
ar
X

iv
:2

50
6.

05
29

0v
1

 [
cs

.C
R

]
 5

 J
un

 2
02

5

Big Bird: Privacy Budget Management for W3C’s
Privacy-Preserving Attribution API

Pierre Tholoniat
Columbia University

Alison Caulfield*

Columbia University
Giorgio Cavicchioli

Columbia University

Mark Chen
Columbia University

Nikos Goutzoulias
Columbia University

Benjamin Case
Meta Platforms, Inc.

Asaf Cidon
Columbia University

Roxana Geambasu†

Columbia University
Mathias Lécuyer

University of British Columbia

Martin Thomson
Mozilla

Abstract
Privacy-preserving advertising APIs like Privacy-Preserving
Attribution (PPA) are designed to enhance web privacy while
enabling effective ad measurement. PPA offers an alternative
to cross-site tracking with encrypted reports governed by dif-
ferential privacy (DP), but current designs lack a principled
approach to privacy budget management—creating uncer-
tainty around critical design decisions. We present Big Bird, a
privacy budget manager for PPA that clarifies per-site budget
semantics and introduces a global budgeting system grounded
in resource isolation principles. Big Bird enforces utility-
preserving limits via quota budgets and improves global bud-
get utilization through a novel batched scheduling algorithm.
Together, these mechanisms establish a robust foundation for
enforcing privacy protections in adversarial environments. We
implement Big Bird in Firefox and evaluate it on real-world
ad data, demonstrating its resilience and effectiveness.

1 Introduction
Privacy-preserving advertising APIs, now under development
and standardization in major browsers via the W3C, offer a
rare opportunity to enhance online privacy while sustaining
the web’s primary funding model. Historically, browsers have
lacked structured support for ad-related tasks like conversion
attribution measurement, which requires linking ads viewed
on content sites to purchases made on seller sites—a cross-
origin function fundamentally at odds with the same-origin
principle that underpins browser design. This lack of support
for the advertising workload has fueled widespread cross-site
tracking through third-party cookies, fingerprinting, and other
workarounds. The goal of the new APIs is to provide a struc-

*Also affiliated with Microsoft, but work done in the context of Columbia
University graduate program.
†Temporarily affiliated with Meta, but work done in the context of Columbia
University research.

Contact authors: Pierre Tholoniat, Roxana Geambasu, Mathias Lécuyer
({pierre,roxana}@cs.columbia.edu, mathias.lecuyer@ubc.ca).

tured, privacy-preserving alternative that aligns with browser
principles while meeting advertising needs. However, these
APIs remain in early stages, with technical challenges still un-
resolved—creating an opportunity for academic contribution.

Such collaborations have already had impact, underscor-
ing that the space is ripe for foundational work. The Cookie
Monster paper, which we presented at SOSP last year [28],
introduced the first formal framework based on individual
differential privacy (individual DP) [8] to systematically an-
alyze and optimize these APIs—a framework later adopted
by Google in privacy analysis of its ARA API [11]. That
same Cookie Monster framework now underpins Privacy-
Preserving Attribution (PPA) [20], the API standard being
drafted by Private Advertising Technology Working Group
(PATWG), a W3C working group that includes representa-
tives from all browsers [22]. We are active participants in
PATWG, tackling technical challenges from a scientific per-
spective to help advance the APIs’ practicality under strong
privacy guarantees.

In this paper, we address a key open challenge: privacy
budget management in PPA. PPA replaces cross-site track-
ing with a system where content sites register ads with the
browser, seller sites request encrypted reports, and reports
are only accessible via DP aggregation using secure multi-
party computation or a trusted execution environment. Before
sending an encrypted report, the browser deducts privacy loss
from a per-site privacy budget, limiting how much new in-
formation a site can infer about a user. While PPA, through
Cookie Monster’s algorithm, optimizes privacy loss account-
ing within each per-site budget using individual DP, it does
not address how to manage these granular budgets to balance
privacy with utility in an adversarial advertising ecosystem.

The absence of a principled approach to privacy budget
management has led to unresolved questions within PATWG,
creating uncertainty in key design decisions. For instance,
should some sites get budget while others do not—and if so,

1

https://arxiv.org/abs/2506.05290v1

based on what criteria?1 Should there be a cap on how many
sites are allocated budget, and if so, how can we prevent a
denial-of-service attack where one entity exhausts it?2 Should
API invocations be rate-limited to prevent privacy or DoS
attacks? To date, there is no consensus, largely due to the lack
of a principled foundation to drive the design.

We describe Big Bird, a privacy budget manager for PPA
that addresses semantic gaps in per-site privacy loss account-
ing and challenges introduced by the coarse-grained global
budget PPA incorporates to protect users against adversaries
controlling many sites. To add clarity to the semantics of
PPA’s ambiguous per-site budgeting—often muddied by shift-
ing roles of third parties in the advertising ecosystem—we
propose changes to the PPA interface, protocol, and terms of
use. These changes allow per-site budgets to provably satisfy
individual DP, but only under non-adaptive behavior across
sites. This limitation adds to the rationale for a well-managed
global budget in achieving end-to-end privacy in PPA.

For the global budget, the challenge is configuring and man-
aging it to support benign workloads while resisting depletion
by malicious actors. Our insight is to treat the global privacy
budget as a shared resource—analogous to traditional com-
puting resources but governed by privacy constraints—and
to apply classic resource isolation techniques, such as quotas
and fair scheduling [18, 12], in this new domain. Beyond per-
site and global budgets, Big Bird introduces quota budgets
that regulate global-budget consumption, ensuring graceful
utility degradation for benign sites under attack. It does so
by forcing adversaries to operate within expected workload
bounds—which they can currently evade to wreak havoc on
PPA’s global budget. Further, to address underutilization of
the global privacy budget caused by static quota partitioning,
we propose a scheduling algorithm that reallocates unused
capacity to otherwise-blocked requests. Together, these mech-
anisms establish a principled, practical foundation for PPA
and give browsers a basis for enforceable defenses, along
with guidance on where to focus.

We implement Big Bird in two components: (1) pdslib, a
generic on-device individual DP library that subsumes Cookie
Monster and extends it with Big Bird’s budget management,
and (2) integration into Mozilla Firefox’s Private Attribu-
tion, a minimal PPA implementation. Upon release, these
prototypes will serve as reference implementations for PPA,
a service the PATWG has acknowledged as valuable.

We evaluate Big Bird on a dataset from the Criteo ad-tech
company, showing that: (1) well-chosen quotas preserve high
utility for benign workloads, (2) quotas isolate benign sites
under attack, and (3) batched scheduling boosts utilization
without sacrificing isolation. We make our source code avail-
able via several repositories: pdslib at https://github.com/
columbia/pdslib and Firefox integration at https://github.

1Live discussion in W3C’s PAT community group, April 2024.
2 https://github.com/w3c/ppa/issues/69, January 2025.

com/columbia/pdslib-firefox. We also plan to release our
experimental infrastructure, which will be posted at https:
//github.com/columbia/big-bird in the near future.

2 PPA Overview and Gaps
2.1 PPA architecture
Fig. 1(a) illustrates the architecture of Privacy-Preserving
Attribution (PPA), W3C’s browser-based API that enables
conversion attribution measurement while preserving user
privacy. Traditionally, browsers enforce a same-origin pol-
icy, while conversion attribution–the process of determining
whether users who see an ad later make a purchase–is inher-
ently cross-origin. It requires linking ad impressions shown
on content sites (e.g., news.ex, blog.ex) to conversions oc-
curring on advertiser sites (e.g., shoes.ex). In the absence of
a structured API for this, advertisers rely on workarounds
like third-party cookies, fingerprinting, and backend data ex-
changes—bypassing browser policies to accommodate work-
loads misaligned with current API structures.

PPA addresses this gap by enabling cross-origin ad mea-
surement while preserving single-origin privacy, using differ-
ential privacy (DP) and secure aggregation via secure multi-
party computation (MPC) or a trusted execution environment
(TEE). This design bounds cross-origin information leakage,
allowing the API to support effective ad measurement while
upholding the intention of the browser’s same-origin policy.

PPA defines four principals. Impression sites (news.ex,
blog.ex) are content sites where ads are displayed. These sites
register ad impressions with the browser using the function
saveImpression(). Conversion sites, a.k.a. advertiser sites
(shoes.ex), are sites where purchases or other conversions
occur. When a user does a conversion, these sites invoke
measureConversion() to link the event to any relevant prior
ad impressions. Intermediary sites (r1.ex, r2.ex) are adtechs,
typically embedded as frames in impression and conversion
sites, that facilitate ad delivery and measurement. Unlike
traditional tracking-based adtechs, they don’t collect cross-
site data directly but receive encrypted reports via a third
function, getReport(), which they then submit for secure
aggregation. Aggregation services (e.g., divviup.org) are
trusted MPC/TEE services that aggregate encrypted reports,
applying DP to produce aggregated conversion metrics while
ensuring no single entity can reconstruct individual user data.
2.2 Example workflow
Fig. 1(b) shows an example workflow for PPA, consisting
of six steps (the same steps are also marked in the Fig. 1(a)
architecture). The example entails an advertiser, shoes.ex,
that launches an ad campaign to promote a new product.
To compare the effectiveness of two ad creatives–a colorful
ad highlighting the shoe’s design and a black-and-white ad
emphasizing materials and comfort–shoes.ex partners with
two placement adtechs, r1.ex and r2.ex. Each adtech places
the ads on content sites, e.g., r1.ex on blog.ex and r2.ex on
news.ex. In addition to placing ads, these adtechs provide

2

https://github.com/columbia/pdslib
https://github.com/columbia/pdslib
https://github.com/columbia/pdslib-firefox
https://github.com/columbia/pdslib-firefox
https://github.com/columbia/pdslib-firefox
https://github.com/w3c/ppa/issues/69
https://github.com/columbia/pdslib-firefox
https://github.com/columbia/big-bird
https://github.com/columbia/big-bird

Traditional API: Same-Origin Policy PPA:
Cross-Origin

API

(a) PPA architecture

Interface
saveImpression(conversionSites, filterData, histogramIndex)

measureConversion(impressionSites, intermediarySites,
 filterData, epsilon, value, maxValue) → attributionObject

attributionObject.getReport(histogramSize, aggregationService)

impression sites conversion sites intermediary sites

news.ex
r1.ex

blog.ex
r2.ex r1.ex r2.ex

shoes.ex
r1.ex
r2.ex

saveImpression()

saveImpression()

Maintained State
Impression Store
epoch impression

Site
intermediary

Site
conversion

Sites
filter
Data

histogram
Index

e1 news.ex r1.ex [shoes.ex] 0x22 1
e2 blog.ex r2.ex [shoes.ex] 0x22 2

Privacy Filter Store (filter capacities=1)
epoch shoes.ex ..(other conv. sites)..

e1 remaining: 0.7 …
e2 remaining: 0.7 …
e3 remaining: 1 …

 P
PA

measureConversion()

(c) Privacy loss accounting with Cookie Monster(b) Example workflow

Epoch e1: User visits blog.ex. r1.ex script embedded within blog.ex displays colorful ad (id 1) for
shoes.ex’s campaign (0x22) and invokes:
 saveImpression(conversionSites=[shoes.ex], filterData=0x22, histogramBucket=1)

Epoch e2: User visits news.ex. r2.ex script displays a black-and-white ad (id 2) and invokes:
 saveImpression(conversionSites=[shoes.ex], filterData=0x22, histogramBucket=2)

Epoch e3: User visits shoes.ex and purchases $60 of advertised shoes. Shoes.ex invokes:
 measureConversion(impressionSites=[blog.ex,news.ex],
 intermediarySites=[r1.ex,r2.ex], filterData=0x22, epsilon=0.5, value=60,
 maxValue=100) → attributionObject

AttributionObject contains the full attribution histogram {r1.ex:1=30, r2.ex:2=30} and privacy
loss tracking. Privacy loss is applied when getReport(.) is called.

Shoes.ex hands attributionObject to r1.ex and r2.ex embedded scripts, which invoke:
 attributionObject.getReport(histogramSize=2, aggregationService=divviup.org)

to retrieve encrypted reports. r1.ex gets encryption of {1:30}, r2.ex gets encryption of {2:30},
both with authenticated data: {epsilon=0.5, maxValue=100}.

As other users convert on shoes.ex, r1.ex and r2.ex get encrypted reports from them and batch them.

At some point, r1.ex sends the batch to the aggregation service, which uses MPC or TEE to check
consistency of authenticated data and uniqueness of report use. Then sums all the histograms and
adds noise, e.g. from Laplace(maxValue/epsilon), to ensure epsilon-DP.

①

②

③

④

⑤

⑥

Measuring Conversions
(1) Retrieve matching impressions from the Impression Store

based on measureConversion() parameters.

(2) Privacy loss accounting: Compute epoch-level privacy loss
using Cookie Monster algorithm; deduct from the
conversionSite’s per-epoch filters in the Privacy Filter Store.

(3) Generate an attribution histogram (or null if deduction fails)
and encapsulate it in an attributionObject.

⑤

adtech
Vivamus lacinia odio vitae vestibulum vestibulum. Cras venenatis
euismod malesuada.

blog.ex

Fermentum erat id orci congue, vel efficitur eros fringilla. Integer
sed.
Suspendisse potenti

news.ex
Lorem ipsum dolor sit amet, adipiscing elit.
Vivamus lacinia odio vitae vestibulum
vestibulum. Cras venenatis euismod malesuada.
Nulla facilisi. Sed ac leo vitae nisl luctus at
vel.

Auris fermentum erat id orci congue, vel efficitur eros fringilla. Integer sed.
Suspendisse potenti. Nam congue felis id eros pretium, eget suscipit velit lobortis.

impression
sites

conversion
sites

r1.ex

saveImpression() saveImpression()
measure
Conversion()

encrypted
report

①
③ ④

different people’s browsers

shoes.ex

BUY

$70
aggregate
results

aggregation service
⑥

PPA

MPC / TEE

+ DP

PPA

intermediary
sites

②

batch

Fig. 1. PPA overview.

a measurement service that allows shoes.ex to compare the
performance of its creatives within their respective networks.

1 When a user visits blog.ex, r1.ex displays the colorful
ad and registers the impression by calling saveImpression()

with the parameters shown in the figure. 2 Later, the user vis-
its news.ex, where r2.ex displays the black-and-white ad and
registers it by also calling saveImpression(). These impres-
sions are stored locally in the browser within an Impression
Store, along with important metadata, shown in Fig. 1(c).

3 Subsequently, if the user visits shoes.ex and purchases
the shoes for $60, the site invokes measureConversion()

with the parameters shown in Fig. 1(b). This function searches
the Impression Store in the browser for relevant impressions,
matching the impressionSite and conversionSite meta-
data of the impressions to the parameters of measureConversion
(). It then generates an attributionObject, which encapsulates
the attribution histogram and manages privacy loss account-
ing. Assuming that PPA applies uniform attribution, it will
assign the $60 conversion value equally between the two reg-
istered impressions, assigning $30 to each and resulting in
the following attribution histogram: {1:30, 2:30}.

4 The attributionObject is lazy, i.e., no privacy loss oc-
curs until it is used to request a report. To support DP queries,
shoes.ex hands over the attributionObject to the r1.ex and
r2.ex contexts within the browser, which invoke attribution
-Object.getReport(), specifying the aggregation service

they intend to use (from a list of such services trusted by
the browser). The browser processes these invocations by:
(1) filtering the attribution histogram so that each intermedi-
ary only sees its own contributions (r1.ex gets {1:30}, r2.ex
gets {2:30}); (2) encrypting the report and secret-sharing it
(if MPC is used), while attaching some critical parameters
as authenticated data, such as epsilon and maxValue; and
(3) performing privacy loss accounting before sending the
encrypted reports over to the intermediaries.

5 As more users purchase shoes.ex’s advertised prod-
uct, additional encrypted reports are generated, each contain-
ing zero, one, or two attributed ads. 6 The intermediaries
batch these reports and submit them to an aggregation service,
which performs the final step: (1) validating the reports, en-
suring all parameters in authenticated data match and that no
report is reused; (2) summing the attribution values; and (3)
applying DP, adding noise (such as from a Laplace distribu-
tion with scale maxValue/epsilon) to protect individual users.
The resulting noised, aggregated conversion metrics are then
provided to r1.ex and r2.ex, which relay the ad-effectiveness
comparison back to shoes.ex, helping it discern which of the
colorful vs. black-and-white ads leads to higher revenue.

2.3 Privacy loss accounting with Cookie Monster
PPA enforces privacy using the individual differential pri-
vacy (individual DP) framework from the Cookie Monster
paper [28], which tracks each user’s privacy loss separately

3

and optimizes for on-device attribution. This is a key depar-
ture from traditional DP, which maintains a single global
guarantee across users. individual DP allows PPA to bound
privacy loss more efficiently—based only on the actual con-
tribution of a device to a query.

Within each browser, PPA enforces individual DP at the
epoch level, dividing the impression stream into time intervals
(e.g., a week), each with its own privacy budgets. Each device
maintains an Impression Store to log impressions per epoch
and a Privacy Filter Store to track per-epoch budgets. A
privacy filter acts as the epoch’s budget manager: it deducts
privacy loss only if sufficient budget remains and only when
data from that epoch contributes to a query; if depleted, it
blocks further use of that epoch’s data. Importantly, PPA
maintains separate epoch-level privacy filters per site, a design
choice that we show raises budget management questions.

Fig. 1(c) shows these internal components and how privacy
loss is computed and enforced. When a conversion occurs
(measureConversion()), the browser uses the Cookie Mon-
ster algorithm to: (1) retrieve all relevant impressions from the
Impression Store, grouped by epoch; (2) compute individual
privacy loss per epoch, using value / maxValue * epsilon

if an epoch has at least one relevant impression, or zero other-
wise; and (3) deducts this loss across all contributing epochs
from the conversion site’s filters, returning a null attribution
if deduction fails, and the real one otherwise.

For example, in Fig. 1(b), epochs 𝑒1 and 𝑒2 each incur an
individual privacy loss of value / maxValue * epsilon =

0.3, while traditional DP would charge the full epsilon =

0.5 loss. Even better, epoch 𝑒3, which contains no relevant
impressions, incurs zero individual privacy loss. Although this
process is nominally part of measureConversion(), in prac-
tice it is deferred until getReport(): if no report is requested,
no privacy loss is incurred. Fig. 1(c) shows the resulting fil-
ter state after r1.ex and r2.ex request their reports: assuming
an initial filter capacity of 1, the conversion site shoes.ex re-
tains 0.7 budget in 𝑒1 and 𝑒2, and the full 1 in 𝑒3. In contrast,
standard DP would leave only 0.5 in each epoch.

This example highlights how individual DP limits privacy
loss based on actual contributions. To further understand
this dynamic—which is significant for our own system’s de-
sign—we introduce a stock-and-flow analogy that captures
the behavioral pattern that individual DP induces in PPA.

2.4 Stock-and-flow pattern
A key informal argument for PPA’s practicality, voiced in
PATWG discussions, is that individual DP accounting natu-
rally limits privacy consumption by tying it to user actions on
both impression and conversion sites. Non-zero privacy loss
arises only when both an impression (signifying a user visit to
an impression site) and a conversion (a visit to a conversion
site) are present. This induces a stock-and-flow pattern: pri-
vacy stock is created on impression sites as impressions are
saved, and privacy flow is triggered on conversion sites when

reports are requested over those impressions—both gated by
user actions. PATWG discussions generally acknowledge that
users who engage with more impression and conversion sites
should incur more privacy loss—up to a limit, discussed next.

2.5 Global privacy filter
PPA acknowledges that relying solely on per-site filters risks
exposing users to adversaries capable of coordinating API
activity across multiple sites. Such behavior amplifies infor-
mation gain from attribution, proportional to the number of
sites involved. Since per-site filters impose no bound on this,
PPA proposes “safety limits”—per-epoch global filters that
span site boundaries—originally suggested by [21]. While
the spec gives no detail on how to manage these filters—a gap
this paper addresses (see next section)—our input has shaped
the spec’s guiding principles: (1) global filter capacities must
be much larger than per-site budgets, by necessity; and (2)
these filters should “remain inactive during normal browsing
and [trigger] only under high-intensity use or attack” [20].

2.6 Foundational gaps
We identify two key gaps in PPA related to managing its two
filter types–per-site and global–which we address in Big Bird.
Gap 1: Unclear semantics of per-site filters. PPA adopts
Cookie Monster’s accounting model, which tracks privacy
loss per querier, but is ambiguous about who counts as a
querier in real-world deployments. For single-advertiser
queries, PPA maps the querier to the conversion site—e.g.,
an intermediary requests a report on behalf of a specific ad-
vertiser like shoes.ex, and privacy loss is charged to that ad-
vertiser’s budget. Yet intermediaries also receive these re-
ports and may reuse them for their own purposes, raising the
question of whether they too should be considered queriers.
The ambiguity grows with PPA’s planned support for cross-
advertiser queries, where intermediaries aim to optimize
across multiple advertisers (e.g., training models to choose
the best ad for a given context). Since intermediaries directly
benefit from such queries, PATWG plans to charge privacy
loss against their own budgets. This blurs the boundary be-
tween client-serving and self-serving queries, complicating
the semantics of per-site accounting and increasing the risk
of report misuse. This paper proposes changes to the PPA
API, protocol, and terms of use to add some level of clarity to
per-site semantics and highlights the additional assumptions
needed for them to remain provable (§4.1). The assumptions
underscore the need for a well-configured, well-managed
global budget to achieve end-to-end privacy without relying
on them—an area where PPA currently lacks clear guidance,
as we next discuss.
Gap 2: Lack of mechanisms to manage the global filter.
The global filter—shared across all parties requesting reports
from a browser—is a critical yet under-specified component
of PPA. It introduces two challenges: (1) how to set its ca-
pacity to support benign workloads and (2) how to prevent
malicious actors from depleting it—either to boost their own

4

utility or to deny service to others (e.g., competitors). While
per-site budgets cap consumption per domain, they offer weak
protection, as domain names are cheap and easily acquired.
PATWG-discussed mitigations range from requiring sites to
register with a trusted authority to browser-side heuristics
for identifying illegitimate use of the API. But site regis-
tration faces resistance from some industry participants for
undermining the API’s open nature while heuristics rely on
notions of “legitimacy” that are hard to define, especially for
a nascent API with no deployment history and potentially
valuable, unforeseen use cases. For instance, should the num-
ber of invocations be limited? Over what period and to what
value? Should access to device-side budgets be restricted?
On what grounds? While discussion in PATWG continues,
we argue that the group lacks a foundation—a minimal set
of principled mechanisms with well-defined properties un-
der clear assumptions—to guide browsers toward targeted,
defense-in-depth strategies that are both protective and not
over-constraining for the API. This paper contributes such a
foundation, from the vantage point of PPA’s internal privacy
budget management (§4.3).

3 Big Bird Overview
We address PPA’s gaps by (1) clarifying the two distinct threat
models that per-site and global guarantees address (§3.1) and
(2) introducing Big Bird to both add clarity to the semantics
of per-site filters and manage the global filter to support le-
gitimate use while limiting abuse (§3.3). §3.2 introduces an
example.

3.1 Threat model
PPA and Big Bird have similar threat models. Users trust
the OS, browser, and browser-supported aggregation services.
They extend limited trust to first-party sites they visit inten-
tionally—i.e., through explicit actions like direct navigations
or clicks—granting them access to first-party data and cook-
ies. Embedded intermediaries are not trusted at all, and no
site—first-party or otherwise—is trusted with cross-site data.

