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Abstract—Security vulnerabilities in software packages are a
significant concern for developers and users alike. Patching these
vulnerabilities in a timely manner is crucial to restoring the
integrity and security of software systems. However, previous
work has shown that vulnerability reports often lack proof-
of-concept (PoC) exploits, which are essential for fixing the
vulnerability, testing patches, and avoiding regressions. Creating
a PoC exploit is challenging because vulnerability reports are
informal and often incomplete, and because it requires a detailed
understanding of how inputs passed to potentially vulnerable
APIs may reach security-relevant sinks. In this paper, we present
POCGEN, a novel approach to autonomously generate and
validate PoC exploits for vulnerabilities in npm packages. This
is the first fully autonomous approach to use large language
models (LLMs) in tandem with static and dynamic analysis
techniques for PoC exploit generation. POCGEN leverages an
LLM for understanding vulnerability reports, for generating
candidate PoC exploits, and for validating and refining them.
Our approach successfully generates exploits for 77% of the
vulnerabilities in the SecBench.js dataset and 39% in a new, more
challenging dataset of 794 recent vulnerabilities. This success
rate significantly outperforms a recent baseline (by 45 absolute
percentage points), while imposing an average cost of $0.02 per
generated exploit.

Index Terms—Vulnerability, Exploit Generation, Large Lan-
guage Models

I. INTRODUCTION

Security vulnerabilities pose a major threat to software
and users alike, with the number of reported vulnerabilities
increasing each year. In 2024 alone, over 40,000 CVEs were
disclosed, an increase of 38% over the previous year [1].
As software ecosystems become more complex and interde-
pendent, mitigating vulnerabilities becomes increasingly chal-
lenging. This holds particularly for Node.js and its package
manager, npm, which form the backbone of modern JavaScript
and TypeScript development. With millions of packages and
a dense network of dependencies, the npm ecosystem is
susceptible to a wide range of security risks [2], including tran-
sitive vulnerabilities, where a single vulnerable package can
propagate security risks across thousands of applications [3].

When a vulnerability is discovered, it is typically reported to
the developers of the affected package, who are then expected
to create a patch to fix the issue. Once the vulnerable software
is fixed, or some time has passed from the initial vulnerability
report, the vulnerability report is published as a Common
Vulnerabilities and Exposures (CVE) entry. The process of

Fig. 1: CVE-2024-57063 report with no PoC exploit.

1 A prototype pollution in the lib function of
php-date-formatter v1.3.6 allows attackers to cause
a Denial of Service (DoS) via supplying a crafted
payload.

fixing vulnerabilities is often facilitated by a proof-of-concept
(PoC) exploit, which demonstrates how the vulnerability can
be exploited in practice. Moreover, PoC exploits are useful
for testing the patch and preventing regressions in the future.
However, many vulnerability reports lack a PoC exploit [4],
and even many CVE reports do not have any PoC exploit. For
example, in the SecBench.js [5] dataset, only 179 out of 560
CVEs contain a PoC exploit in the report. Furthermore, the
publicly available exploits are not reliable, and in some cases
are malicious themselves [6].

As a real-world example, the vulnerability CVE-2024-
57063 in the “php-date-formatter” package shown in Fig. 1
does not contain a PoC exploit in the report. PoC exploits
are useful for preventing regressions and identifying par-
tial or ineffective fixes that fail to resolve the underlying
vulnerability. The process of creating PoC exploits is often
time-consuming and requires a deep understanding of the
codebase, the vulnerability, and the underlying technology [5].
Particularly in the case of Fig. 1, the vulnerability description
does not mention which function is vulnerable, and does
not provide any information about the input that triggers the
vulnerability.

With LLMs’ abilities in understanding and generating
source code in addition to natural language, they have shown
great promise in various software engineering tasks, including
test generation, and program repair [7]–[9]. Hence, LLMs
are good candidates to address the challenges in generating
PoC exploits from vulnerability reports, specifically when
the reports are vague. Moreover, with their understanding of
vulnerability types, they can generate payloads for exploits in
a more targeted manner, compared to traditional approaches
that rely on symbolic execution or fuzzing [10], [11].

