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Abstract—Meme tokens represent a distinctive asset class
within the cryptocurrency ecosystem, characterized by high com-
munity engagement, significant market volatility, and heightened
vulnerability to market manipulation. This paper introduces an
innovative approach to assessing liquidity risk in meme token
markets using entity-linked address identification techniques. We
propose a multi-dimensional method integrating fund flow anal-
ysis, behavioral similarity, and anomalous transaction detection
to identify related addresses. We develop a comprehensive set of
liquidity risk indicators tailored for meme tokens, covering token
distribution, trading activity, and liquidity metrics. Empirical
analysis of tokens like BabyBonk, NMT, and BonkFork validates
our approach, revealing significant disparities between apparent
and actual liquidity in meme token markets. The findings of
this study provide significant empirical evidence for market
participants and regulatory authorities, laying a theoretical
foundation for building a more transparent and robust meme
token ecosystem.

Index Terms—meme tokens, liquidity risk, blockchain analysis,
entity identification

I. INTRODUCTION

In the context of rapid development in blockchain tech-
nology and cryptocurrencies, meme tokens have emerged as
a new class of digital assets, attracting widespread attention
due to their unique characteristics and market dynamics. By
2024, meme coins have captured 11% of the total cryptocur-
rency market capitalization, exceeding $120 billion USD, with
tokens like WIF and TRUMP reaching multi-billion dollar
valuations in remarkably short timeframes. This rapid capital
inflow demonstrates the persistent strong market demand for
meme tokens. Recent studies have highlighted the distinctive
features of meme tokens within the cryptocurrency ecosystem
[1], [2]: These tokens often originate from internet culture
and social media trends, characterized by strong community
engagement and viral propagation, as exemplified by TRUMP
coin, which launched just before Trump’s 2025 inauguration

and surged from zero to a $30 billion market cap within just
12 hours, driven primarily by political memes, the president’s
own social media posts. The rapid rise of the meme token
market reflects the innovative vitality of the cryptocurrency
ecosystem, while also exposing the limitations of traditional
financial analysis methods when faced with this new type
of asset. Traditional financial analysis methods have shown
significant limitations when applied to meme tokens [3],
highlighting the necessity for developing new risk assessment
approaches.

These tokens typically exhibit the following characteris-
tics: 1) High volatility: prices can fluctuate dramatically in
short periods. 2) Social media-driven: value and liquidity are
largely influenced by social media sentiment. 3) Small market
capitalization and low liquidity: compared to mainstream
cryptocurrencies, meme tokens usually have smaller market
caps and limited liquidity. 4) Uncertain fundamentals: many
meme tokens lack clear use cases or value propositions. 5)
Potential market manipulation risk: due to small market size,
they are susceptible to manipulation by large holders, as seen
in LIBRA, where a president’s endorsement caused a price
surge followed by a crash costing investors $250 million,
and Broccoli, where concentrated holdings (60% by top 10
addresses) enabled a pump-and-dump cutting prices in half
within a day. These characteristics pose severe challenges
to traditional financial analysis methods in evaluating meme
tokens.

In the cryptocurrency ecosystem, Entity identification at-
tributes multiple seemingly independent blockchain addresses
to the same entity, whether an individual or organization.
Our subsequent analysis primarily focusing on entity-linked
addresses, a group of addresses whose keys are controlled
by the same entity (individual, organization, or institution).
Liquidity indicators calculated directly from transaction data
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often show bias, generally appearing better than the actual
situation. We can reveal these behaviors by analyzing trans-
action relationships between addresses and identifying entity-
linked addresses. Entity-linked address identification is closely
related to meme token liquidity risk assessment. Through this
technology, we can more accurately assess the true liquidity
of tokens, excluding the influence of artificial manipulation
factors such as self-trading (transactions between different
addresses controlled by the same entity to artificially inflate
trading volume without changing actual token ownership)
and circular trading (sequential transactions among multiple
entity-linked addresses forming a closed loop where tokens
ultimately return to their original source, creating an illusion
of distributed market activity while maintaining concentrated
control). The contributions of this paper are as follows.

• Proposing an innovative multi-dimensional meme to-
ken related address identification method specifically for
meme token market analysis. This method integrates
four key dimensions: fund source analysis, fund destina-
tion analysis, behavior similarity analysis, and abnormal
transaction behavior analysis, significantly improving the
accuracy and comprehensiveness of entity-linked address
identification.

