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Abstract—Traditional security detection methods struggle to
keep pace with the rapidly evolving landscape of cyber threats
targeting critical infrastructure and sensitive data. These ap-
proaches suffer from three critical limitations: non-security-
oriented system activity data collection that fails to capture
crucial security events, growing security monitoring demands
that lead to continuously expanding monitoring systems, thereby
causing excessive resource consumption, and inadequate de-
tection algorithms that result in the inability to accurately
distinguish between malicious and benign activities, resulting in
high false positive rates.

To address these challenges, we present FEAD , an attack
detection framework that improves detection by focusing on
identifying and supplementing security-critical monitoring items
and deploying them efficiently during data collection, as well as
the locality of potential anomalous entities and their surrounding
neighbors during anomaly analysis. FEAD incorporates three key
innovations: (1) an attack model-driven approach that extracts
security-critical monitoring items from online attack reports,
enabling a more comprehensive monitoring items framework;
(2) an efficient task decomposition mechanism that optimally dis-
tributes monitoring tasks across existing collectors, maximizing
the utilization of available monitoring resources while minimizing
additional monitoring overhead; (3) a locality-aware anomaly
analysis technique that exploits the characteristic of malicious
activities forming dense clusters in provenance graphs during
active attack phases, guiding a vertex-level weight mechanism in
our detection algorithm to better distinguish between anomalous
and benign vertices, thereby improving detection accuracy and
reducing false positives.

Evaluations show FEAD outperforms existing solutions with an
8.23% higher F1-score and 5.4% overhead. Our ablation study
also confirms that FEAD ’s focus-based designs significantly boost
detection performance.

I. INTRODUCTION

Modern computing systems across all scales are increas-
ingly targeted by advanced cyber threats such as APT at-
tacks [1], posing significant security challenges. Traditional
security measures often fail to address these evolving threats,
prompting academia and industry to focus on lightweight
attack detection systems. These systems typically utilize run-
time log auditing and analysis (e.g., syscall logs)[2], [3] to
achieve effective security monitoring and attack detection.
Among these, anomaly-based detection approaches[4] have

emerged as a promising solution by analyzing historical logs
to identify deviations from established benign patterns [3], [5],
[6], thus effectively addressing the challenge of detecting novel
and evolving attack variants. While these approaches show
promise, they face three critical challenges:
❶ Lack of Security-Oriented Efficient Monitoring. Existing
monitoring tools (e.g., auditd [7], [8], [9]) are primarily de-
signed for performance or fault diagnosis rather than security.
They focus on system failures and resource usage, offering
limited visibility into security-relevant activities. Although
efforts like eAudit [10] try to improve auditd by using eBPF
and incorporating capabilities from existing monitors (e.g.,
Trace [11]), they still lack the capability to capture higher-
level security events. Enterprise tools such as auditbeat [12]
provide some enhancements but heavily rely on expert tuning.
The absence of a systematic framework for identifying critical
security monitoring points leads to incomplete coverage and
security blind spots.
❷ High Deployment Costs of Security Monitoring Tasks.
Evolving threats demand frequent updates to monitoring strate-
gies, often requiring new monitoring modules for each new
security monitoring requirement and increasing system com-
plexity. Moreover, no single tool covers all needs, forcing orga-
nizations to deploy multiple systems, resulting in redundancy
and performance degradation.
❸ High False Positive Rates in Anomaly-Based Attack De-
tection. Current detection systems often struggle to accurately
differentiate between legitimate system changes and genuine
security threats, as benign and malicious nodes frequently
exhibit similar behavioral patterns in monitoring data. For
instance, routine updates or maintenance activities that alter
network traffic may closely resemble attack signatures, result-
ing in false alarms. Monitoring blind spots further exacerbate
this issue by limiting visibility and degrading the system’s
ability to distinguish normal variations from actual threats.
This poor discrimination leads to alert fatigue among security
teams and reduces the practical utility of security monitoring
in enterprise environments.

To address these challenges, we present FEAD (Focus-
Enhanced Attack Detection), a framework that improves de-
tection by focusing on two key aspects: identifying and supple-
menting security-critical monitoring items, and then deploying
them efficiently during data collection, as well as analyzing the
locality of potential anomalous entities and their surrounding
neighbors during anomaly detection. This dual focus ensures
targeted, effective attack detection while minimizing system
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overhead. Specifically, For challenge 1, FEAD uses an Attack
Effect Model and large language models to analyze attack
reports, breaking down attack steps and assessing their impact
on systems and software to identify key monitoring items. This
approach ensures comprehensive monitoring by systematically
extracting monitoring requirements from real-world attacks.
For challenge 2, FEAD introduces a novel task decomposition
mechanism that breaks down complex tasks and distributes
them across existing collectors, thereby collaboratively achiev-
ing target monitoring objectives. This maximizes the use of
built-in monitoring capabilities while minimizing new module
deployment, reducing system overhead. For challenge 3,
FEAD exploits attack locality in provenance graphs, where
malicious activities form dense clusters during active phases
and sparse ones across other phases. This insight guides a
vertex-level weighting mechanism in the detection algorithm,
focusing on anomalous vertices and their neighbors. Unlike
previous methods that analyze all vertices indiscriminately,
FEAD ’s approach enhances discrimination between benign
and malicious behaviors, targets high-risk areas, and improves
accuracy while reducing false positives.

Evaluation demonstrates FEAD ’s superior performance,
achieving an average 8.23% higher F1-score compared to
existing solutions, with a low overhead of 5.4%. Our ablation
study further validates the effectiveness of our focus-based
design, showing that the integration of a security-oriented
monitoring framework improves the F1-score by over 12.63%,
while leveraging attack locality patterns achieves a 9.52%
improvement. These results highlight FEAD ’s ability to en-
hance detection accuracy while maintaining system efficiency,
making it a promising solution for real-world attack detection.

We summarize our core contributions as follows:
• Propose an attack detection framework that integrates

security-oriented monitoring and locality-aware anomaly
analysis for enhanced detection accuracy.

• Develop an efficient task decomposition mechanism to
optimize monitoring coverage while minimizing overhead,
achieving comprehensive security monitoring with 5.4%
overhead.

• Evaluate FEAD showing a 8.23% improvement in F1-score
over existing solutions, with ablation studies confirming
significant gains from monitoring enhancements (12.63%)
and locality-based detection (9.52%).

II. BACKGROUND AND RELATED WORK

A. Preliminaries
Attack Effect Model. An Attack Effect Model is de-
fined as an ordered sequence of attack steps T =
[(T1, E1), (T2, E2), ..., (Tn, En)], where each Ti represents
a triple ⟨actori, actioni, targeti⟩ describing who performed
what action on which target, and Ei represents the corre-
sponding system impact (e.g., Program Execution, File Modi-
fication). Each attack step (Ti, Ei) can be mapped to a set of
monitoring items Mi required for detecting the system impact.
The steps are ordered chronologically to reflect the temporal
progression of the attack.

Provenance Graph. In system security monitoring, prove-
nance graphs model system behaviors by transforming audit
logs (e.g., Linux Auditd [7]) into a graph capturing causal
relationships between system entities and activities. A prove-
nance graph is a directed graph G = (V,E), where V
represents system entities (e.g., processes, files, sockets) and
E represents interactions between them. Specifically, V =
{v|v ∈ (Process ∪ File ∪ Socket)}, and E ⊆ V × V × T
captures relationships between entities, where T denotes the
type of entity behavior (e.g., read, write, execute). This struc-
ture enables detailed tracking of system behaviors, aiding in
attack detection, forensic analysis, and attack investigation.

B. Threat Model

Similar to prior research on provenance tracking and threat
detection [13], [14], [15], [16], [17], [18], [19], we consider
the OS kernel and security monitoring components as part
of our trusted computing base (TCB). We assume that the
collected provenance data is reliable and has not been tam-
pered with by attackers. Although attackers may attempt to
subvert the system or compromise the monitoring components,
such subversion activities can be captured in logs before they
are compromised. Our focus is on detecting attacks that ex-
ploit application vulnerabilities or leverage social engineering
techniques to gain unauthorized access to victim systems for
data exfiltration or manipulation, rather than hardware-based
or side-channel attacks.

