider xu

in a reverse way (see, for example Table 2), that is, we denote by

xu = xu1
n xu2

n−1 · · ·x
un
1 with x

uj

n−j+1 =

{
xn−j+1, if uj = 1,

1, if uj = 0.
(13)

Table 2: First 8 pow-
ers of xxxu

xuxuxu uuu xu1
3 xu2

2 xu3
1

xxx0 000 1

xxx1 001 x1

xxx2 010 x2

xxx3 011 x2x1

xxx4 100 x3

xxx5 101 x3x1

xxx6 110 x3x2

xxx7 111 x3x2x1

Next theorem is the most important result of our paper since that it establishes a
bijection between the B-representation of a sequence and a Boolean function.
Theorem 2: Let S be the set of all binary sequences of period power of two and B
the set of all Boolean functions. Consider the map given by

ϕ : S −→ B∑2t−1
i=0 ci

(
n
i

)
→ c0xxx000 + c1xxx111 + · · ·+ c2t−1xxx2

t−12t−12t−1
(14)

where xxxiii is as in equation (13), iii is the shortest binary representation of i and t
represents any positive integer. Then, ϕ is a bijection.

12



Proof: On the one hand, two different sequences in S have different B-
representations, therefore, the vector (c0, c1, . . . , c2t−1) is unique for each sequence.
Thus, two different sequences in S correspond to two different Boolean functions in B.

On the other hand, consider a Boolean function f ∈ B of t variables, whose Boolean
representation is

f(x) =

2t−1∑
i=0

cixi.

This function represents the sequence

2t−1∑
i=0

ci

{(
n

i

)}
.

As a consequence, the map ϕ is bijective. □
Note that, if we had considered the terms xxxjjj , instead of xxxjjj in the bijection given

in expression (14), then the Boolean representation of a binary sequence would not be
unique; since that this would depend on the number of digits considered in the binary
representation of j, and, therefore, of the number of variables. To illustrate this idea,
consider the map:

φ : S −→ B∑2t−1
i=0 ci

(
n
i

)
→ c0xxx

000 + c1xxx
111 + · · ·+ c2t−1xxx

2t−12t−12t−1
(15)

In (14) we have that the r-ANF of {sτ} =
{(

n
1

)}
is B({sτ}) = ϕ({sτ}) = xxx1. However,

the form of the representation in (15) depends on the number of variables. If we
consider Boolean functions of 4 variables, the representation in (15) is

φ({sτ}) = xxx1 = x0
1x

0
2x

0
3x

1
4 = x4.

Now, if we consider 5 variables, then we have that

φ({sτ}) = xxx1 = x0
1x

0
2x

0
3x

0
4x

1
5 = x5.

Therefore, considering the map given in (15), the same sequence has two different
representations, which is not practical for our purposes. For this reason, we consider the
bijection ϕ given in expression (14) instead of φ in expression (15). On that account,
we found necessary the introduction of the r-ANF of a sequence sτ in order to obtain
a unique Boolean function representing the sequence.

According to Theorem 2, we can introduce a new representation, in terms of
Boolean functions, for binary sequences with period a power of two.
Definition 1: Given a binary sequence {sτ} with period 2t, and its B-representation

b({sτ}) =
∑2t−1

i=0 ci
(
n
i

)
, the Boolean representation of this sequence, called reverse-

ANF of {sτ}, and denoted by B({sτ}), is given by B({sτ}) = ϕ({sτ}), where ϕ is as

13



Table 3: Boolean representation of the
first 16 binomial sequences

Binomial sequence Boolean representation(n
0

)
1(n

1

)
x1(n

2

)
x2(n

3

)
x2x1(n

4

)
x3(n

5

)
x3x1(n

6

)
x3x2(n

7

)
x3x2x1(n

8

)
x4(n

9

)
x4x1(n

10

)
x4x2(n

11

)
x4x2x1(n

12

)
x4x3(n

13

)
x4x3x1(n

14

)
x4x3x2(n

15

)
x4x3x2x1

in expression (14); that is,

B({sτ}) =
2t−1∑
i=0

cixi. (16)

Observe that the vector of the coefficients of the reverse-ANF of {sτ}, given in expres-
sion (16), coincides with cµf

, the vector of the coefficients of the B-representation of
{sτ}. Therefore, we use the vector cµf

indistinctly for the B-representation and the
r-ANF of a sequence {sτ}.

In Table 3 we can find the r-ANF of the first 16 binomial sequences. Note that
these r-ANF can be considered as Boolean functions of 4 variables. Moreover, if we
compute their truth tables, we obtain the binomial sequences of length 16 given in
Table 1 (evaluating the elements x ∈ Fn

2 in reverse order. See Table 4 for the case(
n
1

)
). Next example illustrates this idea.

Example 6: Consider the r-ANF of a sequence {sτ} of length 24 given by

B({sτ}) = xxx111 = x1.