Recently, Marques et al. [12] proposed a method to find four
vulnerability types in Node.js packages and generate exploits
for them in a tool called Explode.js. Their approach uses taint
analysis, a set of exploit templates, and symbolic execution
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to trigger vulnerabilities and output the exploits. Their work
addresses the problem of generating PoC exploits for vulner-
able npm packages. However, their approach does not use the
vulnerability report and tries to find the vulnerabilities with
taint analysis.

Since the recall of their approach on average is 58.2% and
at most 66.2% for command injection vulnerabilities, there are
vulnerabilities detected by developers or security researchers
that are not detected by their approach. Therefore, generating
PoC exploits from natural language description is of value to
the community. Moreover, the exploit rate of their approach is
on average 46.1% and at most 51.8% for prototype pollution
vulnerabilities. Even for the vulnerabilities that are detected
by their approach, on average 22% cannot be exploited by
Explode.js.

This paper aims to address these limitations by utilizing
LLMs and program analysis techniques to automate the gen-
eration of PoC exploits from vulnerability reports in npm
packages. Our proposed approach, POCGEN, takes as input
an informal description of a vulnerability, as found in CVE
reports, and automatically generates an executable exploit
using a combination of LLM prompting and static and dy-
namic analysis. POCGEN consists of four, iteratively executed
components: (i) understanding the vulnerability and extracting
source-level information, (ii) generating the exploit, (iii) val-
idating the exploit, and (iv) refining the prompt. Component
(i) uses dynamic analysis to explore the package’s exported
functions and prompts the LLM with the given vulnerability
report to identify the vulnerable function. Component (ii)
generates a candidate exploit using an LLM, which receives a
prompt that contains a taint path from the vulnerable function
to the exploit target. Component (iii) executes and validates the
candidate exploit against a test oracle. If the candidate exploit
is not valid, POCGEN uses component (iv) and refines the
prompt using a set of refiners that provide static or dynamic
information to component (ii) where the LLM attempts again
to generate a valid exploit. This process continues until either a
valid exploit is generated or a predefined budget is exhausted.

To generate a PoC exploit for the prototype pollution vulner-
ability in Fig. 1, the main challenge is to construct a payload
that, when passed to the vulnerable function, triggers a security
relevant action. The goal of prototype pollution is to modify
the prototype of objects. Exploits usually target the built-in
Object prototype, since all objects inherit from it by default. To
this end, POCGEN tests whether a property named “exploited”
was added to the global Object.prototype object. In its
first attempt, POCGEN generates an exploit that passes the ob-
ject {"__proto__": {"exploited": true}} to the vulnerable
function. However, this payload is invalid as it does not create
the property __proto__ on the passed object1. Exploitation of
the vulnerability requires constructing an object that contains a
property named __proto__. Once POCGEN executes the ini-
tial candidate exploit, it realizes that the exploit does not work,

1https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Operators/Object initializer#prototype setter

Fig. 2: POCGEN-generated PoC exploit for CVE-2024-57063.

1 async function exploit() {
2 const DateFormatter=require("php-date-formatter");
3 const maliciousJson='{"__proto__": {"exploited":

true}}';↪→

4 const maliciousOptions=JSON.parse(maliciousJson);
5 const result=new DateFormatter(maliciousOptions);
6 }
7 await exploit();

and by reasoning about the vulnerability, the code, and runtime
information, the LLM comes up with a workaround. After
multiple refinements, POCGEN generates a new exploit that
uses JSON.parse('{"__proto__": {"exploited": true}}')

to construct the payload that pollutes the Object.prototype
object, as shown in Fig. 2.

We run POCGEN on SecBench.js, a benchmark of currently
600 vulnerable npm packages with path traversal, prototype
pollution, command injection, code injection, and ReDoS vul-
nerabilities. Since the SecBench.js benchmark only contains
vulnerabilities up to 2022, we also evaluate POCGEN against a
new dataset, that we extract from GitHub Advisory Database2

and Snyk Vulnerability Database3, which includes more recent
vulnerabilities. Our results show that POCGEN successfully
generates exploits for 432 out of 560 vulnerabilities in the
SecBench.js dataset and 312 out of 794 in our new dataset.
Our approach outperforms the state of the art by 45% on
SecBench.js, while incurring the cost of only $0.02 per vul-
nerability.