We assume that the system is initially in a benign state,
with the attack originating from outside the enterprise network.
Attackers typically gain initial access through remote network
exploitation, compromised credentials, or social engineering,
and proceed with multi-stage operations that may include in-
formation gathering, exploitation of vulnerable software, pay-
load deployment, privilege escalation, and lateral movement.
Our approach focuses on identifying these attack patterns
within system behavior data.

C. System Monitoring Tools

We motivate our research with an study of existing system
monitoring tools to identify their capabilities and limitations
for security monitoring applications.

1) Systematic Tool Collection Using Snowball Technique:
System monitoring tools are continuously evolving and scat-
tered across platforms, often lacking unified indexing. To
address this, we developed a snowball-based retrieval method-
ology [20], [21], consisting of two main phases.

This method began with Linux Auditd [7] as the initial
seed due to its prevalence as Linux’s default audit tool. We
constructed a structured query template combining ① scenario-
related terms (e.g., ”Provenance graph”, ”Causal graph”),
② functionality-related terms (e.g., ”Data collection”, ”Log
collection”), and ③ tool names (e.g., ”Auditd” ). We then ex-
ecuted systematic searches across multiple academic databases
(i.e., Google Scholar, IEEE Xplore, and ACM Digital Library)
using this template (e.g., (Provenance graph OR causal graph
OR forensic analysis OR investigation) AND (data collection



TABLE I
SYSTEM MONITORING TOOLS USAGE STATISTICS

Monitoring Tool Usage Instances Count Percentage Platform

Auditd [7] [8], [9], [22], [14], [23], [11], [24]
[25], [26], [27], [17], [28], [29] 13 28.26% Linux

CamFlow [30] [19], [31], [32], [6], [33], [34]
[18], [26], [35], [36], [37] 11 23.91% Linux

ETW [38] [9], [29], [24], [39], [27], [28]
[40], [41], [33] 9 17.39% Windows

SPADE [42] [26], [14], [23], [43], [44], [35] 6 13.04% Linux
Auditbeat [12] [3], [45] 2 4.35% Linux
PASSv2 [46] [47], [48] 2 4.35% Linux

UBSI [11] [11] 1 2.17% Linux
eAudit [10] [10] 1 2.17% Linux
sysdig [49] [50] 1 2.17% Linux
strace [51] [52] 1 2.17% Linux

Total - 47 100% -

OR log collection) AND Auditd), and removed irrelevant
literature to build a normalized database.

Two co-authors with 3–5 years of relevant experience then
extracted monitoring tools from the collected literature. Newly
discovered tools were added to the query template (i.e.,
component ③) and used in subsequent search iterations, thus
expanding our search scope to capture literature referencing
these newly discovered tools. The process terminated when
no new tools appeared in two consecutive rounds or when
the search queue was exhausted. This iterative approach ef-
fectively addressed the fragmentation and rapid evolution of
monitoring tools.

2) Tool Collection Results: Our snowball search technique
yielded comprehensive results as shown in Table I. The statis-
tics indicate that in the Linux ecosystem, Auditd is the most
widely used monitoring tool, appearing in 13 papers (28.26%)
and ranking first. CamFlow follows closely, used in 11 papers
(23.91%). For Windows platforms, ETW (Event Tracing for
Windows) is the predominant tool, used in 9 papers (17.39%).
From our analysis, we classified these monitoring tools into
three main categories:

1) Whole-system Provenance Collection Tools (CamFlow,
SPADE, PASSv2): These focus on system-level data flow
and causality tracking. For example, CamFlow imple-
ments efficient monitoring by integrating Linux Security
Modules (LSM) and NetFilter, while SPADE utilizes
Linux Auditd logs to build provenance graphs supporting
distributed environments. PASSv2 is a layered provenance
architecture based on Linux 2.6 kernel (circa 2009) that
integrates provenance across multiple abstraction layers
through a unified Disclosed Provenance API, demonstrat-
ing early approaches to cross-layer provenance collection
despite being constrained by legacy technology.

2) Audit Tools (Auditd, Sysdig, ETW, Auditbeat, eAudit):
These record system behaviors to support security anal-
ysis and compliance auditing. Auditd is Linux’s default
audit framework, Sysdig uses kernel modules for event
capture, ETW is Windows’ standard audit tool, Auditbeat
extends Auditd with modern features, and eAudit com-
bines Auditd with eBPF technology.

3) Fine-grained Information Collection Tools (UBSI,

TABLE II
SYSTEM CALL AND RELATIONSHIP SCENARIO CLASSIFICATION

Scenario No. Monitoring Event Description Source

File
Operations

1 read Read file content Auditd
2 RL READ Read inode CamFlow
3 write Write file content Auditd
4 RL WRITE Write inode CamFlow
5 open Open file Auditd
6 close Close file Auditd

Directory
Operations

7 creat Create new empty file Auditd
8 unlink Delete file Auditd
9 link Create hard link Auditd
10 linkat Create relative path hard link Auditd
11 unlinkat Delete file in relative directory Auditd
12 rmdir Remove directory Auditd
13 mkdir Create directory Auditd
14 RL INODE CREATE Create inode CamFlow

Process
Operations

15 fork Create new process Auditd
16 clone Create new process (shared ad-

dress space)
Auditd

17 execute Execute new program Auditd
18 RL CLONE MEM Memory copy during cloning CamFlow
19 RL SETUID Set user ID CamFlow
20 RL SETGID Set process group ID CamFlow
21 kill Send signal Auditd

IO
Control

22 RL READ IOCTL IO control read operation CamFlow
23 RL WRITE IOCTL IO control write operation CamFlow
24 pipe Create pipe Auditd
25 fcntl File control operation Auditd

Network
Operations

26 socket Create socket Auditd
27 RL SOCKET CREATE Create socket CamFlow
28 RL SOCKET PAIR

CREATE
Create socket pair CamFlow

29 connect Connect to remote host Auditd
30 RL CONNECT Socket connection operation CamFlow
31 RL BIND Socket binding operation CamFlow
32 RL LISTEN Socket listening operation CamFlow
33 RL ACCEPT Socket accept connection oper-

ation
CamFlow

34 sendto Send data to specified address Auditd
35 recvfrom Receive data from specified ad-

dress
Auditd

36 sendmsg Send message Auditd
37 sendmmsg Send multiple messages Auditd
38 recvmsg Receive message Auditd
39 recvmmsg Receive multiple messages Auditd
40 getpeername Get remote address of con-

nected socket
Auditd

Memory
Operations

41 dup Duplicate file descriptor Auditd
42 dup2 Duplicate file descriptor to

specified descriptor
Auditd

43 RL MMAP Memory mapping mount CamFlow
44 RL MMAP PRIVATE Private memory mapping

mount
CamFlow

45 RL SH READ Shared memory read operation CamFlow
46 RL PROC READ Read process memory CamFlow

Message
Queue

47 mq open Open message queue Auditd
48 RL MSG CREATE Create message CamFlow

System
Loading

49 RL LOAD FILE Load file to kernel CamFlow
50 RL LOAD FIRMWARE Load firmware to kernel CamFlow
51 RL LOAD MODULE Load module to kernel CamFlow
52 RL VERSION Connect entity object version CamFlow

strace): These focus on precise monitoring of specific
system behaviors. UBSI provides unit-level behavior
monitoring through static analysis, while strace records
detailed system call-level interactions between processes
and the operating system.

In practical applications, whole-system provenance collec-
tion and audit tools can directly build provenance graphs,
while fine-grained information collection tools typically sup-
plement the former by providing detailed parameter informa-
tion for key nodes in the provenance graph.