The truth table of this Boolean function, obtained in Table 4, is

(0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1),

which coincides with the binomial sequence
(
n
1

)
given in Table 1. If we want to know the

sequence {sτ} associated to this r-ANF, we have to apply the equation (11), considering

cµf
= (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

14



Table 4:
Truth table of
B({sτ}) = xxx111

(x4, x3, x2, x1) x1

(0,0,0,0) 0
(0,0,0,1) 1
(0,0,1,0) 0
(0,0,1,1) 1
(0,1,0,0) 0
(0,1,0,1) 1
(0,1,1,0) 0
(0,1,1,1) 1
(1,0,0,0) 0
(1,0,0,1) 1
(1,0,1,0) 0
(1,0,1,1) 1
(1,1,0,0) 0
(1,1,0,1) 1
(1,1,1,0) 0
(1,1,1,1) 1

with B({sτ}) = (1). Therefore, we have that

{sτ} = (0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1),

that is, the truth table of the r-ANF. Moreover, the ANF associated to the sequence
{sτ} is

f(x1, x2, x3, x4) = x1 + x3 + x5 + x7 + x9 + x11 + x13 + x15

= x4 + x3x4 + x2x4 + x2x3x4 + x1x4 + x1x3x4 + x1x2x4 + x1x2x3x4.

Observe that in the previous example the ANF associated to the sequence {sτ} and
the reverse-ANF are completely different and perform distinct functions. Through the
ANF, we obtain the sequence {sτ} which is the truth table of the reverse-ANF; and,
from the reverse-ANF, we compute the B-representation and, therefore, the minterms
representation of {sτ}.

Next, we introduce some results where we study two important properties about
Boolean functions such as balancedness and the maximum degree, both obtained from
the r-ANF (or equivalently, from the B-representation) and the ANF of the sequence
associated with the function.

The following two theorems allow us to know if the r-ANF of a sequence {sτ} (and
the ANF of the function f associated with it) has maximum degree. These results are
based on Theorem 4 of [37], even though we apply this result to sequences and give
an alternative proof.
Theorem 3: Consider {sτ} a sequence of period 2t, with t a positive integer. Then,
the ANF associated to {sτ} has maximum degree if and only if w(cµf

) is odd.
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Proof: Suppose that we have a sequence {sτ} of period 2t whose ANF has maximum
degree, that is, it has the term x1x2 · · ·xt and, therefore, the vector mµf

has 1 in the
last position. Remember that all the binomial sequences have 1 in the last position.
Due to the fact that the rows of the matrix Ht are composed of the first 2t−1 binomial
sequences, and from expression (11), we obtain mµf

as a linear combination of the
rows of Ht. Thus, {sτ} is formed by the sum of an odd number of binomial sequences,
that is, w(cµf

) is odd.
Now, suppose that w(cµf

) is odd. In a similar way as in the previous implication,
from expression (11), we obtain mµf

as a linear combination of and odd number of
rows of Ht. Therefore, mµf

has a 1 in the last position and the ANF has maximum
degree. □

We obtain a similar result for the r-ANF of a sequence.
Theorem 4: Consider {sτ} a sequence of period 2t, with t a positive integer. Then,
the r-ANF of {sτ} has maximum degree if, and only if,

(
n

2t−1

)
is a member of the

r-ANF of {sτ}.
Proof: Consequence of Theorem 3 and the isomorphism properties of (14). □

Next theorem provides a necessary condition for a sequence to be balanced.
Theorem 5: Let {sτ} be a balanced sequence of period 2t. Then, the term

(
n

2t−1

)
is

not part of the B-representation. Moreover, the term x2t − 1 is not part of the r-ANF.
Proof: If {sτ}, with period 2t, is balanced, then its weight is 2t−1. From
equation (12), we have that the vector cµf

is the result of the sum of 2t−1 binomial
sequences, determined by the components of the vector (s0, s1, . . . , s2t−1). We know
that all the binomial sequences has 1 in the last position. Therefore, the last compo-
nent of cµf

is zero. It means that the B-representation of {sτ} does not have the term(
n

2t−1

)
. That is, as c2t−1 = 0, then x2t−1 is not part of the r-ANF of {sτ}. □

As a consequence of the previous results, we can deduce the following corollary.
Corollary 1: The linear complexity LC of a balanced sequence with period 2t satisfies
LC < 2t.

4.2 Relation between the representations of a sequence

In Theorem 2, we show the relation between between the r-ANF and the B-
representation of a sequence. We can obtain directly one representation from the other
one. Moreover, in Section 3, we analyse the relation between the ANF and the B-
representation of a sequence, obtaining that the vector mµf

can be considered as the
sequence. This connection allows us to obtain the r-ANF of a sequence {sτ} directly
from the sequence.

From equation (12) and Theorem 2, we can obtain

cµf
= (s0, s1, . . . , s2t−1) ·Ht mod 2.

We can rewrite this equation in terms of the ANF as follows

cµf
= mµf

·Ht mod 2; (17)
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that is, we can obtain the B-representation from the ANF, and vice versa. Moreover,
we can also obtain the r-ANF from the ANF and vice versa. We check this relation
from the following example.
Example 7: Consider again the Example 5. We have that

mµf
= (0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1).

Applying equation (17), we obtain that

cµf
= (0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0),

that is, b({sτ}) = {3, 4, 6, 7, 8, 9, 10, 11, 12}. Therefore, the r-ANF of {sτ} is

B({sτ}) = x3 + x4 + x6 + x7 + x8 + x9 + x10 + x11 + x11

= x2x1 + x3 + x3x2 + x3x2x1 + x4 + x4x1 + x4x2 + x4x2x1 + x4x3.