By using POCGEN, developers of npm packages can gener-
ate PoC exploits for vulnerability reports they receive to help
them understand the vulnerability and how to address it. They
can also use the PoC exploits to test their patches and even
add them to their test suites as regression tests. Moreover,
security researchers can automate reporting vulnerabilities to
downstream packages, by automating the PoC exploit gener-
ation process.

In summary, this paper makes the following contributions:
• A novel approach to autonomously generate and validate

PoC exploits for vulnerabilities in npm packages using
LLMs.

• Empirical evidence of the effectiveness of POCGEN on
the SecBench.js dataset and more recent vulnerabilities.

• A new dataset of 794 vulnerabilities in npm packages,
which includes more recent vulnerabilities and 312 PoC
exploits generated by POCGEN.

• Insights into the influence of vulnerability type on the
success of exploit generation.

II. APPROACH

Figure 3 provides an overview of POCGEN. In summary,
POCGEN consists of four main components: (i) vulnerability
information extraction, (ii) exploit generation, (iii) validation,

2https://github.com/advisories
3https://security.snyk.io/
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Fig. 3: Overview of POCGEN.

(iv) and prompt refinement, which are described in detail in
the following sections.

POCGEN takes as input a vulnerability report, which is an
informal description of the vulnerability. Such reports originate
from several sources, such as vulnerability databases (e.g.,
the CVE database, GitHub Security Advisories, and Snyk),
bug and issue trackers, or security mailing lists. The natural
language description of the vulnerability in these reports is
often vague and does not provide enough information to
directly generate a PoC exploit. Therefore, in the first phase of
our approach, POCGEN extracts some additional information
from the vulnerability report and the codebase.

POCGEN extracts the vulnerability type, the likely vul-
nerable function, taint paths to vulnerable sinks, and usage
examples. It then compiles them into a prompt for the LLM
to generate a PoC exploit.

Once the LLM generates a candidate exploit, POCGEN exe-
cutes and validates the candidate exploit using a set of runtime
checkers, specific to each vulnerability type. For example,
for command injection vulnerabilities, the validation checks
whether a specific command is executed after running the
candidate exploit, while for prototype pollution vulnerabilities,
it checks whether a specific property is added to the global
object.

Since the exploits are generated by LLMs, it is possible that
the exploit does not use the vulnerable function to trigger the
vulnerability, and calls some built-in functions that result in
the same outcome. For example, in case of command injection,
the call to exec(<some command>) can also result in the
same outcome, but it does not invoke the vulnerable function.
POCGEN checks the execution stack to detect such cases,
and discards them as invalid exploits. Finally, to remove any
invalid exploit that passed the validation, POCGEN checks
whether the exploit actually triggers the vulnerability, by
prompting the LLM with the vulnerability report and the
generated PoC exploit.

If the candidate exploit is not valid, POCGEN refines the
prompt using a set of refiners that provide static or dynamic
information to the LLM to try to generate a valid exploit
again. This process continues until either a valid exploit is
generated or the budget is exhausted. If all validation checks
pass and the LLM determines that the exploit correctly triggers
the vulnerability, our approach considers it a valid PoC exploit.

A. Vulnerability Information Extraction

In this component, POCGEN extracts four pieces of in-
formation from the vulnerability report and the codebase to
provide as context to the exploit generation component.

1) Vulnerability Type: First, POCGEN identifies the type
of vulnerability. This is crucial to our approach as the type
of vulnerability determines the goal of the exploit and how it
should be validated. To do this, we prompt the LLM with the
vulnerability report and ask it to identify the type of vulnera-
bility. As the vulnerability report is written in natural language,
and the description is informal, an LLM is a suitable tool to
extract information from it. We provide the LLM with a list
of possible vulnerability types, which are the five vulnerability
types that we support in our approach, namely, path traversal,
prototype pollution, command injection, code injection, and
Regular Expression Denial of Service (ReDoS). POCGEN
prompts the LLM to select the most relevant vulnerability type
from the list.