3) Security Monitoring Capability Analysis: To assess the
monitoring capabilities of these tools, we selected two of
the most widely used system monitoring tools and analyzed
their monitoring capabilities. Based on the statistical data in
Table I, Auditd and CamFlow are the most widely adopted
tools for provenance graph construction. These two tools have



complementary monitoring capabilities: Auditd uses system
call tracing mechanisms to monitor basic events such as file
operations, process behaviors, and network communications,
while CamFlow leverages the LSM framework to provide
more granular tracking of entity relationships, covering mem-
ory operations, IO control, and system loading scenarios. We
first categorized their monitoring capabilities into eight ma-
jor dimensions: file operations, directory operations, process
control, IO management, network communications, memory
operations, message queues, and system loading. Table II
shows a detail of the monitoring events covered by these
tools. Then, through our analysis, we identified the monitoring
focus and limitations of each tool. Based on the comprehensive
analysis of the monitoring events presented in Table II, we can
draw the following conclusions:

Requirement Gaps: Original design objectives misaligned
with security monitoring needs. Our analysis reveals that
existing tools demonstrate a significant misalignment with se-
curity monitoring requirements. As evident from Table II, both
Auditd and CamFlow were originally designed for general-
purpose system monitoring rather than security-specific moni-
toring. The table shows that neither tool adequately covers crit-
ical security-relevant operations such as environment variable
manipulations, which are frequently exploited in attacks [53].

Fragmented Monitoring Ecosystem: No unified system
provides comprehensive coverage. As illustrated in Table II,
no single monitoring system comprehensively implements
all necessary monitoring capabilities. For instance, Auditd
demonstrates weak coverage in the System Loading dimension
(items 49-52), while CamFlow excels in this area. Conversely,
CamFlow shows incomplete monitoring for Directory Op-
erations (items 7-14), which Auditd covers extensively. Our
deeper investigation found that security-optimized monitoring
tools like Auditbeat have attempted to address these gaps
by augmenting Auditd with support for system events (user
logins, etc.) and file integrity monitoring [54]. However, these
enhancements are primarily guided by expert experience rather
than systematic methodology, resulting in inevitable blind
spots for common security-relevant operations. For example,
despite its security focus, Auditbeat still cannot monitor envi-
ronment variable manipulations. This fragmentation highlights
the urgent need for a more systematic approach to security
monitoring capability design.

Our analysis of existing monitoring tools reveals critical
limitations that demand immediate attention. The requirement
gaps and fragmented monitoring ecosystem pose significant
challenges for effective security monitoring. If left unad-
dressed, these issues will lead to persistent monitoring blind
spots, resulting in reduced accuracy during attack detection
and analysis. Furthermore, as new monitoring requirements
emerge, organizations are forced to either develop custom
monitoring modules (increasing development costs) or de-
ploy multiple overlapping systems simultaneously (causing
redundant data collection and performance degradation). These
challenges urgently necessitate:
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Fig. 1. The workflow of FEAD.

• A unified monitoring framework that systematically cov-
ers security-relevant operations to eliminate blind spots
and enhance the quality of collected data and resulting
provenance graphs, thereby improving attack detection
accuracy.

• A lightweight deployment solution that consolidates es-
sential monitoring capabilities while minimizing resource
consumption, enabling organizations to adapt to evolv-
ing security requirements without prohibitive operational
overhead.

D. Provenance Graph-based Anomaly Detection

Provenance graphs are widely used for anomaly detection
due to their ability to capture system behaviors and causal
relationships. Early methods, such as StreamSpot [55] and
Unicorn [19], relied on graph kernels for clustering, but
struggled with stealthy threats and subtle structural differences
in rare anomalies. Machine learning-based methods [56], [57],
[58] aim to learn complex patterns from provenance graphs
using only benign data, but often fail to capture critical
structural information, leading to poor detection of subtle or
novel threats. With the rapid development of graph neural
network (GNN) techniques [59], they have become a popular
choice for anomaly detection in provenance graphs [18], [17],
[60]. GNNs can capture complex structural patterns, adapt to
dynamic systems, and scale to large datasets, improving de-
tection accuracy. However, many GNN methods treat vertices
and edges uniformly, making it difficult to distinguish between
benign and malicious behaviors, leading to false positives.
These challenges urgently necessitate:

• A context-aware detection framework that intelligently
differentiates between normal and suspicious behaviors
based on their semantic context and relationships.

III. FEAD: FOCUS-ENHANCED ATTACK DETECTION

As shown in Fig. 1, FEAD addresses the challenges of
non-security-oriented data collection, high deployment costs,
and high false positive rates in attack detection with three
key components: (1) The Security Monitoring Item Ex-
traction Module, which utilizes the Attack-Effect Model to
extract critical security monitoring items from attack reports



TABLE III
INCLUSION AND EXCLUSION CRITERIA

Type Description
Inclusion - Contains technical details on attack steps

- Relevant to target systems, environments, or industry
- Published within the last 5 years

Exclusion - Duplicate attack reports
- Reports with insufficient length (less than 200 words)

by analyzing attack steps and impacts; (2) The Security
Information Collection Module, which employs Adaptive
Security Monitoring to decompose complex tasks, distribute
subtasks among existing collectors, and aggregate data for
comprehensive analysis, minimizing system overhead; and (3)
The Anomaly Detection Module, which applies Locality-
based Anomaly Analysis by leveraging the dense clustering
of malicious activities while remaining sparse across different
attack phases.

A. The Security Monitoring Item Extraction Module

To tackle the lack of security-oriented efficient monitoring,
we propose a systematic approach to identify security-critical
monitoring items from online attack reports. This approach
involves two main steps: Attack Report Collection and Key
Information Extraction.

1) Attack Report Collection: Our attack report collection
followed two main steps: Report Crawling and Report
Filtering.
Report Crawling. During the data acquisition phase, we
crawled attack reports from multiple sources to build a com-
prehensive dataset. Guided by previous studies [61], [62], [63],
we developed web crawlers to gather reports from platforms
such as Snyk [64], Microsoft Security Intelligence Center [65],
and CISA [66], among others (due to space limitations, the
complete list is available on our website [67]). To enhance
coverage, we also included attack cases from the MITRE
ATT&CK knowledge base [68].
Report Filtering. To ensure relevance and quality of collected
reports, we rigorously filtered reports based on predefined
criteria Table III. This process involved collaboration among
four authors (with 2–3 years of attack detection experience)
and two industry experts (with 7–8 years in cybersecurity).
After manual review, the final dataset comprised 260 APT
reports and 7,098 attack cases spanning 268 MITRE ATT&CK
techniques (Ref. [67] for detail).

2) Key Information Extraction: Recent advancements in
Large Language Models (LLMs) have made them highly
effective for information extraction due to their vast knowl-
edge and language understanding [69], [70], [71]. However,
LLMs still face challenges like hallucinations [72], [73],
which affect extraction accuracy. To address this, we use the
Chain-of-Thought (CoT) prompting technique [74], [75], [76].
By designing a reasoning process, we break down complex
extraction tasks into manageable, smaller steps that LLMs
can directly process, thereby reducing hallucinations and im-
proving the transformation of unstructured attack reports into
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(PowerShell)Command Execution
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retrieve additional PowerShell scripts. Around the same period, CISA observed the actors 

attempt to download and execute a malicious file from 109.248.150.13. The activity started 

from IP address 104.155.149.103, which appears to be part of the actors’ C2 infrastructure.

Source:https://www.cisa.gov/news-events/cybersecurity-advisories/aa22-174a
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Fig. 2. The workflow of monitoring items generation.

Attack Effect Model and reason out corresponding security
monitoring items.

In this work, we implement CoT by instructing LLM to
follow our defined steps (in Fig.2) while providing explicit rea-
soning for each step’s output (Ref. [67] for detailed prompt).

Step 1: Attack Steps Extraction We ask LLM to ana-
lyze the syntactic structure of input attack report text (I) to
identify subject-verb-object relationships, forming triples (T
= ⟨ actori, actioni, targeti⟩), where each triple represents
a distinct attack step. As shown in the Fig.2, from “The
threat actors using IP 104.223.34.98 gained initial access to
Victim 2’s production environment”, we form (⟨ threat actors,
Network Request, Victim 2’s production environment⟩).
Step 2: Attack Effect Identification Attack effects represent
the impact of an action on targets, we focus on (⟨ actioni,
targeti⟩) pairs from (T). For each pair, we further ask the
LLM to analyze the context to determine its corresponding at-
tack effect (Ei). For example, (⟨Tool Execution, PowerShell⟩)
triggers (E = Program Execution), indicating a behavioral
effect on the system.