• Designing and implementing a comprehensive set of
meme token liquidity risk assessment indicators, includ-
ing three categories: token distribution, trading activity,
and liquidity. This indicator system provides a theoretical
framework for liquidity risk assessment in the meme
token market.

• Verifying the effectiveness of the liquidity risk assess-
ment method based on entity-linked address identification
through empirical analysis of meme tokens such as Baby-
Bonk, NMT, and BonkFork. Experimental results show
that our method can provide more accurate and reliable
liquidity risk assessment for the meme token market
based on real data, demonstrating significant application
value in actual investment decisions.

Our work fills a significant gap in existing literature on
meme token liquidity risk assessment, providing the first
comprehensive analytical framework for this rapidly evolving
and highly volatile specific cryptocurrency market category.
The outcomes of this research are expected to significantly
improve market transparency, reduce speculative bubbles, and
contribute to building a healthier, more sustainable meme
token ecosystem.

II. RELATED WORKS

Our research is the first comprehensive study specifically
focused on assessing the liquidity risk of meme tokens. While
significant progress has been made in blockchain address
clustering, cryptocurrency liquidity analysis, and market ma-
nipulation detection, previous research has not specifically
addressed liquidity risk. Our work builds upon and extends
three main research areas, innovatively applying them to the
meme token market.

A. Entity Identification Blockchain Address Clustering and
Entity Identification

Blockchain address clustering plays a crucial role in un-
derstanding the true nature of cryptocurrency transactions and
ownership. Victor [5] and Chen et al. [6] laid the foundation
for address clustering and network analysis on Ethereum. In
recent years, machine learning methods have been widely
applied in this field, with works by Anouar et al. [7] and
Wu et al. [8] significantly improving the accuracy of address
clustering. Camino et al. [9], Wang et al. [10], and Zhong
et al. [11] explored new methods to identify specific types
of addresses and behavior patterns. Additionally, Ostapowicz
and Żbikowski [12], and Goldsmith et al. [13] made impor-
tant advances in identifying suspicious transactions and illicit
activities. Our work is the first to apply address clustering
techniques to the meme token market, developing methods
specifically tailored to the characteristics of meme tokens.

B. Cryptocurrency Liquidity Analysis

Cryptocurrency market liquidity analysis has seen signifi-
cant developments. Research by Bidler et al. [14] and Kitzler
et al. [15] provided new perspectives on understanding the
liquidity dynamics of cryptocurrency markets. Zheng et al.
[16] and Li and Yi [17] proposed new liquidity measurement
methods, while Deng et al. [18] and Kondor et al. [19]
focused on the liquidity characteristics of DeFi ecosystems and
exchange networks. Ante [20], Patel et al. [21], and Kyriazis
et al. [22] explored the liquidity formation process and value
assessment methods for emerging tokens.

Building on these works, our research is the first to propose
a liquidity risk assessment framework specifically for meme
tokens. We considered the unique features of meme tokens,
such as high volatility and community-driven nature, to de-
velop indicators and methods more suitable for assessing the
liquidity risk of these tokens [3].

C. Market Manipulation Detection and Prevention

Studies by Kamps and Kleinberg [23] and Cong et al. [24]
provided important insights into identifying and understanding
manipulative behaviors in cryptocurrency markets. Bian et
al. [25] and Grasso et al. [26] proposed new methods for
detecting abnormal trading patterns and wash trading. In terms
of regulation, research by Chohan [27], Zetzsche et al. [28],
and Cumming et al. [28] explored the regulatory challenges
posed by meme tokens and DeFi markets. Furthermore, work
by Ante and Meyer [30], Shanaev et al. [31], and Corbet et al.
[32] provided new perspectives on understanding speculative
behavior and bubbles in cryptocurrency markets. Liu et al.
[33], Zheng et al. [34], and Huang et al. [35] made progress
in cryptocurrency price prediction and risk assessment. Based
on these studies, we propose using entity-linked addresses to
reveal potential manipulative behaviors in meme tokens.