As API designers, we must address two threat levels. The
first is intended use, which assumes well-intentioned actors.
Our goal here is to make compliance easy through careful API
design and well-defined semantics. In the security literature,
such actors are termed honest-but-curious: they follow the
protocol but aim to extract as much information as permitted.
Because some rules cannot be enforced by protocol alone, the
API must include terms of use to close this gap. We define
honest-but-curious adversaries as those who respect both the
protocol and its terms of use.

PPA’s per-site filters are meant to provide strong privacy
guarantees against individual honest-but-curious sites. How-
ever, ambiguities in the current API and the lack of formal
terms of use leave these guarantees semantically underspeci-
fied. Big Bird addresses these gaps directly.

The second level involves adversarial use, where actors

subvert the protocol and terms of use to extract excessive user
information or maximize query utility through unauthorized
budget consumption. Per-site budgets offer some protection
when queriers operate independently or with limited coordi-
nation, leveraging DP’s compositionality. But they fail under
large-scale Sybil attacks, where an adversary registers many
fake domains to bypass per-site caps. For example, a mali-
cious conversion site X may use automatic redirection to cycle
through Sybils, each triggering a single-advertiser report that
maxes out its respective filter—multiplying the user’s privacy
loss by the number of Sybils.

PPA’s global filter is designed to mitigate large-scale Sybil
attacks by enforcing a coarser-grained budget. However, it
introduces a new vulnerability: denial-of-service (DoS) deple-
tion attacks. A malicious actor can deliberately exhaust the
global budget, blocking legitimate queries—either to boost
their own utility or harm competitors. These attacks can mir-
ror the Sybil strategies used against per-site filters. §4.3 gives
example attacks to which PPA is currently vulnerable.

Big Bird embeds resilience directly into privacy budget
management to defend against DoS depletion. While this
layer alone does not provide complete end-to-end protection,
it establishes a strong foundation and clarifies what browsers
must enforce to achieve it. Building on the stock-and-flow
model from §2.4, Big Bird assumes that under intended use,
privacy consumption is driven by explicit user actions—such
as navigations or clicks—on distinct content and conversion
first-party sites. As long as benign usage adheres to this pat-
tern, Big Bird fulfills PPA’s guiding principles for the global
filter (§2.5): supporting normal workloads under benign con-
ditions and degrading gracefully under attack.

For this graceful degradation to hold in practice, two as-
sumptions must be enforced: (1) browsers can reliably distin-
guish intentional user actions from automatic navigations, and
(2) malicious actors cannot easily induce large numbers of
users to intentionally visit many distinct attacker-controlled
domains. If these assumptions fail, Big Bird still upholds its
privacy guarantees, but its DoS resilience will diminish.

3.2 Running example
We update the shoes.ex example to support cross-advertiser
queries, a feature PPA plans to add soon. Our Big Bird de-
sign anticipates this shift, which significantly impacts privacy
budget management. To reflect this, we modify the exam-
ple: shoes.ex contracts with r1.ex and r2.ex for ad placement
and evaluation as before, but now r1.ex and r2.ex also opti-
mize placements across advertisers and content sites. They
will each therefore be interested in obtaining two encrypted
reports for each conversion: one for single-advertiser mea-
surement on behalf of shoes.ex and one for cross-advertiser
optimization on their own behalf. Additionally, we introduce
r3.ex, which focuses solely on single-advertiser measure-
ments and specializes in cross-intermediary reporting, pro-
viding a complete view of shoes.ex’s ad performance across

5

conversion sites

r1.ex

 P
PA

 w
ith

 B
ig

 B
ird

shoes.ex
r1.ex
r2.ex
r3.ex

measureConversion
(beneficiary=self)

measureConversion
(beneficiary=caller)

r2.ex r3.ex

{b:shoes.ex}

{b:r2.ex}

{b:shoes.ex}

{b:r1.ex}

{b:shoes.ex}

Maintained State (Impression Store: same as PPA)

Interface
measureConversion(impressionSites, intermediarySites, beneficiary,
 filterData, epsilon, value, maxValue) → attributionObject

(saveImpression(), getReport(): same as PPA)

intermediary sites

Privacy Filters
per-site

(capacity=1)
global
(cap=8)

shoes.ex r1.ex r2.ex r3.ex
e1 0.4 0.7 0.7 1 7.1
e2 0.4 0.7 0.7 1 7.1
e3 1 1 1 1 8

Quota Filters
imp-quota

(cap=4)
conv-quota

(cap=2)
news.ex blog.ex shoes.ex

3.1 3.4 1.1
3.4 3.1 1.1
4 4 2

impression sites
news.ex

r1.ex
blog.ex
r2.ex

saveImpression()

saveImpression()

 (same as PPA)

Measuring Conversions (online algo) ((1), (3): same as PPA)

(2) Privacy loss accounting in Big Bird:
(2.1) Compute two granularities of individual privacy loss with Cookie Monster algo:
● Epoch-level losses → epochLosses[e]
● Epoch-impressionSite-level losses → epochImpressionSiteLosses[e][i]

(2.2) Deduct privacy losses lazily upon getReport() and atomically 2PC-like across
all filters, leveraging cross-report privacy loss optimization where applicable:
● per-site[e][b]: Deduct epochLosses[e] for each beneficiary site b, resolving

at getReport() to either conversionSite or an intermediarySite.
● global[e]: Deduct epochLosses[e].
● conv-quota[e][conversionSite]: Deduct epochLosses[e].
● imp-quota[e][i]: Deduct epochImpressionSiteLosses[e][i] for each i

in impressionSites.

ep
oc

h

API changes
for per-site
semantics

(Gap 1)
§4.1

Global filter
management

(Gap 2)
§4.2

Batched
algorithm for

improved
utilization

§4.3

beneficiary site
added to encrypted
report’s auth data

Cross-report
privacy loss
optimization

§D

 quota-count=2: max # of new quota filters created per current user action

new imp-quota filters in e3 = 0 < 2 new conv-quota filters in e1,e2 = 1 < 2

single-advertiser cross-advertiser

ⓐ ⓑ
ⓐ ⓐ

ⓑ

Fig. 2. Big Bird architecture. Changes vs. PPA (Fig. 1(c)) in yellow.

the two placement intermediaries r1.ex and r2.ex. r3.ex will
require only one encrypted report for the single-advertiser
measurement on shoes.ex’s behalf.

3.3 Big Bird architecture
Fig. 2 shows Big Bird’s architecture, with proposed changes
to PPA highlighted in yellow (relative to Fig. 1(c)). Big Bird
modifies all three layers of PPA: the interface, the privacy fil-
ter architecture, and how privacy loss is accounted for during
conversion measurement and report requests. These changes
span four major conceptual shifts (yellow boxes on the left).
API changes for per-site semantics (Gap 1, §4.1). We mod-
ify the API, protocol, and terms of use to eliminate ambiguity
in budget attribution. Specifically, we introduce a beneficiary
site parameter, authenticate it to the aggregation service, and
enforce its use—both technically and contractually—so that
reports can only support the intended site’s DP queries. These
changes prevent intermediaries from misusing reports funded
by conversion sites, adding some level of clarity to per-site
semantics for parties that comply with the protocol and its
terms. This helps address PPA’s Gap 1 from §2.6, but proving
per-site DP properties still requires additional assumptions
that the protocol and terms cannot enforce. This heightens the
need for a well-configured, well-managed global filter whose
formal guarantees do not depend on them.
Cross-report privacy loss optimization (§4.2). Big Bird in-
troduces an optimization that reduces overcounting when
multiple reports for the same conversion involve disjoint
impression sets (e.g., across intermediaries). Since such re-
ports reveal no more than the original attribution histogram
to shared filters, Big Bird accounts for them jointly across

privacy and quota filters.
Global filter management (Gap 2, §4.3). Without changing
the API or protocol, we rework PPA’s internal state to restore
its intended stock-and-flow model of privacy loss, where user
actions create “stock” at impression sites and trigger “flow”
at conversion sites. Depletion attacks break this structure by
automating flows or collapsing domain roles, draining the
global filter without real user input. To defend against this,
we introduce three quotas: one limits how much stock an
impression site can create, another caps how much flow a
conversion site can trigger, and a third bounds how many new
sites can participate per user action. These quotas don’t just
limit indirect proxies (like API calls or intermediaries); they
act directly on the core protected resource–the global filter–
enforcing a privacy budget flow tightly coupled to actual user
behavior and curbing adversarial misuse. We show that this
leads to graceful degradation of utility for benign workloads
under attack. This addresses PPA’s Gap 2.
Batched algorithm to improve utilization (§4.4). Static
quotas can underutilize the global budget, especially when
some impression sites see little demand while others face
heavy load. To address this inefficiency, Big Bird introduces a
batched scheduling algorithm that collects unserved requests
over a time interval and reallocates unused impression-site
quota toward them at the end of each interval. This improves
utilization without sacrificing resilience in our evaluation.

4 Detailed Design
We detail Big Bird’s four core components, grounding each
in our running example and the right side of Fig. 2.

4.1 API changes for per-site semantic (Gap 1)
We begin by addressing ambiguities in PPA’s per-site filters,
which aim to ensure privacy against honest-but-curious actors
but currently fall short. Intermediaries like r1.ex and r2.ex
can request reports on behalf of shoes.ex, causing PPA to
deduct privacy loss from shoes.ex ’s budget—even though
r1.ex and r2.ex receive the reports and may reuse them for
their own analytics. If those same intermediaries later run
cross-advertiser queries (e.g., to train a model to choose be-
tween ads for shoes.ex, toys.ex, or tvs.ex based on content-site
context), PPA charges their budgets directly. But when a sin-
gle entity serves both roles, the line between client-serving
and self-serving blurs. Even honest actors may be tempted to
misuse reports charged to others. Conversion sites may also
shard themselves into subdomains (e.g., shoes-cart.ex, shoes-
purchase.ex) to extend their budget. Without clear constraints
on report use, per-site accounting loses semantic integrity.

Big Bird changes PPA’s API, protocol, and terms of use
to clarify the beneficiary for each DP query. In the API, we
add a beneficiary parameter to measureConversion(). Dur-
ing getReport(), browsers resolve the beneficiary: to the
conversion site for single-advertiser measurement, or to the
requesting intermediary for cross-advertiser optimization. Pri-

6

vacy loss is then charged to the beneficiary’s per-epoch filters,
which are created as needed. Under the honest-but-curious
model, we permit unrestricted filter creation. In the protocol,
the beneficiary is included in the report’s authenticated data,
and aggregators are required to reject any batch with incon-
sistent beneficiaries. This blocks intermediaries from reusing
reports charged to other clients’ budgets. In the terms of use,
we prohibit using DP results tied to one beneficiarySite to
benefit another. Reports and results must remain siloed by
beneficiary, even across shared infrastructure. This prohibits
report-sharing among sharded identities (e.g., shoes-cart.ex,
shoes-purchase.ex), cross-company collusion, and Sybil be-
havior (§3.1). Honest-but-curious sites will avoid these.
Example. In Fig. 2, shoes.ex issues two measureConversion

() calls for a $60 purchase: a one for its own use (beneficiary
= self), and b one for intermediaries (beneficiary =

caller). In the first case, intermediaries like r1.ex, r2.ex, and
r3.ex request reports on behalf of shoes.ex, which deduct
from its budget. In the second, r1.ex and r2.ex request reports
on their own behalf, triggering deductions from their own
budgets. r3.ex does not participate and preserves its budget.
Each encrypted report includes the beneficiary in authenti-
cated data: b:shoes.ex for single-advertiser use a ; b:r1.ex
and b:r2.ex for cross-advertiser reports b .
Per-site guarantees and their limitations. The preceding
PPA changes bring much-needed clarity to per-site privacy
loss accounting, and we plan to propose them to PPA.

However, our formal analysis (Appendix F) shows that
proving per-site DP guarantees still require an additional
assumption: the exclusion of data-driven adaptivity across
sites. This assumption, to our knowledge, is novel in the DP
literature, yet we suspect that it applies broadly to systems en-
forcing sharded (non-global) semantics—including PPA, Big
Bird, Cookie Monster, and ARA. We believe that this gap has
gone unrecognized in prior work due to incomplete system
modeling, particularly the tendency to model the system’s
behavior for each site in isolation, as done in Cookie Mon-
ster [28] and ARA [11]. In contrast, Appendix F explicitly
models cross-site behavior for Big Bird, revealing the ne-
cessity of this assumption for formally establishing granular
DP.

We leave to future work a deeper exploration of how broadly
this assumption applies and what it means in practice. Still,
we emphasize that its presence does not diminish the im-
portance of per-site budgeting in PPA. These budgets help
constrain privacy loss against individual domains and can be
configured far more tightly than a global budget realistically
can. We thus urge PATWG to continue rigorously enforcing
per-site budgets—especially with our proposed changes to
clarify them—while also advancing toward effective enforce-
ment of a well-configured, well-managed global budget, a
topic this paper also addresses.

4.2 Cross-report privacy loss optimization
We illustrate Big Bird’s cross-report privacy loss optimization
using our running example, deferring a general treatment
to Appendix D. This optimization is orthogonal to Cookie
Monster’s per-report individual-DP-based strategies (§2.3),
and instead leverage structure across reports, often requested
by different intermediaries for the same conversion.

In Fig. 2, r1.ex, r2.ex, and r3.ex request single-advertiser
reports from attributionObject a , all on behalf of client
shoes.ex; separately, r1.ex and r2.ex request cross-advertiser
reports from b for their own purposes. All five reports op-
erate on the same attribution histogram, assigning $30 to
each of two impressions (epochs e1, e2). Cookie Monster
computes a base epoch-level privacy loss of 0.3 per report
(§2.3). Naïvely, one would expect a cumulative deduction
of 0.9 from shoes.ex’s filters (three reports) and 1.5 from the
global filter (five reports). Yet the Privacy Filters table shows
only deductions of 0.6 and 0.9, respectively.

The discrepancy arises because some reports shard the
histogram into non-overlapping pieces—enabling parallel-
composition-like optimizations. r1.ex and r2.ex’s single-advertiser
reports from a each include a disjoint portion: {1:30} and
{2:30}, respectively. Since both are funded by the same per-
site filter (of shoes.ex), their combined release leaks no more
than a single full histogram toward shoes.ex, incurring only
0.3 privacy loss. They likewise count as one deduction against
the shared global filter. In contrast, r3.ex’s report includes the
full histogram (to give shoes.ex a complete view across inter-
mediaries; see §3.2), overlapping with both r1.ex and r2.ex
and adding another 0.3 of loss to both shoes.ex’s filter and the
global filter. A similar optimization applies to cross-advertiser
reports from b . These are funded from separate filters (those
of r1.ex and r2.ex), so each incurs 0.3 loss. But against the
global filter, they again count as one, bringing the total global
filter deduction to 0.9 instead of the unoptimized 1.5.

Appendix D formalizes the optimization, whose logic we
encapsulate in the attributionObject. This object dynami-
cally optimizes budget deduction across the per-site, global,
and quota filters on each getReport() call, on the basis of
prior invocations and deductions.

4.3 Global filter management (Gap 2)
With clarified semantics, per-site filters offer strong privacy
protection against honest-but-curious sites, assuming tight
configuration (e.g., capacity 𝜖𝑝𝑒𝑟−𝑠𝑖𝑡𝑒 = 1). But non-compliant
behavior remains possible, making the global filter essential to
safeguard against worst-case privacy loss—i.e., an adversary
capable of accessing and combining results from all sites.
To enforce both DP guarantees, Big Bird implements a two-
phase commit-like algorithm: data-driven (non-null) reports
are returned only if they can be atomically funded by both
per-site and global filters; otherwise, null reports are returned.
Appendix B.2 formalizes this algorithm and its dual cross-
granularity (individual) DP guarantee—a relevant property in

7

practice that, to our knowledge, has never been formalized.
A key challenge in managing the global filter is balanc-

ing competing goals: supporting benign workloads, resisting
depletion attacks on this shared resource, and minimizing
its guarantee to offer the strongest privacy protections that
practical deployment can afford. We exemplify anticipated de-
pletion attacks, then discuss limitations of existing defenses.
DoS depletion attacks. An adversary X may attempt to ex-
haust the global budget—either to boost their own utility or
to disrupt others’. This threat already exists in PPA through
single-advertiser queries and will grow with cross-advertiser
support. To carry it out, X registers 𝑠 = 𝜖global/𝜖per-site Sybil
domains and distributes queries across them.

Attack 1: Cross-advertiser reports. X builds a site embed-
ding the 𝑠 Sybil domains as intermediaries. When user𝑢 visits,
the site: (1) registers 𝑠 impressions with X as the conversion
site and a different Sybil as intermediary; and (2) has each
intermediary request a cross-advertiser report, exhausting its
per-site budget. This drains the global budget for 𝑢. If many
users visit X once per epoch, X can disrupt others’ measure-
ments for that epoch. If users continue arriving across epochs,
X can sustain disruption, mounting a persistent attack with
one popular site and just one visit per user per epoch. PPA
isn’t currently vulnerable, lacking cross-advertiser support.
But a similar attack works using single-advertiser reports:

Attack 2: Single-advertiser reports. Here, the Sybils serve
as both impression and conversion domains. When 𝑢 visits
X, X auto-redirects 𝑠 times, switching domains to register
impressions and trigger single-advertiser reports in lock step;
each Sybil can register impressions for a different Sybil as
the conversion site. As before, this depletes the global budget.
While aggressive redirection may be heuristically flagged,
redirection is too common for browsers to block outright.

Attack 3: Single-advertiser reports, subtler version. Upon
user 𝑢’s visit, X (1) registers 𝑠 impressions with Sybil conver-
sion sites, and (2) redirects once to load a new Sybil domain
that requests a report. Reports use maximum attribution win-
dows to draw budget across past epochs via impressions pre-
viously registered by X. If many users visit X’s site roughly 𝑠

times during each epoch’s data lifetime (typically months), X
can sustain global budget depletion—again with one site but
requiring multiple user visits.
Limitations of existing defenses. Some behaviors in these
attacks clearly exceed reasonable use and should be disabled.
(1) PPA is designed for cross-site measurement, so queries
with identical impressionSite and conversionSite (Attack
1) should be disallowed. (2) A single user action shouldn’t
simultaneously register an impression and trigger conver-
sion measurement of it—even across domains (Attack 1). (3)
Excessive redirection (Attack 2) should be detectable. (4)
Allowing an epoch’s entire global budget to be exhausted in
seconds is a fundamental flaw (Attacks 1 and 2). While these
heuristics offer minimal protection, more principled defense

is needed for subtler abuse like Attack 3.
In PATWG discussions, several mitigations have been pro-

posed: restricting which sites receive per-site filters (e.g., via
mandatory registration), rate-limiting API calls, or capping
the number of sites granted filters per epoch. While poten-
tially useful, these measures risk over-constraining a nascent,
evolving workload. Mandatory registration could limit access
to the API, undermining the web’s openness. Hard limits on
per-site impression counts are tricky: some sites show many
ads, others few. The same goes for conversions, which may
range from rare purchases to frequent landing-page visits.
Capping intermediaries per conversion could constrain adver-
tisers’ ability to work with diverse partners. And if the API
is repurposed beyond advertising—e.g., to measure engage-
ment or reach—workload patterns may evolve further. Fixed
constraints that seem reasonable today could stifle innovation
or penalize legitimate new uses.
Our approach: Enforce stock-and-flow. We aim for de-
fenses that make minimal assumptions about workloads, en-
abling browsers to provide strong protection without overly
restricting the API. In §2.3, we introduce a stock-and-flow
pattern for PPA’s intended use: privacy loss is driven by ex-
plicit user actions—like navigations or clicks—across distinct
impression and conversion domains. The above attacks break
this pattern by automating flows and collapsing domain roles.

We restore the pattern via quotas: impression-site quotas
cap stock creation, conversion-site quotas cap triggered flow,
and a count-based limit bounds the number of new sites that
can create the preceding quotas from a single user action.
Unlike indirect metrics (e.g., API call frequency, number of
intermediaries, or domains with per-site filters), our first two
quotas operate directly on the protected resource: the global
filter. Each represents a share of the global budget calibrated
to a browser-defined “normal” workload. The third quota
anchors the stock-and-flow pattern to explicit user action.
Together, these quotas constrain adversaries to operate within
the contours of normal workloads, preventing global budget
drainage by a single site with limited user interaction.
Big Bird quota system. Fig. 2 (yellow background) high-
lights the internal state maintained by Big Bird to manage
global privacy filters in PPA. Appendix B formalizes the sys-
tem’s behavior and proves its privacy and resilience properties.
We use two types of quotas: (1) quota filters, imp-quota and
conv-quota, are implemented as DP filters—not for privacy
accounting, but to regulate global filter consumption, a novel
use in DP literature; (2) a standard count-based quota limits
the number of new quota filters created per user action.

The impression-site quota filter, imp-quota, is scoped per
impression site and per epoch. It bounds the global privacy
loss from flows that use stock created by impressions from
that site. When site i first calls saveImpression() in epoch
e, Big Bird creates imp-quota[e][i], with capacity set to a
share of the global filter. This quota is consumed only if a

8

“Normal” workload parameters:
M: max # of impression sites in an epoch contributing to non-zero loss in epoch.
N: max # of conversion sites that request non-zero loss from an epoch.
n: max # of conversion sites that request non-zero loss from a single (epoch,
impression site) pair.
r: max budget consumed by an intermediary’s cross-advertiser queries on a single
conversion site, as a fraction of the intermediary’s 𝜖per-site.

Filter Capacity configuration
Per-site filter 𝜖per-site: configuration parameter
Global filter 𝜖global = max(𝑁,𝑛 ·𝑀) (1 + 𝑟)𝜖per-site
Impression-site quota 𝜖imp-quota = 𝑛 (1 + 𝑟)𝜖per-site
Conversion-site quota 𝜖conv-quota = (1 + 𝑟)𝜖per-site

Tab. 1. Big Bird filter configurations.

later report matches an impression from i in that epoch—that
is, if i’s stock is used.

The conversion-site quota filter, conv-quota, is scoped per
conversion site and per epoch. It bounds global privacy loss
from flows initiated by conversions on that site. conv-quota
[e][c] is created when site c, in or after epoch e, first calls
measureConversion() in a way that could incur non-zero
loss in e. It is consumed on getReport()—i.e., a flow occurs.

Fig. 2 sketches Big Bird’s privacy loss accounting algo-
rithm (box “Measuring Conversions”; full version in Appen-
dix B.1). Per-epoch individual privacy losses are first com-
puted using the Cookie Monster algorithm. Then, for each
getReport(), Big Bird attempts to deduct losses across rele-
vant filters in an atomic transaction per epoch: success only al-
ters state if all checks pass. A non-null report is returned only
if checks succeed in all epochs. Relevant filters include the
beneficiary’s per-site filter, the global filter, the conversion
site’s conv-quota, and an imp-quota for each impression site
with non-zero loss. To efficiently enforce impression-site quo-
tas, we compute loss at the (epoch, impression site) level
and charge it to the corresponding imp-quota. Cross-report
optimizations eliminate redundant charges. Although total
quota capacities may exceed the global budget at any mo-
ment, Big Bird’s atomic checks ensure global filter is never
breached.