2) Vulnerable Function: In our approach and throughout
this paper, we refer to the function that is accessible to an
attacker and is the entry point for the exploit as the vulnerable
function. Finding the vulnerable function is helpful for gen-
erating the PoC exploit, as it provides information about the
input types and possible values, and potentially the vulnerable
execution path of the function. To identify the vulnerable
function, we first load the package and dynamically extract all
the functions that it exports. We then prompt the LLM with
the vulnerability report and ask it to identify the vulnerable
function from the extracted functions. All prompts and LLM
responses are available in our supplementary material. Since
the vulnerability report can be vague, and multiple functions
can be candidates for the vulnerable function, we prompt the
LLM to rank the functions based on their likelihood of being
the vulnerable function.

3) Taint Path Extraction: To generate a successful PoC
exploit, it is crucial to understand how the input to the
vulnerable function flows through the code and reaches the
sensitive operations, commonly referred to as vulnerable sinks.
Taint analysis is a technique that tracks the flow of data
through the code by marking a certain input as tainted and
propagating this taint through the code. We use the static taint



analysis provided by CodeQL4.
In our approach we define a taint path as a sequence of

source code lines starting with the signature line in the defini-
tion of the vulnerable function, and ending with a vulnerable
sink. Any lines of code that propagate the taint are also
included in the taint path. To provide more context to the LLM,
for each line in the taint path, we include three lines before
and after it as additional context. If these context windows
overlap, we merge them to avoid duplication.

For each vulnerability type, we use the vulnerable sinks
and taint propagation rules specified in the JavaScript security
library of CodeQL5.

From the vulnerable functions obtained in the previous step,
in the order of their ranking, in batches of 50 functions, POC-
GEN queries the static taint analysis to extract at least one taint
path, which is also used to pinpoint the vulnerable function.
The taint analysis of CodeQL is designed for industry-level
security analysis, which requires high precision and few false
positives. This means that the taint analysis may not find all
taint paths.

Hence, if the first taint tracking attempt does not find any
taint paths, our approach retries the taint analysis with our own
extended set of taint propagation rules and vulnerable sinks.
If the extended taint analysis is also unsuccessful, POCGEN
switches to a combination of static and dynamic taint analysis.
First, it prompts the LLM to generate an exploit for the
vulnerable function. Then, it executes the generated exploit
and runs the static taint analysis on the functions that are
executed during the exploit. If any of the executed functions
have a taint path to a vulnerable sink, the approach uses this
taint path as the taint path for the vulnerable function.

If POCGEN still do not find a taint path, it proceeds to
the next batch of candidate functions from the ranking and
repeats the process. If the approach exhausts all candidate
functions without finding any taint paths, it considers the
exploit generation attempt as failed and does not move to
further steps of the approach.

The output of this phase is a sequence of code snippets
interleaved with natural language explanations of how the code
propagates the taint, shown in Fig. 4, with multiple sections
if the taint path spans multiple files. In each section, there is
a header specifying the file, followed by the taint path and its
additional context from that file. The taint path lines are also
marked by a comment at the end of the line.

4) Usage Snippets: To help the LLM generate a valid
exploit, POCGEN extracts usage examples of the vulnerable
function from the codebase. These examples allow the LLM
to understand the function signature, and any setup that
is required to call the function. We extract usage snippets
both from the source code and from the documentation of
the package. The usage snippets from the source code are
extracted from test files using static analysis, by finding all
the call sites of the vulnerable function. For the usage snippets

4https://codeql.github.com/
5The module semmle.javascript.security

Fig. 4: Example of a taint path extracted by POCGEN.