Next result establishes that a balanced Boolean function cannot have maximum
degree. Remember that a balanced function is determined by its truth table ξf , and,
equivalently, through the vector cµf

.
Theorem 6: The ANF of a balanced Boolean function of t variables cannot include
the maximum monomial x1x2 · · ·xt, that is, it does not have maximum degree.
Proof: Consequence of Theorem 3. □
Example 8: Consider a balanced Boolean function of 4 variables whose truth table is

ξf = (1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0).

Applying equation (8), we obtain that

mµf
= (1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0),

so, its ANF is

f(x) = x0 + x1 + x2 + x5 + x10 + x14 = 1 + x4 + x3 + x2x4 + x1x3 + x1x2x3,

which has not the maximum degree.
If we compute the r-ANF, as the vector ξf is equivalent to the vector cµf

, we have
that b({sτ}) = {0, 3, 4, 5, 8, 10, 12, 13}. The element 24 − 1 = 15 is not part of the
B-representation, then from Theorem (3), the r-ANF

B({sτ}) = x0 + x3 + x4 + x5 + x8 + x10 + x12 + x13

= 1 + x1x2 + x3 + x1x3 + x4 + x2x4 + x3x4 + x1x2x4,

has not maximum degree.
Corollary 2: Let f be the Boolean function associated with the sequence {sτ} of
period a power of two, that is, its ANF or r-ANF. If f is balanced, then f has not
maximum degree.
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Next, we present some important results which allows us to know more about
the r-ANF through the B-representation. Both results follow immediately from the
Definition 1.
Theorem 7: The r-ANF of a sequence {sτ} is B({sτ}) = xj, if and only if b({sτ}) =(

n
2j−1

)
. Particularly, B({sτ}) = 1, if and only if the B-representation is b({sτ}) =

(
n
0

)
.

Check, for example, the r-ANF of the sequences
(
n
1

)
,
(
n
2

)
,
(
n
4

)
and

(
n
8

)
in Table 3.

Theorem 8: The r-ANF of a sequence {sτ} is B({sτ}) = xjxj−1 · · ·x2x1 if and only
if the B-representation is b({sτ}) =

(
n

2j−1

)
.

Check, for example, the r-ANF of the sequences
(
n
3

)
,
(
n
7

)
, and

(
n
15

)
in Table 3.

Next result allows us to obtain the r-ANF of a sequence {sτ} from its B-
representation.

Theorem 9: Given a sequence {sτ} with B-representation b({sτ}) =
∑2t−1

i=0 ci
(
n
i

)
,

we have that its r-ANF is given by

B({sτ}) =
2t−1∑
i=0

ciB
((

n

i

))

Proof: Note that the map considered in equation (14) is a linear operator, that is,
for any two sequences {sτ} and {uτ}, both with period power of two, we have that
ϕ({sτ}+ {uτ}) = ϕ({sτ}) + ϕ({uτ}). Therefore,

B

2t−1∑
i=0

ci

(
n

i

) = ϕ

2t−1∑
i=0

ci

(
n

i

) =

2t−1∑
i=0

ciϕ

((
n

i

))
=

2t−1∑
i=0

ciB
((

n

i

))
.

Theorem 9 implies that the application ϕ given in (14) is an F2-linear space iso-
morphism. Therefore, in order to obtain the r-ANF of a sequence, we can just sum
over F2 the r-ANFs of the binomial sequences involved in the B-representation. As an
example, observe that the r-ANF of the sequence

(
n
7

)
+
(
n
6

)
is given by

B
((

n

7

)
+

(
n

6

))
= B

((
n

7

))
+ B

((
n

6

))
= x3x2x1 + x3x2.

4.3 reverse-ANF of shifted sequences

It is well known that, when a sequence is shifted a finite number of positions, the
B-representation changes [26]. As a consequence, the same happens with the reverse-
ANF. In this section, we study the r-ANF of shifted versions of a sequence.
Theorem 10: Consider the binomial sequence

(
n

2j−1

)
represented by xj, for j ∈

{2, 3, . . .}. If we shift cyclically such a sequence one bit to the left, then the r-ANF of
the shifted version is x1x2 · · ·xj−1 + xj. When j = 1, we have that the r-ANF of its
shifted version is 1 + x1.
Proof: Consequence of the isomorphism properties of (14), Theorem 8 and Lemma
9 in [26]. □
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Example 9: Consider the sequence(
n

8

)
= {0000000011111111 . . .}

whose r-ANF is x4. If we shift the sequence one bit to the left, we obtain the following
shifted version of the same sequence (see [26, Lemma 9] for more details):(

n

8

)
+

(
n

7

)
= {0000000111111110 . . .},

whose r-ANF is x1x2x3 + x4.
We can generalize the result given in Theorem 10 for sequences whose r-ANFs are

monomials.
Theorem 11: Consider the binary sequence represented by xikxik−1

· · ·xi2xi1 with
ik > ik−1 > · · · > i2 > i1. If we shift cyclically such a sequence one bit to the left, then
the r-ANF of the resultant shifted version is xikxik−1

· · ·xi3xi2 + xikxik−1
· · ·xi2xi1 .