Quota filters cap how much each first-party site contributes
to global privacy consumption. In a world without automatic
redirects—where every domain change reflects a user ac-
tion—this would suffice to reestablish user-driven stock-and-
flow. But redirects are pervasive, so we allow a bounded
number of first-party domains to trigger new quota creation
after a single explicit user action. This bound, quota-count,
is configurable and expected to be small (e.g., 2 or 3). We
also recommend disallowing a single domain from registering
both an impression and a conversion on the same user action.
Configuration to “normal” workload. How should filters
be configured to avoid disrupting benign workloads? We take
three steps. First, we define four browser-adjustable parame-
ters describing expected workload scale (𝑁 , 𝑀 , 𝑛, 𝑟), defined
in Table 1. Second, given these parameters and 𝜖per-site, we ex-
press constraints the other capacities must meet to support this

workload: 𝜖conv-quota ≥ (1+𝑟)𝜖per-site; 𝜖imp-quota ≥ 𝑛 ·𝜖conv-quota;
𝜖global ≥ max(𝑁 · 𝜖conv-quota, 𝑀 · 𝜖imp-quota). Third, we derive
capacity formulas from these constraints, as shown in Table 1.
Resilience to DoS depletion. We prove the following:

Theorem 1 (Resilience to DoS depletion (proof in B.4)).
Consider an adversary who manages to create 𝑀adv and
𝑁 adv imp-quota and conv-quota filters, respectively. The
maximum budget 𝜖adv

global that the adversary can consume from
the global filter on a device 𝑑 is such that:

𝜖adv
global ≤ min(𝑀adv𝜖imp-quota, 𝑁

adv𝜖conv-quota).

This blocks Attack 1, where all impressions and conver-
sions occur under one domain, yielding 𝑀adv = 𝑁 adv = 1
and capping consumption at min(𝜖imp-quota, 𝜖conv-quota), far
from depletion. The quota-count bound blocks Attack 2,
where a single user visit triggers automatic redirection. This
bound—small by design—limits how many quota filters can
be created per user action, allowing only modestly more bud-
get use than in Attack 1.

In general cases like Attack 3, an adversary who receives
𝑈adv interactions from user𝑢 can create at most 𝑀adv+𝑁 adv ≤
quota-count ·𝑈 adv. Our quotas ensure graceful degradation
for benign workloads as a function of 𝑈 adv. We prove the
following:

Theorem 2 (Graceful degradation (proof here)). Consider a
adversary collecting 𝑈 adv user actions on sites under their
control for device 𝑑. Under the configuration of Table 1,
the budget 𝜖adv

global that this adversary can consume from the
global filter is upper-bounded by:

𝜖adv
global ≤ (1 + 𝑟)𝜖per-site ×

𝑛

1 + 𝑛
(
quota-count ×𝑈 adv) .

Proof. Thm. 1 implies the most efficient way to allocate the
quota-count ×𝑈 adv = 𝑀adv + 𝑁 adv filter creations available
to the attacker is such that 𝑀adv𝜖imp-quota = 𝑁 adv𝜖conv-quota, or
𝑀adv𝑛(1 + 𝑟)𝜖per-site = 𝑁 adv (1 + 𝑟)𝜖per-site. This yields 𝑀adv =
1

𝑛+1quota-count×𝑈
adv and 𝑁 adv = 𝑛

𝑛+1quota-count×𝑈
adv.

Applying Thm. 1 concludes the proof. □

4.4 Batched scheduling to improve utilization
Static quota partitioning can underutilize the global filter
—even in benign scenarios. Suppose a device visits only two
impression sites: news.ex, with many conversions, and blog.ex,
with just one. The lone advertiser of blog.ex consumes up to
its per-site filter, leaving much of blog.ex’s imp-quota unused,
while the many advertisers of news.ex are bottlenecked by the
imp-quota of news.ex. As a result, significant global budget
remains idle, despite no added privacy risk from reallocating
it to blocked news.ex advertisers. This limitation, flagged by
PATWG participants, motivates our algorithmic solution that
improves utilization while maintaining resilience to depletion.

Dynamically adjusting quotas based on observed demand
would invite attacks, but we observe that if PPA supports
batched mode—collecting requests over a period of time and

9

servicing them gradually—we can make smarter schedul-
ing decisions. In particular, we can gradually release unused
impression-site quota to support otherwise-blocked requests.
The challenge is to (1) preserve some formal resilience guar-
antees, and (2) avoid scheduling decisions that depend on
cross-epoch filter state, which would violate individual DP
semantics. We present an algorithm that satisfies both con-
straints and shows significant utilization gains in evaluation.
Algorithm. Algorithm 1 outlines the approach (full version
in Appendix C). We divide each epoch data’s lifetime into 𝑇

Algorithm 1 Batched algorithm
1: function SCHEDULE(queue)
2: // (1) Initialization phase:
3: ImpQuotasOn()
4: ReleaseGlobalFilter()
5: for 𝑟 ∈ queue do TryAllocate(𝑟)
6: // (2) Online phase (new request 𝑟):
7: if !TryAllocate(𝑟) then queue.append(𝑟)
8: // (3) Batch phase:
9: ImpQuotasOff()

10: repeat
11: Sort(queue)
12: for 𝑟 ∈ queue do
13: if TryAllocate(𝑟) then break
14: until no new allocation
15: return queue

scheduling intervals
(e.g., one week). We
extend the PPA API
to support a response
time—the interval af-
ter which a report
is returned. For pri-
vacy, reports are only
delivered at their re-
sponse time; unsched-
uled requests yield
encrypted null re-
ports. Each interval
has three phases: (1) Initialization: We release a portion
𝜖global/𝑇 of the global budget, adding it to any leftover from
prior intervals. With both imp-quota and conv-quota filters
active, we try allocating queued requests using this budget.
TryAllocate() decides whether to attempt allocation for a
request 𝑟 based solely on public metadata (as required for
individual DP); if yes, it removes 𝑟 from the queue and ap-
plies all active filters. (2) Online: As requests arrive, and with
both quotas on, we decide immediately based on the same
process, whether to allocate or queue them. (3) Batch: At the
interval’s end, we disable imp-quota (keeping conv-quota),
sort the queue via a max-min-fairness heuristic, and allocate
requests one-by-one until no more succeed. TryAllocate()
always attempts allocation if a request’s response is due.
Sorting the queue. Inspired by max-min fairness [18], we
sort requests by the impression site with the least estimated
budget consumption so far—based only on public metadata,
per individual DP constraints. Within each site, requests are
ordered by ascending requested privacy budget. For multi-site
requests, we sort by site with lowest estimated budget usage.
Resilience to DoS depletion. During the online phase, both
the imp-quota and conv-quota quotas are active, preserving
the same resilience properties as in Thm. 2. In the batch phase,
we lift the imp-quota, allowing any unused global filter ca-
pacity released so far to be reallocated. This helps support
constrained benign workloads—such as some of news.ex’s ad-
vertisers—but also opens the door to adversarial exploitation.
Nonetheless, consumption remains bounded by conv-quota,
yielding the following bound on adversarial consumption:

𝜖adv
global ≤ (1 + 𝑟)𝜖per-site × quota-count × (𝑈 adv − 1).

This bound is pessimistic: Appendix C.2 proves a tighter one,
but real-world attacks are likely harder. Success would require
(1) depleting budget ahead of legitimate online requests, (2)
coordinating hybrid attacks across online and batch phases,
and (3) defeating the scheduler’s sorting mechanism, which
favors low-budget and underrepresented impression sites.

4.5 Recommendations for PATWG
Big Bird provides browsers with foundational building blocks
for defending against DoS depletion attacks on PPA’s global
filter—though not an end-to-end solution. Operating within
the budget management layer, our techniques offer built-in
resilience independent of specific web attack vectors. How-
ever, they rest on assumptions—namely, that attackers cannot
easily induce many users to visit many attacker-controlled
domains—which browsers must enforce to achieve full pro-
tection. Our threat model (§3.1) leaves enforcement out of
scope, but Big Bird establishes a foundation to drive end-
to-end solutions, which has so far been lacking in PATWG,
hindering its progress. We conclude this section with a set
of Don’ts and Do’s, some addressing directions raised in
PATWG.

Don’ts: (1) Don’t rate-limit API invocations: This is not
directly useful and risks stifling benign use cases. In Big Bird,
sites may register arbitrary impressions and conversions, and
intermediaries may request any number of reports. The true
limit is on how many distinct domains can act after a sin-
gle user action. (2) Don’t limit the number of per-site filters:
These are meant to track privacy loss from honest-but-curious
sites. They are not suitable levers for defending the global
filter from malicious actors trying to deplete it. (3) Don’t
require intermediary registration: With proper budget man-
agement—by Big Bird and by first parties managing their own
quotas—intermediaries do not impact privacy or resilience
guarantees. While Big Bird leaves to future work the ability
for first parties to control how intermediaries consume their
quota, we believe this can be done rigorously, further reducing
the need for intermediary registration with a PPA authority.

Do’s: Focus on detecting and disabling patterns of site
sharding across domains. For example, sites may attempt to
shard themselves—e.g., routing each user interaction through
a distinct domain—to inflate their quota access and deplete
the global filter. While some level of sharding is inevitable
(e.g., legitimate third-party integrations like shopping carts),
aggressive self-sharding for DoS purposes should be explic-
itly prohibited. First, PPA should ban such behavior in its
terms of use, which large, legitimate sites are likely to re-
spect. Second, browsers should develop heuristics to detect
noncompliant patterns and block offending sites from using
the API. One possible signal is when a landing site frequently
links to dynamically changing domains that invoke the API
before returning users to the same main site. Third, Big Bird’s
sorting algorithm could be extended to penalize suspicious-
but-not-yet-blocked behavior. These are examples of concrete,

10

actionable directions that PATWG can now pursue based on
the resilience foundation provided by Big Bird.

5 Prototype
We implement Big Bird in two components: (1) pdslib, a
general-purpose on-device individual DP library in Rust, and
(2) its integration into Firefox’s Private Attribution, a basic
PPA prototype. pdslib: Big Bird’s core logic lives in pdslib,
a Rust library for privacy budget management designed for
broader individual DP use cases beyond advertising—e.g.,
location services in mobile apps. pdslib provides a generic
interface: clients (sites or apps) register events (e.g., ad views,
location visits) and request reports (e.g., attributions, model
updates), receiving encrypted responses under strict privacy
and isolation constraints. It implements all filters, quotas,
privacy accounting, batching, and cross-report optimizations.
Big Bird is a PPA-specific instantiation—a 350 LoC shim
atop pdslib’s 2k LoC, specializing its generics to the PPA
spec.

Firefox integration: We integrate pdslib and the Big Bird
shim into Firefox’s Private Attribution, replacing its prim-
itive report-count-based accounting with full privacy loss
tracking (Firefox’s PA lacks even Cookie Monster logic) [9].
Appendix E shows a Firefox extension dashboard we built
to visualize filter and quota usage. We plan to open-source
pdslib, the shim, and the integration to support PATWG and
broader private-aggregation use cases.

6 Evaluation
We seek to answer the following questions: (Q1) What param-
eters define “normal” operation in the Criteo workload? (Q2)
Do query error rates vary with different quota capacities?
(Q3) Do quotas preserve low error rates for benign queries
under DoS attacks? (Q4) Do quotas lead to under-utilization,
and does our batching algorithm mitigate this?

6.1 Methodology
Dataset. We evaluate Big Bird on CriteoPrivateAd [27], a
dataset released by the Criteo ad-tech company, a PATWG
participant, for the purpose of benchmarking private advertis-
ing systems. The dataset samples 30 days of production traf-
fic using third-party cookies, with 104M impressions across
220k publisher sites (publisher_id) and 10k conversion sites
(campaign_id, a good proxy for advertiser domains [27]). The
data involves a single intermediary–Criteo itself.

Each impression includes contextual and user features, a
daily-reset device ID, and attribution information indicating
whether it led to a click, visit, or sale on a conversion site.
This lets us reconstruct per-device, per-day conversion lists.

The dataset is impression-subsampled, not device-subsampled,
so most devices have only one impression. Criteo provides
the true device-level impression distribution and a resampling
method to match it [27]. Using this, we construct a dataset
with 4.6M impressions and 5.6M conversions across 1.4M de-

vices, in which the median (resp. 90th percentile) device has
2 (resp. 6) impressions and 4 (resp. 16) conversions. We tune
our algorithms and workload parameters on the first 10 days
and report results on the remaining 20 days that we explicitly
hold out for this evaluation.
Benign workload process. We consider a single-advertiser
measurement scenario for benign queries. For each conver-
sion, the advertiser–or Criteo acting on its behalf–invokes
measureConversion and immediately after getReport() on
the returned attributionObject, to request a report that at-
tributes the conversion to the most recent relevant impres-
sion. Impressions are grouped into five buckets based on the
features_ctx_not_constrained_0 field, which is anonymized
but we assume it represents region, device type, or user cat-
egory. The end-to-end DP query produces a per-advertiser
histogram estimating the number of conversions attributed to
each bucket. We adopt RMSRE𝜏—relative root mean square
error truncated at 𝜏—to measure DP histogram error against
the ground-truth histogram, following [2].

When requesting attribution reports, each advertiser must
specify a privacy budget, denoted by 𝜖. We assign this bud-
get in a way that mimics how a real advertiser might choose
it—by aiming for a certain level of accuracy in their reports.
First, we determine how many conversions each advertiser
typically sees per day. To ensure reports can be reasonably
accurate under differential privacy, we only include advertis-
ers that average at least 100 conversions daily. There are 73
such advertisers in the dataset. Next, we decide how many
conversions to include in each aggregation batch. We set this
batch size to be either ten times the advertiser’s daily average
or 5,000 conversions—whichever is smaller. This ensures that
advertisers produce roughly one report every 10 days, without
aggregating on too small batches for low-volume advertisers.
Finally, once we know how many conversions go into each
batch, we choose the privacy budget 𝜖 so that the expected
error in the report is about 5%, using a standard formula
based on the Laplace mechanism and expected histogram
statistics. This entire process is meant to reflect a realistic
scenario, where advertisers select a privacy budget based on
their volume and desired accuracy.
Attack workload process. To evaluate Big Bird’s resilience
to DoS depletion attacks (specifically, Attacks 2 and 3 from
§4.3), we inject a synthetic adversarial workload into real be-
nign traffic. (Attack 1 is excluded, as the dataset only includes
a single intermediary.) Our setup simulates an attacker who
controls 10 popular impression sites and 10 popular conver-
sion sites, that each redirects to 7 new Sybil domains per real
user action. This corresponds to a highly permissive configu-
ration of quota-count = 8 to ensure a strong attack since most
devices in Criteo convert only once. This attack evaluation
methodology is still preliminary and we will explore other
shapes of attacker traffic. We instantiate the attack as follows.

We first create 10 attacker impression sites, created by

11

duplicating the most active impression sites to ensure the
attacker interacts with many devices, since most devices in
Criteo see only one impression site. For each impression, the
attacker registers all its domains as target conversion sites.
Then, we identify the top 10 real sites by number of conver-
sions, and duplicate them to create 10 attacker conversion
sites. For each user action on an attacker conversion site, we
request a report with maximum 𝜖 = 𝜖per-site, where all the
attacker impression sites are marked as relevant. We then
redirect 7 times to new attacker conversion sites that request
reports in the same way.

Since each series of attacker events (one impression or
conversion event followed by 7 redirections) reuses device
ids and timestamps from a real event, we need to break ties
to decide in which order to inject attacker events on top of
real events. We flip an unbiased coin to either let the attacker
run first or the real event run first. This gives a fair chance
for real sites to run their queries without being systematically
front-runned by the attacker.
Baselines. We compare Big Bird against two baselines. The
first is PPA w/o global filter, which enforces only per-site
filters. This baseline is how Cookie Monster [28] itself would
behave. The second, PPA w/ global filter, extends PPA w/o
global budget by adding a global filter, aligning with the cur-
rent PPA draft specification.
Defaults. Unless otherwise stated, we use 𝜖per-site = 1, 𝜖conv-quota =

1, 𝜖imp-quota = 4, and 𝜖global = 8, reflecting our single-advertiser
query workload (which implies 𝑟 = 0) and a filter configu-
ration derived from a “normal” workload. We define this
workload using the 95th percentile values of 𝑁 , 𝑀 , and 𝑛

shown in Tab. 2 and detailed in the next section. Finally, since
Criteo resets user IDs daily, we fix epoch duration to 1 day.

6.2 “Normal” workload parameters in Criteo (Q1)
Big Bird’s global and quota filter capacities are configured
based on parameters intended to support a “normal” work-
load (Tab. 1). While our single-ad-tech dataset doesn’t provide
reliable values for these parameters, we present a methodol-
ogy that browser vendors can apply once PPA is trialed at
scale—and we illustrate this methodology on Criteo.

On a “training” dataset—the first 10 days of Criteo in
our case—we can compute a distribution of 𝑁,𝑀,𝑛 values
across devices, either by (1) running conversion attribution
and computing their precise values as defined in Tab. 1, or
(2) more efficiently, by computing upper bounds 𝑁̃ ≥ 𝑁 ,
𝑀̃ ≥ 𝑀 , 𝑛̃ ≥ 𝑛 from the number of unique impression (resp.
conversion) sites per device for 𝑀̃ (resp. 𝑁̃), and unique
conversion sites per (device, impression-site) pair for 𝑛̃. We
adopt the latter option for simplicity.

Tab. 2 shows these percentile values along with the cor-
responding global and impression-site quota capacities. Be-
cause our evaluation involves only single-advertiser queries,
we force 𝑟 = 0 and thus 𝜖conv-quota = 𝜖per-site. In more general
settings, 𝑟 would also need to be set as a policy parameter.

%ile 𝑁̃ 𝑀̃ 𝑛̃ 𝜖global 𝜖imp-quota

p50 2 1 2 2 2
p90 4 2 4 8 4
p95 4 2 4 8 4
p99 6 3 6 18 6

p100 12 7 14 98 14

Tab. 2. Criteo “normal” workload.

Choosing quotas to
support 100% of de-
vices maximizes util-
ity—since no quota-induced
errors occur—but results
in a very loose privacy
budget, 𝜖global = 98. A
more balanced choice
is the 95th percentile,
which yields 𝜖global = 8 and still avoids quota errors for the
vast majority of devices. We validate the impact of this choice
on accuracy in §6.3.

In general, selecting a percentile reflects a tradeoff between
quota size (hence, utility) and the tightness of the global pri-
vacy guarantee 𝜖global. This tradeoff depends on workload
characteristics: Criteo’s short epoch (1 day) and single-adtech
scope suggest that real-world deployments—spanning mul-
tiple adtechs and longer epochs—will likely have higher
𝑁,𝑀,𝑛 values than in our table. For such workloads, stronger
privacy guarantees may require adopting lower percentiles.
We evaluate the effect of such tighter settings next.

6.3 Query errors under normal workload (Q2)
We vary 𝜖imp-quota and measure its effect on query error in
the benign case. Fig. 3a shows the median and tail (99th
percentile) RMSRE. Since the PPA baselines lack an imp-

quota, their errors remains constant across 𝜖imp-quota values.
Moreover, they show identical error: at the p95 setting in
Tab. 2, 𝜖global = 8 is high enough to eliminate any error the
global filter. In contrast, Big Bird’s error rises at low 𝜖imp-quota,
as the quota forces some reports to be null, inducing error in
query results. For 𝜖imp-quota ≥ 2, the filter no longer affects
query error, suggesting that reasonably sized quotas preserve
utility. The p95 values from Tab. 2 are sufficient to support
normal operation—and are even conservative, since actual
privacy loss may be lower than the worst-case upper bounds
we use to configure 𝑁 , 𝑀 , and 𝑛.

Fig. 3b breaks down the sources of Big Bird’s error. RM-
SRE stems from two factors: DP noise (variance), and null
reports due to filter/quota blocking (bias). We isolate the latter
by counting how many and which filters were out-of-budget
for each report. If multiple filters are exceeded, we break
ties in this order: per-site, global, conv-quota, and imp

-quota. We then compute the average fraction of affected
reports per query. At 𝜖imp-quota = 1, nearly a third of reports
are blocked by imp-quota, explaining the high error in Fig. 3a.
For 𝜖imp-quota ≥ 2, most blocked reports result from per-site
filters—which also exist in PPA—explaining why Big Bird’s
error converges to theirs.

6.4 Query errors under DoS attack (Q3)
We evaluate Big Bird’s resilience under X’s attack against the
global filter. Fig. 3c plots median and tail error for benign
queries as a function of imp-quota capacity. PPA w/o global
filter is unaffected (but also lacks a global privacy guarantee).

12

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1
Big Bird (p50) Big Bird (p99)
PPA (p50) PPA (p99)
Cookie Monster (p50) Cookie Monster (p99)

imp-quota capacity

R
M

S
R

E
 (

lo
w

er
 is

 b
et

te
r)

(a) Error, normal workload

1 2 3 4 5 6 7 8
0%

20%

40%

60%

80%

100%

Global filter
Per-site filter
Quota filter

imp-quota capacity

%
 o

f r
ep

or
ts

 im
pa

ct
ed

by
 a

 fi
lte

r

(b) Error causes, normal workload

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1
Big Bird (p50) Big Bird (p99)
PPA (p50) PPA (p99)
Cookie Monster (p50) Cookie Monster (p99)

imp-quota capacity

R
M

S
R

E
 (

lo
w

er
 is

 b
et

te
r)

(c) Error under attack

1 2 3 4 5 6 7 8
0%

20%

40%

60%

80%

100%

Global filter
Per-site filter
Quota filter

imp-quota capacity

%
 o

f r
ep

or
ts

 im
pa

ct
ed

by
 a

 fi
lte

r

(d) Error causes under attack
Fig. 3. Quota system evaluation. (a), (b): Query error and its root causes in a benign case. (c), (d): Benign-query error and root causes under attack.

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1
Online Big Bird (p50) Online Big Bird (p99)
Batched Big Bird (p50) Batched Big Bird (p99)
PPA (p50) PPA (p99)

imp-quota capacity

R
M

S
R

E
 (

lo
w

er
 is

 b
et

te
r)

(a) Error, normal workload

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1
Online Big Bird (p50) Online Big Bird (p99)
Batched Big Bird (p50) Batched Big Bird (p99)
PPA (p50) PPA (p99)

imp-quota capacity

R
M

S
R

E
 (

lo
w

er
 is

 b
et

te
r)

(b) Error under attack

Fig. 4. Batched algorithm evaluation.

PPA w/ global filter lacks protection from X, so its tail error
rises sharply under attack. Big Bird with a well-configured
quota (e.g., 𝜖imp-quota = 4 per p95 in Tab. 2) fully isolates
honest queriers, matching the error levels of PPA w/o global
filter.

As before, a too-small quota harms utility even without
an attacker. But under attack, too-large quota (𝜖imp-quota ≥ 7)
lets X drain the global budget, degrading benign-query util-
ity—consistent with our theoretical bounds. Fig. 3d confirms
these observations by showing the break-down of error causes
across imp-quota settings. At low 𝜖imp-quota, errors stem from
honest reports blocked by the quota; the attack itself plays no
role. At high 𝜖imp-quota, errors arise from global filter deple-
tion, permitted by a loose imp-quota.

6.5 Batched algorithm evaluation (Q4)
Above error analyses show that low imp-quota capacities
can degrade benign-query utility, with or without attack. Can
the batched algorithm boost utilization while still protect-
ing against attack? Fig. 4 explores this. In the benign case,
Fig. 4a shows that batching substantially improves utiliza-
tion: it sustains low tail error even at very low quotas (as
low as 𝜖imp-quota = 0.5), closely tracking PPA, which impose
no quotas. In the attack case, Fig. 4b shows that batching
preserves low error for benign queries, unlike PPA, which
is overwhelmed. The online algorithm performs well in the
“safe” range (2 ≤ 𝜖imp-quota ≤ 7), but fails beyond that as the
attacker drains the global filter. In contrast, batching main-
tains low error across all 𝜖imp-quota values, mainly thanks to
its max-min fairness-like sorting that spreads budget across
queriers during batch scheduling. Thus, the batched algorithm
improves utilization without sacrificing resilience.