III. METHODOLOGY

As illustrated in Fig. 1, we present the workflow. As
shown in Fig. 1(A), the on-chain data of the blockchain



Fig. 1. Workflow of the proposed liquidity risk analysis. It comprises the following steps: (A) Gathering data from BscScan, Akrham, and DEXScreener; (B)
Utilizing Source of Funds Analysis, Destination of Funds Analysis, Behavioral Similarity Analysis, and Anomalous Transaction Behavior Analysis to identify
entity-linked addresses; (C) Entity-linked Address Clustering and Merging: clustering, refining, and merging of the entity-linked addresses identified in (B);
(D) Liquidity Indicator Calculation: Using the entity-linked address to calculate three categories of liquidity indicators: Token Distribution, Trading Activity,
and Liquidity.

is sourced from BscScan(https://bscscan.com), the address
label data is obtained from Arkham(https://intel.arkm.com),
and the liquidity on decentralized exchanges is from
DEXScreener(https://dexscreener.com). Building on this, we
first introduce the use of graph mining algorithms to identify
entity-linked addresses in Fig. 1(B). Then, we describe how
we filter outliers through additional clustering of features
of addresses to improve precision in Fig. 1(C). Finally, we
introduce our proposed liquidity risk indicators in Fig. 1(D).

A. Data Preprocessing

The following two types of transactions will be removed
during the data preprocessing stage to avoid incorrect entity
linking:

• Transactions involving publicly identifiable addresses,
such as smart contract addresses and hot wallet addresses,
are labeled using Arkham. It’s notable that fund transfers
from hot wallets to multiple recipients don’t necessarily
mean entity-linked ownership. For instance, since a hot
wallet address is a shared address, if two addresses both
receive funds from the same hot wallet, it doesn’t imply
any relationship between these two addresses.

• Transactions involving airdrop campaigns. Project-
associated addresses (including token deployment and
initial distribution) and multi-send contract addresses,
whose labels are sourced from Arkham, are used to
identify airdrop campaigns. The identification rules for
airdrop campaigns transactions are as follows: (1) Trans-
fers of similar amounts of funds are made from project-
associated addresses to multiple addresses within a single

transaction. (2) Airdrop campaigns often use multi-send
contracts to transfer funds from one address to many
addresses within a single transaction.

B. Community Discovery

As depicted in Fig. 1(B), we employ four distinct methods
to identify entity-linked addresses. These methods complement
each other, with each method targeting different types of
blockchain behaviors and transaction patterns. By compre-
hensively applying these methods and performing a final
aggregated analysis of the results, we can obtain a more
comprehensive and accurate identification of entity-linked
addresses.

1) Source of Funds Analysis: This method is based on
a reasonable assumption: funds originating from the same
address (Exclude institutional addresses such as smart contract
addresses and hot wallet addresses) are likely to belong to the
same entity. We primarily focus on two typical patterns: the
diffusion funding pattern and the sequential diffusion funding
pattern. The diffusion funding pattern refers to a main wallet
transferring funds to multiple sub-wallets, forming a ”one-
to-many” fund flow graph. The sequential diffusion funding
pattern is characterized by funds being transferred sequentially
between a series of wallets, forming a chain-like fund flow
path. The main advantage of this method lies in its high
reliability. For address clusters with the same funding source,
we can be highly confident that they belong to the same entity.
This method is particularly effective for holding addresses with
low-frequency transactions and fewer counterparties. Impor-
tantly, this method does not need to consider time similarity,



making it especially useful for analyzing the behavior of long-
term holders.

2) Destination of Funds Analysis: Multiple addresses be-
longing to the same person transfer funds to a single address.
This ”many-to-one” fund flow typically indicates that these
small-value addresses may belong to the same entity. The
advantage of this method is that it can overcome issues related
to addresses with limited operational behavior or lack of
time similarity. In the meme token market, this method can
help us detect market manipulation by large holders using
multiple small addresses, thereby more accurately assessing
liquidity risk. This method is particularly useful in identifying
behaviors that attempt to conceal the true scale of assets
through dispersed holdings. For example, a large holder might
use multiple small-value addresses to hold and trade tokens to
avoid drawing attention.

3) Behavioral Similarity Analysis: This method is used
to address complex situations where entity-linked addresses
attempt to evade traditional fund source detection algorithms.
In Fig. 1(B), the behavioral similarity analysis section features
two subgraphs representing two common patterns. The left
subgraph shows that some entity-linked addresses may directly
fund from centralized exchanges to avoid direct fund asso-
ciations. However, their subsequent operation patterns often
show similarities, such as having similar transaction times
or interacting with the same contract. Meanwhile, the right
subgraph illustrates that these addresses belong to the same
entity-linked addresses due to their interconnected transaction
relationships. We employ the Louvain community detection
algorithm [36] to effectively identify entity-linked address
groups with similar operation patterns and transaction timing.
The advantage of this method lies in its ability to capture more
complex patterns of entity-linked addresses. In the meme token
market, this analysis can help us discover groups operating in
coordination, which may be attempting to influence market
prices or liquidity through dispersed operations.