Step 3: Monitoring Items Generation For each (⟨actioni,
targeti, Ei⟩), the LLM finally generates corresponding mon-
itoring item (Mi). As shown, when (E = Program Execution),
the LLM generates (M = Process creation monitoring).

By combining the attack report text (I) with our designed
CoT prompt (Ref. [67] for detail) as input to the LLM,
we guide the LLM to decompose attack descriptions into
structured steps, reason about their system impacts, and derive
corresponding monitoring items.

B. The Security Information Collection Module

In the previous section, we identified security-critical mon-
itoring targets by analyzing attack reports and applying our
attack effect model. However, identifying what to monitor
is only part of the solution—implementing these monitors
remains costly.

To address this, we propose a lightweight collaborative
security monitoring architecture. It systematically decomposes



complex monitoring tasks and intelligently assigns them to ex-
isting monitors. By integrating collected data to meet original
goals, this approach reuses existing capabilities, reduces the
need for new monitoring modules, and therefore minimizes
performance overhead.

The following sections first introduce key Definitions, then
present our task decomposition, integration, and deployment
methodology.

C. Symbolic Definition of Security Monitoring Capabilities

To accomplish our monitoring objectives, we establish a
symbolic definition framework that standardizes the represen-
tation of existing monitoring tools’ capabilities and our moni-
toring goals, enabling automated analysis, task decomposition,
appropriate allocation of subtasks, and result integration.

Through analysis of existing information collection tools,
we found that these tools typically collect data to build
provenance graphs through specialized log parsing algorithms.
Based on this observation, we adopt a symbolic representa-
tion format compatible with both these tools and provenance
graphs, enabling a unified framework for defining monitoring
capabilities. This design ensures compatibility with existing
systems while supporting standardized decomposition and
integration of sub monitoring tasks.

Specifically, based on the Provenance Graph model in
Section II-A, we define the monitoring capability set as C =
{c1, c2, ..., cn}. Each monitoring capability ci is characterized
by a triple ⟨Vc, Oc, Tc⟩:

• Vc represents the set of system entities observable by this
monitoring capability

• Oc represents property descriptions of monitored entities
and their output category sets

• Tc represents the set of system event types observable by
this monitoring capability

For the entity property set Oc in monitoring capability ci,
we define:

Oc = {(a1, t1), (a2, t2), ..., (am, tm)} (1)

where ai represents the property of the monitored entity, and
ti represents that property’s data type. Specifically, property
data types include:

• Basic data types: integers (Z), real numbers (R), boolean
values ({true, false}), strings (Σ∗)

• Composite data types: lists, sets, key-value pairs, etc.
• Time-series data types: representing continuously sam-

pled metric values in form (t, v), where t represents a
timestamp and v represents the sampled value

To achieve our monitoring objectives, we designed logical
operations to decompose complex tasks and integrate results.
We define operators (λ) based on data types to flexibly
combine existing system monitors. These logical operators (λ)
are as follows:

• Logical operations: AND (∧), OR (∨), NOT (¬)
• Set operations: Element contains (∈), Subset relationship

(⊆), Union operation (∪), Intersection operation (∩)
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Fig. 3. The workflow of Lightweight Collaborative Security Monitoring
Framework.

• String operations: String matching (match), String con-
catenation (concat), String splitting (split), Substring con-
tains (contains)

• Numeric operations: Greater than (>), Less than (<),
Equal to (=), Sum operation (sum), Average operation
(avg)

These operators ensures that after breaking tasks into sub-
tasks for existing monitors to collect information and then
integrating this data, the resulting monitoring entities and their
properties align with our original monitoring goals.

D. Lightweight Collaborative Security Monitoring Framework

Based on the definitions established earlier, we propose a
systematic task decomposition and data integration methodol-
ogy as illustrated in Figure 3. Our lightweight collaborative
security monitoring framework transforms complex monitor-
ing requirements into manageable subtasks through recursive
decomposition. The workflow begins with Task Decomposi-
tion where security monitoring tasks are broken down and
evaluated against existing capabilities. If existing monitors can
solve the subtasks, a Cost Rank function evaluates implemen-
tation solutions, selecting only the lowest-cost option. When
existing capabilities cannot fulfill monitoring requirements
after multiple attempts, New Monitor Recommendation suggest
appropriate new monitoring components. Once optimal solu-
tions are identified, they proceed to Task Assignment, where
decomposed subtasks are allocated to corresponding existing
system monitors. In the Data Collection and Processing
phase, these monitors gather data to fulfill their assigned
subtasks. Finally, during Task Merging, the collected data
is combined according to the original decomposition logic,
effectively implementing the complete monitoring task while



Algorithm 1 Task Decomposition DecomposeTask
Input: Complex monitoring task T , Existing collector capabilities

C
Output: Subtask set S, New collector requirements N , Integration

logic P
1: function DECOMPOSETASK(T,C)
2: S ← ∅, N ← ∅, P ← ∅
3: (Tsub, Pcompose)← GenerateSubtasks(T , C) ▷ Subtasks

and integration logic
4: for each ti in Tsub do
5: if µ(ti, C) = 1 then ▷ Mappable to existing collectors
6: S ← S ∪ {ti}
7: P ← P∪ GenerateIntegrationLogic(ti, Pcompose, C)
8: else
9: (S′, N ′, P ′)← DecomposeTask(ti, C)

10: if S′ ̸= ∅ then ▷ If subtask set non-empty
11: S ← S ∪ S′

12: N ← N ∪N ′

13: P ← P ∪ P ′

14: else ▷ Otherwise requires new collector
15: N ← N ∪ {ti} ▷ Requires new collector
16: P ← P∪ GenerateIntegrationLogic(ti,Pcompose)
17: end if
18: end if
19: end for
20: return (S,N, P )
21: end function

minimizing resource utilization. This section elaborates the
core mechanisms of this methodology, encompassing Task
Decomposition and Deployment.

1) Task Decomposition: This phase establishes standard-
ized constraints for decomposable tasks and introduces an
algorithm for systematically decomposing complex monitoring
tasks into manageable subtasks with integration logic. This
integration logic enables subtasks to combine their monitoring
outputs, reconstructing results for the original complex task.

Specifically, given a monitoring task T , we represent it
symbolically as a triple ⟨VT , OT , TT ⟩, where:

• VT represents target system entities requiring observation
by this monitoring task

• OT represents property descriptions of target entities and
their output types, OT = (aT , tT )

• TT represents system events requiring observation by this
monitoring task

Based on this definition, the monitoring task decomposition
problem can be formalized as: given a monitoring task T and
existing monitoring capabilities set C = {c1, c2, ..., cn} in the
system, our objective is to identify a monitoring capabilities
subset C ′ ⊆ C and corresponding integration operations set
λ, such that the combination satisfies task T requirements.

Based on these constraints, we propose Algorithm 1, which
processes complex monitoring task T through recursive de-
composition and integration. Initially, GenerateSubtasks(T , C)
(line 3) decomposes T into subtasks set Tsub and integration
logic Pcompose.

Specifically, as Algorithm 2 GenerateSubtasks demon-
strates, this algorithm describes an adaptive monitoring task
decomposition and integration process. Algorithm 2 first

Algorithm 2 Generate Subtasks
Input: Monitoring task T , Existing collector set C
Output: Subtask set Tsub, Integration logic Pcompose

1: function GENERATESUBTASKS(T,C)
2: Tsub ← ∅, Pcompose ← ∅
3: for each collector cj ∈ C do
4: if T.VT ⊆ cj .Vc ∧ T.OT ⊆ cj .Oc ∧ T.TT ⊆ cj .Tc then

▷ Target entities covered by existing monitors
5: Tsub ← Tsub ∪ {T}
6: Pcompose ← Pcompose ∪ Tsub

7: end if
8: end for
9: if Tsub is empty then ▷ If no directly satisfying collector

10: prompts← Create LLM Prompt
11: for each cj ∈ C do
12: prompts← prompts+ {cj}

▷ Add existing collector capability descriptions
13: end for
14: prompts ← prompts + ”Task requirements: target

entities VT , attribute output type OT , event type TT , please
generate integration logic that can combine existing monitoring
capabilities to satisfy these requirements.”