Proof: Consequence of the isomorphism properties of (14) and Lemma 9 in [26]. □
Example 10: Consider the sequence(

n

7

)
= {0000000100000001 . . .}

whose r-ANF is x3x2x1. If we shift the sequence one bit to the left, we obtain the
following shifted version of the same sequence (see [26, Lemma 9] for more details):(

n

7

)
+

(
n

6

)
= {0000001000000010 . . .},

whose r-ANF is x3x2x1 + x3x2.
As a consequence of Theorems 10 and 11, we can introduce the following theorem.

Theorem 12: Consider the r-ANF of a sequence B({sτ}) =
∑2t−1

i=0 cixi. If we shift
the sequence one bit to the left, we obtain a shifted version of the same sequence with
r-ANF given by

B({sτ}) =
2t−1∑
i=1

ci

(
xi +∆

(
xi
))

+ c0.

where

∆
(
xi
)
=

{
xij · · ·xi3xi2 if xi = xij · · ·xi2xi1 for some i1 < i2 < · · · < ij .

xj−1 · · ·x2x1 if xi = xj for some j.

Proof: Consequence of the isomorphism properties of (14) and Theorem 15 in [26].□
Example 11: Consider the sequence {sτ} = {01000100 . . .} represented by b({sτ}) =(
n
3

)
+
(
n
1

)
. The r-ANF of this sequence is given by B({sτ}) = x2x1+x1. This sequence
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Fig. 3: The r-ANFs of the 4 shifted versions of the sequence given by x2x1 + x1

x2x1x2x1x2x1 x1x1x1+

x2x1x2x1x2x1 x2x2x2 x1x1x1 111

x2x1x2x1x2x1 ��x2 ��x2 ��x1 ��x1 �1 �1

x2x1x2x1x2x1 x2x2x2

x2x1x2x1x2x1��x2 ��x2 x1x1x1

has period equal to 4, therefore it has 4 different shifted versions. The B-representations
of the shifted versions are

b({01000100 . . .}) =
(
n

3

)
+

(
n

1

)
,

b({10001000 . . .}) =
(
n

3

)
+

(
n

2

)
+

(
n

1

)
+

(
n

0

)
,

b({00010001 . . .}) =
(
n

3

)
,

b({00100010 . . .}) =
(
n

3

)
+

(
n

2

)
;

and their r-ANFs are

B({01000100 . . .}) = x2x1 + x1,

B({10001000 . . .}) = x2x1 + x2 + x1 + 1,

B({00010001 . . .}) = x2x1,

B({00100010 . . .}) = x2x1 + x2.

Figure 3 shows the process followed in order to obtain the four r-ANFs using
Theorem 12.

Next, we introduce a result relating the Sierpinski triangle with the shifted versions
of a binomial sequence. Recall that if we arrange the binomial coefficients

(
n
k

)
into

rows for successive values of n = 0, 1, 2, . . ., then the generated structure is the Pascal’s
triangle (see Figure 4a). If we color the odd numbers of the Pascal’s triangle and
shade the even ones, we obtain the Sierpinski’s triangle (see Figure 4b). Considering
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Fig. 4: Binomial coefficients arranged as triangles
(a) Pascal’s triangle(

0
0

)(
1
0

) (
1
1

)(
2
0

) (
2
1

) (
2
2

)(
3
0

) (
3
1

) (
3
2

) (
3
3

)(
4
0

) (
4
1

) (
4
2

) (
4
3

) (
4
4

)(
5
0

) (
5
1

) (
5
2

) (
5
3

) (
5
4

) (
5
5

)

(b) Sierpinski’s triangle

1

11

121

131 3

1441 6

1101 10 55

1201 66 15 15

11 7 21 35 35 21 7

(c) Sierpinski’s triangle mod 2

1

11

101

111 1

1001 0

101 0 11

101 00 1 1

11 1 1 1 1 1 1

the Pascal’s triangle modulo 2 (Figure 4c), we can observe that the diagonals are the
binomial sequences starting in a different position (here they start with the first 1).

First, we need to introduce a minor result regarding the rows of the (binary)
Sierpinski triangle.
Lemma 1: Consider dn = (dn0 , d

n
1 , . . . , d

n
n), for n = 0, 1, . . ., the n-th row of the binary

Sierpinski triangle (see Figure 4c). Then,

1. The first and the last elements of dn are equal to 1, i.e., dn0 = dnn = 1.
2. It is possible to generate the elements in the (n+1)-th row, denoted by dn+1, using

the elements in dn, in the following way: dn+1
k+1 = dnk + dnk+1, for k = 1, . . . , n− 1.

Proof: 1. The first and last elements are
(
n
0

)
=
(
n
n

)
= 1.
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2. Consequence of the following combinatorial property:

(
n

k

)
+

(
n

k + 1

)
=

(
n+ 1

k + 1

)

Theorem 13: Consider the binomial sequence
(
n
k

)
with period T = 2t and consider

r a positive integer such that r < T . If we shift such sequence r positions to the left,
then the r-ANF of the resultant shifted version is given by

min{r,k}∑
i=0

drr−iϕ

((
n

k − i

))
(18)

where dr = (dr0, d
r
1, . . . , d

r
r) is the r-th row of the binary Sierpinski triangle (see

Figure 4c).
Proof: Let us start with the binomial sequence

(
n
k

)
. If we shift this sequence one

position to the left we obtain the sequence
(

n
k−1

)
+
(
n
k

)
(see [26] for more details).