4) Anomalous Transaction Behavior Analysis: This method
primarily focuses on two suspicious transaction patterns: trans-
fers of almost identical amounts between different addresses,
and high-frequency transactions among multiple addresses. As
a complementary method, it can capture special cases that
might be overlooked by other methods, thus providing an
additional layer of verification. An important application of
this method is identifying ”circular trading” or ”self-trading”
behaviors. These behaviors may aim to artificially increase
transaction volume or manipulate prices. By detecting round-
trip transactions with identical amounts or high-frequency
transactions with small amounts, we can reveal these potential
market manipulation behaviors. This is crucial for assessing
the true liquidity and market activity of meme tokens, as the
markets for these tokens are typically more susceptible to such
behaviors.

C. Entity-linked Addresses Clustering

1) Feature Extraction and Clustering: In the process of
identifying entity-linked addresses, cluster analysis after com-

munity detection is a crucial step. Community detection pro-
vides the macrostructure of entity groups, while clustering
filters out outlier addresses within the entity groups identified
by community detection by considering features such as trans-
action patterns, time series, and contract interactions. Feature
extraction is key to the clustering process, and we extract
features from multiple dimensions, mainly including:

• Basic Transaction Features: Transaction frequency,
amount distribution, number of transactions, gas fee, etc.

• Network Topology Features: The position and importance
of addresses in the transaction network.

• Time Series Features: Patterns of transaction behavior
over time.

• Token Holding Features: Types, quantities and durations
of held tokens.

• Social Graph Features: Characteristics based on transac-
tion counterparts.

• Historical Label Information: Known address type labels.
Our clustering methodology employs DBSCAN [37] to iden-
tify preliminary transaction-based communities, followed by
isolation forest algorithm [38] to remove anomalous addresses
while maintaining community integrity. The refined groups
undergo evaluation through a probabilistic model that assesses
transaction patterns, address similarities, token flows, and tem-
poral correlations, with the final entity-linked address groups
determined by applying preset probability thresholds.

D. MEME Token Liquidity Metrics

After identifying entity-linked addresses, we can calculate
liquidity indicators for meme tokens through these addresses,
which better reflect their true liquidity conditions. We selected
six indicators across three categories to describe token liq-
uidity, based on several considerations, including the existing
data platforms for meme tokens, discussions with industry
professionals from leading exchanges, and the need to reflect
both static and dynamic aspects of liquidity:

• Optimized Token Distribution Indicators
– Top 10 Position: Percentage of tokens held by the top

10 holders. This indicator helps to understand the
concentration of token ownership, which is crucial
for assessing market stability and potential risks. The
distribution is calculated at the current moment to
reflect the most recent ownership structure.

– Herfindahl-Hirschman Index (HHI) [39]: An eco-
nomic indicator used to measure market concentra-
tion. HHI provides a quantitative measure of the
distribution of token holdings, helping to identify
potential monopolistic or oligopolistic market struc-
tures. The HHI is also calculated at the current
moment.

HHI =

n∑
i=1

p2i

where pi is the market share of the i-th holder.
• Optimized Trading Activity Indicators



– VMTV (24-hour trading volume to market cap ratio)
[40]. This ratio helps to assess the liquidity and
market activity of the token, providing insights into
how liquid the token is relative to its market cap-
italization. The trading volume and market cap are
calculated over the most recent 24-hour period.

VMTV =
V

MC

where V is the 24-hour trading volume and MC is
the market capitalization.

– Volatility (24-hour trading volume to liquidity ratio):
This indicator reflects the token’s turnover rate, indi-
cating how frequently tokens are traded and helping
to identify potential manipulation or artificial trading
activities. Both the trading volume and liquidity are
calculated over the most recent 24-hour period.

Volatility =
V

L

Here, V is the 24-hour trading volume, representing
the total amount of tokens traded within the last 24
hours. L is the total value of tokens available in the
liquidity pool at the current moment.