▷ Utilize LLM for task decomposition
15: P ′

I , C
′
I ← LLM-generated integration logic, integrated

monitoring capabilities
16: if C′

I satisfies T ’s target entities VT , attribute output type
OT and system events TT then

▷ Determine if generated integration logic satisfies
monitoring requirements

17: Add subtasks involved in C′
I to Tsub and generate

integration logic
18: Pcompose ← Pcompose ∪ P ′

I

19: else
20: Request further optimization of integration logic (at-

tempt 3 times)
21: end if
22: end if
23: return Tsub, Pcompose

24: end function

traverses existing collector set C in lines 3-8, examining
whether a single collector can directly satisfy monitoring
task T requirements, including target entity (VT ), attribute
output type (OT ), and event type (TT ) coverage. When no
directly satisfying collector is found, Algorithm 2 introduces
a large language model for task decomposition in lines 9-23,
constructing prompts containing existing collector capability
descriptions to generate integration logic P ′

I and corresponding
monitoring capabilities C ′

I . The algorithm verifies generated
integration scheme feasibility; if satisfying original monitoring
requirements, relevant subtasks are added to Tsub and integra-
tion logic Pcompose is updated, otherwise up to three optimiza-
tion iterations are performed. Finally, the algorithm outputs
optimized subtask set Tsub and corresponding integration logic
Pcompose, achieving automated monitoring task decomposition
and dynamic integration.

Subsequently, Algorithm 1 lines 4-19 evaluates each sub-
task using matching function µ(ti, C), determining whether a
monitoring task can be fulfilled by existing collectors:



Algorithm 3 Generate Integration Logic
Input: Subtask ti, Existing integration logic Pcompose, Optional

parameter existing collector capabilities C (default: None)
Output: Integration logic P

1: function GENERATE INTEGRATION LOGIC(ti, Pcompose, C =
None)

2: P ← ∅
3: if C ̸= None then
4: for each basic information collector ci ∈ C do
5: if collector ci corresponding to subtask ti found then

Update Pcompose, appending corresponding collector ci to ti
forming P

6: end if
7: end for
8: else ▷ No existing basic information collectors available,

must construct new ones
9: Pnew ← CreateNewCollector(ti) ▷ Manually construct

new monitor
10: Update Pcompose, appending newly constructed Pnew to

ti forming P
11: return P
12: end if
13: end function

µ(ti, C) =


1 if ∃cj ∈ C : ti.VT ⊆ cj .Vc

∧ ti.OT ⊆ cj .Oc ∧ ti.TT ⊆ cj .Tc

0 Otherwise
(2)

Here, mappable subtasks (µ(ti, C) = 1, Algorithm 1 lines
5-7) are added to S with corresponding integration logic via
GenerateIntegrationLogic (Algorithm 1 line 7), which derives
integration operations λ required for combining their outputs.
The obtained integration logic is recorded in P . Specifically,
as Algorithm 3 lines 3-8 illustrate, the algorithm traverses
existing basic information collectors ci ∈ C, identifying col-
lectors matching subtask ti, and integrates them into existing
integration logic Pcompose to form final integration logic P .

For unmappable subtasks (Algorithm 1 lines 8-18), we
attempt further decomposition using the previously described
method. If further decomposition is possible (line 10), result-
ing subtasks are recursively processed, with integration logic
incorporated into P (Algorithm 1 lines 11-13).

If further decomposition is impossible, the task is marked
as requiring new collector capabilities (Algorithm 1 line 15,
equivalent to Algorithm 3 lines 9-12), and its integration logic
is added to P (line 16). This process continues until all
subtasks are either mapped to existing collectors or identified
as new capability requirements in N .
Cost Rank To formalize our approach to cost optimiza-
tion within the security monitoring framework, we introduce
a comprehensive cost function that quantifies the tradeoffs
involved in monitoring task decomposition. This function
serves as a critical component in our optimization process,
guiding the selection of implementation strategies that mini-
mize resource utilization while maintaining effective security
coverage.

The cost function C(T ) for a monitoring task T decom-
posed into subtasks {t1, t2, ..., tn} is formulated as:

C(T ) =

n∑
i=1

(
Ddeploy(ti) +Ddev(ti)

)
+ Ccomplex(T ) (3)

Where Ddeploy denotes deployment costs, Ddev denotes de-
velopment costs, and Ccomplex captures integration complexity.

For deployment costs, we differentiate between existing and
new monitoring components:

Ddeploy(ti) =

{
α · Poverhead(ti) if ti maps to existing monitor
βimp · Poverhead(ti, imp) if new monitor required

(4)
Where α is a weighting factor for existing monitors,

Poverhead quantifies performance impact, and βimp represents
implementation-specific weights that vary according to imple-
mentation approach (hardware, kernel, or user-space). Notably,
the relationship βhw < βkernel < βuser reflects our observation
that hardware implementations typically introduce less runtime
overhead than kernel-level implementations, which in turn
impact performance less than user-space implementations.

Development costs are structured to minimize resource
usage by prioritizing existing capabilities: zero cost for reusing
existing monitors, with increasing costs for user-space, kernel-
level, and hardware implementations respectively (i.e., 0 <
γuser < γkernel < γhw).

With weighting factors satisfying γhw > γkernel > γuser,
reflecting the relative development effort associated with each
implementation approach. This formulation encourages the
reuse of existing monitoring capabilities when possible, as
these components incur zero additional development cost.

Integration complexity is modeled using a logarithmic func-
tion to reflect the sub-linear growth in complexity as the
number of components increases, i.e., Ccomplex(T ) = n, Where
n represents the number of subtasks in the decomposition.

After generating potential implementation solutions through
task decomposition, we evaluate each solution using the cost
function defined above. Let S = {S1, S2, ..., Sm} represent
the set of candidate solutions, where each solution Sj consists
of a specific decomposition of the original monitoring task.
The cost evaluation function assigns a numerical cost score to
each solution, i.e., Score(Sj) = C(Sj)

We then rank all candidate solutions by their cost scores in
ascending order. The solution with the minimum cost score is
selected as the optimal implementation strategy. This process
ensures that our monitoring implementation balances compre-
hensive security coverage with practical resource constraints.
By systematically evaluating and comparing different imple-
mentation strategies, we achieve optimal resource utilization
while maintaining effective security monitoring capabilities.

2) Deployment: After systematically decomposing mon-
itoring tasks and optimizing their implementation strategy
through our cost-aware approach, we proceed to the deploy-
ment phase. This phase encompasses three key stages: (1) Task
Assignment to appropriate collectors, (2) Data Collection
and Processing according to task specifications, and (3)
integration of collected data through Task Merging.



Task Assignment. Based on µ(ti, C), subtasks ti ∈ S are
assigned to existing collectors C or marked as new collector
requirements N . Subtasks with µ(ti, C) = 1 are mapped to
compatible collectors for direct information collection, while
subtasks with µ(ti, C) = 0 are added to N , and corresponding
custom collectors are implemented through expert intervention
to fulfill monitoring requirements.

Data Collection and Processing. Collectors execute tasks
based on ti, producing data outputs Ot.

Task Merging. Using integration logic P from Task Decom-
position, collected outputs {Ot} are combined to reconstruct
original task result OT . Integration operations λ ∈ P ensure
consistency with T ’s output requirements.

Through this systematic approach, our methodology maxi-
mizes utilization of existing collectors, reducing requirements
for new modules and deployments, thereby optimizing re-
source efficiency.

E. Monitor Construction and Deployment Case Study

Consider a Log4Shell zero-to-root attack scenario (Fig-
ure 4), where attackers exploit the Log4Shell vulnerability
for initial access and then manipulate environment variables
(EnvVar) for privilege escalation. A critical monitoring re-
quirement is tracking environment variable modifications.
Traditional security monitoring relies on system call events,
but this approach has major limitations: environment variable
operations typically execute through shell built-in functions
that don’t trigger system calls. This creates monitoring blind
spots since traditional system call tracking cannot detect
these operations. As environment variable manipulation is
often critical in privilege escalation attacks, these blind spots
significantly impact system security awareness capabilities.