This means that the r-ANF of this shifted version is d10ϕ
((

n
k−1

))
+ d11ϕ

((
n
k

))
, where

d1 = (d10, d
1
1) = (1, 1) is the 1st row of Sierpinski (Note that the 0-th row is d0 = (1)).

Assume now that after r shifts (with r < k), the B-representation is

r∑
i=0

drr−i

(
n

k − i

)
= dr0

(
n

k − r

)
+ dr1

(
n

k − r + 1

)
+ · · ·+ drr−1

(
n

k − 1

)
+ drr

(
n

k

)

and the corresponding r-ANF is

B

(
r∑

i=0

drr−i

(
n

k − i

))
=

r∑
i=0

drr−iB
((

n

k − i

))
.

Now, if we shift this r-shifted version one position to the left, we obtain that the
B-representation is given by

r∑
i=0

drr−i

((
n

k − i− 1

)
+

(
n

k − i

))
= dr0

(
n

k − r − 1

)
+

r−1∑
i=0

(drr−i+drr−i+1)

(
n

k − i

)
+drr

(
n

k

)
(19)

(see [26] for more details). According to Lemma 1, we have that dr0 = dr+1
0 = 1,

drr = dr+1
r+1 = 1 and drr−i + drr−i+1 = dr+1

r−i+1. Therefore, expression (19) is equal to

r+1∑
i=0

dr+1
r+1−i

(
n

k − i

)
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and the corresponding r-ANF for r + 1 shifts is given by

B

(
r+1∑
i=0

dr+1
r+1−i

(
n

k − i

))
=

r+1∑
i=0

dr+1
r+1−iB

((
n

k − i

))
,

which proofs that the expression (18) is correct for r < k.
When r = k, the r-ANF has the following form

B

(
k∑

i=0

dkk−i

(
n

k − i

))
=

k∑
i=0

dkk−iB
((

n

k − i

))
.

Note that, in this case, the binomial sequence
(
n
0

)
appears for the first time in the B-

representation of the shifted version; this means that the term 1 appears for the first
time in the r-ANF. It is worth mentioning that the binomial sequence

(
n
0

)
is invariant

for translations, i.e., it remains the same after shifts. Therefore, if we shift the binomial
sequence r = k + 1 position to the left, the B-representation has the following form

k−1∑
i=0

dkk−i

((
n

k − i− 1

)
+

(
n

k − i

))
+

(
n

0

)
=

k∑
i=1

(dkk−i + dkk−i+1)

(
n

k − i

)
+ dkk

(
n

k

)
.

(20)

□
Recalling that dk+1

k+1 = dkk = 1 and dkk−i+dkk−1−i = dk+1
k+1−i, we have that the expression

in (20) is equal to
k∑

i=0

dk+1
k+1−i

(
n

k − i

)
.

Therefore, the r-ANF in this case (r = k + 1) is

B

(
k∑

i=0

dk+1
k+1−i

(
n

k − i

))
=

k∑
i=0

drr−iB
((

n

k − i

))
.

Using the same argument for any k + 1 < r < T , the theorem follows.
Example 12: Consider the binomial sequence(

n

k

)
=

(
n

5

)
= {00000101 . . .}

whose r-ANF is x3x1. Assume we shift this sequence r = 4 positions to the left, then
the shifted version is given by {01010000 . . .}. The 4th row of the Sierpinski triangle
is d4 = (1, 0, 0, 0, 1). Therefore the r-ANF of the shifted version is given by

4∑
i=0

d44−iB
((

n

5− i

))
= B

((
n

5

))
+ B

((
n

1

))
= x3x1 + x1.
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Fig. 5: Binomial representations of
(
n
5

)
and the Sierpinski’s triangle
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(b) First 8 rows of the Sierpinski triangle
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Now, assume we shift the sequence r = 6 positions to the left, then the shifted
version is given by {01000001 . . .}. The 6th row of the triangle is d6 = (1, 0, 1, 0, 1, 0, 1).
Therefore the r-ANF of the shifted version is given by

5∑
i=0

d66−i B
((

n

5− i

))
= B

((
n

5

))
+ B

((
n

3

))
+ B

((
n

1

))
= x3x1 + x2x1 + x1.

In this case, since r > k, we only used the last k + 1 = 6 elements of row d6 =
(1, 0, 1, 0, 1, 0, 1). Check Figure 5 to understand more deeply the relation between the
shifted versions and the Sierpisnki triangle.

Corollary 3: Assume
∑2t−1

i=0 ci
(
n
i

)
is the B-representation of {sτ}, then the r-ANF

of the sequence cyclically shifted r bits to the left is

2t−1∑
i=1

ci

min{r,i}∑
j=0

drr−jB
((

n

k − j

))
,

where dr is the r-th row of the binary Sierpinski triangle (see Figure 4c).
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5 The reverse sequence

Now, we are ready to introduce the definition of reverse sequence and its relation with
the shifted versions of a sequence.
Definition 2: Given the sequence {sτ} with period T , the reverse sequence {sτ}∗ is
a sequence of period T as well, where its τ -th term satisfies the equality s∗τ = sT−1−τ

for τ = 0, 1, . . . , T − 1.
For instance, the reverse sequence of the binomial sequence

(
n
5

)
= {0 0 0 0 0 1 0 1} is

the sequence given by
(
n
5

)∗
= {1 0 1 0 0 0 0 0}, which is also a shifted version of

(
n
5

)
.