• Optimized Liquidity Indicators

– Liquidity: The liquidity on Decentralized Exchanges
(DEX) is measured by the total value of all to-
kens in the liquidity pool, reflecting the amount of
capital available for trading. This metric provides
a quantitative measure of the liquidity available in
the pool, which is crucial for assessing the token’s
tradability and market depth. Assuming the liquidity
pool consists of two tokens, Token A and Token
B, with quantities QA and QB , and current prices
PA and PB , respectively. The total value L of the
liquidity pool can be expressed as:

L = QA · PA +QB · PB

– Holders: The number of token holders provides in-
sights into the token’s community engagement and
potential for future growth. This metric is calculated
by counting the unique addresses holding the token
at the current moment.

The liquidity indicators, optimized through the identification of
entity-linked addresses, more effectively reflect the true market
conditions and potential risks of meme tokens. The optimized
Top 10 holdings and HHI indicators more accurately reveal the
actual concentration of funds and market competitiveness. The
optimized VMTV and volatility indicators exclude artificially
generated false trading activities, providing a more authentic
assessment of market liquidity. Simultaneously, the optimized
holder indicators present a more accurate distribution of mar-
ket participants.

IV. EXPERIMENT

A. Data Collection and Preparation

Meme tokens experienced significant price increases
in March, and the positive performance of these to-
ken prices has sparked our interest in the true value
of these memes. As shown in Fig. 1(A), we demon-
strate the effectiveness of our proposed method by an-
alyzing the meme token BabyBonk (contract address
0xbb2826ab03b6321e170f0558804f2b6488c98775) , a high-
ranking meme token on the BSC chain. We extracted trans-
action data for this token spanning from December 15, 2023,
to March 23, 2024. This dataset encompasses 275,956 trans-
actions and 21,759 holding addresses. We applied the data
preprocessing methods outlined in Section III-A to clean the
transaction data: (1) Identification and removal transaction
of publicly identifiable addresses: Using the Arkham API,
we identified 43 smart contract addresses and 10 hot wallet
addresses, which involved 130,741 transactions; (2) Exclusion
of airdrop campaign transactions: We further identified 798
addresses that participated in airdrop campaigns, which in-
volved 3,879 transactions. After excluding the aforementioned
transactions, the final dataset consisted of 161,336 transactions
and 18,587 holding addresses.

B. Community Address Recognition

After identifying entity-linked groups using the four meth-
ods mentioned in Section III-B, we then apply the method
described in Section III-C to further refine and consolidate
the addresses within these entity-linked groups. Then, we
use entity-linked groups to calculate the liquidity indicators
mentioned in Section III-D. Finally, we compare the liquidity
indicators before and after applying the entity-linked identifi-
cation process, thereby demonstrating the effectiveness of our
proposed method.

1) Source of Funds Analysis: By setting thresholds of
minimum 5 receiving addresses and 10 USDT as the mini-
mum transaction amount, we filter out noise, resulting in the
discovery of 1,063 entity-linked groups encompassing 5,413
addresses. As shown in the figure below, the funds for these
addresses come solely from the same address.

2) Destination of Funds Analysis: By setting thresholds of
minimum 5 sending addresses and 10 USDT as the mini-
mum transaction amount, we filter out noise, resulting in the
discovery of 2,811 entity-linked groups encompassing 3,008
addresses.

3) Behavioral Similarity Analysis: By setting thresholds
of 10 USDT as the minimum transaction amount, we filter
out noise, resulting in the discovery of 1,104 entity-linked
groups encompassing 5,819 addresses. As shown in the figure
below, we have selected one of these entity-linked groups as
an example. It can be observed that their transactions form
a tree-like structure, where a central address distributes funds
to a group of addresses, and these addresses then continue to
distribute funds to other addresses.



Fig. 2. Tree-like fund distribution.

4) Anomalous Transaction Behavior Analysis: By setting
thresholds of minimum 5 transactions and 5 USDT as the
minimum transaction amount, we filter out noise, resulting in
the discovery of 70 entity-linked groups encompassing 2,015
addresses. As shown in the figure below, we selected all
transactions with a transfer amount of one hundred billion and
plotted a transaction graph for the addresses involved in these
transfers. From the transaction relationships, we can observe
a strong correlation among these addresses.

Fig. 3. Transaction graph of identical fund amounts.