Therefore, based on the real-world attack scenario analysis,
we must enhance the existing security monitoring framework
to address these critical requirements. Using Algorithm 1’s
task decomposition methodology, we decompose environment
variable modification monitoring into fundamental imple-
mentable subtasks. Specifically, we decompose it into two ba-
sic subtasks Tsub: command history monitoring (t1) that tracks
command line activities with output type Ot1 = {e1, ..., en},
where each ei contains command string, process ID and times-
tamp; and environment variable list monitoring (t2) that tracks
the system’s environment variable names, with output type
Ot2 = {v1, ..., vm}, where each vi represents an environment
variable name.

This task decomposition implements two key monitoring
components: t1 is responsible for command line history mon-
itoring, implemented through eBPF technology. Specifically,
we utilize eBPF’s dynamic tracing capabilities to perform
probe instrumentation at shell program key functions (such
as readline, execute command, etc.), capturing user input
command sequences in real-time. t2 focuses on environment
variable monitoring, where we developed an independent
collector program that periodically obtains and records system
environment variable snapshots at predetermined intervals.
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Fig. 4. SMART method Log4Shell Zero-to-Root Attack example.

The integration logic Pcompose implements data association
analysis as follows: first through operation λname(Ot1, Ot2) =
{cmd ∈ Ot1|∃var ∈ Ot2 : var appears in cmd.cmd str}, it
performs name matching between command strings and envi-
ronment variable names, then analyzes matched commands to
identify current environment variable operations.

F. The Anomaly Detection Module

Building upon our observations of attack locality, we in-
troduce a weighted mechanism with attack locality aware-
ness to enhance threat detection effectiveness. This mecha-
nism leverages endpoint anomaly information embedded in
the provenance graph mentioned earlier and guides weight
allocation through anomaly scoring, thereby improving the
identification and response to potential threats. The following
sections detail our approach through three stages: provenance
graph node embedding, graph neural network design, and data
post-processing.

Provenance Graph Node Embedding. Given a provenance
graph G = (V,E) where V = {v|v ∈ (Process ∪ File ∪
Socket)} and E ⊆ V × V × T , each vertex v ∈ V is
characterized by a feature vector that encodes its entity-
behavior interaction patterns:

hv = [fin(v) ∥ fout(v) ∥ S(v)] (5)

where fin(v) and fout(v) represent the distributions of
incoming and outgoing edge types (i.e., behavior types) re-
spectively, and S(v) is the anomaly score of node v as
described in Section II-A.

fin(v)[t] = |(u, v, type) ∈ E|type = t, t ∈ T | (6)

fout(v)[t] = |(v, u, type) ∈ E|type = t, t ∈ T | (7)

Specifically, fin(v)[t] (Equation 6) counts the number of
edges of type t that are directed toward node v. This captures
the frequency of specific types of behaviors performed by
other nodes on v. Similarly, fout(v)[t] (Equation 7) counts how
many edges of type t originate from node v. This captures the
frequency of specific types of behaviors that node v performs
on other nodes.

In essence, these formulas compute the frequency of each
behavior type associated with node v, categorized as incoming



(behaviors from other nodes toward v) and outgoing (behaviors
from v toward other nodes). The resulting feature vector
encodes the behavioral patterns of nodes in the provenance
graph, aiding in the identification of anomalous or potentially
malicious activities.

Furthermore, the inclusion of the anomaly score S(v)
enhances the discriminative capability of the feature repre-
sentation, effectively guiding branch weight allocation during
the global provenance analysis process, thereby improving the
overall accuracy and reliability of attack detection.
Graph Neural Network Design. In this paper, we use a two-
layer Graph Attention Network (GAT) [77] to learn vertex
features while capturing vertex-edge (i.e., entity-behavior)
patterns. During the learning process, the feature update for
vertex i is computed by:

hi =
∑

j∈N (i)

αijW2ELU

 ∑
k∈N (j)

αjkW1hk

 (8)

Here, W1 and W2 are the weight matrices for the first and
second layers. The attention coefficients αij (αjk) determine
the importance of neighbor j’s (k’s) features to vertex i
(j). Exponential Linear Unit (ELU) serves as the inter-layer
activation function, which enhances gradient flow, improves
expressive capability, and provides non-linear transformations
across negative value ranges, thereby improving model perfor-
mance.

For anomaly detection, we first train our GAT on benign
provenance graphs. By adjusting the vertex weights based on
vertex-edge (i.e., entity-behavior) patterns in benign graphs,
we obtain a benign GAT entity-behavior model. In the predic-
tion phase, we apply a multi-class classification approach to
the output of the GAT layer. Specifically, after feature aggre-
gation, we apply the softmax function to the vertex feature
hv to produce class probabilities, i.e., zv = softmax(hv).
Subsequently, we employ the argmax function to obtain pre-
diction results from the softmax output. Specifically, we select
the class with the highest probability as the model’s final
predicted class, i.e., ŷv = argmaxc z

c
v , where zcv represents

the probability that vertex v belongs to class c.
Data Post-processing. We define is anomalous(v) to check
vertex v. If its predicted entity type differs from its actual type,
we consider it anomalous, having deviated from our trained be-
nign entity-behavior model. When anomalies are detected, we
analyze their neighbors, where attention weights accumulate
among connected anomalous vertices while becoming diluted
among benign ones.

To further reduce false positives, for each predicted anoma-
lous vertex v, we analyze its k-hop neighborhood Nk(v)
(where k = 2 in our implementation) and compute a benign
density score:

Benign Density(v) =
|{u ∈ Nk(v) : ¬is anomalous(u)}|

|Nk(v)|
(9)

If Benign Density(v) exceeds a threshold (80% in our
implementation), indicating that the majority of its neighboring

TABLE IV
EVALUATION DATASETS OVERVIEW

Dataset Scenario Benign Vertices Anomalous Vertices Edges

DARPA TC

THEIA 3,505,326 25,362 102,929,710
Trace 2,416,007 67,383 6,978,024

CADETS 706,966 12,852 8,663,569
Fivedirections 569,848 425 9,852,465

CSE-CIC-IDS2018 - 212,628 89,228 501,856

vertices are benign, we consider v to lack attack locality and
correct it to benign, further reducing false positives.

IV. EVALUATION.

We evaluate FEAD by answering the following research
questions:
• RQ1: (Monitoring Coverage) What security-critical mon-
itoring items from real-world attacks are captured, and do
existing tools miss any of these?
• RQ2: (Effectiveness) How effective is FEAD in detecting
attack events and anomalies in resource-constrained environ-
ments?
• RQ3: (Ablation Study) How do the components and design
choices of FEAD impact its effectiveness in attack detection
and anomaly identification?
• RQ4: (Deployment Costs) What are FEAD’s development
costs, and is it feasible for real-world deployment?

Evaluation Datasets We evaluate our approach using the
DARPA TC [78] and CSE-CIC-IDS2018 [79] datasets, as
in previous work [18], [17], [13], [80]. The DARPA TC
dataset consists of four scenarios—THEIA, Trace, CADETS,
and Fivedirections—covering various attack steps and envi-
ronments. The CSE-CIC-IDS2018 dataset, from the Canadian
Institute for Cybersecurity (CIC), includes data on various
attacks, such as Brute Force, Heartbleed, etc. Table IV sum-
marizes these datasets.

Since existing datasets do not incorporate our constructed
monitoring system, we create custom datasets to evaluate
FEAD ’s monitoring designs and anomaly detection capabil-
ities. We collaborate with two industry experts to reproduce
common exploits, such as the Log4j vulnerability (CVE-2021-
44228)[81], [82], [83] and the OpenSMTPD vulnerability
(CVE-2020-7247)[84], [85], [86], along with the associated
attack activities based on real-world application scenarios.
The datasets include: (1) Log4j+ENV Attack Dataset: This
dataset simulates attacks related to the Log4j vulnerability,
covering scenarios like initial access to the target, privilege
escalation via environment variables, and the establishment of
reverse shell connections. (2) OpenSMTPD+Malicious Exe-
cution: This dataset demonstrates an attack chain exploiting
the OpenSMTPD vulnerability, including unauthorized com-
mand execution, downloading malicious scripts, and executing
additional malware.