Theorem 14: The reverse sequence
(
n
k

)∗
of the binomial sequence

(
n
k

)
is a shifted

version
(
n
k

)
with shift k.

Proof: This is consequence of the following facts:

1. The first k elements of the sequence
(
n
k

)
are zeros and the (k + 1)-th element is 1.

2. If the period of the sequence
(
n
k

)
is T , then the subsequence

(
n
k

)
k+1≤n≤T−1

is

symmetric, in the sense that such a subsequence is equal to its own reverse sequence
(for more detail on the properties of the binomial sequences please check Figure 8
in [26]). □

As a consequence of the previous theorem and Theorem 13, we have the following
result.
Corollary 4: The B-representation of

(
n
k

)∗
can be obtained by using the k-th row of

the Sierpinski triangle, denoted by dk, as follows:

b

((
n

k

)∗)
=

k∑
i=0

dki

(
n

i

)
.

As a consequence of the previous corollary we have that the r-ANF of the sequence(
n
k

)∗
is given by

B
((

n

k

)∗)
=

k∑
i=0

dki B
((

n

i

))
.

Example 13: Given the sequence
(
n
5

)
, if we want to compute both representations

of the reverse sequence, then we use the 5th row of the Sierpinski’s triangle, that is,
d5 = (1, 1, 0, 0, 1, 1). In fact, we have that

b

((
n

5

)∗)
=

5∑
t=0

d5i

(
n

i

)
=

(
n

0

)
+

(
n

1

)
+

(
n

4

)
+

(
n

5

)
.

B
((

n

5

)∗)
= B

((
n

0

)
+

(
n

1

)
+

(
n

4

)
+

(
n

5

))
= 1 + x1 + x3 + x3x1

It is easy to check that the reverse sequence is a shifted version of the own sequence:(
n

5

)
: 0 0 0 0 0 1 0 1 . . .
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(
n

5

)∗

=

(
n

0

)
+

(
n

1

)
+

(
n

4

)
+

(
n

5

)
: 1 0 1 0 0 0 0 0 . . .

Theorem 15: Consider a sequence with period 2t and B-representation
∑2t−1

k=0 ck
(
n
k

)
,

then the B-representation of its reverse sequence is given by

b


2t−1∑
k=0

ck

(
n

k

)
∗ =

2t−1∑
k=0

ck

(
k∑

i=0

dki

(
n

i

))
.

and the r-ANF is

B


2t−1∑
k=0

ck

(
n

k

)
∗ =

2t−1∑
k=0

ck

(
k∑

i=0

dki B
((

n

i

)))
.

Proof: This is a consequence of the fact that the reverse version of a given sequence
is the linear combination of the reverse sequences of the corresponding binomial
sequences in the B-representation of such a sequence, that is:

2t−1∑
k=0

ck

(
n

k

)
∗

=

2t−1∑
k=0

ck

(
n

k

)∗

.

□

Example 14: Consider the sequence {sτ} with B-representation b({sτ}) =
(
n
2

)
+(

n
5

)
+
(
n
7

)
. We can compute the B-representation of its reverse sequence {sτ}∗ summing

up the reverse sequences of the corresponding binomial sequences involved in the B-
representation: {(

n
2

)}∗
:
{(

n
0

)
+ +

(
n
2

) }
+

{(
n
5

)}∗
:
{(

n
0

)
+
(
n
1

)
+ +

(
n
4

)
+
(
n
5

) }{(
n
7

)}∗
:
{(

n
0

)
+
(
n
1

)
+
(
n
2

)
+
(
n
3

)
+
(
n
4

)
+
(
n
5

)
+
(
n
6

)
+
(
n
7

)}{(
n
2

)
+
(
n
5

)
+
(
n
7

)}∗
:
{(

n
0

)
+ +

(
n
3

)
+ +

(
n
6

)
+
(
n
7

)}
Therefore, the B-representation and the r-ANF of the reverse sequence will be:

b({sτ}∗) =
(
n

0

)
+

(
n

3

)
+

(
n

6

)
+

(
n

7

)
B({sτ}∗) =x3x2x1 + x3x2 + x2x1 + 1.

It is easy to check that both sequences are reverses:{(
n
2

)
+
(
n
5

)
+
(
n
7

)}
: 0 0 1 1 0 1 1 1{(

n
0

)
+
(
n
3

)
+
(
n
6

)
+
(
n
7

)}
: 1 1 1 0 1 1 0 0
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6 Reverse-ANF of generalized sequences

In [27], the authors introduced different representations of generalized self-shrunken
sequences and in analysed some criptographic properties of them through the represen-
tations given. In this section, we study this new Boolean representation for sequences,
the reverse-ANF, in the particular case of the generalized sequences with the aim to
complete the work done in [27]. We present some interesting results which could help
us in the research of some open problems related with these sequences.

Next, we introduce the definition of the generalized sequences and some necessary
results required for the understanding of this section.

Consider a PN-sequence {uτ}τ≥0 obtained from a maximal-length LFSR with L
stages, an L-dimensional vector G = [g0, g1, g2, ..., gL−1] ∈ FL

2 and let {vτ}τ≥0 be the
sequence defined as:

vτ = g0uτ + g1uτ−1 + g2uτ−2 + · · ·+ gL−1uτ−L+1 for τ ≥ 0.