1 Vulnerable method `import` of class `Environment`
located in djv/lib/djv.js:↪→

2 ```js
3 import(config) { // tainted: "config"
4 const item=JSON.parse(config) // tainted: "config"
5 let restoreData=item // tainted: "item"
6 if (item.name && item.fn && item.schema) {
7 restoreData={
8 [item.name]: item,
9 }

10 }
11 Object.keys(restoreData).forEach((key)=>{ //

tainted: "restoreData"↪→

12 const {name, schema, fn:
source}=restoreData[key] // tainted:
"restoreData"

↪→

↪→

13 const fn=restore(source, schema, this.options)
// tainted: "source"↪→

14 this.resolved[name]={
15 name,
16 schema,
17 ```
18 Call to `restore`:
19 ```js
20 function restore(source, schema, {inner}={}) { //

tainted: "source"↪→

21 const tpl=new Function("schema", source)(schema)
// tainted: "source"↪→

22 if (!inner) {
23 ```

from the documentation, we first extract all code pieces in the
documentation, wrapped in triple backticks (‘‘‘), and then we
prompt an LLM to determine if they are usage examples of
the vulnerable function. If they are, we also prompt the LLM
to summarize them.

B. Exploit Generation

POCGEN assembles a prompt for the LLM to generate the
PoC exploit. Figure 5 shows the prompt template that we
use for generating the exploit. The prompt starts with nam-
ing the vulnerable function (as vulnerableFunction) and
the vulnerability type (as vulnerabilityType), which are
extracted in the previous phase, followed by a description of
the vulnerability (as vulnerabilityDescription), which
is the vulnerability report text. Then, we provide some example
usages of the vulnerable function (as usageSnippets), which
are extracted from the codebase. In the last section of the
prompt, we describe how the generated exploit should look
like and what it should do, by providing the skeleton of
the exploit code (as exploitSkeleton), and also providing
exploits of similar vulnerabilities (as similarExploits).
The skeleton of the exploit code, is a fixed template that
contains the definition of the exploit function, its call, and
loading the vulnerable function from the vulnerable package.
To extract similar exploits, our approach uses BM25 to find
the three most similar vulnerability descriptions from the
SecBench.js dataset to the current vulnerability report, and
provides their exploits as examples.

https://codeql.github.com/


Fig. 5: Prompt template for the first round of exploit genera-
tion.

1 `{{vulnerableFunction}}` is vulnerable to
{{vulnerabilityType}}.

2 ## Vulnerability Description:
3 ```
4 {{vulnerabilityDescription}}
5 ```
6 {{> usageSnippets }}
7 {{> exploitSkeleton }}
8 ## Task:
9 Create an exploit that uses the
{{vulnerabilityType}} in `{{vulnerableFunction}}` to
{{vulnerabilityTrigger}}.

10 Respond with the full exploit code and explain why
it works.

11 If there is an exception thrown, do not try to
handle it and pass it on.

12 Enclose the exploit code in backticks and define the
exploit within a function named `exploit`.

13 {{> similarExploits }}
14 ## Source code:
15 {{taintPathSnippets}}

C. Exploit Validation

We define the goal of the exploit specific to each vulnerabil-
ity type. This allows us to validate the generated exploit with
simple checkers. These checkers are inspired by the validation
checks in SecBench.js [5].

a) Path Traversal.: The goal of path traversal exploits
is to access a file in the root directory. In the validators of
SecBench.js this was implemented as being able to read a flag
file in the root directory. However, this would render exploits
for vulnerabilities that perform other file operations invalid.
To mitigate this, we consider all file system operations during
runtime, and check the normalized path of the accessed file. If
the normalized path is evaluated to flag.txt in a directory
above the current directory, the exploit is considered valid.

b) Prototype Pollution.: In the case of prototype pollu-
tion vulnerabilities, the goal of the exploit is to add a prop-
erty named exploited to the global Object.prototype

object. However, this does not always guarantee that the
exploit is valid, as the property can be added to the
object without exploiting the vulnerability. To filter out
such cases, we also check if the expression of the form
*[__proto__|prototype].exploited = * is present in
the exploit code. If such pattern exists, the exploit is considered
invalid.

c) Command Injection.: For command injection vulner-
abilities, the goal of the exploit is to execute the command
/usr/bin/genpoc. This command writes a file to the file
system, which is then checked by the validation checker.