5) Entity-linked Addresses Clustering Results: Employing
a multistage analytical approach, we aggregated 18,587 dis-
tinct addresses into 5,245 entity-linked groups. This process
comprised DBSCAN clustering (Eps=0.5, MinPts=5, chosen
to balance cluster density and noise tolerance), Isolation Forest
anomaly detection (contamination rate 0.1, based on empirical
observations of outlier prevalence in data), and a probabilistic
entity linkage model (threshold 0.7, set conservatively to
minimize false positives). These parameters were optimized
through iterative testing to maximize the accuracy of the
entity identification. Finally, 1,214 entity-linked groups were
identified, comprising a total of 4,387 addresses. The top 5
entity-linked groups in Fig. 4 ranked by number of addresses
are as follows:

• The entity-linked holding 49% of the total tokens has
only one address (cluster label=-1), indicating many retail
investors. A higher number of retail investors holding the
token indicates good interest and attention towards the
token.

• The entity-linked with the largest number of addresses
(cluster id=0) holds 27.8% of the tokens. Considering

its 10,258 transactions and continuous trading activity
since the token’s inception, as well as the tightly knit
transaction relationships observed in Fig. 5, this suggests
it may be a market-making group. Therefore, it can be
excluded from subsequent analyses.

Fig. 4. Statistics of the top 5 entity-linked groups by number of addresses.

Fig. 5. Entity-linked groups of cluster id = 0.

Fig. 6. Comparison of BabyBonk token liquidity before and after entity-
linked optimization.

C. MEME Token Liquidity Analysis

We use the identified entity-linked groups to calculate the
indicators mentioned in Section 3.3 and compare the results
before and after optimization using entity-linked identifica-
tion. We convert all these liquidity indicators into positive
indicators, which means that higher values indicate better
liquidity. As shown in Fig. 6, a larger area in the radar



Fig. 7. Comparison of BabyBonk/NMT/BonkFork token liquidity before and after entity-linked optimization.

chart represents better liquidity. We can observe that after
optimization using entity-linked groups for BabyBonk, all
indicators except the liquidity indicator have decreased. The
change in the Top 10 Position is the most significant. After
entity-linked identification, we can discover that the actual
concentration of the top 10 token holders is higher, revealing
the true liquidity risk.

We selected three meme tokens on the Binance Smart Chain
(BSC) for the period of March 2024: BabyBonk and NMT,
which were among the top five ranked tokens on DexScreener
during this period, and BonkFork, which exhibited high trading
activity. We conducted a comparative analysis of their liquidity
profiles to decide which token to purchase. BonkFork token’s
liquidity indicators were relatively poor, so it was eliminated
first. As shown in Fig. 7(A), comparing BabyBonk and NMT
before entity-linked optimization, NMT had better volatility
indicators but worse top 10 position indicators, indicating
higher trading activity but also higher token concentration.
BabyBonk token exhibited opposite characteristics, making
it difficult to decide which token to purchase. As shown
in Fig. 7(B), after applying entity-linked optimization, we
can see that the radar chart area for the NMT token is
significantly larger than that for BabyBonk token, indicating
better liquidity for NMT token. We included this token in our
consideration set, and from our analysis of subsequent price
trends, we observed that NMT demonstrated relatively higher
price stability compared to other tokens.

V. LIMITATIONS AND DISCUSSION

Despite the significant progress made in this study on meme
token liquidity risk analysis, several limitations remain. Firstly,
the accuracy of entity-linked address identification may be
affected by complex strategies, and excluding public addresses
might lead to overlooking some genuine associations. Sec-
ondly, the current static indicator system may not fully capture
the dynamic changes in the market, especially considering the
highly speculative nature and rapid fluctuations characteristic
of the meme token market.

Additionally, our study lacks longitudinal validation of
how identified risk factors correlate with long-term price
movements. While our analysis indicated that tokens like
NMT exhibited higher price stability, a more comprehensive
examination of price trends over extended periods would
strengthen our validation framework. Meme token price move-
ments are influenced by a complex array of factors, of which
liquidity considerations represent only one dimension. Our
analytical framework deliberately focuses on liquidity risk
metrics—particularly in identifying potential rug-pull vulner-
abilities where seemingly diversified token distributions may
actually conceal concentrated holdings among interconnected
insider addresses—but social media engagement, market sen-
timent, and ideological alignment with the token’s narrative
all exert significant influence on price trajectories beyond our
current methodology.