Now, the decimation rule to generate new sequences {sj}j≥0 is given by:{
If uτ = 1, then sj = vτ ,

If uτ = 0, then vτ is discarded.

The sequence {sj}j≥0, denoted by S(G), is called the generalized self-shrunken
sequence, GSS-sequence or simply generalized sequence associated with G (see [30]);
and the sequence generator is called the generalized self-shrinking generator
(GSSG).

Note that when G runs over FL
2 \ {000} we obtain all the shifted versions of {uτ}τ≥0.

The set of sequences F =
{
S(G) | G ∈ FL

2 \ {000}
}

is called the family of generalized
sequences based on the PN-sequence {uτ}τ≥0. It is easy to check that the family F ∪
{S(0)}, where S(0) = {0 0 0 0 0 . . .}, is an additive group with the operation addition
modulo 2 [30]. In particular, the opposite of any sequence S(G) is the sequence itself.
Moreover, the period of every generalized sequence is a divisor of 2L−1 (the number of
ones in the PN-sequence) and every sequence of this family is balanced except for the
identically 1 sequence and the null sequence [30, Theorem 1]. The generalized sequences
of period 1 and 2, that is, {111111 . . .}, {010101 . . .} and {101010 . . .}, are referred as
the trivial sequences of the family of generalized sequences. The null sequence is not
considered as a generalized sequence.
Theorem 16: The r-ANF of the trivial sequences in the family of generalized
sequences are:

B({111111 . . .}) = 1, B({010101 . . .}) = x1, and B({101010 . . .}) = 1 + x1.

Example 15: Consider the primitive polynomial p(x) = 1 + x + x4. In Table 5
we can find the generalized sequences obtained with p(x) and the corresponding B-
representation and r-ANF for each sequence. Note that all sequences (except for the
trivial ones) contain the monomials x3 or x3x1, which indicates the linear complexity
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Table 5: B-representation and r-ANF of generalized sequences

G Generalized sequence B-representation r-ANF
0001 0 1 0 1 0 1 0 1 (1) x1

0010 1 0 1 1 0 0 0 1 (0,1,3,4,5) 1 + x1 + x2x1 + x3 + x3x1

0011 1 1 1 0 0 1 0 0 (0,3,4,5) 1 + x2x1 + x3 + x3x1

0100 0 1 1 1 0 0 1 0 (1,2,3,5) x1 + x2 + x2x1 + x3x1

0101 0 0 1 0 0 1 1 1 (2,3,5) x2 + x2x1 + x3x1

0110 1 1 0 0 0 0 1 1 (0,2,4) 1 + x2 + x3

0111 1 0 0 1 0 1 1 0 (0,1,2,4) 1 + x1 + x2 + x3

1000 1 1 1 1 1 1 1 1 (0) 1
1001 1 0 1 0 1 0 1 0 (0,1) 1 + x1

1010 0 1 0 0 1 1 1 0 (1,3,4,5) x1 + x2x1 + x3 + x3x1

1011 0 0 0 1 1 0 1 1 (3,4,5) x2x1 + x3 + x3x1

1100 1 0 0 0 1 1 0 1 (0,1,2,3,5) 1 + x1 + x2 + x2x1 + x3x1

1101 1 1 0 1 1 0 0 0 (0,2,3,5) 1 + x2 + x2x1 + x3x1

1110 0 0 1 1 1 1 0 0 (2,4) x2 + x3

1111 0 1 1 0 1 0 0 1 (1,2,4) x1 + x2 + x3

(6 and 5 in this case). Notice also that the r-ANF of the first half of the sequences is
the same as the inferior half except for the term 1.

Next theorem provides some important properties of the r-ANF of the generalized
sequences.
Theorem 17: The r-ANF B({sτ}) of any generalized sequence {sτ} obtained from a
primitive polynomial of degree L satisfies the following properties:

a) B({sτ}) is composed of |b({sτ})| monomials, where |b({sτ})| denotes the support
of the B-representation of {sτ}.

b) The maximum sub-index j in the variables xj of B({sτ}) is L− 1.
c) B({sτ}) does not include the maximum term xL−1 · · ·x2x1.
d) There exists another generalized sequence in the same family with r-ANF B({sτ})+

1.

Proof: a) This item follows immediately from the definition of r-ANF.
b) It is well-known that the period of the generalized sequences is a divisor of 2L−1

[30]. The best case scenario is when the period is exactly 2L−1. In this case the
last term of the B-representation of the sequence is

(
n
k

)
with 2L−2 ≤ k ≤ 2L−1 − 1.

The binary representation of k has length L− 1, therefore, the r-ANF have L− 1
variables: x1, x2, . . . , xL−1.

c) Except for the trivial sequence {11111111 . . .}, the generalized sequences are always
balanced [30]. Therefore, according to Theorem 6, the generalized sequences cannot
have maximum degree, i.e., they cannot include the maximum term xL−1 · · ·x2x1.

d) According to [26, 27], for any generalized sequence {sτ} with B-representation
b({sτ}), there exists another generalized sequence in the same family with B-
representation b({sτ}) +

(
n
0

)
. The results follows from the definition of r-ANF.