d) Code Injection.: For code injection vulnerabilities, the
goal of the exploit is to call the built-in process.seteuid

function, with parameter 42. This indicates that the exploit was
able to access the process module. Access to this module
implies the ability to execute arbitrary code in the context
of the Node.js process. To ensure that the exploit uses the
vulnerable function, we statically check whether there is a

direct call to process.seteuid(42) in the exploit code. If
there is, we consider the exploit as invalid, as it does not
exploit the vulnerable function.

e) ReDoS.: For ReDoS vulnerabilities, the goal of the
exploit is to cause a denial of service by taking a long time
to execute. We hook the string and regex functions in the
V8 engine to measure the time these functions take. If the
execution time of a function exceeds 1,500 milliseconds, we
consider the exploit as valid.

As a last step in the validation process of any vulnerability
type, we prompt the LLM to check whether the exploit actually
triggers the vulnerability described in the report. This is done
to filter out any invalid exploits that passed the previous
validation checks.

D. Prompt Refinement

After the validation step, if the exploit is not valid and
the maximum number of refinements is not exceeded, POC-
GEN refines the prompt to generate a new candidate exploit.
POCGEN uses a set of refiners that provide static or dynamic
information to the LLM to help it generate a valid exploit.

a) Context Refiners.: The first set of refiners are the
context refiners, which provide additional context to the LLM
to help it generate a valid exploit. Since the taint path only
contains the taint propagation lines, checks on taint values
are not included in the taint path. Therefore, the LLM might
not have the information about the checks that are in place
to prevent the vulnerability from being exploited. To address
this, we provide a body refiner, which provides the full body
of any function that has at least one line of code in the taint
path.

However, there can be checks that happen via function calls
that are not in the taint path. To address this, we also provide
a missing declaration refiner, which provides the LLM with
the ability to ask for definitions of variables and functions in
the taint path, through the function calling format of OpenAI’s
API. The LLM can output a list of identifiers that it needs their
definitions, and POCGEN will provide the definitions of these
identifiers in the prompt.

b) Runtime Refiners.: The second set of refiners are
runtime refiners, which add information about the execution
to the prompt. The refiners in this category are the error
refiner, the coverage refiner, the debugger refiner, and the
vulnerability-specific refiners.

Since the exploit generated by the LLM can have runtime
errors, for example from a wrong API usage, the error refiner
provides the LLM with the error message that was thrown
during the execution of the candidate exploit.

The coverage refiner provides the LLM with the coverage
information of the candidate exploit, as markings in comments
at the end of each line in the taint path. This information is
useful for the LLM to understand which parts of the code
were not executed. If the vulnerable sink was not executed,
the information provided by this refiner can help the LLM to
generate a new exploit that reaches the vulnerable sink.



The debugger refiner provides the LLM with a debugger-
like tool. The LLM can output a list of expressions, for which
it needs the runtime values. The refiner will provide the values
of these expressions during the execution of the exploit in
the prompt. These values are provided as comments in their
respective lines in the taint path.

There are cases where the LLM generates an exploit that
reaches the vulnerable sink, but the exploit fails the validation
checks due to a wrong input. For path traversal, command
injection, and code injection vulnerabilities, we provide spe-
cific refiners that hook into the vulnerable sinks and provide
the runtime values passed to these functions. This form of
feedback allows the LLM to understand how the input it gen-
erated is transformed, which can help it generate a valid exploit
in the next iteration. For path traversal vulnerabilities, the
refiner provides the values passed to the file system functions,
like fs.readFile and fs.open. For command injection
vulnerabilities, it provides the values passed to the spawn

function. Finally, in case of code injection vulnerabilities, the
refiner provides the values passed to the most common sink
functions, like the Function constructor.

In every refinement attempt, POCGEN chooses one refiner
from the front of a priority queue. Initially all refiners are in
the queue. Each time the approach uses a refiner, it assigns a
score based on the number of new errors the respective exploit
causes, and the number of steps from the taint path it covers.
It then adds the refiner to the priority queue with the score.
Moreover, if a refinement generates a prompt that is already
used, POCGEN does not query the LLM again, and moves to
the next refiner.