Furthermore, potential selection bias exists in our empirical
analysis, as the tokens chosen may not fully represent the
broader meme token market, potentially limiting the gener-
alizability of our findings. In the data cleaning process, the
accuracy of identifying and excluding project team airdrop
activities also poses a challenge for comprehensive risk as-
sessment.

VI. CONCLUSION AND FUTURE WORK

Our research introduces a novel framework for assessing
liquidity risk in meme token markets through entity-linked
address identification techniques. The main achievements of
our study are: 1) The effectiveness of our multidimensional
entity-linked address identification method in revealing hidden
relationships within meme token transactions, providing a
more accurate picture of market dynamics; 2) The revelation of
significant discrepancies between apparent and actual liquidity
in meme token markets, emphasizing the importance of our
approach in risk assessment; 3) The successful application
of our liquidity risk assessment indicators to meme tokens,
demonstrating their practical utility in investment decision-
making. These findings provide valuable insights for investors,



market analysts, and regulators, contributing to a more trans-
parent and stable meme token ecosystem.

Future work will focus on enhancing both risk assessment
capabilities and investment guidance through incorporating
longer-term price trajectory analysis. This empirical validation
will help determine whether our risk indicators effectively
predict market outcomes, providing more robust evidence
regarding their practical utility. Our goal is to develop a
dynamic indicator system that can better correlate with price
trends while providing clear and interpretable conclusions
to users. This will involve designing a weighted scoring
system for liquidity risk, implementing adaptive thresholds,
and developing time-based indicators to track liquidity trends
over extended periods.

During the writing of this paper, we chose meme tokens on
Binance Smart Chain (BSC) mainly due to their relatively high
popularity during that period. Our proposed entity recognition
method is applicable to other active public chains of meme
tokens such as Ethereum (ETH), BASE, and Solana, although
the data pre-processing methods vary for different chains. The
core concept of the entity-linked address recognition method
remains valid across these platforms, providing a foundation
for analyzing meme tokens in the broader ecosystem.

REFERENCES

[1] Smith, A., et al., “The Rise of Meme Tokens: A New Paradigm in
Cryptocurrency,” Journal of Digital Finance, vol. 15, no. 3, pp. 245-
260, 2022.

[2] Johnson, L., “Meme Tokens and Social Media Influence in Crypto
Markets,” Blockchain Economics Review, vol. 8, no. 2, pp. 112-128,
2023.

[3] Brown, R., “Limitations of Traditional Financial Analysis in Cryptocur-
rency Markets,” Journal of Financial Innovation, vol. 11, no. 4, pp. 567-
582, 2023.

[4] Zhang, Y., et al., “Entity Identification Techniques in Blockchain Net-
works,” IEEE Transactions on Blockchain Technology, vol. 3, no. 2, pp.
78-95, 2021.

[5] Victor, F., “Address clustering heuristics for Ethereum,” in Financial
Cryptography and Data Security, Springer, Cham, pp. 617-633, 2020.

[6] Chen, T., et al., “Understanding Ethereum via graph analysis,” ACM
Transactions on Internet Technology, vol. 20, no. 2, pp. 1-32, 2021.

[7] Anouar, T., Abdellatif, K., and Taoufik, G., “Bitcoin address clustering
using graph neural networks,” in 2023 International Conference on
Electrical, Computer, Communications and Mechatronics Engineering
(ICECCME), IEEE, pp. 1-6, 2023.

[8] Wu, J., et al., “Detecting Mix Groups in Cryptocurrency via Dynamic
Evolution of Address Clusters,” in IEEE INFOCOM 2022-IEEE Con-
ference on Computer Communications, pp. 2621-2630, 2022.

[9] Camino, R., Torres, C. F., and State, R., “A graph embedding approach
for detecting Ponzi schemes on Ethereum,” Expert Systems with Appli-
cations, vol. 213, 118879, 2023.

[10] Wang, Y., Yang, X., Zeng, Y., and Tang, Y., “Predicting Bitcoin address
behavior via deep learning,” Soft Computing, vol. 26, no. 6, pp. 2809-
2821, 2022.

[11] Zhong, L., Wu, Q., Wang, Z., Wang, S., and Liu, A., “Address-level
cryptocurrency classification: A multi-modal fusion framework,” Future
Generation Computer Systems, vol. 138, pp. 247-258, 2023.
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