7 Related Work
Our main contribution advances the PPA API—an emerging
W3C standard poised to become the foundation for browser-
based advertising measurement, and thus a critical part of
the web’s infrastructure. Big Bird fills two key gaps in PPA:
it clarifies the semantics of per-site filters and introduces a
system for configuring and managing both these filters and the
global filter. This system upholds strong privacy guarantees,
supports benign workloads, and resists global filter depletion.
Big Bird also provides the basis of how budgeting should
work for cross-advertiser queries, a planned PPA extension.

Among prior work on PPA and related APIs, the most
relevant is Cookie Monster [28], which tracks privacy loss
using per-epoch filters tied to individual queriers. Big Bird
goes further by managing these filters alongside the global
filter and introducing a cross-report optimization that Cookie
Monster lacks. Other foundational work includes Google’s
ARA papers [2, 6, 11], research on the MPC components of
these APIs [4, 5, 3], now-retired proposals like IPA [14] and
PAM [21], or Hybrid [13], which proposed several planned
extensions to PPA. More broadly, there is related work on
privacy-preserving ad targeting [31, 32].

Beyond ad measurement, this paper contributes to the
broader challenge of privacy budget management, a cru-
cial but understudied area in DP. While budget allocation
within a single query is well-studied [17, 1], budget man-
agement across queries from mutually distrustful parties is
less explored. Notably, [23, 24] balance utility across ana-
lysts sharing a single global budget, but without per-analyst
guarantees. Most similar to us, [30] simultaneously enforces
per-analyst guarantees and global DP guarantees in case of
collusion. However, they do not consider adaptively chosen
data and budgets, which sidesteps the fundamental challenges
we identify in Big Bird. Relevant systems include those for
global budget scheduling [18, 29, 15], which inspire our
batched scheduling approach but differ in key ways. [18]
proposes a max-min-fair algorithm for allocating global bud-
get across epochs, similar in spirit to our scheduler. Big Bird
departs from these systems in two ways. First, it operates
under epoch-level individual DP, which rules out relying on
cross-epoch budget information. Second, it supports adaptive,
multi-task queriers and defends against DoS depletion—gaps
unaddressed in prior work.

Big Bird builds on the literature on privacy filters [25],
13

particularly individual filters [10]—core DP primitives for
adaptive composition and halting. Like prior work [19, 7, 16],
we use filters to enforce DP. But we also repurpose them
as quotas to limit consumption and provide isolation. A key
contribution is our formalization of multi-granularity filter
management—per-site and global—that supports simultane-
ous DP guarantees. These guarantees are essential in practice
but have not been formalized in adaptive settings, nor has
prior work shown how to manage them. We do both.

8 Conclusions
PPA is emerging as the foundation for browser-based ad-
vertising measurement—and thus a key part of the web’s
infrastructure. Yet critical technical gaps remain, creating a
timely opportunity for academic work to advance the stan-
dard’s deployability. Big Bird addresses two such gaps: it adds
clarity to the semantics to per-site filters and introduces princi-
pled mechanisms for managing PPA’s global filter, supporting
expected workloads while defending against malicious deple-
tion. These contributions lay a foundation for PPA to deliver
strong privacy and robust utility—even in adversarial environ-
ments.

References
[1] John M. Abowd et al. “The 2020 Census Disclosure

Avoidance System TopDown Algorithm”. In: Harvard
Data Science Review Special Issue 2 (June 2022).

[2] Hidayet Aksu et al. “Summary Reports Optimization
in the Privacy Sandbox Attribution Reporting API”. In:
Proc. Priv. Enhancing Technol. 2024.4 (2024), pp. 605–
621. DOI: 10.56553/POPETS-2024-0132. URL:
https://doi.org/10.56553/popets-2024-0132.

[3] James Bell et al. “Distributed, Private, Sparse His-
tograms in the Two-Server Model”. In: Proceedings
of the 2022 ACM SIGSAC Conference on Computer
and Communications Security. CCS ’22. Los Ange-
les, CA, USA: Association for Computing Machin-
ery, 2022, pp. 307–321. ISBN: 9781450394505. DOI:
10.1145/3548606.3559383. URL: https://doi.org/
10.1145/3548606.3559383.

[4] Henry Corrigan-Gibbs and Dan Boneh. “Prio: Pri-
vate, Robust, and Scalable Computation of Aggre-
gate Statistics”. In: 14th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI
17). Boston, MA: USENIX Association, Mar. 2017,
pp. 259–282. ISBN: 978-1-931971-37-9. URL: https:
//www.usenix.org/conference/nsdi17/technical-
sessions/presentation/corrigan-gibbs.

[5] Hannah Davis et al. “Verifiable Distributed Aggre-
gation Functions”. In: Proc. Priv. Enhancing Tech-
nol. 2023.4 (2023), pp. 578–592. DOI: 10 .56553 /
POPETS- 2023- 0126. URL: https:/ /doi .org/10.
56553/popets-2023-0126.

[6] Matthew Dawson et al. Optimizing Hierarchical Queries
for the Attribution Reporting API. Comment: Appeared
at AdKDD 2023 workshop; Final proceedings version.
Nov. 27, 2023. arXiv: 2308.13510 [cs].

[7] David Durfee and Ryan M Rogers. “Practical Differen-
tially Private Top-k Selection with Pay-what-you-get
Composition”. In: Advances in Neural Information
Processing Systems. Ed. by H. Wallach et al. Vol. 32.
Curran Associates, Inc., 2019.

[8] Hamid Ebadi, David Sands, and Gerardo Schneider.
“Differential Privacy: Now It’s Getting Personal”. In:
Proceedings of the 42nd Annual ACM SIGPLAN -
SIGACT Symposium on Principles of Programming
Languages. POPL ’15: The 42nd Annual ACM SIG-
PLAN SIGACT Symposium on Principles of Program-
ming Languages. Mumbai India: ACM, Jan. 14, 2015,
pp. 69–81. ISBN: 978-1-4503-3300-9. DOI: 10.1145/
2676726.2677005.

[9] Experiment: Privacy-Preserving Attribution Measure-
ment API. https://github.com/mozilla/explainers/
tree/main/ppa-experiment. 2024.

[10] Vitaly Feldman and Tijana Zrnic. “Individual Privacy
Accounting via a Rényi Filter”. In: Advances in Neural
Information Processing Systems. Ed. by M. Ranzato et
al. Vol. 34. Curran Associates, Inc., 2021, pp. 28080–
28091.

[11] Badih Ghazi et al. On the Differential Privacy and
Interactivity of Privacy Sandbox Reports. 2024. arXiv:
2412.16916 [cs.CR].

[12] Ali Ghodsi et al. “Dominant resource fairness: fair
allocation of multiple resource types”. In: Proceedings
of the 8th USENIX Conference on Networked Systems
Design and Implementation. NSDI’11. Boston, MA:
USENIX Association, 2011, pp. 323–336.

[13] Hybrid Proposal. https://github.com/patcg-individual-
drafts/hybrid-proposal. 2024.

[14] Interoperable Private Attribution (IPA)). https://github.
com/patcg-individual-drafts/ipa. 2022.

[15] Nicolas Küchler et al. “Cohere: Privacy Management
in Large Scale Systems”. In: CoRR abs/2301.08517
(2023). DOI: 10.48550/ARXIV.2301.08517. arXiv:
2301.08517. URL: https://doi.org/10.48550/arXiv.
2301.08517.

[16] Mathias Lécuyer. Practical Privacy Filters and Odome-
ters with Rényi Differential Privacy and Applications
to Differentially Private Deep Learning. 2021. arXiv:
2103.01379 [stat.ML]. URL: https://arxiv.org/
abs/2103.01379.

[17] Chao Li et al. “Optimizing linear counting queries un-
der differential privacy”. In: Proceedings of the Twenty-
Ninth ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems. PODS ’10. Indianapo-
lis, Indiana, USA: Association for Computing Machin-
ery, 2010, pp. 123–134. ISBN: 9781450300339. DOI:

14

https://doi.org/10.56553/POPETS-2024-0132
https://doi.org/10.56553/popets-2024-0132
https://doi.org/10.1145/3548606.3559383
https://doi.org/10.1145/3548606.3559383
https://doi.org/10.1145/3548606.3559383
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/corrigan-gibbs
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/corrigan-gibbs
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/corrigan-gibbs
https://doi.org/10.56553/POPETS-2023-0126
https://doi.org/10.56553/POPETS-2023-0126
https://doi.org/10.56553/popets-2023-0126
https://doi.org/10.56553/popets-2023-0126
https://arxiv.org/abs/2308.13510
https://doi.org/10.1145/2676726.2677005
https://doi.org/10.1145/2676726.2677005
https://github.com/mozilla/explainers/tree/main/ppa-experiment
https://github.com/mozilla/explainers/tree/main/ppa-experiment
https://arxiv.org/abs/2412.16916
https://github.com/patcg-individual-drafts/hybrid-proposal
https://github.com/patcg-individual-drafts/hybrid-proposal
https://github.com/patcg-individual-drafts/ipa
https://github.com/patcg-individual-drafts/ipa
https://doi.org/10.48550/ARXIV.2301.08517
https://arxiv.org/abs/2301.08517
https://doi.org/10.48550/arXiv.2301.08517
https://doi.org/10.48550/arXiv.2301.08517
https://arxiv.org/abs/2103.01379
https://arxiv.org/abs/2103.01379
https://arxiv.org/abs/2103.01379

10.1145/1807085.1807104. URL: https://doi.org/
10.1145/1807085.1807104.

[18] Tao Luo et al. “Privacy Budget Scheduling”. In: 15th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI 21). USENIX Associa-
tion, July 2021, pp. 55–74. ISBN: 978-1-939133-22-9.
URL: https://www.usenix.org/conference/osdi21/
presentation/luo.

[19] Ryan McKenna et al. “AIM: an adaptive and iterative
mechanism for differentially private synthetic data”. In:
Proc. VLDB Endow. 15.11 (July 2022), pp. 2599–2612.
ISSN: 2150-8097. DOI: 10.14778/3551793.3551817.
URL: https://doi.org/10.14778/3551793.3551817.

[20] Privacy-Preserving Attribution: Level 1. https://w3c.
github.io/ppa/. 2024.

[21] Private Ad Measurement (PAM). https://github.com/
patcg-individual-drafts/private-ad-measurement.
2023.

[22] Private Advertising Technology Working Group. https:
//www.w3.org/groups/wg/pat/. 2024.

[23] David Pujol et al. “Budget sharing for multi-analyst
differential privacy”. In: Proc. VLDB Endow. 14.10
(June 2021), pp. 1805–1817. ISSN: 2150-8097. DOI:
10.14778/3467861.3467870. URL: https://doi.org/
10.14778/3467861.3467870.

[24] David Pujol et al. “Multi-Analyst Differential Privacy
for Online Query Answering”. In: Proc. VLDB Endow.
16.4 (Dec. 1, 2022), pp. 816–828. ISSN: 2150-8097.
DOI: 10.14778/3574245.3574265.

[25] Ryan Rogers et al. “Privacy odometers and filters: pay-
as-you-go composition”. In: Proceedings of the 30th In-
ternational Conference on Neural Information Process-
ing Systems. NIPS’16. Barcelona, Spain: Curran Asso-
ciates Inc., 2016, pp. 1929–1937. ISBN: 9781510838819.

[26] Ryan M Rogers et al. “Privacy Odometers and Filters:
Pay-as-you-go Composition”. In: Advances in Neural
Information Processing Systems. Ed. by D. Lee et al.
Vol. 29. Curran Associates, Inc., 2016.

[27] Mehdi Sebbar et al. CriteoPrivateAd: A Real-World
Bidding Dataset to Design Private Advertising Systems.
2025. arXiv: 2502 .12103 [cs.CR]. URL: https :
//arxiv.org/abs/2502.12103.

[28] Pierre Tholoniat et al. “Cookie Monster: Efficient On-
Device Budgeting for Differentially-Private Ad-Measurement
Systems”. In: Proceedings of the ACM SIGOPS 30th
Symposium on Operating Systems Principles. SOSP
’24. New York, NY, USA: Association for Comput-
ing Machinery, Nov. 15, 2024, pp. 693–708. ISBN:
9798400712517. DOI: 10.1145/3694715.3695965.

[29] Pierre Tholoniat et al. “DPack: Efficiency-Oriented
Privacy Budget Scheduling”. In: Proceedings of the
Twentieth European Conference on Computer Systems.
EuroSys ’25. Rotterdam, Netherlands: Association for
Computing Machinery, 2025, pp. 1194–1209. ISBN:

9798400711961. DOI: 10.1145/3689031.3696096.
URL: https://doi.org/10.1145/3689031.3696096.

[30] Shufan Zhang and Xi He. “DProvDB: Differentially
Private Query Processing with Multi-Analyst Prove-
nance”. In: Proc. ACM Manag. Data 1.4 (Dec. 2023).
DOI: 10.1145/3626761. URL: https://doi.org/10.
1145/3626761.

[31] Ke Zhong, Yiping Ma, and Sebastian Angel. “Ibex:
Privacy-preserving Ad Conversion Tracking and Bid-
ding”. In: Proceedings of the 2022 ACM SIGSAC Con-
ference on Computer and Communications Security.
CCS ’22. Los Angeles, CA, USA: Association for
Computing Machinery, 2022, pp. 3223–3237. ISBN:
9781450394505. DOI: 10.1145/3548606.3560651.
URL: https://doi.org/10.1145/3548606.3560651.

[32] Ke Zhong et al. “Addax: A fast, private, and account-
able ad exchange infrastructure”. In: 20th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 23). Boston, MA: USENIX Associa-
tion, Apr. 2023, pp. 825–848. ISBN: 978-1-939133-33-
5. URL: https://www.usenix.org/conference/nsdi23/
presentation/zhong.

15

https://doi.org/10.1145/1807085.1807104
https://doi.org/10.1145/1807085.1807104
https://doi.org/10.1145/1807085.1807104
https://www.usenix.org/conference/osdi21/presentation/luo
https://www.usenix.org/conference/osdi21/presentation/luo
https://doi.org/10.14778/3551793.3551817
https://doi.org/10.14778/3551793.3551817
https://w3c.github.io/ppa/
https://w3c.github.io/ppa/
https://github.com/patcg-individual-drafts/private-ad-measurement
https://github.com/patcg-individual-drafts/private-ad-measurement
https://www.w3.org/groups/wg/pat/
https://www.w3.org/groups/wg/pat/
https://doi.org/10.14778/3467861.3467870
https://doi.org/10.14778/3467861.3467870
https://doi.org/10.14778/3467861.3467870
https://doi.org/10.14778/3574245.3574265
https://arxiv.org/abs/2502.12103
https://arxiv.org/abs/2502.12103
https://arxiv.org/abs/2502.12103
https://doi.org/10.1145/3694715.3695965
https://doi.org/10.1145/3689031.3696096
https://doi.org/10.1145/3689031.3696096
https://doi.org/10.1145/3626761
https://doi.org/10.1145/3626761
https://doi.org/10.1145/3626761
https://doi.org/10.1145/3548606.3560651
https://doi.org/10.1145/3548606.3560651
https://www.usenix.org/conference/nsdi23/presentation/zhong
https://www.usenix.org/conference/nsdi23/presentation/zhong

A API changes for per-site semantic (Gap 1)
This section formalizes API changes to clarify the per-site
semantics. Starting from Cookie Monster’s formalism, we
adapt it to capture Big Bird’s notion of beneficiaries. While
this section does not present a standalone result, its formalism
underpins the main theorems proved later and evoked in the
body of the paper. We begin by mapping terminology between
Cookie Monster and Big Bird’s data and query model (§A.1
and §A.2). This allows us to set up the formal framework for
our DP analysis in Alg. 2, which defines a single mechanism
that answers to different beneficiaries simultaneously. We
conclude with the sensitivity analyses needed in subsequent
sections (§A.3).

A.1 Data model
We align with the terminology of PPA and also make sites
appear explicitly in the data and query model. We take a set of
sites S (e.g., domain name). The same site can appear under
different roles:
• impression site: site where an impression occurs (pub-

lisher in Cookie Monster)
• conversion site: site where a conversion occurs (adver-

tiser in Cookie Monster)
• beneficiary site: site that receives the results of a DP

query (querier in Cookie Monster)

Definition 1 (Database with per-site semantics). A database
𝐷 is a set of device-epoch records where each record 𝑥 =

(𝑑, 𝑒, 𝐹) ∈ X = D ×E ×P(S ×I ∪S ×P(S) × C) contains
a device 𝑑 , an epoch 𝑒 and a set of impression and conversion
events 𝐹 . Each event 𝑓 ∈ 𝐹 contains the site (impression site 𝑖
or conversion site 𝑐) where the event occurred: 𝑓 = (𝑖, imp) ∈
S × I or 𝑓 = (𝑐, b, conv) ∈ S × P(S) × C. Additionally,
conversions contain the set of beneficiary sites b that will
receive the conversion report (b = {𝑏} without the cross-
report privacy loss optimization from 4.2).

A.2 Query model
We now define queries and reports, with a slight adaptation
of Cookie Monster’s definitions to our per-site semantics.
While Cookie Monster comes with an arbitrary set of public
events 𝑃 for each beneficiary 𝑏, here for simplicity we assume
that all the conversions for a beneficiary are public. Using
in Cookie Monster’s terminology, that means we set 𝑃 =

C𝑏 := {(𝑐, 𝑏, conv), 𝑐 ∈ C, conv ∈ C}, where C is the set
of all conversions. Also, while Cookie Monster defines a
set of relevant events, potentially including conversions, in
Def. 2 we only consider relevant impressions for simplicity.
In particular, this hardcodes "Case 1" from [28, Thm. 1].

Definition 2 (Attribution function, adapted from Cookie Mon-
ster). Fix a set of relevant impression sites i𝐴 ⊂ S and a
set of impressions relevant to the query 𝐹𝐴 ⊂ i𝐴 × I. Fix
𝑘,𝑚 ∈ N∗ where 𝑘 is a number of epochs. An attribution
function is a function 𝐴 : P(I)𝑘 → R𝑚 that takes 𝑘 event

sets 𝐹1, . . . , 𝐹𝑘 from 𝑘 epochs and outputs an𝑚-dimensional
vector 𝐴(𝐹1, . . . , 𝐹𝑘), such that only relevant events contribute
to 𝐴. That is, for all (𝐹1, . . . , 𝐹𝑘) ∈ P(I)𝑘 , we have:

𝐴(𝐹1, . . . , 𝐹𝑘) = 𝐴(𝐹1 ∩ 𝐹𝐴, . . . , 𝐹𝑘 ∩ 𝐹𝐴). (1)

Definition 3 (Report identifier and attribution report, same
as Cookie Monster). Fix a domain of report identifiers Z.
Consider a mapping 𝑑 (·) from report identifiers 𝑅 to devices
D that gives the device 𝑑𝑟 that generated a report 𝑟 .

Given an attribution function 𝐴, a set of epochs 𝐸 and a
report identifier 𝑟 ∈ Z, the attribution report 𝜌𝑟,𝐴,𝐸 , or 𝜌𝑟 for
short, is a function over the whole database 𝐷 defined by:

𝜌𝑟 : 𝐷 ∈ D ↦→ 𝐴(𝐷𝐸
𝑑𝑟
). (2)

Definition 4 (Query, same as Cookie Monster). Consider a
set of report identifiers 𝑅 ⊂ Z, and a set of attribution reports
(𝜌𝑟)𝑟 ∈𝑅 each with output in R𝑚 . The query for (𝜌𝑟)𝑟 ∈𝑅 is the
function 𝑄 : D→ R𝑚 is defined as 𝑄 (𝐷) := ∑

𝑟 ∈𝑅 𝜌𝑟 (𝐷) for
𝐷 ∈ D.

A.3 Sensitivity analyses
The Cookie Monster paper analyzes global and individual
sensitivities of queries at device-epoch level. In Big Bird,
we additionally need such analyses at the device-epoch-site
level, as our impression-site quota operates at this granularity.
This section provides the necessary sensitivity definitions and
analyses.

Definition 5 (Per-Epoch Sensitivity, same as [28]). Fix a
report 𝜌 : D → R𝑚 for some 𝑚. We define the per-epoch
individual 𝐿1 sensitivity of 𝜌 for a device-epoch 𝑥 ∈ X as
follows:

Δ(𝜌) := max
𝐷,𝐷 ′∈D:∃𝑥∈X,𝐷 ′∼𝑥𝐷

∥𝜌 (𝐷) − 𝜌 (𝐷 ′)∥1, (3)

where 𝐷 ′ ∼𝑥 𝐷 means 𝐷 ′ and 𝐷 differ by the single record 𝑥 .
We also define the per-epoch global 𝐿1 sensitivity of 𝜌 as

follows:

Δ(𝜌) := max
𝑥∈X

Δ𝑥 (𝜌) (4)

Definition 6 (Per-Epoch-Site Sensitivity). Fix a report 𝜌 :
D → R𝑚 for some 𝑚, and an impression site 𝑖 ∈ S. We
define the per-epoch-site individual 𝐿1 sensitivity of 𝜌 for a
device-epoch-site 𝑥 ∈ X, 𝑖 ∈ S as follows:

Δ𝑥,𝑖 (𝜌) := max
𝐷,𝐷 ′∈D:𝐷 ′∼𝑥,𝑖𝐷

∥𝜌 (𝐷) − 𝜌 (𝐷 ′)∥1 (5)

where 𝐷 ′ ∼𝑥,𝑖 𝐷 means 𝐷 ′ and 𝐷 differ on a single record
𝑥’s impressions on site 𝑖. That is, there exists 𝐷0 ∈ D, a
record 𝑥 ∈ X such that {𝐷,𝐷 ′} = {𝐷0 +𝑥, 𝐷0 +𝑥𝑖→∅}, where
𝑥𝑖→∅ := (𝑑, 𝑒, 𝐹 𝑖→∅) is the record obtained by removing all
the impressions on 𝑖 from 𝑥 .

We also define the per-epoch-site global 𝐿1 sensitivity of 𝜌
16

as follows:

Δ𝑖 (𝜌) := max
𝑥∈X

Δ𝑖,𝑥 (𝜌) (6)

To simplify subsequent results, we define some notation:

Definition 7 (Zeroing-out). Fix a vector of impression sets
F = (𝐹1, . . . , 𝐹𝑘) ∈ P(I)𝑘 for any 𝑘 > 0. For 𝑖 ∈ S and
𝑗 ∈ [𝑘] we define:
• F𝑗→∅ := (𝐹1, . . . , 𝐹 𝑗−1, ∅, 𝐹 𝑗+1, . . . , 𝐹𝑘), i.e., we zero-out

the 𝑗 th epoch.
• F𝑗,𝑖→∅ := (𝐹1, . . . , 𝐹 𝑗−1, 𝐹 𝑗 \ I𝑖 , 𝐹 𝑗+1, . . . , 𝐹𝑘), i.e., we

zero-out all the impressions I𝑖 := {(𝑖, imp), imp ∈ I}
belonging to site 𝑖 from the 𝑗 th epoch.