To keep the prompts concise, in each refinement, POCGEN
removes parts of the prompt that the LLM has correctly used
in the previous attempts. For example, if the exploit generated
in the previous step uses the vulnerable function correctly,
POCGEN removes the usage snippets from the prompt.

III. EVALUATION

We evaluate POCGEN on two datasets of vulnerabilities in
npm packages to answer the following research questions:

• RQ1 How effective is POCGEN in generating PoC ex-
ploits for vulnerabilities in npm packages?

• RQ2 How much does each component of POCGEN
contribute to the overall effectiveness?

• RQ3 How much does it cost to generate PoC exploits in
terms of money and time?

• RQ4 What are the characteristics of vulnerabilities that
affect the success of PoC generation?

• RQ5 How effective is POCGEN in generating PoC ex-
ploits for more recent and more diverse set of vulnera-
bility reports?

A. Datasets

We use two datasets to evaluate POCGEN: the SecBench.js
dataset [5], used in RQ1 to RQ4, and a new dataset, used in
RQ5, which we extract from GitHub Advisory Database and

TABLE I: Distribution of vulnerability types in CWEBench.js

Vulnerability Class GHSA Snyk Total

Path Traversal 117 9 126
Prototype Pollution 221 27 248
Command Injection 178 2 180
Code Injection 83 1 84
ReDoS 156 0 156

Total 755 39 794

Snyk Vulnerability Database. We refer to this new dataset as
CWEBench.js.

1) SecBench.js: The SecBench.js dataset contains 600 vul-
nerable npm packages with code injection, command injection,
prototype pollution, path traversal, and ReDoS vulnerabilities.
We exclude packages that have been removed from the npm
registry. This leaves us with a total of 560 vulnerabilities to
evaluate our approach.

2) CWEBench.js: The SecBench.js dataset only contains
vulnerabilities up to 2022. Moreover, only vulnerabilities that
(i) are exploitable on Linux, (ii) can be triggered by providing
a single input, and (iii) their exploit creation required at most
one hour, were included in the dataset. This means that the
dataset has some inherent bias. Therefore, we create a new
dataset that contains all vulnerabilities from 2013 to April
2025, that are not already in the SecBench.js dataset but match
one of the five vulnerability types. This allows us to evaluate
POCGEN on a more diverse set of vulnerabilities, with some
of them more recent than vulnerabilities in SecBench.js, and
some even newer than the training data of the LLM that we
use.

To create the new dataset, CWEBench.js, we extract all
vulnerabilities from the GitHub Advisory Database and Snyk
Vulnerability Database that match one of the five vulnerability
types by their CWE number. We use 22 and 35 for path
traversal; 1321 for prototype pollution; 77 and 78 for command
injection; 94 to 99 for code injection; and 400, 730, and 1333
for ReDoS.

As some vulnerabilities are mislabeled in the databases, we
also extract all vulnerabilities that were not labeled with one
of the CWE codes above with any of the following patterns:

• Path traversal: travers[e|al]
• Prototype pollution: prototype, pollut[e|ion]
• Command injection: exec, execSync, shell

injection, os injection

• Code injection: eval, code injection, code

execution

• ReDoS: inefficient, regular expression

We manually check these vulnerabilities and remove the ones
that do not match one of the five vulnerability types. The
remaining ones are added to the dataset.

Finally, we deduplicate the vulnerabilities in the dataset by
their CVE IDs. The final dataset contains 794 vulnerabilities,
as shown in Table I, where 794 of them are from GitHub
Security Advisory database, and 40 from Snyk database.



B. Experimental Setup

We run all experiments on an Ubuntu 22.04 machine with
Intel Zeon(R) Silver 4214 CPU, with 256 GB of RAM. The
experimental setup uses Node.js version 22.11.0, running on
a modified V8 engine that throws an error if a configurable
backtracking limit is exceeded. For static taint analysis, we
use CodeQL version 2.20.4.