Deployment Environment. (1) For attack report analysis
and security monitoring item extraction, we use Microsoft’s
Azure OpenAI API [87] with the GPT-3.5-16K model and
set the temperature parameter to 0.4 to balance creativity and



Registry Operations Host System Metrics User Activities File Operations Network Traffic Process Monitoring System Security

Registry Key Abnormal

Access Records

Registry Key Deletion 

Records

Registry Key Permission 

Change Records

Registry Key Value 

Change Records

Registry Key Read 

Records

Registry Key Creation 

Records

Host Abnormal Restart 

Records

Host System Resource 

Usage Monitoring

Host System Configuration 

Backup Records

Host System Crash 

Records

Host Software Installation/

Uninstallation Records

Host Boot/Shutdown 

Time

Host Kernel Module Loading 

Records

Host Memory/CPU 

Usage

Host Service Status 

Change Records

Host Firewall Rules 

Change Records

Host Scheduled Task 

Execution Records

Host Security Settings 

Change Records

User Command 

Execution

User Login Records and 

Statistics

User Account 

Management

User Authentication 

Records

User Privilege 

Escalation Records

User Session Monitoring

User Operation History

User Created Processes

File Rename and Move 

Records

File Modification 

Time

File Deletion 

Records

File Signature 

Verification

File Path and 

Name

File Encryption 

Status

File Hash Value 

Changes

File Access Time and 

Permissions

File ACL Changes

File Size 

Changes

File Creation 

Time

Network Traffic Metrics 

(Bytes/Packets)

DNS Resolution 

Records

Protocol Type

Source/Destination IP

Connection Status and 

Duration

Port Numbers

Encrypted Traffic 

Records

Process Core Metrics 

(Name, PID, Tree)

Process DLL and Path 

Records

Process Execution 

Details

Process Resource 

Usage

Process File 

Operations

Process Network 

Activity

Process Security 

(Signature, Permissions)

Process Environment 

Variables

Process Performance 

Metrics

Script File Execution

Drive Mount Operations

Sensitive Location Access 

(MBR, Boot Sector, etc.)

Fig. 5. Security-focused monitoring items from real-world attacks.

TABLE V
CUSTOM DATASET INFORMATION

Scenario Benign Vertices Anomalous Vertices Edges
Log4j+ENV 812 37 1,975

OpenSMTPD+Malicious Execution 3,384 34 7,989

accuracy. (2) For our GAT implementation, we use a two-
layer GAT architecture with 8 attention heads and a hidden
layer of 128 units. We set the batch size to 500, learning rate
to 0.01, weight decay to 5e-4, and a dropout rate of 0.5 to
prevent overfitting. (3) For FEAD deployment and anomaly
detection experiments, we use Debian 10.8 (Linux 5.10) with
an Intel(R) Core(TM) i5-12500 processor and 48GB RAM,
hosting all information collection tools and attack detection
systems. (4) For our cost function implementation, we
determined parameters through expert evaluation. Four co-
authors with 2-3 years of attack detection research experience,
plus two industry experts with 7-8 years of cybersecurity
experience, collaboratively established parameter values using
majority voting to resolve disagreements. We set α = 0.2 for
existing monitor weights, reflecting minimal overhead when
reusing components. For new implementations, we assigned
βuser = 0.7, βkernel = 0.5, and βhw = 0.3, capturing our ob-
servation that user-space implementations typically introduce
higher runtime overhead than kernel-space, while hardware-
accelerated monitors showed the lowest impact. Development
costs were parameterized as γuser = 10, γkernel = 25,
and γhw = 50, representing relative implementation effort in
person-days based on previous projects, with hardware im-
plementations requiring more specialized expertise and time.
This methodology ensured our cost function balanced theoret-
ical soundness with practical considerations, producing task
decompositions that maximized existing monitor utilization
while minimizing development overhead.

A. RQ1: Monitor Items and Monitoring Coverage Evaluation

Fig. 5 presents the 85 security-relevant monitoring items
our methodology has extracted from real-world attack reports
and ATT&CK cases. While traditional monitoring tools pri-
marily focus on basic system elements (process PIDs, names,
arguments, file paths/names, and network IPs and ports). In
contrast, our approach systematically broadens the monitoring
scope. Beyond these fundamental elements, our framework
incorporates detailed monitoring of system security configura-
tions (e.g., firewall rule changes, security setting modifications,
and service status updates), user authentication patterns (e.g.,
login records, privilege escalation events, and session track-
ing), process behaviors (e.g., DLL loading, resource usage, and
network activity), and file integrity metrics (e.g., hash values,
encryption status, and changes to access control lists), which
are frequently neglected by conventional monitoring tools.

As shown in Table VII, while Auditd and Camflow are
widely used to generate system logs for provenance graphs,
they were not originally designed for security, resulting in low
coverage—49.40% and 40.00% respectively—for the monitor-
ing requirements derived from real-world attacks. Auditbeat,
Elastic’s security-enhanced version of Auditd, demonstrates
how expert knowledge can close these gaps, achieving 75.30%
coverage. More recently, eBPF has gained traction for its low
overhead and real-time capabilities in Linux environments.
We evaluated eAudit, an academic extension of Auditd using
eBPF, which improved coverage to 56.47%, though with
room for further improvement. Focusing on Linux (exclud-
ing Windows-specific tools like ETW), our approach applies
the methodology from Section III-B (with case studies in
Section III-E). By decomposing complex monitoring tasks,
leveraging existing monitors, and integrating collected data,
we extended coverage to 83.50%. We further validated the
effectiveness and practicality of our monitoring framework



TABLE VI
COMPARISON OF DETECTION EFFECTIVENESS

Dataset Our Approach ThreaTrace
Precision Recall FPR F1-Score Precision Recall FPR F1-Score

Cadets 97.92% 99.88% 0.08% 98.89% 93.84% 99.96% 0.24% 96.81%
Fivedirections 72.53% 95.06% 0.04% 82.28% 75.21% 84.94% 0.032% 79.78%
Theia 99.81% 99.91% 0.02% 99.86% 95.49% 99.90% 0.37% 97.65%
Trace 98.24% 99.996% 0.02% 99.11% 81.59% 99.99% 1.33% 89.86%
CSE-CIC 98.99% 93.55% 0.04% 96.19% 92.58% 95.12% 7.58% 93.44%
Log4j+ENV 99.46% 100% 0.02% 99.73% 76.09% 99.99% 1.36% 86.42%
OpenSMTPD 94.97% 100% 0.05% 97.42% 77.50% 91.18% 0.27% 83.78%
Average 94.41% 98.91% 0.03% 96.76% 84.61% 95.87% 1.57% 88.53%

TABLE VII
COVERAGE ANALYSIS OF DIFFERENT MONITORING TOOLS

Metrics Auditd Auditbeat eAudit Camflow Our Method
Coverage Quantity 42 64 48 34 71
Coverage Rate (%) 49.40% 75.30% 56.47% 40.00% 83.50%

through ablation experiments in RQ3.

B. RQ2: Effectiveness of FEAD

To evaluate the effectiveness of our proposed approach, we
conducted comprehensive experiments on multiple datasets
and compared our method against ThreaTrace [18], a state-
of-the-art GraphSAGE-based detection method for provenance
graph anomaly detection that has received significant citations
and provides complete open-source implementation.