Plugging Def. 2 into Def. 5 and Def. 6 immediately gives:

Lemma 1 (Global sensitivity of reports). Fix a device 𝑑 , a set
of 𝑘 epochs 𝐸, an attribution function𝐴 and the corresponding
report 𝜌 : 𝐷 ↦→ 𝐴(𝐷𝐸

𝑑
). We have:

Δ(𝜌) = max
F∈P(I)𝑘 , 𝑗∈[𝑘]

∥𝐴(F) −𝐴(F𝑗→∅)∥1. (7)

Moreover, for any impression site 𝑖 ∈ S we have:

Δ𝑖 (𝜌) = max
F∈P(I)𝑘 , 𝑗∈[𝑘],𝑖∈S

∥𝐴(F) −𝐴(F𝑗,𝑖→∅)∥1. (8)

Theorem 3 (Individual sensitivity of reports per epoch-site).
Fix a report identifier 𝑟 , a device 𝑑𝑟 , a set of epochs 𝐸𝑟 =

{𝑒 (𝑟)1 , . . . , 𝑒
(𝑟)
𝑘
}, a set of sites 𝐼𝑟 = {𝑖1, . . . , 𝑖𝑚𝑒

} for each epoch
𝑒 ∈ 𝐸𝑟 , an attribution function 𝐴 with relevant events 𝐹𝐴,
and the corresponding report 𝜌 : 𝐷 ↦→ 𝐴(𝐷𝐸𝑟 ,{𝐼𝑟 }𝑒∈𝐸𝑟

𝑑𝑟
). Fix a

device-epoch record 𝑥 = (𝑑, 𝑒, 𝐹 𝑗) ∈ X, where 𝐹 ⊆ S × S ×
C ∪ S × I, so that 𝑥𝑖 = (𝑑, 𝑒, 𝐹 𝑗,𝑖) is the projection where 𝐹𝑖
contains only events related to site 𝑖.

We can upper bound the individual sensitivity of reports
per epoch-site Δ𝑥,𝑖 (𝜌) by:

Δ𝑥,𝑖 (𝜌) ≤



0 if 𝑑 ≠ 𝑑𝑟 , 𝑒 ∉ 𝐸𝑟 , 𝑖 ∉ 𝐼𝑟 ,
or 𝐹 𝑗,𝑖 ∩ 𝐹𝐴 = ∅

∥𝐴(𝐹𝑖) −𝐴(∅)∥1 if 𝑑 = 𝑑𝑟 , 𝐸𝑟 = {𝑒}, and 𝐼𝑟 = {𝑖}
Δ𝑖 (𝜌) if 𝑑 = 𝑑𝑟 , 𝑒 ∈ 𝐸𝑟 , 𝑖 ∈ 𝐼𝑟 , 𝐹 𝑗,𝑖 ∩ 𝐹𝐴 ≠ ∅,

and (|𝐸𝑟 | ≥ 2 or |𝐼𝑟 | ≥ 2)
(9)

Proof. Fix a report 𝜌 , an impression site 𝑖 and 𝑥 = (𝑑, 𝑒, 𝐹) ∈
X with impressions 𝐹𝑖 on site 𝑖. Consider any 𝐷,𝐷 ′ ∈ D
such that 𝐷 ′ = 𝐷 + 𝑥𝑖 . We have 𝜌 (𝐷) = 𝐴(𝐷𝐸𝑟 ,{𝐼𝑟 }𝑒∈𝐸𝑟

𝑑𝑟
) and

𝜌 (𝐷 ′) = 𝐴((𝐷 ′)𝐸𝑟 ,{𝐼𝑟 }𝑒∈𝐸𝑟
𝑑𝑟

).

• First, if 𝑑 ≠ 𝑑𝑟 , 𝑒 ∉ 𝐸𝑟 , or 𝑖 ∉ 𝐼𝑟 , then (𝐷 ′)𝐸𝑟 ,{𝐼𝑟 }𝑒∈𝐸𝑟
𝑑𝑟

=

𝐷
𝐸𝑟 ,{𝐼𝑟 }𝑒∈𝐸𝑟
𝑑𝑟

. Hence, ∥𝜌 (𝐷) − 𝜌 (𝐷 ′)∥1 = 0 for all such
𝐷, 𝐷 ′, which implies Δ𝑥𝑖 (𝜌) = 0.
• Next, suppose that the report requests a single epoch
𝐸𝑟 = {𝑒𝑟 } with a single site 𝐼 (𝑒𝑟)𝑟 = {𝑖𝑟 }:

– If 𝑑 = 𝑑𝑟 , 𝑒 = 𝑒𝑟 , and 𝑖 = 𝑖𝑟 , then since 𝐷 + 𝑥𝑖 = 𝐷 ′,
we must have (𝑑𝑟 , 𝑒𝑟 , 𝐹𝑖) ∉ 𝐷, and thus 𝐷

𝑒𝑟 ,𝑖𝑟
𝑑𝑟

= ∅.
On the other hand, (𝐷 ′)𝑒𝑟 ,𝑖𝑟

𝑑𝑟
= 𝐹𝑖 (restricted to events

relevant to site 𝑖𝑟). Thus, ∥𝜌 (𝐷)−𝜌 (𝐷 ′)∥1 = ∥𝐴(𝐹𝑖)−
𝐴(∅)∥1.

– If 𝑑 ≠ 𝑑𝑟 , 𝑒 ≠ 𝑒𝑟 , or 𝑖 ≠ 𝑖𝑟 , then (𝑑, 𝑒, 𝐹𝑖) doesn’t
change the outcome and (𝐷 ′)𝑖𝑟𝑒𝑟 = 𝐷

𝑖𝑟
𝑒𝑟 . Hence, ∥𝜌 (𝐷)−

𝜌 (𝐷 ′)∥1 = 0.
• Now, suppose that the report requests either an arbitrary

range of epochs 𝐸𝑟 each of whom has at least one site,
or a single epoch that has multiple sites 𝐼 (𝑒𝑟)𝑟 :

– If𝑑 ≠ 𝑑𝑟 , 𝑒 ∉ 𝐸𝑟 , or 𝑖 ∉ 𝐼
(𝑒)
𝑟 , then𝐴((𝐷 ′)𝐸𝑟 ,{𝐼

(𝑒)
𝑟 }𝑒∈𝐸𝑟

𝑑𝑟
) =

𝐴(𝐷𝐸𝑟 ,{𝐼 (𝑒)𝑟 }𝑒∈𝐸𝑟
𝑑𝑟

), i.e., ∥𝜌 (𝐷 ′) − 𝜌 (𝐷)∥1 = 0.

– If we have 𝑑 = 𝑑𝑟 , 𝑒 = 𝑒
(𝑟)
𝑗
∈ 𝐸𝑟 , and 𝑖 ∈ 𝐼

(𝑒)
𝑟 ,

but 𝐹𝑖 is simply not related to the attribution request,
i.e. 𝐹𝑖 ∩ 𝐹𝐴 = ∅. Then, by definition of 𝐹𝐴, we have

𝐴((𝐷 ′)𝐸𝑟 ,{𝐼
(𝑒)
𝑟 }𝑒∈𝐸𝑟

𝑑𝑟
) = 𝐴(𝐷𝐸𝑟 ,{𝐼 (𝑒)𝑟 }𝑒∈𝐸𝑟

𝑑𝑟
), i.e., ∥𝜌 (𝐷) −

𝜌 (𝐷 ′)∥1 = 0.
– Otherwise, it must be the case that 𝑑 = 𝑑𝑟 , 𝑒 = 𝑒

(𝑟)
𝑗
∈

𝐸𝑟 , 𝑖 ∈ 𝐼 (𝑒)𝑟 and 𝐹𝑖 ∩ 𝐹𝐴 ≠ ∅ and there are events in
the intersection that is related to some site 𝑖 in epoch
𝑒, so we have:

∥𝜌 (𝐷) − 𝜌 (𝐷 ′)∥1 = ∥𝐴(F𝑗,𝑖→∅) −𝐴(F)∥1, (10)

where 𝑗 is the index of epoch 𝑒 in 𝐸𝑟 , and 𝐹 𝑗,𝑖 repre-
sents the relevant events for site 𝑖 in epoch 𝑒

(𝑟)
𝑗

.
The first two cases are independent over choices of
𝐷 ∼ 𝐷 ′, so taking the max over such choices still
gives Δ𝑥𝑖 (𝜌) = 0. Unfortunately, the third identity does
depend on the choice of 𝐷 ∼ 𝐷 ′, and taking the max
only gives the general definition of global sensitivity,
in the worst case.

□

Next, we show that Δ𝑖 (𝜌) ≤ 2Δ(𝜌) for any report. For
reports using certain attribution functions, we can have a
tighter Δ𝑖 (𝜌) = Δ(𝜌) bound, but it does not hold in general.

Lemma 2 (Relationship between Device-Epoch-Site and De-
vice-Epoch Sensitivities). For any report 𝜌 with attribution
function 𝐴, let 𝐹 denote the full dataset, 𝐹 𝑗 denote all data
in 𝐹 pertaining to epoch 𝑗 , and 𝐹 𝑗,𝑖 denote all data in 𝐹 𝑗
pertaining to site 𝑖. The following inequality holds:

Δ𝑖 (𝜌) ≤ 2Δ(𝜌) (11)

Proof. Recall the definition of device-epoch-site global sensi-
tivity:

Δ𝑖 (𝜌) = max
F∈P(I)𝑘 , 𝑗∈[𝑘],𝑖∈S

∥𝐴(F𝑗,𝑖→∅) −𝐴(F)∥1. (12)

We can decompose this expression using the triangle in-
17

equality:

∥𝐴(F𝑗,𝑖→∅) −𝐴(F)∥1 (13)

=∥𝐴(F𝑗,𝑖→∅) −𝐴(F𝑗→∅) +𝐴(F𝑗→∅) −𝐴(F)∥1 (14)

≤∥𝐴(F𝑗,𝑖→∅) −𝐴(F𝑗→∅)∥1 + ∥𝐴(F𝑗→∅) −𝐴(F)∥1 (15)

For the first term, note that𝐴(F𝑗,𝑖→∅) uses events 𝐹 𝑗,¬𝑖 from
epoch 𝑗 where 𝐹 𝑗,¬𝑖 = 𝐹 𝑗 \ 𝐹 𝑗,𝑖 , while 𝐴(F𝑗→∅) uses no events
from epoch 𝑗 . Since 𝐹 𝑗,¬𝑖 ⊆ 𝐹 𝑗 and all events from epoch 𝑗

for a given device come from a single device-epoch record,
we can view this as the change from adding a single record
containing events 𝐹 𝑗,¬𝑖 . This is bounded by the definition of
Δ(𝜌):

∥𝐴(F𝑗,𝑖→∅) −𝐴(F𝑗→∅)∥1 ≤ Δ(𝜌). (16)

The second term represents the sensitivity to removing
events from the entire epoch 𝑗 . In the individual DP setting
with device-epoch records, all events from epoch 𝑗 for a given
device come from a single device-epoch record. Removing
this entire record corresponds exactly to one of the cases
considered in the definition of Δ(𝜌). Therefore:

∥𝐴(F𝑗→∅) −𝐴(F)∥1 ≤ Δ(𝜌). (17)

Therefore, substituting the two upper bounds into Eq. (15):

Δ𝑖 (𝜌) ≤ Δ(𝜌) + Δ(𝜌) = 2Δ(𝜌). (18)

□

Alg. 2 presents an abstract model of Big Bird’s operation,
capturing how it answers beneficiary queries sequentially. In
Alg. 2, 𝑡 indexes a batch query step. In each such step, the
AnswerQuery function is called with a batch of report requests
𝑄𝑡 . AnswerQuery then processes each individual report 𝑝𝑟 (for
𝑟 ∈ 𝑅, where 𝑅 is the set of report identifiers in 𝑄𝑡), which
includes GenerateReport creating an individual clipped at-
tribution report, followed by aggregation for the batch, and
finally receiving a noisy result for that batch. This abstract
model provides well-defined mechanisms for which we can
prove privacy properties in §B.2

B Global Filter Management (Gap 2)
B.1 Algorithm
Overview. Big Bird manages per-site and global privacy fil-
ters using the quota mechanisms described in §4.3. Alg. 3 de-
picts the functionality triggered on receiving a report request
(i.e., measureConversion() and getReport()). Big Bird checks
and consumes budget from the relevant filters and prunes the
resulting report based on filter status. First, Big Bird ensures
all filters and quotas are initialized. Second, it computes the
privacy losses incurred—both at the epoch level ([28, §C])
and at the site level (Def. 8). Third, it checks whether all
filters have sufficient budget and attempts to consume it. To
ensure avoid wasting budget from some filters (or quotas)
when other filters are out of budget, Big Bird uses a two-
phase commit protocol to deduct privacy losses from multiple

Algorithm 2 Formalism for DP analysis

1: Input
2: Database 𝐷
3: Stream of adaptively chosen queries, up to 𝑡max steps
4: functionM(𝐷)
5: (𝑆𝑏)𝑏∈S = (∅)𝑏∈S
6: for (𝑑, 𝑒, 𝐹) ∈ 𝐷 do
7: for 𝑓 ∈ 𝐹 : 𝑓 = (𝑐, b, conv) do
8: Generate report identifier 𝑟

$← 𝑈 (Z)
9: // Save mapping from 𝑟 to the device that generated it

10: 𝑑𝑟 ← 𝑑

11: for 𝑏 ∈ b do
12: 𝑆𝑏 ← 𝑆𝑏 ∪ {(𝑟, 𝑓)}
13: // Each beneficiary receives its public events and corre-

sponding report identifiers
14: for 𝑏 ∈ S do
15: output 𝑆𝑏 to 𝑏

16: // Beneficiaries ask queries interactively. If𝑏 has nothing
to ask, it can send an empty query with zero sensitivity.

17: for 𝑡 ∈ [𝑡max] do
18: for 𝑏 ∈ S do
19: receive 𝑄𝑏

𝑡 , 𝜆𝑡 from beneficiary site 𝑏.
20: output AnswerQuery(𝐷,𝑄𝑏

𝑡 , 𝜆𝑡 , 𝑏) to 𝑏

21: // Collect, aggregate and noise reports to answer 𝑄
22: function AnswerQuery(𝐷,𝑄, 𝜆)
23: (𝜌𝑟)𝑟 ∈𝑅 ← 𝑄 // Get report identifiers from 𝑄

24: for 𝑟 ∈ 𝑅 do
25: 𝜌𝑟 ← GenerateReport(𝐷, 𝜌𝑟 , 𝜆)
26: Sample 𝑋 ∼ L(𝜆)
27: return

∑
𝑟 ∈𝑅 𝜌𝑟 + 𝑋

filters atomically. Alg. 4 formalizes this: if any filter cannot
afford its share of the privacy loss, the report is zeroed out,
and no budget is consumed from any filter for that report.
Subroutines. Def. 9, 8, 10 and Alg. 4 define subroutines
used in Alg. 3. The first two definitions rely on the sensitivity
bounds from Thm. 3 (for the impression-site quota) and [28]
(for the filters and the other quotas).

Definition 8 (EpochImpSiteBudget). Let 𝑥 = (𝑑, 𝑒, 𝐹) ∈ X
be a device-epoch record, 𝑖 ∈ 𝑆 an impression site, 𝜌 an
attribution report, and 𝜆 > 0 the Laplace noise scale applied
to 𝜌. Given the upper bound Δ̃𝑥𝑖 (𝜌) ≥ Δ𝑥𝑖 (𝜌) on the per-
epoch-site individual sensitivity given by Thm. 3, we can
upper bound the epoch–site privacy loss consumed by 𝜌 at
(𝑥, 𝑖) by

EpochImpSiteBudget(𝑥, 𝑖, 𝜌, 𝜆) :=
Δ̃𝑥𝑖 (𝜌)

𝜆
. (19)

Definition 9 (EpochBudget, from [28]). Fix a device-epoch
record 𝑥 ∈ X, 𝜌 an attribution report, and 𝜆 > 0 the Laplace
noise scale applied to 𝜌. Given the upper bound Δ̃𝑥 (𝜌) ≥

18

Δ𝑥 (𝜌) on the per-epoch individual sensitivity given by [28],
the individual privacy loss for device-epoch record 𝑥 is:

EpochBudget(𝑥, 𝜌, 𝜆) := Δ̃𝑥 (𝜌)
𝜆

(20)

Definition 10 (Filters F𝑥). For each device-epoch record
𝑥 = (𝑑, 𝑒, 𝐹), we maintain several pure DP filters [26]:

• F per-site filter[𝑏]
𝑥 for each beneficiary site 𝑏, with capacity

𝜖per-site,
• F global filter

𝑥 with capacity 𝜖global,
• F conversion-site quota [c]

𝑥 for each conversion site 𝑐, with
capacity 𝜖conv-quota,
• F impression-site quota [i]

𝑥 for each impression site 𝑖, with
capacity 𝜖imp-quota.

For each filter F , we adapt the notation from [26] to recur-
sively define F . canConsume, F . tryConsume and passF [𝑡],
for a sequence of adaptively chosen privacy budgets 𝜖1𝑥 , . . . , 𝜖

𝑡
𝑥 ,

as follows:
• canConsume(𝜖𝑡𝑥): Returns TRUE if the filter can ac-

commodate additional privacy loss 𝜖𝑡𝑥 , i.e., 𝜖𝑡𝑥 ≤ 𝜖initial−∑
𝑘∈[𝑡−1] 𝜖

𝑘
𝑥 · passF [𝑘] where 𝜖initial is the filter capac-

ity.
• tryConsume(𝜖𝑡𝑥): Calls canConsume(𝜖𝑡𝑥). If success-

ful, sets passF [𝑡] = 1 to deduct 𝜖 from the filter’s re-
maining capacity; otherwise, sets passF [𝑡] = 0.

B.2 Privacy proofs
Mechanisms. Alg. 2 defines two types of interactive mecha-
nisms. First, for each beneficiary site 𝑏 we can denote byM𝑏

the interactive mechanism that only interacts with 𝑏. Second,
M is the interactive mechanism that interacts with all the
beneficiary sites concurrently. Remark that the database 𝐷

is fixed upfront for simplicity, but a reasoning identical to
[28, Alg. 2] generalizes to adaptively generated data. Another
simplification compared to [28] is that public events are never
relevant events for our attribution functions (i.e., , the output
of a conversion report can only depend on impressions, not on
other conversions). This is enforcing the constraint on queries
mentioned in Case 1 of [28, Thm. 1].

Theorem 4 (Global DP Guarantee). Consider 𝑥 ∈ X with
global filter capacity 𝜖global. Then, M satisfies individual
device-epoch 𝜖global-DP for 𝑥 under public information C.

Proof. Take a device-epoch 𝑥 = (𝑑, 𝑒, 𝐹) ∈ X and a database
𝐷 that doesn’t contain (𝑑, 𝑒). Denote by 𝑥C = (𝑑, 𝑒, 𝐹 ∩C) the
device-epoch obtained by keeping only public events C from
𝑥 , where public events are the set of all conversions. Take
𝑣 ∈ Range(M). We want to show that:����ln (

Pr[M(𝐷 + 𝑥C) = 𝑣]
Pr[M(𝐷 + 𝑥) = 𝑣]

)���� ≤ 𝜖global. (21)

Consider any database 𝐷 ′. 𝑣 is the vector of values returned at
different points in Alg. 2. We split it into 𝑣 = (𝑣pub, 𝑣1, . . . , 𝑣𝑡max)

Algorithm 3 Big Bird algorithm (on-device)

1: Input
2: Filter and quota capacities 𝜖global, 𝜖per-site, 𝜖imp-quota,

𝜖conv-quota
3: InitializeFilters(𝜖global, 𝜖per-site, 𝜖imp-quota, 𝜖conv-quota) sets

up per-device filter and quota capacities
4: AtomicFilterCheckAndConsume(F𝑥 , 𝑏, 𝑐, i, 𝜖𝑡𝑥 , 𝜖 i,𝑡x)

atomic quota check and updates the filters (Alg. 4)
5: // Generate report and update on-device budget
6: function GenerateReport(𝐷, 𝜌, 𝜆)
7: Read 𝜌 to get device 𝑑 , conversion site 𝑐, beneficiary site

𝑏, impression sites i, target epochs 𝐸, attribution function
𝐴.

8: for 𝑒 ∈ 𝐸 do
9: 𝑥 ← (𝑑, 𝑒, 𝐷𝑒

𝑑
)

10: if F𝑥 is not defined then
11: F𝑥 ← InitializeFilters(𝜖global, 𝜖per-site, 𝜖imp-quota, 𝜖conv-quota)
12: 𝐹𝑒 ← 𝐷𝑒

𝑑

13: 𝜖𝑡𝑥 ← EpochBudget(𝑥, 𝜌, 𝜆)
14: 𝜖

i,𝑡
x ← {}

15: for 𝑖 ∈ i do
16: 𝜖𝑖𝑥 ← EpochImpSiteBudget(𝑥, 𝑖, 𝜌, 𝜆)
17: 𝜖

i,𝑡
x [𝑖] ← 𝜖𝑖𝑥

18: if AtomicFilterCheckAndConsume(F𝑥 , 𝑏, 𝑐, i, 𝜖𝑡𝑥 , 𝜖 i,𝑡x) =
FALSE then

19: 𝐹𝑒 ← ∅ // Empty the epoch if any filter check fails
20: 𝜌 ← 𝐴((𝐹𝑒)𝑒∈𝐸) // Clipped attribution report
21: return 𝜌

where 𝑣pub is a value for the output from Line 15 of Alg. 2
(initial public events), and 𝑣𝑡 is the output for the query 𝑄𝑡 at
step 𝑡 (Line 20). We denote byMpub (𝐷 ′) the random variable
of the output at Line 15, andM𝑡 (𝐷 ′) the random variable
of the output at Line 20. By conditioning over past outputs
(𝑣pub, 𝑣1, . . . , 𝑣𝑡−1) at each time step 𝑡 ∈ [𝑡max] we get:

Pr[M(𝐷 ′) = 𝑣] (22)

= Pr[Mpub (𝐷 ′) = 𝑣pub] ·
𝑡max∏
𝑡=1

Pr[M𝑡 (𝐷 ′) = 𝑣𝑡 |𝑣<𝑡] . (23)

Take 𝑡 ∈ [𝑡max]. By Algorithm 2, 𝑀𝑡 corresponds to the
processing of a query 𝑄𝑡 . We have:

Pr[𝑀𝑡 (𝐷 ′) = 𝑣𝑡 |𝑣<𝑡] = Pr[AnswerQuery(𝑄𝑡 ;𝐷 ′, F𝑡) = 𝑣𝑡],
(24)

where the query 𝑄𝑡 and the state of the privacy filters F𝑡
are functions of past results 𝑣<𝑡 . Finally, if we denote by
𝜌𝑟 (𝐷 ′;F) the filtered report returned by Alg. 3 we get:

19

Algorithm 4 2-Phase Commit Subroutine

Input:
1: 𝜖𝑡𝑥 : epoch-level privacy loss for a particular report
2: 𝜖

i,𝑡
x : epoch-site-level privacy loss for a particular report

3: canConsume: function as is defined in Def. 10
4: tryConsume: function as is defined in Def. 10

Output:
5: Boolean function if all filters have enough budget for the

privacy loss 𝜖𝑡𝑥 or not.
6: function AtomicFilterCheckAndConsume(F𝑥 , 𝑏, 𝑐, i, 𝜖𝑡𝑥 , 𝜖 i,𝑡x)
7: // Phase 1: Prepare - check if all filters can consume
8: if F per-site filter[𝑏]

𝑥 . canConsume(𝜖𝑡𝑥) = FALSE then
9: return FALSE

10: if F global filter
𝑥 . canConsume(𝜖𝑡𝑥) = FALSE then

11: return FALSE
12: if F 𝜖conv-quota [𝑐]

𝑥 . canConsume(𝜖𝑡𝑥) = FALSE then
13: return FALSE
14: for 𝑖 ∈ i do
15: if F 𝜖imp-quota [𝑖]

𝑥 . canConsume(𝜖 i,𝑡x [𝑖]) = FALSE then
16: return FALSE
17: // Phase 2: Commit - consume from all filters
18: F per-site filter[𝑏]

𝑥 . tryConsume(𝜖𝑡𝑥)
19: F global filter

𝑥 . tryConsume(𝜖𝑡𝑥)
20: F 𝜖conv-quota [𝑐]

𝑥 . tryConsume(𝜖𝑡𝑥)
21: for 𝑖 ∈ i do
22: F 𝜖imp-quota [𝑖]

𝑥 . tryConsume(𝜖 i,𝑡x [𝑖])
23: return TRUE

Pr[M𝑡 (𝐷 ′) = 𝑣𝑡 |𝑣<𝑡] = Pr

[∑︁
𝑟 ∈𝑅𝑡

𝜌𝑟 (𝐷 ′;F𝑡,𝑟) + 𝑋𝑡 = 𝑣𝑡

]
,

(25)

where 𝑋𝑡 is the Laplace noise added at time 𝑡 . This equality
is a direct quantification of “QueryAnswer" in Alg. 2, as for
each 𝑟 ∈ 𝑅𝑡 , “QueryAnswer" generates filtered reports and
sums over these reports with the Laplace noise 𝑋𝑡 added to
them.