□
As a consequence of item b) of Theorem 17, we can deduce that the B-

representation of a generalized sequence cannot contain the term
(

n
2L−1−1

)
, and then

the linear complexity satisfies LC < 2L−1.
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Table 6: r-ANF and B-representation of the shifted ver-
sions of a generalized sequence of period 8.

Shifted versions B-representation r-ANF
1 0 1 1 0 0 0 1 (0,1,3,4, 5) 1 + x1 + x2x1 + x3 + x3x1

0 1 1 0 0 0 1 1 (1,2,5) x1 + x2 + x3x1

1 1 0 0 0 1 1 0 (0,2,4,5) 1 + x2 + x3 + x3x1

1 0 0 0 1 1 0 1 (0,1,2,3,5) 1 + x1 + x2 + x2x1 + x3x1

0 0 0 1 1 0 1 1 (3,4,5) x2x1 + x3 + x3x1

0 0 1 1 0 1 1 0 (2,5) x2 + x3x1

0 1 1 0 1 1 0 0 (1,2,4,5) x1 + x2 + x3 + x3x1

1 1 0 1 1 0 0 0 (0,2,3,5) 1 + x2 + x2x1 + x3x1

Example 16: Consider, for example, the generalized sequence {sτ} in Example 15
with r-ANF B({sτ}) = 1 + x1 + x2x1 + x3 + x3x1 and B-representation b({sτ}) =
(0, 1, 3, 4, 5). Now, Note that the maximum sub-index in the r-ANF is L − 1 = 3
and it does not include the maximum term x3x2x1. Also, the r-ANF is composed of
5 monomials, which coincides with the support of the B-representation. It is worth
noticing that there exists another generalized sequence in the same family, with r-ANF
B({sτ}) + 1 = x1 + x2x1 + x3 + x3x1 and B-representation (1, 3, 4, 5).

From Theorem 17, we know that the number of monomials of the r-ANF of a binary
sequence is the support of its B-representation. Next result gives us an upper bound
of this value for generalized sequences, which is related with the linear complexity of
them. In [38], authors proved that, for these sequences, LC ≤ 2L−1 − (L − 2). Note
that a similar bound was found in [39, 40] for the self-shrinking generator.
Theorem 18: Let {sτ} be a generalized sequence. The number of monomials N of
its r-ANF B({sτ}) satisfies

N = |b({sτ})| ≤ 2L−1 − (L− 2).

Proof: It is an immediate consequence from the definition B-representation and
the bound of the LC for generalized sequences. The maximum value in the B-

representation of a generalized sequence is the term
{(

n
ik

)}
, as we saw in Section 2.4.

Moreover, LC = ik+1 ≤ 2L−1−(L−2), that is, ik ≤ 2L−1−(L−1). But, in the worst
case, we could have in the B-representation of the sequence all the elements

{(
n
i

)}
,

for i = 0, . . . , 2L−1 − (L− 1). Therefore, |b({sτ})| ≤ 2L−1 − (L− 2). □
Theorem 19: Let {sτ} be a generalized sequence of period 2L−1 generated by a prim-
itive polynomial of degree L. Then, 2L−2 shifted versions of {sτ} have the term

(
n
0

)
in

their B-representation, or, in other words, they have the monomial 1 in their r-ANF.
Proof: If {sτ} is balanced, then it will be composed of 2L−2 zeros and 2L−2 ones. This
means that half of the shifted versions (2L−2 versions) start with 1. As a consequence
of Theorem 7, the binomial representation of those shifted versions includes the term(
n
0

)
, that is, the r-ANF includes the monomial 1. □

Example 17: In Table 6 we can find the B-representation and the r-ANF of all shifted
versions of {sτ} = {10110001}, one of the generalized sequences in Example 15. Note
that the r-ANF of all the shifted versions have the same maximum monomial x3x1,
which corresponds to the term

(
n
5

)
in the B-representation. It is worth noticing that
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some shifted versions correspond to other generalized sequences in the same family
(check Table 5). This usually happens when the degree of the polynomial is small. Note
that half of the shifted versions have the term

(
n
0

)
in the B-representation, as proved

in Theorem 19.

7 Conclusions

In this paper, we define a bijection between the set of Boolean functions and the set
of binary sequences of period a power of two. This connection allows us to analyse
properties of the binary sequences through Boolean functions. Moreover, we define the
reverse-ANF of a sequence, that is, a new representation of binary sequences based
on Boolean functions. We introduce this new Boolean representation, instead of using
the ANF, in order to our representation of a sequence, through Boolean functions, is
unique. We show the relation between the different representations presented in terms
of binary sequences and Boolean functions. We study the reverse-ANF in the family
of generalized sequences, its relation to the Sierpinski triangle, and the representation
of the reverse sequences. As future work, we would like to go in depth in the analysis
of more important cryptographic properties of Boolean functions, as strict avalanche
criterion, correlation immunity, non-linearity, among others, in terms of this r-ANF
and how it can be interpreted in function of the binary sequences and other represen-
tations. Our aim is to use this connection to try to solve difficult problems in the field
of binary sequences using Boolean functions, and vice verse. For instance, an open
problem for the generalized sequences, obtained from a primitive polynomial of degree
L, is to prove that their period is always 2L−1, except for the trivial sequences with
period 1 and 2; and that the linear complexity is lower bounded by 2L−2.
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