Table VI shows that our approach demonstrates superior
detection performance (average 8.23% higher F1-score) com-
pared to ThreaTrace. A detailed analysis of performance across
individual datasets reveals the following improvements:
DARPA Dataset Performance Analysis: Our method demon-
strates remarkable consistency across the four DARPA
datasets, achieving notable improvements on the Theia dataset
with up to 9.25% higher F1-scores and up to 1.31% lower false
positive rates (FPR). This translates to a 16.65% precision
increase, highlighting our locality-aware anomaly detection
approach’s effectiveness in established complex system envi-
ronments. Similarly impressive results on the Trace dataset
show that our method achieved an outstanding 99.11% F1-
score compared to ThreaTrace’s 89.86%, primarily due to
our substantially higher precision (98.24% versus 81.59%)
while maintaining comparable recall. These improvements
demonstrate how our attack locality-based vertex weighting
mechanism effectively distinguishes between benign and ma-
licious activities in diverse system behaviors.
CSE-CIC Dataset Performance Analysis: On this dataset,
our method achieves a 96.19% F1-score, outperforming
ThreaTrace’s 93.44%. Most remarkably, our approach dras-
tically reduces the FPR to merely 0.04% compared to
ThreaTrace’s 7.58% - a 189-fold improvement that would
significantly reduce the number of false alarms security ana-
lysts must investigate. This substantial performance gap further
validates that our locality-aware anomaly detection mechanism
effectively leverages the clustering characteristics of malicious

activities, providing more precise differentiation between nor-
mal network traffic and genuine attacks.
Custom Attack Dataset Performance Analysis: To validate
our security monitoring framework’s effectiveness, we col-
lected data from real-world attacks using our proposed moni-
toring system. Here, our approach shows remarkable improve-
ments, with the Log4j+ENV dataset showing a 13.31% higher
F1-score compared to ThreaTrace. Our approach achieves a
near-perfect 99.73% F1-score versus ThreaTrace’s 86.42%,
demonstrating exceptional detection capability for this sophis-
ticated attack vector. For the OpenSMTPD dataset, we observe
similarly impressive results, reaching 97.42% F1-score while
maintaining a remarkably low 0.05% FPR. These results on
modern attack scenarios clearly show how our combined
approach - using both security-oriented monitoring framework
and locality-aware analysis - successfully captures important
attack signatures while correctly distinguishing benign nodes
from the provenance graph.

These results confirm that our approach effectively com-
bines enhanced security monitoring with locality-aware
anomaly detection to significantly improve detection accuracy
while reducing false positives across diverse environments.

C. RQ3: Ablation Study of FEAD

To evaluate the effectiveness of our key design components,
we conducted two ablation experiments: (1) whether utilizing
our security-oriented monitoring items framework en-
hances detection capabilities - testing FEAD’s detection per-
formance on our reproduced Log4j and OpenSMTPD vulnera-
bility exploitation scenarios, with and without our monitoring
items for data/log collection, and (2) whether considering
attack locality improves detection performance - evaluating
FEAD’s detection effectiveness on the widely-used DARPA
datasets with and without attack locality consideration.
Monitoring Framework Impact Analysis. As shown in
Table VIII, our monitoring items framework significantly
improves detection capability, achieving an average F1-score
of 98.58% compared to 85.95% without it, showing a 12.63%
improvement. The FPR drops by 0.91% with our framework,
corresponding to a 20.93% precision increase. Examining the
individual datasets reveals that the most dramatic improvement
occurs on the Log4j+ENV scenario, where precision increases
from 74.00% to 99.46% (a 25.46% gain) while maintaining
perfect recall. Similarly, for OpenSMTPD, precision increases



TABLE VIII
ABLATION STUDY: MONITORING FRAMEWORK AND ATTACK LOCALITY

Data Source With Our Monitoring Framework Without Our Monitoring Framework
Precision Recall FPR F1-Score Precision Recall FPR F1-Score

opensmtpd 94.97% 100% 0.05% 97.42% 78.57% 97.06% 0.27% 86.84%
log4jEnv 99.46% 100% 0.02% 99.73% 74.00% 100% 1.6% 85.06%
Average 97.22% 100% 0.035% 98.58% 76.29% 98.53% 0.94% 85.95%

Scenario With Attack Locality Without Attack Locality
Precision Recall FPR F1-Score Precision Recall FPR F1-Score

Cadets 97.92% 99.88% 0.08% 98.89% 84.14% 99.89% 0.70% 91.34%
Fivedirections 72.53% 95.06% 0.04% 82.28% 44.30% 95.06% 0.14% 60.43%

Theia 99.81% 99.91% 0.02% 99.86% 92.11% 99.91% 0.68% 95.85%
Trace 98.24% 99.996% 0.02% 99.11% 89.47% 99.995% 0.11% 94.44%

Average 92.13% 98.71% 0.04% 95.04% 77.51% 98.71% 0.41% 85.52%

TABLE IX
DEPLOYMENT COST ANALYSIS

Metrics Baseline FEAD (Cost) Non-FEAD (Cost)
SPEC2006 (Execution time) 2,724.6s 2,871.85s (5.40%) 3043.65s (11.71%)
STREAM (Throughput) 19,036.75 MB/s 18,988.28 MB/s (0.26%) 18860.30 MB/s (0.94%)
Application (Execution time) 4,498ms 4,514ms (0.36%) 5,814ms (29.26%)
Lines of Code - 59,203 86,257

from 78.57% to 94.97% (a 16.4% improvement). These results
validate that our systematically extracted monitoring items
from real-world attacks are crucial for accurate attack de-
tection, providing visibility into attack behaviors that would
otherwise be missed.
Attack Locality Impact Analysis. FEAD achieves an aver-
age F1-score of 95.04% when considering locality patterns,
versus 85.52% without them. This demonstrates locality’s
effectiveness in improving detection precision by 9.52% while
maintaining a significantly lower false positive rate (0.04% vs
0.41%). The impact is most pronounced on the Fivedirections
dataset, where F1-score increases from 60.43% to 82.28% (a
21.85% improvement), primarily through enhanced precision
(44.30% to 72.53%). Even on datasets where our approach
already performs well, such as Theia (F1-score improvement
from 95.85% to 99.86%), incorporating locality patterns fur-
ther reduces false positives by 0.66%. This consistent pattern
across all datasets demonstrates that attack locality is a fun-
damental characteristic that effectively distinguishes genuine
attacks from isolated anomalies.

These results confirm that both our security-oriented mon-
itoring framework and attack locality consideration substan-
tially enhance detection effectiveness while minimizing false
alarms. This framework ensures comprehensive visibility into
security-relevant system activities, while the locality-based
analysis differentiates between benign anomalies and actual
attack patterns, creating a multiplicative rather than merely
additive improvement in overall detection capabilities.

D. RQ4: Deployment Cost Analysis

To evaluate the deployment costs of our approach, we mea-
sured both performance overhead and development complex-
ity. For performance metrics, we assessed CPU performance
using the widely-recognized SPEC2006 benchmark [88], [89],
memory throughput using STREAM benchmark [90], [91],

and application runtime overhead through instrumentation tests
across 100 runs. For development complexity, we measured
implementation effort in lines of code. While our FEAD ap-
proach decomposes complex monitoring tasks and distributes
them to existing collectors, the non-FEAD implementation
requires developing new monitoring capabilities from scratch.

Table IX shows that FEAD incurs minimal deployment
costs. It introduces only a 5.40% overhead in CPU perfor-
mance (SPEC2006), a 6.31% improvement over traditional
methods. Memory throughput impact is even smaller, with
a 0.26% degradation, sustaining 18,988.28 MB/s. Most no-
tably, FEAD introduces a mere 0.36% application runtime
overhead, reduced by 28.90%. In terms of development effort,
FEAD requires 59,203 lines of code, cutting implementation
complexity by 31.4%. These results highlight FEAD’s mon-
itoring strategy as an effective solution that minimizes both
performance impact and development effort, making it highly
suitable for production environments.

V. CONCLUSION

We proposed FEAD, a novel framework for detecting so-
phisticated cyber threats in resource-constrained systems. We
introduced an attack model-driven monitoring items identifi-
cation approach that systematically extracts security-critical
items from attack reports, proposed an efficient monitoring
framework deployment via a complex task decomposition
mechanism, and developed a locality-aware anomaly anal-
ysis technique that leverages the clustering characteristics
of malicious activities. We conducted extensive evaluations
on multiple real-world datasets and custom attack scenarios.
The experimental results demonstrate that FEAD outperforms
existing solutions with an 8.23% higher F1-score while main-
taining only 5.4% overhead, validating its effectiveness for
efficient and accurate attack detection.
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accepted benchmarks in the security research community for
assessing attack detection capabilities without introducing new
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