Now, we instantiate 𝐷 ′ to be either 𝐷 ′ = 𝐷 + 𝑥𝑐 or 𝐷 ′ =
𝐷 +𝑥 . In particular, when 𝐷 ′ = 𝐷 +𝑥C we have 𝜌𝑟 (𝐷 +𝑥C) =
𝜌𝑟 (𝐷+𝑥C∩𝐹𝐴) = 𝜌𝑟 (𝐷) by Def. 2 since 𝐹𝐴 ⊂ I and 𝑥C∩I =

∅. We also abuse notation by letting 𝜌𝑟 (·) := 𝜌𝑟 (·, F𝑡,𝑟), since
the state of the filter F𝑡,𝑟 is fully determined by 𝑣<𝑡 . We get:����ln (

Pr[M(𝐷 + 𝑥C) = 𝑣]
Pr[M(𝐷 + 𝑥) = 𝑣]

)���� (26)

=

�����ln
(∏𝑡max

𝑡=1 Pr[∑𝑟 ∈𝑅𝑡 𝜌𝑟 (𝐷) + 𝑋𝑡 = 𝑣𝑡]∏𝑡max
𝑡=1 Pr[∑𝑟 ∈𝑅𝑡 𝜌𝑟 (𝐷 + 𝑥) + 𝑋𝑡 = 𝑣𝑡]

)����� (27)

≤
𝑡max∑︁
𝑡=1

����ln (Pr[∑𝑟 ∈𝑅𝑡 𝜌𝑟 (𝐷) + 𝑋𝑡 = 𝑣𝑡]
Pr[∑𝑟 ∈𝑅𝑡 𝜌𝑟 (𝐷 + 𝑥) + 𝑋𝑡 = 𝑣𝑡]

)���� (28)

where the first equality comes from Eq. 22 the fact that the
outputs 𝑣pub at Line 15 are identical across both worlds by
definition of 𝑥C .

Now, take 𝑡 ∈ 𝑡max and 𝑟 ∈ 𝑅𝑡 . We will show that:

∥𝜌𝑟 (𝐷) − 𝜌𝑟 (𝐷 + 𝑥)∥ ≤ Δ𝑥 (𝜌𝑟)pass𝑟 (29)

Recall that pass𝑟 denotes whether 𝑟 passed the atomic filter
check in Alg. 4. There are two cases:
• If pass𝑟 = 0, we have 𝜌𝑟 (𝐷 + 𝑥) = 𝜌𝑟 (𝐷) because of

Alg. 3, Line 19. Note that pass𝑟 = 0 can happen even
if F global filter has enough budget, for instance if the
per-site filter or a quota is out of budget. Hence Eq. 29
holds in this case.
• If pass𝑟 = 1, we have ∥𝜌𝑟 (𝐷 + 𝑥) − 𝜌𝑟 (𝐷)∥1 ≤ Δ𝑥 (𝜌𝑟),

so Eq. 29 holds in this case too.
Thus by triangle inequality followed by Def. 9 we have:

∥
∑︁
𝑟 ∈𝑅𝑡

𝜌𝑟 (𝐷) −
∑︁
𝑟 ∈𝑅𝑡

𝜌𝑟 (𝐷 + 𝑥)∥ ≤
∑︁
𝑟 ∈𝑅𝑡

Δ𝑥 (𝜌𝑟)pass𝑟 (30)

≤
∑︁
𝑟 ∈𝑅𝑡

𝜆𝑡 · 𝜖𝑟pass𝑟 (31)

And since 𝑋𝑡 ∼ Lap(𝜆𝑡), by property of the Laplace distri-
bution we get:����ln (Pr[∑𝑟 ∈𝑅𝑡 𝜌𝑟 (𝐷) + 𝑋𝑡 = 𝑣𝑡]

Pr[∑𝑟 ∈𝑅𝑡 𝜌𝑟 (𝐷 + 𝑥) + 𝑋𝑡 = 𝑣𝑡]

)���� ≤ ∑︁
𝑟 ∈𝑅𝑡

𝜖𝑟pass𝑟 (32)

Injecting Eq. 32 into Eq. 28 gives:����ln (
Pr[M(𝐷 + 𝑥C) = 𝑣]
Pr[M(𝐷 + 𝑥) = 𝑣]

)���� ≤ 𝑡max∑︁
𝑡=1

∑︁
𝑟 ∈𝑅𝑡

𝜖𝑟pass𝑟 (33)

Finally, since pass𝑟 = 1 implies that 𝑟 passes F global filter, by
definition of F global filter, the accumulated loss over all reports
related to query 𝑥 is below the filter capacity:

𝑡max∑︁
𝑡=1

∑︁
𝑟 ∈𝑅𝑡

𝜖𝑟pass𝑟 ≤ 𝜖global (34)

Hence we have shown Eq. 21. □

B.3 Adaptively generated data
While Alg. 2 takes a fixed database 𝐷 as input, the privacy
guarantees from Thm. 4 hold even when data is generated
adaptively. We sketch the argument here and refer to [28] for
a detailed treatment.

To define adaptively generated data, the algorithm (or pri-
vacy game) takes an adversary A as input, along with a chal-
lenge bit 𝑏 and a left-out record 𝑥 = (𝑑0, 𝑒0, 𝐹0). For each
epoch 𝑒 = 1, 2, . . . the adversary uses past results 𝑣<𝑒 to gen-
erate data 𝐷𝑒 = A(𝑣<𝑒) for the new epoch. If 𝑒 = 𝑒0, the
privacy game inserts 𝑥 into the database iff 𝑏 = 1. The privacy
guarantees are stated by comparing the view ofA across both
worlds, i.e., when 𝑏 = 0 and 𝑏 = 1.

20

To prove the privacy guarantees, we use the fact that the
databases 𝐷≤𝑒

𝑏=0 and 𝐷≤𝑒
𝑏=1 differ by at most one element, since

the adversary generates the same base data 𝐷𝑒 at each step in
both worlds, with at most one additional element 𝑥 , once we
condition on past results 𝑣<𝑒 .

B.4 DoS resilience proofs
This section proves our main resilience result for Big Bird’s
quota-based online algorithm: Thm. 1. First, Lem. 3 shows
that the 2-PC check (Alg. 4) ensures (1) atomic consump-
tion across all filters relevant to a query, and (2) when all
filters have sufficient budget, each consumes an amount pro-
portional to its level-specific sensitivity—either at epoch or at
epoch-site level. Next, Lem. 4 and 6 bound the total privacy
budget the adversary can consume from the global filter at
any qualified time, using the atomic consumption guarantees
of Lem. 3. This final bound directly implies Thm. 1.

We first formalize the atomicity property of the 2-PC al-
gorithm for consuming privacy budgets from relevant filters
when Big Bird answers a query at any time step 𝑘 (Alg. 4).

Lemma 3 (2-phase commit filter guarantees). For any indi-
vidual report generation request (e.g., , for a report 𝑟 pro-
cessed by GenerateReport when invoked by AnswerQuery
for a batch query 𝑄𝑡 in Alg. 2, or more generally, any call to
AtomicFilterCheckAndConsume in Alg. 3 and Alg. 4), let:

pass(𝑟) =


1 if AtomicFilterCheckAndConsume returns

TRUE for report 𝑟
0 otherwise

(35)

If pass(𝑟) = 1, then AtomicFilterCheckAndConsume guar-
antees the following properties for that specific report 𝑟 : The
AtomicFilterCheckAndConsume function in Alg. 4 guaran-
tees the following properties:

For any query 𝑘 processed by AtomicFilterCheckAndConsume,
if pass(𝑘) = 1, then

1. Epoch-level Consistency Property: exactly the same
amount of budget 𝜖𝑡𝑥 is consumed by the per-site filter,
global filter, and conversion-site quota-filter for that
query.

2. Epoch-site-level Consistency Property: exactly 𝜖𝑖𝑥 [𝑖]
is consumed by the impression-site quota filter, which
represents the device-epoch-𝑖𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠𝑖𝑡𝑒-level indi-
vidual privacy loss.

Proof. We can prove both properties at the same time. Fix an
arbitrary individual report request, let’s denote it by 𝑘 for con-
sistency within this proof, for which pass(𝑘) = 1 (as defined
in the lemma statement, meaning AtomicFilterCheckAndConsume
returns TRUE for this report 𝑘). From Alg. 4, we observe that
AtomicFilterCheckAndConsume returns TRUE for this indi-
vidual report 𝑘 if and only if: (1) all canConsume checks in
Phase 1 pass, and (2) All tryConsume operations in Phase 2
are executed. For this individual report 𝑘, originating from

conversion site 𝑐𝑘 with beneficiary site 𝑏𝑘 and intended im-
pression sites i𝑘 , the function calls:

• Fper-site filter [𝑏𝑘] . tryConsume(𝜖report 𝑘
𝑥)

• Fglobal filter. tryConsume(𝜖report 𝑘
𝑥)

• Fconv-quota [𝑐𝑘] . tryConsume(𝜖report 𝑘
𝑥)

• For each 𝑖 ∈ i𝑘 : Fimp-quota [𝑖] . tryConsume(𝜖report 𝑘
𝑥 [𝑖])

Note that 𝜖report 𝑘
𝑥 is the device-epoch-level individual pri-

vacy loss computed for this specific report 𝑘 (e.g., , via
EpochBudget in Line 9 of Alg. 3). Similarly, each 𝜖

report 𝑘
𝑥 [𝑖]

is the device-epoch-site-level individual privacy loss for im-
pression site 𝑖 relevant to this report 𝑘 (via EpochImpSiteBudget
in Alg. 3). Therefore, when pass(𝑘) = 1, the conversion-
site quota filter (for 𝑐𝑘), the per-site filter (for 𝑏𝑘), and the
global filter all consume exactly the same amount 𝜖report 𝑘

𝑥 .
Concurrently, each relevant impression-site quota filter (for
𝑖 ∈ i𝑘) consumes its specific amount 𝜖report 𝑘

𝑥 [𝑖], which is pro-
portional to its sensitivity at the impression site level for this
report 𝑘 . □

With such atomic guarantees for every individual report
processed up to some batch query step 𝑡 (as per Alg. 2),
we can show upper bounds on how much an adversary can
deplete the global filter by the end of batch query step 𝑡 , on
any device-epoch 𝑥 ∈ X. The main isolation result is in
Thm. 1, which uses Lem. 4, 5 and 6.
Notation. First, we introduce some notation describing adver-
sarial behavior, which we use in subsequent proofs:
• At step 𝑡 in Line 17, suppose that beneficiary site 𝑏

requests a report 𝜌𝑟,𝐸,𝐴 with noise 𝜆 through conversion
site 𝑐 for impression sites i. Consider a device-epoch 𝑥 ,
with individual budget 𝜖𝑡𝑥 computed at Line 9 in Alg. 3.
• A report at time step 𝑘 concerns with one conversion

site 𝑐𝑘 , and a set of impression sites i𝑘 ⊆ 𝑆 .
• The union of attackers can control an arbitrary subset

of conversion sites badc ⊆ 𝑆 . We denote by 𝑁 adv the
size of |badc | over the entire lifetime. Similarly, the
adversary can control an arbitrary subset of impression
sites badi ⊆ 𝑆 . We denote by 𝑀adv the size of |badi |
over the entire lifetime. We let bad = badc ∪ badi and
good = 𝑆\bad.
• Denote by 𝑁 ≤𝑡,adv the number of conversion sites in
badc with respect to 𝑥 that were queried with non-zero
budget by step 𝑡 . Denote by 𝑀≤𝑡,adv the number of
impression sites in badi with respect to 𝑥 that were
queried with non-zero budget by step 𝑡 .

Lemma 4. Consider a sequence of T batch query steps. If an
adversary, across all individual report generation attempts
within these T steps, successfully leads to the instantiation
(via saveImpression calls) and subsequent use (successful
budget consumption from) of at most 𝑀adv distinct imp-quota
filters and 𝑁 adv distinct conv-quota filters in an attempt to
deplete the global filter, then the adversary consumes at most

21

𝑀adv𝜖imp-quota budget from the global filter.

Proof. The lemma considers a sequence of 𝑇 batch query
steps. Let 𝑠 be the index for these batch query steps, from
1 to 𝑇 . The total privacy loss in the global filter incurred by
adversarial report generations up to (not including) batch
query step 𝑇 (i.e., after 𝑇 − 1 steps have completed) is:

𝜖
≤𝑇−1,bad
global =

𝑇−1∑︁
𝑠=1

∑︁
𝑟 ∈𝑅𝑠 :𝑐𝑟 ∈bad𝑐∧pass(𝑟,𝑠)=1

𝜖
global
𝑟,𝑠 . (36)

Here, 𝑠 indexes batch query steps, 𝑅𝑠 is the set of individual
reports in batch 𝑠, 𝑐𝑟 is the conversion site for report 𝑟 , bad𝑐
are adversarial conversion sites, pass(𝑟, 𝑠) = 1 indicates report
𝑟 in batch 𝑠 was successfully processed, and 𝜖

global
𝑟,𝑠 is the

global budget portion consumed by that individual report 𝑟
in batch 𝑠. By the consistency property of Lem. 3, for each
successfully processed adversarial report 𝑟 associated with a
conversion site 𝑐𝑟 ∈ bad𝑐 , the filter Fconv-quota [𝑐𝑟] precisely
tracks the privacy loss 𝜖global

𝑟,𝑠 . Thus, we can write:

Fconv-quota [𝑐𝑟]≤𝑇−1 =
𝑇−1∑︁
𝑠=1

∑︁
𝑟 ′∈𝑅𝑠 :𝑐𝑟 ′=𝑐𝑟∧pass(𝑟 ′,𝑠)=1

𝜖
global
𝑟 ′,𝑠 . (37)

The quantity 𝜖conv-quota [𝑐𝑟]≤𝑇−1 (defined as Fconv-quota [𝑐𝑟]≤𝑇−1

in the preceding equation) represents the sum of all 𝜖global
𝑟 ′,𝑠

terms for reports 𝑟 ′ associated with a specific conversion site
𝑐𝑟 up to step 𝑇 − 1. Therefore, by summing 𝜖conv-quota [𝑐]≤𝑇−1
over all adversarial conversion sites 𝑐 ∈ badc, we are ef-
fectively re-summing all the individual 𝜖global

𝑟,𝑠 contributions
that constitute 𝜖

≤𝑇−1,bad
global . Thus, it follows directly from the

definitions and equation (36) that:

𝜖
≤𝑇−1,bad
global =

∑︁
𝑐∈badc

𝜖conv-quota [𝑐]≤𝑇−1. (38)

This sum can be restricted to conversion sites with non-zero
privacy loss, i.e.:

=
∑︁

𝑐∈badc:𝜖conv-quota [𝑐]≤𝑇 −1>0
𝜖conv-quota [𝑐]≤𝑇−1 (39)

≤
∑︁

𝑐∈badc:𝜖conv-quota [𝑐]≤𝑇 −1>0
𝜖conv-quota, (40)

where 𝜖conv-quota is the capacity of each 𝜖conv-quota filter. It
follows that the number of conversion sites with non-zero
privacy loss is precisely 𝑁 ≤𝑡,adv, so:

≤
��{𝑐 ∈ badc : 𝜖conv-quota [𝑐]≤𝑇−1 > 0

}�� · 𝜖conv-quota (41)

= 𝑁 ≤𝑇−1,adv · 𝜖conv-quota. (42)

Now, during the 2-PC for time𝑇 , we have the following cases:

• Suppose 𝜖𝑇𝑥 is a reasonable value, in the sense that it’s
bounded by the capacity 𝜖conv-quota. Then,

𝜖
≤𝑇,bad
global = 𝜖badused + 𝜖

𝑇
𝑥 ≤ 𝑁 ≤𝑇,adv · 𝜖conv-quota. (43)

• Otherwise, 𝜖𝑇𝑥 is unreasonable, in which case 𝜖𝑇𝑥 ex-
ceeds the capacity 𝜖conv-quota. In this case,

𝜖conv-quota [𝑐𝑡]≤𝑇−1 + 𝜖𝑇𝑥 ≥ 𝜖conv-quota, (44)

causing F 𝜖conv-quota [𝑐]
𝑥 . canConsume(𝜖𝑇𝑥) to return FALSE

by definition, so no budget is spent at all. In such a case,

𝜖
≤𝑇,bad
global = 𝜖badused + 0 = 𝜖badused ≤ 𝑁 ≤𝑇−1,adv · 𝜖conv-quota, (45)

by equation (42).
Since the adversary has created at most 𝑁 adv by the end of
time 𝑇 , it must be the case that 𝑁 ≤𝑇−1,adv ≤ 𝑁 ≤𝑇,adv ≤ 𝑁 adv.
This means that, in either case, the attackers can consume
at most 𝑁 ≤𝑇,adv𝜖conv-quota ≤ 𝑁 adv𝜖conv-quota of the global filter
budget by the end of time 𝑇 , as desired □

Lemma 5 (Impression-Site Quota Allocation Consistency).
Fix a record 𝑥 = (𝑑, 𝑒, 𝐹) and a report 𝜌 at step 𝑘 . Denote by
𝜖𝑘𝑥 the epoch-level privacy loss given by EpochBudget, denote
by 𝜖 i,𝑘𝑥 [𝑖] the epoch-impression-site-level privacy loss given
by EpochImpSiteBudget (Def. 8) using 2Δ(𝜌) as an upper
bound for Δ𝑖 (𝜌) (Lem. 2). We have:

𝜖𝑘𝑥 ≤
∑︁
𝑖∈S

𝜖 i,𝑘𝑥 [𝑖] (46)

Proof. We go through the different cases for the upper bound
on Δ𝑥 (𝜌):
• If 𝑑 ≠ 𝑑𝑟 , 𝑒 ≠ 𝐸𝑟 or 𝐹 ∩ 𝐹𝐴 = ∅, then 𝜖𝑘𝑥 = 0. In that

case, by Thm. 3 we also have 𝜖 i,𝑘𝑥 [𝑖] = 0 for all 𝑖.
• If 𝑑 = 𝑑𝑟 and 𝐸𝑟 = {𝑒}:

– If 𝐼𝑟 = {𝑖}, we have 𝜖𝑘𝑥 = 𝜖
i,𝑘
𝑥 [𝑖] = ∥𝐴(𝐹) −𝐴(∅)∥1/𝜆.

– Else, we have 𝜖 i,𝑘𝑥 [𝑖] = 2Δ(𝜌)/𝜆 ≥ ∥𝐴(𝐹)−𝐴(∅)∥1/𝜆 =

𝜖𝑘𝑥 .
• Else, we have 𝜖 i,𝑘𝑥 [𝑖] = 2Δ(𝜌)/𝜆 ≥ Δ(𝜌)/𝜆 = 𝜖𝑘𝑥 .

□

Remark that the upper bound in Lem. 5 can be quite loose.
Since the impression-site quota has no privacy meaning and
is only used through Lem. 5 to obtain isolation guarantees,
instead of using per-epoch-site privacy loss we could use any
heuristic that also satisfies Lem. 5. For instance, we could
define 𝜖 i,𝑘𝑥 [𝑖] by dividing 𝜖𝑘𝑥 uniformly across impression sites
𝑖 with non-zero contributions.

Lemma 6. Consider a sequence of T batch query steps. If an
adversary, across all individual report generation attempts
within these T steps, successfully leads to the instantiation
(via saveImpression calls) and subsequent use (successful
budget consumption from) of at most 𝑀adv distinct imp-quota
filters and 𝑁 adv distinct conv-quota filters in an attempt to
deplete the global filter, then the adversary consumes at most
𝑁 adv𝜖conv-quota budget from the global filter.

Proof. By basic composition under a pure DP filter, 𝜖≤𝑡−1,badglobal filter
is the sum of global filter consumption by reports associated
with adversarial conversion sites, badc across all query steps

22

𝑠 from 1 up to 𝑡 − 1. Let 𝑅𝑠 be the set of reports in query step
𝑠, 𝑐𝑟,𝑠 be the conversion site for report 𝑟 from query step 𝑠,
𝜖

global filter
𝑟,𝑠 be the global budget consumed by that report, and

pass(𝑟, 𝑠) indicate if it was successfully processed. Then,

𝜖
≤𝑡−1,bad
global =

∑︁
𝑠∈[𝑡−1]

∑︁
𝑟 ∈𝑅𝑠 :𝑐𝑟,𝑠 ∈badc

𝜖
global filter
𝑟,𝑠 · pass(𝑟, 𝑠) (47)

≤
∑︁

𝑠∈[𝑡−1]

∑︁
𝑖∈𝐼𝑠𝑥∩badi

𝜖 i,𝑠x [𝑖] · pass(𝑠), (48)

where the last inequality follows from Lem. 5. First, by
the restriction in the sum, we know 𝑠 satisfies 𝑐𝑠 ∈ badc.
Second, recall that, for a conversion site to incur privacy
losses on impression sites, the conversion site must register
these impression sites, meaning that if 𝑐𝑠 ∈ badc, then i𝑠 ⊆
badi. Now, continuing where we ended in Eq. 48, we get:

𝜖
≤𝑡−1,bad
global ≤

∑︁
𝑠∈[𝑡−1]:𝑐𝑠 ∈badc

∑︁
𝑖∈badi

𝜖 i,𝑠x [𝑖] · pass(𝑠) (49)

=
∑︁

𝑖∈badi

∑︁
𝑠∈[𝑡−1]:𝑐𝑠 ∈badc,𝑖∈i𝑠

𝜖 i,𝑠x [𝑖] · pass(𝑠), (50)

≤
∑︁

𝑖∈badi

∑︁
𝑠∈[𝑡−1]:𝑖∈i𝑠

𝜖 i,𝑠x [𝑖] · pass(𝑠), (51)

by changing order of summation, and the last inequality by
relaxing the “𝑐𝑠 ∈ badc" condition. But note that

𝜖≤𝑡−1imp-quota [𝑖] =
∑︁

𝑠∈[𝑡−1]:𝑖∈i𝑠

𝜖 i,𝑠x [𝑖] · pass(𝑠), (52)

because, by epoch-site-level consistency property in lemma 3,
we know that only relevant site 𝑖 at time 𝑠, where every filter
has enough budget to pass the 2-PC check, will have epoch-
site level privacy losses incurred. Substituting this equality
into equation (51), we get:

𝜖
≤𝑡−1,bad
global ≤

∑︁
𝑖∈badi

𝜖≤𝑡−1imp-quota [𝑖] (53)

=
∑︁

𝑖∈badi:𝜖≤𝑡−1imp-quota [𝑖]>0

𝜖≤𝑡−1imp-quota [𝑖] (54)

≤
∑︁

𝑖∈badi:𝜖≤𝑡−1imp-quota [𝑖]>0

𝜖imp-quota (55)

=

���{𝑖 ∈ badi : 𝜖≤𝑡−1imp-quota [𝑖] > 0
}��� · 𝜖imp-quota, (56)

because only non-zero privacy losses that were incurred con-
tribute meaningfully to the composition. Finally, we note that���{𝑖 ∈ badi : 𝜖≤𝑡−1imp-quota [𝑖] > 0

}��� ≤ 𝑀≤𝑡−1,adv by definition and:

𝜖
≤𝑡−1,bad
global ≤ 𝑀≤𝑡−1,adv · 𝜖imp-quota. (57)

Following this result, similar to the proof for part 1:

• Suppose 𝜖𝑡𝑥 ≤ 𝜖imp-quota,

𝜖
≤𝑡,bad
global ≤ 𝑀≤𝑡,adv · 𝜖imp-quota. (58)

• Else, 𝜖𝑡𝑥 > 𝜖imp-quota, then 𝜖imp-quota will be exceeded,
causing canConsume to return FALSE, so,

𝜖
≤𝑡,bad
global = 𝜖

≤𝑡−1,bad
global + 0 = 𝜖

≤𝑡−1,bad
global ≤ 𝑀≤𝑡−1,adv · 𝜖imp-quota,

(59)

by equation (57).
Since by the end of time 𝑡 , the adversary has created at most
𝑀adv imp-quota filters, we know 𝑀≤𝑡−1,adv ≤ 𝑀≤𝑡,adv ≤
𝑀adv, which means that in both cases we have:

𝜖
≤𝑡,bad
global ≤ 𝑀≤𝑡,adv𝜖imp-quota ≤ 𝑀adv𝜖imp-quota, (60)

as desired. □

We can now combine Lem. 4 and 6 to obtain our main
isolation theorem:
Theorem 1 (Resilience to DoS depletion). Consider an ad-
versary who manages to create 𝑀adv and 𝑁 adv imp-quota

and conv-quota filters, respectively. The maximum budget
𝜖adv

global that the adversary can consume from the global filter
on a device 𝑑 is such that:

𝜖adv
global ≤ min(𝑀adv𝜖imp-quota, 𝑁

adv𝜖conv-quota). (61)

Proof. At any time 𝑡 , if the adversary controls at most𝑀≤𝑡,adv ≤
𝑀adv imp-quota and 𝑁 ≤𝑡,adv ≤ 𝑁 adv conv-quota filters, then
by Lem. 4 and 6:

𝜖advglobal ≤ 𝑀≤𝑡,adv𝜖imp-quota ≤ 𝑀adv𝜖imp-quota (62)

𝜖advglobal ≤ 𝑁 ≤𝑡,adv𝜖conv-quota ≤ 𝑁 adv𝜖conv-quota. (63)

Therefore:

𝜖adv
global ≤ min(𝑀adv𝜖imp-quota, 𝑁

adv𝜖conv-quota). (64)

□

C Batched Algorithm to Improve Utilization
C.1 Algorithm
Alg. 5 describes the batched algorithm on a single device. In-
stead of executing GenerateReport as soon as a request comes,
as in Alg. 3, requests are accumulated in a batch. Each epoch
is divided into 𝑘 scheduling intervals, and since a request can
request older epochs (up to a maximum attribution window
length, a.k.a. data lifetime) we release budget progressively
over 𝑇 intervals. For instance, if requests have attribution
window of at most 2 epochs, we can divide this data lifetime
into𝑇 = 4 releases, with 𝑘 = 2 releases happening inside each
epoch. We can also do 𝑇 = 2 releases with 𝑘 = 1 interval per
epoch.

Budget release and unlocked budget semantics are defined
as in [18]. F global.unlock becomes a no-op after 𝑇 releases,
when the unlocked budget reaches the filter capacity 𝜖global.

We define A,U ← TryAllocate(R) as follows. TryAl-
locate takes a set of report requests R. For each request, it
executes a heuristic that estimates whether Alg. 3’s Gener-
ateReport will successfully allocate budget for the request
(i.e., the whether the filters will return TRUE at Line 18). It

23

Algorithm 5 Batched Algorithm (On-Device)

Input:
1: 𝜖global, 𝜖per-site, 𝜖imp-quota, 𝜖conv-quota: same parameters as

Alg. 3.
2: 𝑘: number of scheduling intervals per epoch.
3: 𝑇 : number of scheduling intervals to release the full bud-

get.

4: function MAIN
5: for 𝑒 ∈ N do
6: // Initialize new epoch with its own filters
7: F𝑒 ← InitializeFilters(𝜖global, 𝜖per-site, 𝜖imp-quota, 𝜖conv-quota)
8: // Initially no global budget available
9: F global

𝑒 .unlocked← 0
10: R𝑏𝑎𝑡𝑐ℎ ← ∅ // Requests for the batch phase
11: for 𝑡 ∈ [𝑘] do
12: R𝑛𝑒𝑤 ← ReceiveNewRequests()
13: A,R𝑏𝑎𝑡𝑐ℎ ← ScheduleBatch(R𝑛𝑒𝑤,R𝑏𝑎𝑡𝑐ℎ)
14: SendReportsForRelease(A)
15:
16: function SCHEDULEBATCH(R𝑛𝑒𝑤,R𝑏𝑎𝑡𝑐ℎ)
17: // 1. Initialization phase
18: for 𝑒′ ∈ [𝑒] do
19: F global

𝑒 .unlocked← F global
𝑒 .unlocked + 𝜖global/𝑇

20: for 𝑖 ∈ S do
21: // impression-site quota on (only accepts requests

within remaining budget).
22: F imp-quota

𝑒 [𝑖] .on = True
23: A𝑖𝑛𝑖𝑡 ,U𝑖𝑛𝑖𝑡 ← TryAllocate(R𝑏𝑎𝑡𝑐ℎ)
24: A ← A𝑖𝑛𝑖𝑡

25: // 2. Online phase
26: 𝑎𝑜𝑛𝑙𝑖𝑛𝑒 , 𝑢𝑜𝑛𝑙𝑖𝑛𝑒 ← TryAllocate(R𝑛𝑒𝑤)
27: A ← A ∪A𝑜𝑛𝑙𝑖𝑛𝑒

28: // 3. Batch phase
29: for 𝑒′ ∈ [𝑒], 𝑖 ∈ S do
30: // impression-site quota off (accepts all requests re-

gardless of impression-site quota; requests still decrease
filter budget).

31: F imp-quota
𝑒 [𝑖] .on = False

32: 𝑏𝑎𝑡𝑐ℎ ←U𝑖𝑛𝑖𝑡 ∪U𝑜𝑛𝑙𝑖𝑛𝑒

33: do
34: 𝑠𝑜𝑟𝑡𝑒𝑑 ← SortBatch(𝑏𝑎𝑡𝑐ℎ)
35: (𝑎,𝑢) ← TryAllocateOne(𝑠𝑜𝑟𝑡𝑒𝑑)
36: 𝑏𝑎𝑡𝑐ℎ ← 𝑢

37: A ← A ∪ 𝑎
38: while 𝑎 ≠ ∅
39: return A, 𝑏𝑎𝑡𝑐ℎ

then calls GenerateReports on the requests that were predicted
to be allocatable, and returns two sets: A the reports for re-
quests that were executed, andU the remaining unallocated
requests. TryAllocateOne behaves like TryAllocate, except

that it stops after the first executed request. Our heuristic is
a variant of GenerateReport that relies purely on public in-
formation — using proxy filters F̃ with IDP optimizations
turned off — allowing the scheduler to make decisions with-
out leaking privacy across epochs.

SortBatch attaches a weight (𝑏𝑟 , 𝜖𝑟) to each request 𝑟 in
a batch, and then sorts by smallest weight first (in lexico-
graphic order). The weights are defined as follows, using the
proxy filters F̃ define for TryAllocate. 𝜖𝑟 is the global epsilon
requested by 𝑟 (either available as a request parameter, or
computed as 𝜖𝑟 = Δ𝜌𝑟/𝜎 for a Laplace noise scale 𝜎). 𝑏𝑟 is
the smallest budget consumed by any impression site 𝑖 ∈ i𝑟 re-
quested by 𝑟 , where the budget consumed by 𝑖 over the set of
epochs 𝐸 considered in the queue is defined by the maximum
budget consumed by 𝑖 over any epoch:

𝑏𝑟 := min
𝑖∈i𝑟

max
𝑒∈𝐸
F̃ imp-quota [𝑖] .consumed (65)

Finally, SendReportsForRelease prepares the reports from
allocated requests to be sent at the right time, depending on
the duration specified by each request.

C.2 DoS resilience under batching
Under our mixed online and batch algorithm, the effort in
terms of on device user interactions 𝑈 adv required from an
adversary to consume global filter budget depends on the
overall workload of the system. As we saw in §4.4, in the
worst case (e.g., when there are no legitimate queries in the
system) this can lead to a weaker upper-bound on the budget
consumption by an adversary compared to Thm. 2, with the
following result:

𝜖adv
global ≤ (1 + 𝑟)𝜖per-site × quota-count × (𝑈 adv − 1). (66)

Intuitively, this is because the attacker can batch conversion
queries that all request the same impression: user interactions
are only needed to create one impression under the adver-
sary’s control, as well as 𝑈 adv − 1 conversions that can be
used to deplete global filter budget when the imp-quota filters
are disabled (l.9 in Algorithm 1).

In practice however, we expect the benign workload to
contain online queries (configured to return instantly, with no
batching). To deny service to those queries requires a higher
number of on device interactions for the adversary, so it is
relevant to ask for a lower-bound on user interactions 𝑈 adv

required by an adversary to prevent a specific set of legitimate
online queries from being allocated. Intuitively, even in the
best case, even in the easiest case an attacker will need to
cause 𝜖adv

global ≥ 𝜖
good
global of global filter consumption to deny

service to 𝜖
good
global worth of legitimate online requests. Such

denial comes at the higher 𝑈 adv cost from Thm. 2. Formally,
we have the following result:

Theorem 5 (Graceful degradation for online queries under the
batch algorithm). Consider a set of legitimate target queries,

24

with total requested budget summing to 𝜖good
global. To deny service

to those target queries, an attacker requires the following
lower-bound on user interactions 𝑈 adv:

1 + 𝑛
𝑛

𝜖
good
global

(1 + 𝑟)𝜖per-site × quota-count
≤ 𝑈 adv.

Proof. The best case for the attacker is when online queries
consume 𝜖global

𝑇
in this period and target queries arrive last, so

that all budget consumed by the attacker is denied to target
queries. This yields a lower-bound on the DoS attack budget
consumption: 𝜖good

global ≤ 𝜖adv
global.

This consumption has to apply to newly released 𝜖global
𝑇

global filter budget, which can happen lines 5 and 7 in Algo-
rithm 1. In both cases all quota filters apply. By Thm. 2:

𝜖
good
global ≤ 𝜖adv

global

≤ (1 + 𝑟)𝜖per-site ×
𝑛

1 + 𝑛
(
quota-count ×𝑈 adv) .

Reorganizing the terms concludes the proof. □

In addition, during the batch allocation phase (lines 9 to
14 in Algorithm 1), the adversary would still need overcome
the scheduler’s sorting mechanism, to be scheduled before
waiting legitimate requests. Since the sorting mechanism fa-
vors low-budget and underrepresented impression sites, the
adversary would likely require more than one user interac-
tion (𝑈 adv ≫ 1) to mount an attack, making Equation 66
pessimistic. The time dynamics and workload dependency
of the batching phases make the analysis of such guarantees
challenging though, and we leave a proper formal treatment
of any guarantees related to sorting for future work.

D Adaptive Cross-report Privacy Loss Opti-
mization
In §B, we presented a general algorithm where beneficiaries
pay for each report separately. This section formalizes the
cross-report optimization from §4.2, by defining variations
of Alg. 2, Alg. 3 in §D.2. We focus on histogram reports,
defined in D.1, and show that paying only once for a sequence
of properly correlated histogram reports still satisfies global
DP guarantees in §D.3. We leave the generalization to other
queries for future work.

D.1 Histogram reports definition and properties
The following definitions (Def. 11 and 12) are adapted from
[28, Thm. 18]. Histogram reports distribute a positive value
across impressions, map each impression to a bucket, and then
sum up the attributed value in each bucket. Lem. 7 gives the
global sensitivity of such histogram reports, which is bounded
by the maximum attributable value.

Definition 11 (Scalar attribution function). Fix 𝑘 > 0 a num-
ber of epochs. A scalar attribution function is a function
𝑎 : P(I)𝑘 ×I → R+ that attributes a positive value 𝑎F (𝑓) to
each impression 𝑓 ∈ I, depending on all the impressions in

𝑘 epochs F ∈ P(I)𝑘 .
For a scalar attribution function 𝑎, we define its maximum

attributable value 𝑎max as follows:

𝑎max := max
F∈P(I)𝑘

𝑘∑︁
𝑗=1

∑︁
𝑓 ∈F𝑗

𝑎F (𝑓) (67)

Definition 12 (Histogram report). Consider a scalar attri-
bution function 𝑎 : P(I)𝑘 × I → R+, a support set of im-
pressions 𝑆 ⊂ I, an output dimension𝑚 > 0, and a one-hot
encoding function 𝐻 that maps each event 𝑓 to one of𝑚 buck-
ets. That is, 𝐻 : I → {0, 1}𝑚 such that ∀𝑓 ∈ I, | |𝐻 (𝑓) | |1 = 1.

First, we define 𝐴𝑎,𝑆,𝐻 : P(I)𝑘 → R𝑚 as follows:

𝐴(F) =
𝑘∑︁
𝑗=1

∑︁
𝑓 ∈F𝑗

1[𝑓 ∈ 𝑆]𝑎F (𝑓) · 𝐻 (𝑓) (68)

𝐴𝑎,𝑆,𝐻 is a well-defined attribution function (in the sense of
Def. 2).

Second, for a device 𝑑 and a set of epochs 𝐸 we define the
histogram report associated with 𝐴𝑎,𝑆,𝐻 , as in Def. 3:

𝜌 : 𝐷 ↦→ 𝐴𝑎,𝑆,𝐻 (𝐷𝐸
𝑑
) (69)

Next, Lem. 7 and 8 give two preliminary properties of
histogram reports, that will be used in Thm. 6.

Lemma 7 (Histogram sensitivity). Consider a histogram
report 𝜌 with associated attribution function 𝐴𝑎,𝑆,𝐻 . We have:

Δ(𝜌) ≤ 2𝑎max (70)

Proof. Take a report 𝜌 with scalar attribution function 𝑎, de-
vice 𝑑 and epochs 𝐸. Consider two neighborhing databases
𝐷, 𝐷 ′ and denote F := 𝐷𝐸

𝑑
and F′ := 𝐷 ′𝐸

𝑑
. We have:

∥𝜌 (𝐷) − 𝜌 (𝐷 ′)∥1 = ∥𝐴𝑎,𝑆,𝐻 (F) −𝐴𝑎,𝑆,𝐻 (F′)∥1 (71)

=

 𝑘∑︁
𝑗=1

∑︁
𝑓 ∈F𝑗

𝑎F (𝑓) · 𝐻 (𝑓) −
𝑘∑︁
𝑗=1

∑︁
𝑓 ∈F′

𝑗

𝑎F′ (𝑓) · 𝐻 (𝑓)

1

(72)

≤
𝑘∑︁
𝑗=1

∑︁
𝑓 ∈F𝑗

𝑎F (𝑓)∥𝐻 (𝑓)∥ +
𝑘∑︁
𝑗=1

∑︁
𝑓 ∈F′

𝑗

𝑎F′ (𝑓)∥𝐻 (𝑓)∥ (73)

≤ 2𝑎max (74)

Even though this bound holds even for non-neighborhing
databases, [28, Thm. 18] provides mild conditions under
which the bound is tight. □

D.2 Algorithm
Overview. Alg. 6 updates the formalism from Alg. 2. Instead
of generating a report immediately upon conversion, the first
beneficiary to request a report attached to a report identifier 𝑟
calls MeasureConversion to create a stateful attribution object

25

Algorithm 6 Updated formalism for cross-report optimization
(diff with Alg. 2)

1: // Collect, aggregate and noise reports to answer 𝑄
2: function AnswerQuery(𝐷,𝑄, 𝜆, 𝑏)
3: (𝜌𝑏𝑟)𝑟 ∈𝑅 ← 𝑄 // Get report identifiers from 𝑄

4: for 𝑟 ∈ 𝑅 do
5: if 𝛼𝑟 is not defined then
6: // Initialize attribution object
7: 𝛼𝑟 ← MeasureConversion(𝐷, 𝜌𝑏𝑟 , 𝜆)
8: 𝜌𝑏𝑟 (𝐷), 𝛼𝑟 ← GetReport(𝛼𝑟 , 𝜌𝑏𝑟 , 𝜆, 𝑏)
9: Sample 𝑋 ∼ L(𝜆)

10: return
∑

𝑟 ∈𝑅 𝜌
𝑏
𝑟 (𝐷) + 𝑋

𝛼𝑟 , which pays upfront for any valid sequence of histogram
reports over non-overlapping impressions.

MeasureConversion performs attribution using the pre-
specified attribution function 𝑎 and the noise scale 𝜆, which
give an upper bound on the total leakage of any sequence of
future reports applying 𝑎 on disjoint sets of impressions. We
run through a modified two-phase commit protocol, to deduct
budget from the global filter and the quotas, but not from the
per-site filters. 3 Finally, 𝛼𝑟 stores the attribution function 𝑎F
with corresponding impressions F, the privacy parameters 𝜆,
and the support 𝑆 of impressions requested so far.

GetReport allows a beneficary to receive a report from 𝑟 ,
once the attribution object 𝛼𝑟 has been created. 𝛼𝑟 is only
created once, and is reused every time a beneficiary requests
a report from 𝑟 . GetReport checks that privacy parameters
match what was committed in the attribution object, and
that impressions are not queried twice. If these checks pass,
GetReport spends per-site budget and computes the report
using the predefined attribution function 𝑎 stored in 𝛼𝑟 . We
update the support of impressions 𝑆 ← 𝑆 ⊔𝑆𝜌 in 𝛼𝑟 each time
a new report 𝜌 requests impressions in 𝑆𝜌 ⊂ I
Subroutine. We define AtomicFilterCheckAndConsume2 as
in Alg. 4, except that per-site filters are not part of the atomic
commit. That is, we do not take 𝑏 as an input, and we delete
Line 8 and Line 18 from Alg. 4.

D.3 Privacy proof
Lemma 8 (Correlated histogram sensitivity). Fix a device-
epoch 𝑥 = (𝑑, 𝑒, 𝐹) and a database 𝐷. Fix a report identifier
𝑟 ∈ Z corresponding to a histogram attribution object 𝛼𝑟 . Fix
a sequence of reports 𝜌1, . . . , 𝜌𝑛 that request a report from 𝑟 ,
ordered by lexicographically by time and beneficiary (𝑡, 𝑏).
In particular, MeasureConversion is called for 𝜌1 and then
reused for subsequent reports.

∑𝑛
𝑖=1 ∥𝜌𝑖 (𝐷) − 𝜌𝑖 (𝐷 + 𝑥)∥/𝜆𝑖

represents the total contribution over reports computed from
𝛼𝑟 , each with its own requested noise scale 𝜆𝑖 . Denote by
pass1 the output of the 2PC for 𝑥 in Alg. 7.
3The per-site budget is left out of the 2PC because we don’t know ahead of
time which beneficiaries will request a report, and we don’t want to block
some beneficiaries if other beneficiaries are out of budget.

Algorithm 7 Big Bird algorithm (on-device) with cross-report
optimization for histogram reports

1: Input
2: Filter and quota capacities 𝜖global, 𝜖per-site, 𝜖imp-quota,

𝜖conv-quota

3: function MeasureConversion(𝐷, 𝜌, 𝜆, b)
4: Read 𝜌 to get device 𝑑, epoch 𝐸, conversion site 𝑐, im-

pression sites i, histogram attribution function 𝐴𝑎𝜌 ,𝑆𝜌 ,𝐻𝜌

with scalar attribution function 𝑎, support impressions 𝑆
and histogram bin mapping 𝐻 .

5: for 𝑒 ∈ 𝐸 do
6: 𝑥 ← (𝑑, 𝑒, 𝐷𝑒

𝑑
)

7: if F𝑥 is not defined then
8: F𝑥 ← InitializeFilters(𝜖global, 𝜖per-site, 𝜖imp-quota, 𝜖conv-quota)
9: 𝜖𝑥 ← 2𝑎max

10: 𝜖 ix ← {𝑖 : 2𝑎max, 𝑖 ∈ i}
11: if AtomicFilterCheckAndConsume2(F𝑥 , 𝑐, i, 𝜖𝑥 , 𝜖 ix) =

FALSE then
12: 𝐹𝑒 ← ∅ // Empty the epoch if any filter check fails
13: return 𝛼 = (𝑎F, F, 𝜆, ∅) // Start with 𝑆𝛼 = ∅
14:
15: function GetReport(𝛼, 𝜌, 𝜆)
16: Read 𝛼 to get attribution function 𝑎𝛼 , impressions F𝛼 ,

noise scale 𝜆𝛼 .
17: Read 𝜌 to get device 𝑑 , beneficiary site 𝑏, target epochs

𝐸, histogram attribution function 𝐴𝑎,𝑆,𝐻 with scalar attri-
bution function 𝑎, support impressions 𝑆 and histogram
bin mapping 𝐻 .

18: if 𝑆 ∩ 𝑆𝛼 ≠ ∅ ∨ 𝜆 ≠ 𝜆𝛼 ∨ 𝑎𝜌 ≠ 𝑎𝛼 then
19: 𝜌 ← 𝐴(∅, . . . , ∅) // Null report if inconsistent with 𝛼

20: return 𝜌

21: for 𝑒 ∈ 𝐸 do
22: 𝑥 ← (𝑑, 𝑒, F𝛼𝑒)
23: 𝜖𝑥 ← EpochBudget(𝑥, 𝜌, 𝜆) // Per-site budget only
24: if F per-site filter[𝑏]

𝑥 . tryConsume(𝜖𝑡𝑥) = FALSE then
25: 𝐹𝑒 ← ∅
26: else
27: 𝐹𝑒 ← F𝛼𝑒
28: 𝛼 ← (𝑎𝛼 , F, 𝜆, 𝑆𝛼 ⊔ 𝑆𝜌) // Update impression support
29: 𝜌 ← 𝐴𝑎,𝑆,𝐻 ((𝐹𝑒)𝑒∈𝐸) // Clipped attribution report
30: return 𝜌, 𝛼

We have:

𝑛∑︁
𝑖=1
∥𝜌𝑖 (𝐷) − 𝜌𝑖 (𝐷 + 𝑥)∥/𝜆𝑖

≤ pass1 · 2𝑎max/𝜆1 (75)

Proof. If pass1 = 0, then 𝜌𝑖 (𝐷) = 𝜌𝑖 (𝐷 + 𝑥) because in both
cases the data for 𝑥 is zeroed-out (𝐹𝑒 = ∅ at Line 12), and
we’re done.

26

Now, suppose that pass1 = 1. Take a report 𝜌𝑖 with scalar
attribution function 𝑎𝑖 and support impressions 𝑆𝑖 . These only
depend on past results 𝑣<𝑡𝑖 ,𝑏𝑖 . If 𝑆𝑖 ∩ (𝑆1 ∪ · · · ∪ 𝑆𝑖−1) ≠ ∅,
𝜆𝑖 ≠ 𝜆1 or 𝑎𝑖 ≠ 𝑎1, then 𝜌𝑖 (𝐷) = 𝐴(∅, . . . , ∅) = 𝜌𝑖 (𝐷 + 𝑥).
Also, if 𝑥 = (𝑑, 𝑒, 𝐹) is not queried by 𝜌𝑖 (𝑑 ≠ 𝑑𝑖 or 𝑒 ∉ 𝐸𝑖),
then 𝜌𝑖 (𝐷) = 𝜌𝑖 (𝐷 + 𝑥).

Denote by 𝐼 the set of remaining reports verifying 𝑆𝑖∩(𝑆1⊔
. . . 𝑆𝑖−1) = ∅, 𝜆𝑖 = 𝜆1, 𝑎𝑖 ≠ 𝑎1, 𝑑𝑖 = 𝑑 and 𝑒 ∈ 𝐸𝑖 . We have:

𝑛∑︁
𝑖=1
∥𝜌𝑖 (𝐷) − 𝜌𝑖 (𝐷 + 𝑥)∥/𝜆𝑖 (76)

=
∑︁
𝑖∈𝐼
∥𝜌𝑖 (𝐷) − 𝜌𝑖 (𝐷 + 𝑥)∥/𝜆1 (77)

=
∑︁
𝑖∈𝐼
∥

𝑘∑︁
𝑗=1

∑︁
𝑓 ∈F𝑗

1[𝑓 ∈ 𝑆𝑖]𝑎F (𝑓)𝐻𝑖 (𝑓)− (78)

𝑘∑︁
𝑗=1

∑︁
𝑓 ∈F′

𝑗

1[𝑓 ∈ 𝑆𝑖]𝑎F′ (𝑓)𝐻𝑖 (𝑓)∥/𝜆1 (79)

≤
∑︁
𝑖∈𝐼

𝑘∑︁
𝑗=1

∑︁
𝑓 ∈F𝑗

1[𝑓 ∈ 𝑆𝑖] (𝑎F (𝑓) + 𝑎F′ (𝑓))/𝜆1 (80)

≤
𝑘∑︁
𝑗=1

∑︁
𝑓 ∈F𝑗

1[𝑓 ∈ ⊔𝑖∈𝐼𝑆𝑖] (𝑎F (𝑓) + 𝑎F′ (𝑓))/𝜆1 (81)

≤ 2𝑎max/𝜆1 (82)

by Def. 11 and using the fact that the 𝑆𝑖 are disjoint so each
impression is counted at most once.

□

Theorem 6. Consider 𝑥 ∈ X with global filter capacity
𝜖global. Then,M as defined in Alg. 6 satisfies individual device-
epoch 𝜖global-DP for 𝑥 under public information C.

Proof. Take a device-epoch 𝑥 = (𝑑, 𝑒, 𝐹) ∈ X and a database
𝐷 that doesn’t contain (𝑑, 𝑒). Denote by 𝑥C = (𝑑, 𝑒, 𝐹 ∩C) the
device-epoch obtained by keeping only public events C from
𝑥 , where public events are the set of all conversions. Take
𝑣 ∈ Range(M). As in Thm. 4, want to show that:����ln (

Pr[M(𝐷 + 𝑥C) = 𝑣]
Pr[M(𝐷 + 𝑥) = 𝑣]

)���� ≤ 𝜖global. (83)

Using Bayes’ rule and 𝜌 (𝐷 + 𝑥C) = 𝜌 (𝐷), as in Thm. 4,
we have:

����ln (
Pr[M(𝐷 + 𝑥C) = 𝑣]
Pr[M(𝐷 + 𝑥) = 𝑣]

)���� (84)

=

�����ln
(∏𝑡max

𝑡=1
∏

𝑏∈𝑆 Pr[
∑

𝑟 ∈𝑅𝑏
𝑡
𝜌𝑏𝑟,𝑡 (𝐷) + 𝑋𝑏

𝑡 = 𝑣𝑏𝑡]∏𝑡max
𝑡=1

∏
𝑏∈𝑆 Pr[

∑
𝑟 ∈𝑅𝑏

𝑡
𝜌𝑏𝑟,𝑡 (𝐷 + 𝑥) + 𝑋𝑏

𝑡 = 𝑣𝑏𝑡]

)����� (85)

≤
𝑡max∑︁
𝑡=1

∑︁
𝑏∈𝑆

�����ln
(

Pr[∑𝑟 ∈𝑅𝑏
𝑡
𝜌𝑏𝑟,𝑡 (𝐷) + 𝑋𝑏

𝑡 = 𝑣𝑏𝑡]
Pr[∑𝑟 ∈𝑅𝑏

𝑡
𝜌𝑏𝑟,𝑡 (𝐷 + 𝑥) + 𝑋𝑏

𝑡 = 𝑣𝑏𝑡]

)����� (86)

where each query 𝑄𝑏
𝑡 = {𝜌𝑏𝑟,𝑡 , 𝑟 ∈ 𝑅𝑏𝑡 } is chosen adaptively,

potentially based on previous results 𝑣𝑏1 , . . . , 𝑣
𝑏
𝑡−1. Since the

filters and attribution functions are identical for 𝐷 and 𝐷 +
𝑥 when we condition on past results, we write 𝜌𝑏𝑟,𝑡 (𝐷) for
simplicity instead of 𝜌𝑏𝑟,𝑡 (𝐷 ;F𝑣<𝑡 , 𝑎𝑣<𝑡).

Fix 𝑡 ∈ [𝑡max] and 𝑏 ∈ S. Without the optimization, as
in Eq. 32, the device would pay for each report sent to any
beneficiary, which would give:�����ln

(
Pr[∑𝑟 ∈𝑅𝑏

𝑡
𝜌𝑏𝑟,𝑡 (𝐷) + 𝑋𝑏

𝑡 = 𝑣𝑏𝑡]
Pr[∑𝑟 ∈𝑅𝑏

𝑡
𝜌𝑏𝑟,𝑡 (𝐷 + 𝑥) + 𝑋𝑏

𝑡 = 𝑣𝑏𝑡]

)����� (87)

≤
∑︁
𝑟 ∈𝑅𝑏

𝑡

Δ𝑥 (𝜌𝑏𝑟,𝑡)pass𝑏𝑟 /𝜆𝑏𝑡 (88)

Instead of upper-bounding the difference ∥𝜌𝑏𝑟,𝑡 (𝐷)−𝜌𝑏𝑟,𝑡 (𝐷+
𝑥)∥ for each report by Δ𝑥 (𝜌𝑟) separately, which takes a maxi-
mum over all 𝐷 right away, we keep information about 𝐷 a
bit longer. This will allow us to leverage the fact that reports
𝜌𝑏𝑟,𝑡 across different timesteps and beneficiaries tied to a same
identifier 𝑟 are correlated:�����ln

(
Pr[∑𝑟 ∈𝑅𝑏

𝑡
𝜌𝑏𝑟,𝑡 (𝐷) + 𝑋𝑏

𝑡 = 𝑣𝑏𝑡]
Pr[∑𝑟 ∈𝑅𝑏

𝑡
𝜌𝑏𝑟,𝑡 (𝐷 + 𝑥) + 𝑋𝑏

𝑡 = 𝑣𝑏𝑡]

)����� (89)

≤
∑︁
𝑟 ∈𝑅𝑏

𝑡

∥𝜌𝑏𝑟 (𝐷) − 𝜌𝑏𝑟 (𝐷 + 𝑥)∥/𝜆𝑏𝑡 (90)

For a report identifier 𝑟 ∈ Z, we now define T𝑟 , which keeps
track of all beneficiaries that requested a report from 𝑟 and at
which timesteps they requested it:

T𝑟 := {(𝑡, 𝑏) ∈ [𝑡max] × S : 𝑟 ∈ 𝑅𝑏𝑡 } (91)

This notation allows us to swap the sums, after putting
Eq. 90 into Eq. 86:����ln (

Pr[M(𝐷 + 𝑥C) = 𝑣]
Pr[M(𝐷 + 𝑥) = 𝑣]

)���� (92)

≤
𝑡max∑︁
𝑡=1

∑︁
𝑏∈𝑆

∑︁
𝑟 ∈𝑅𝑏

𝑡

∥𝜌𝑏𝑟 (𝐷) − 𝜌𝑏𝑟 (𝐷 + 𝑥)∥/𝜆𝑏𝑡 (93)

=
∑︁
𝑟 ∈Z

∑︁
(𝑡,𝑏) ∈T𝑟

∥𝜌𝑏𝑟 (𝐷) − 𝜌𝑏𝑟 (𝐷 + 𝑥)∥/𝜆𝑏𝑡 (94)

Fix a report identifier 𝑟 ∈ Z corresponding to a histogram
27

attribution object 𝛼𝑟 . Denote by 𝑡0, 𝑏0 the first time step and
first beneficiary that requests a report from 𝑟 , thereby calling
MeasureConversion and obtaining 𝜌∗ at Line ?? of Alg. 7. By
Lem. 8, we have:∑︁
(𝑡,𝑏) ∈T𝑟

∥𝜌𝑏𝑟 (𝐷) − 𝜌𝑏𝑟 (𝐷 + 𝑥)∥/𝜆𝑏𝑡 ≤ pass𝑏0𝑟,𝑡0 · Δ𝑥 (𝛼𝑟)/𝜆𝑏0𝑡0

(95)

Finally, since pass𝑏0𝑟,𝑡0 implies that 𝜖𝑏0𝑟,𝑡0 = Δ𝑥 (𝛼𝑟)/𝜆𝑏0𝑡0 passes
the global filter, by definition of the global filter Eq. 94 be-
comes: ����ln (

Pr[M(𝐷 + 𝑥C) = 𝑣]
Pr[M(𝐷 + 𝑥) = 𝑣]

)���� (96)

≤
∑︁
𝑟 ∈Z

pass𝑏0𝑟,𝑡0𝜖
𝑏0
𝑟,𝑡0

(97)

≤ 𝜖global (98)

which concludes the proof. □

Remark. Lem. 7 and 8 show that for histogram reports with
𝑘 > 1 epochs, Alg. 7 spends up to |b| times less budget than
Alg. 3 when |b| beneficiaries request reports from the same
conversion with a single report identifier 𝑟 . This is because
the privacy loss in these cases is proportional to Δ(𝜌) =

2𝑎max. For histogram reports with a single epoch, we can
use the individual sensitivity, which renders this optimization
unnecessary.

E Prototype Screeenshot

Fig. 5. Firefox privacy loss dashboard.

Fig. 5 shows a screenshot of our Firefox extension that
serves as a dashboard for visualizing privacy loss across the
different filters and quotas Big Bird maintains. The screen-
shot follows a scenario of user visits and purchases, which
we emulate programmatically on our local browsers, since
no site currently invokes the PPA API. The scenario is as
follows: A user visits many websites that display ads on them,
such as nytimes.com and blog.com. These websites store ev-
ery ad view as an event using saveImpression(). The user

then purchases products for which they have seen ads, includ-
ing on nike.com and toys.com. At time of purchase, these
websites call measureConversion() to generate and send a
report, consuming privacy in the process. The user wants to
check how much of their privacy budget has been spent using
the dashboard in Fig. 5.

F Discussion regarding per-site DP guarantees
In §F.1 we provide a high-level intuition about how data
and budget adaptivity impact per-site semantics. Next, in
§F.2, we propose a strong assumption that is sufficient to
prove per-site guarantees. The proof shows more precisely
where adaptivity can cause leakage under adaptivity with no
assumptions. Finally, we sketch some potential directions to
maintain per-site guarantees under more realistic assumptions
in §F.3. We leave a more formal and general treatment of
the limitations of per-site guarantees in adaptive settings for
future work.
F.1 Fundamental challenges
To show the global DP guarantees in Thm. 4, we considered
the mechanismM all the outputs of Alg. 2. Thanks to the
formalism from §A, Alg. 2 also defines one mechanismM𝑏

per beneficary. It is thus possible to study the DP guarantees
ofM𝑏 , and ideally to show thatM𝑏 is 𝜖per-site-DP.

Under adaptive data generation, §B.3 can be refined as fol-
lows. We consider a data generation process G and one adver-
sary per beneficary (A𝑏)𝑏∈S . At each epoch 𝑒, new data 𝐷𝑒

is generated by G based on the past results from all beneficia-
ries, i.e., 𝐷𝑒 = G(𝑣<𝑒). A challenge bit governs whether the
game should introduce an additional record 𝑥 . Then, at each
time step 𝑡 , each beneficiary A𝑏 asks queries interactively
depending on its own past results 𝑣𝑏<𝑡 . Taking 𝐷𝑒 = G(𝑣<𝑒)
instead of something like 𝐷𝑒,𝑏 = G(𝑣𝑏<𝑒) models the fact that
in the most general case, whether an impression occurs de-
pends on real-world actions that various beneficiaries take
depending on their past results. For instance, news.ex might
decide to display an impression for either shoes.ex or hats.ex,
depending on the bid or creative for each site, where the bid
from shoes.ex depends on shoes.ex’s own past results.

As we will see more formally in the proof for Thm. 7,
there are two shared data structures that depend on results
from all beneficiaries: the dataset itself, and the global filters
and quotas. Each of these data structures can act as a side-
channel: if a beneficiary 𝑏1 writes down some information
gained through its own queries 𝑣𝑏1<𝑡 (after paying up to 𝜖global),
different beneficary 𝑏2 can later read this information, which
can affect results beyond the leakage permitted through 𝑏2’s
own budget.
F.2 Guarantees under additional assumption
Assumption 1. Assume the two following properties:
• First, data is not generated adaptively, i.e., 𝐷 is fixed

upfront as in Alg. 2 instead of being generated by a
process that depends on past results 𝑣𝑣<𝑡 as described

28

in §B.3.
• Second, given any beneficiary 𝑏 and past views 𝑣<𝑡 that

asks query 𝑄 on database 𝐷 with filters F , the results
from other beneficiaries do not impact which reports
get filtered:

𝑄𝑏
𝑡 (𝑣𝑏<𝑡) (𝐷 ;F (𝐷, 𝑣<𝑡) = 𝑄𝑏

𝑡 (𝑣𝑏<𝑡) (𝐷 ;F (𝐷, 𝑣𝑏<𝑡) (99)

This condition is achieved if queries are chosen non-
adaptively for queriers other than 𝑏, or if the global
filter and quotas are never triggered on any device in
the query.

Theorem 7 (Per-Beneficiary DP Guarantee). Consider the
view of a single beneficiary 𝑏 ∈ S in Alg. 2, which defines a
mechanismM𝑏 . Consider 𝑥 ∈ X with impression-site quota
capacity 𝜖imp-quota. Given Assumption 1, the mechanismM𝑏

satisfies individual device-epoch 𝜖per-site-DP for 𝑥 with respect
to public information C𝑏 .

Proof. As in the proof for Thm. 4, take a device-epoch 𝑥 =

(𝑑, 𝑒, 𝐹) ∈ X and a database 𝐷 that doesn’t contain (𝑑, 𝑒).
Denote by 𝑥C𝑏 = (𝑑, 𝑒, 𝐹 ∩ C𝑏) the device-epoch obtained by
keeping only public events C from 𝑥 , where public events
are the set of all conversions for 𝑏. Take 𝑣 ∈ Range(M) (the
global mechanism) and denote by 𝑣𝑏 the outputs in 𝑣 that are
sent to beneficiary 𝑏. Our goal is equivalent to showing that:����ln (

Pr[M𝑏 (𝐷 + 𝑥C) = 𝑣𝑏]
Pr[M𝑏 (𝐷 + 𝑥) = 𝑣𝑏]

)���� ≤ 𝜖per-site . (100)

For any database 𝐷 ′, with Bayes’s rule we have:

Pr[M𝑏 (𝐷 ′) = 𝑣𝑏] (101)

= Pr[M𝑏 (𝐷 ′) = 𝑣𝑏pub] ·
𝑡max∏
𝑡=1

Pr[M𝑏
𝑡 (𝐷 ′) = 𝑣𝑏𝑡 |𝑣𝑏<𝑡] . (102)

However, we can’t directly decomposeM𝑏
𝑡 into the query

at time 𝑡 conditioned purely on past results from 𝑣𝑏𝑡 . Indeed,
Big Bird maintains a global filter, which is mutable state that
gets updated after each query, and is shared across beneficia-
ries. Instead, we have:

Pr[M𝑏 (𝐷) |𝑣𝑏<𝑡] =
∫
𝑢<𝑡 :𝑢𝑏<𝑡=𝑣𝑏<𝑡

𝑄𝑏
𝑡 (𝑣𝑏<𝑡) (𝐷 ;F (𝐷,𝑢<𝑡) + 𝑋𝑏

𝑡 (𝑣𝑏<𝑡)𝑑𝑢<𝑡
(103)

Note that the query 𝑄𝑏
𝑡 and the privacy parameters for 𝑋𝑏

𝑡

only depend on 𝑣𝑏<𝑡 , because that’s the only information a
non-colluding beneficiary can use to formulate its request.
However, the state of the filters F (𝐷, 𝑣<𝑡) depends on queries
from all the other beneficiaries 𝑣<𝑡1 , . . . , 𝑣<𝑡

𝑏−1. Moreover, if
the data was generated adaptively as in §B.3, by a process
𝐷𝑒 ← A(𝑢<𝑡) depending on the view of all beneficiaries,
then we would still need to integrate over 𝑢<𝑡 .

By Assumption 1, the results from other beneficiaries do
not impact which reports get filtered:

𝑄𝑏
𝑡 (𝑣𝑏<𝑡) (𝐷 ;F (𝐷, 𝑣<𝑡) = 𝑄𝑏

𝑡 (𝑣𝑏<𝑡) (𝐷 ;F (𝐷, 𝑣𝑏<𝑡) (104)

Then, we can remove the integral and condition only on 𝑣𝑏<𝑡 :
Pr[M𝑏 (𝐷) |𝑣𝑏<𝑡] = 𝑄𝑏

𝑡 (𝑣𝑏<𝑡) (𝐷 ;F (𝐷, 𝑣<𝑡) = 𝑄𝑏
𝑡 (𝑣𝑏<𝑡) (𝐷 ;F (𝐷, 𝑣𝑏<𝑡).

We omit the 𝑣𝑏<𝑡 input next, since it is identical whether the
input is 𝐷 + 𝑥 or 𝐷 + 𝑥C𝑏 . Eq. 101 thus becomes:

Pr[M𝑏 (𝐷 ′) = 𝑣] = Pr[M𝑏 (𝐷 ′) = 𝑣𝑏pub] (105)

·
∏

𝑡 ∈[𝑡max]
Pr


∑︁
𝑟 ∈𝑅𝑏

𝑡

𝜌𝑟 (𝐷 ′;F 𝑏
𝑡,𝑟) + 𝑋𝑏

𝑡 = 𝑣𝑏𝑡

 . (106)

As in Thm. 4, we can bound the privacy loss 𝜖𝑡 at any given
time 𝑡 ∈ [𝑡max] by the property of Laplace distribution:�������ln ©­­«

Pr
[∑

𝑟 ∈𝑅𝑏
𝑡
𝜌𝑟 (𝐷) + 𝑋𝑏

𝑡 = 𝑣𝑏𝑡

]
Pr

[∑
𝑟 ∈𝑅𝑏

𝑡
𝜌𝑟 (𝐷 + 𝑥) + 𝑋𝑏

𝑡 = 𝑣𝑏𝑡

] ª®®¬
������� ≤

∑︁
𝑟 ∈𝑅𝑏

𝑡

pass𝑟Δ𝑥𝜌
𝑏
𝑟,𝑡/𝜆

(107)

≤
∑︁
𝑟 ∈𝑅𝑏

𝑡

pass𝑟𝜖𝑟

(108)

Since pass𝑟 implies that 𝑟 passes F per-site filter succesfully,
we get: ∑︁

𝑡 ∈[𝑡max]:𝑏𝑡=𝑏

∑︁
𝑟 ∈𝑅𝑡

𝜖𝑟pass𝑟 ≤ 𝜖per-site . (109)

Finally, using the fact that the public information is identi-
cal across both worlds, we have:����ln (

Pr [M𝑏 (𝐷 + 𝑥C) = 𝑣]
Pr [M𝑏 (𝐷 + 𝑥) = 𝑣]

)���� (110)

≤
∑︁

𝑡 ∈[𝑡max]

�����ln
(

Pr
[∑

𝑟 ∈𝑅𝑡 𝜌𝑟 (𝐷) + 𝑋𝑡 = 𝑣𝑡
]

Pr
[∑

𝑟 ∈𝑅𝑡 𝜌𝑟 (𝐷 + 𝑥) + 𝑋𝑡 = 𝑣𝑡
])����� (111)

≤
∑︁

𝑡 ∈[𝑡max]
𝜖𝑡 ≤

∑︁
𝑡 ∈[𝑡max]

∑︁
𝑟 ∈𝑅𝑡

𝜖𝑟pass𝑟 (112)

≤𝜖per-site. (113)

□

It is important to note that the 𝜖per-site-DP guarantee of
Thm. 7 relies critically on the assumption for per-beneficiary
analysis. If this assumption does not hold (e.g., if other benefi-
ciaries can adaptively influence the global filter in a way that
helps a beneficiary 𝑏 learn more than its share), the formal
𝜖per-site-DP guarantee may be compromised. In such scenarios,
while the per-site filter still limits what 𝑏 can learn, it becomes
a valuable heuristic instead of a formal differential privacy
guarantee.

29

F.3 Future work
While Assumption 1 from §F.2 is sufficient to prove per-
beneficiary DP guarantees, it might not be necessary. We
can imagine more realistic assumptions, especially if we con-
strain the class of queries. For instance, we could allow a
form of siloed adaptive data generation, where each benefi-

cary generates data 𝐷𝑒
𝑏
← G𝑏 (𝑣𝑏<𝑒) based on its own past

results 𝑣𝑏<𝑒 only, and each beneficary can only read its own
data 𝑄𝑏 (𝐷) = 𝑄𝑏 (𝐷𝑏). Additionally, it might be possible to
analyze Eq. 103 more tightly, for instance if the shared filters
and quotas are sufficiently noisy or if they are guaranteed to
only impact a small number of reports.

30

	Abstract
	1 Introduction
	2 PPA Overview and Gaps
	2.1 PPA architecture
	2.2 Example workflow
	2.3 Privacy loss accounting with Cookie Monster
	2.4 Stock-and-flow pattern
	2.5 Global privacy filter
	2.6 Foundational gaps

	3 Big Bird Overview
	3.1 Threat model
	3.2 Running example
	3.3 Big Bird architecture

	4 Detailed Design
	4.1 API changes for per-site semantic (Gap 1)
	4.2 Cross-report privacy loss optimization
	4.3 Global filter management (Gap 2)
	4.4 Batched scheduling to improve utilization
	4.5 Recommendations for PATWG

	5 Prototype
	6 Evaluation
	6.1 Methodology
	6.2 ``Normal'' workload parameters in Criteo (Q1)
	6.3 Query errors under normal workload (Q2)
	6.4 Query errors under DoS attack (Q3)
	6.5 Batched algorithm evaluation (Q4)

	7 Related Work
	8 Conclusions
	A API changes for per-site semantic (Gap 1)
	A.1 Data model
	A.2 Query model
	A.3 Sensitivity analyses

	B Global Filter Management (Gap 2)
	B.1 Algorithm
	B.2 Privacy proofs
	B.3 Adaptively generated data
	B.4 DoS resilience proofs

	C Batched Algorithm to Improve Utilization
	C.1 Algorithm
	C.2 DoS resilience under batching

	D Adaptive Cross-report Privacy Loss Optimization
	D.1 Histogram reports definition and properties
	D.2 Algorithm
	D.3 Privacy proof

	E Prototype Screeenshot
	F Discussion regarding per-site DP guarantees
	F.1 Fundamental challenges
	F.2 Guarantees under additional assumption
	F.3 Future work