The LLM that we use is OpenAI’s
gpt-4o-mini-2024-07-18 model through the OpenAI
API. We use a system prompt that assigns the role of a
security researcher specialized in creating exploits for the
identified security class to the LLM. This is done to reduce
the refusals to generate exploits by the LLM for safety
reasons. For each vulnerability, we allocate a time budget
of one hour, a token budget of 300k input tokens, and 100k
output tokens. The maximum refinement budget is set to 30
iterations.

We compare POCGEN against two baselines: Ex-
plode.js [12] and an LLM-based agent using the AutoGPT
framework6. Explode.js is a state-of-the-art approach for gen-
erating PoC exploits. It first uses a static dataflow analysis
to detect which exported functions reach a vulnerable sink,
which is then used to create an exploit template. Then, using
symbolic execution, it generates symbolic inputs to exploit
the vulnerability. Finally, it uses an SMT solver to generate
concrete inputs that trigger the vulnerability.

Since POCGEN is the first LLM-based PoC exploit gener-
ator, we implement an LLM-based agent using the AutoGPT
framework as a second baseline. Recently, LLM-based agents
have shown great promise in software engineering tasks, such
as resolving issues [13], repairing bugs [14], and executing
arbitrary projects [15]. The AutoGPT agent can use tools
to traverse the codebase, such as navigating the file system,
reading and writing files, and executing shell commands, by
default. We also add two tools to allow direct execution of a
JavaScript code piece or a JavaScript file for this agent.

C. RQ1: Effectiveness

We evaluate the effectiveness of POCGEN in generating
PoC exploits for vulnerabilities in SecBench.js as done in
previous work [12]. We measure the success rate of our
approach and compare it to the baselines. We also report the
number of failed attempts, and the number of false positives,
which are exploits that pass the validator, but do not trigger the
vulnerability through the vulnerable function. For each PoC
exploit that POCGEN generates, one of the authors manually
inspects it to determine whether it is a false positive or a
successful exploit.

In our experiments, we run POCGEN on all 560 vulnerabili-
ties in SecBench.js, and use the reported results of Explode.js7

6We use the open-source version of AutoGPT, now called AutoGPT Classic,
which is available at https://github.com/Significant-Gravitas/AutoGPT/tree/
793d056d81ca1c1a21538ddeef13c4e6d7d0d254/classic

7https://github.com/formalsec/explode-js/blob/
71ec17fe90f29e236b01b8cad02685344f8aff10/bench/
explode-vulcan-secbench-results.csv

on the same set of vulnerabilities. However, since agentic
approaches are slower and more expensive, we limit the
number of vulnerabilities evaluated with our agentic baseline
approach to 100. We randomly sample 20 vulnerabilities from
each of the five vulnerability types in SecBench.js, and run
AutoGPT on them.

Figure 6 shows the effectiveness of POCGEN, Explode.js,
and AutoGPT on the SecBench.js dataset. POCGEN success-
fully generates PoC exploits for 432 out of 560 vulnerabilities,
which is 77% of the vulnerabilities. Explode.js successfully
generates PoC exploits for 182 out of 560 vulnerabilities,
which is 32% of the vulnerabilities. AutoGPT generates suc-
cessful PoC exploits for 16 out of the 100 vulnerabilities. For
the same set of 100 vulnerabilities, POCGEN generates PoC
exploits for 63 vulnerabilities. The results show that POCGEN
outperforms Explode.js by 45 and AutoGPT by 47 absolute
percentage points.

When comparing the performance of POCGEN on different
vulnerability types, we find that POCGEN performs best on
path traversal, prototype pollution, and command injections,
with success rates of above 83%. Explode.js also performs
best on these vulnerability types, with success rates between
50% and 60%. Since Explode.js does not support ReDoS
vulnerabilities, its success rate on ReDoS vulnerabilities is 0%.
AutoGPT performs best on prototype pollution and command
injection, with success rates of 35% and 25%, respectively.
AutoGPT performs worst on path traversal, with no successful
PoC exploits.

A closer comparison of the sets of vulnerabilities covered by
each approach reveals that Explode.js generates PoC exploits
for only two command injection vulnerabilities that are not
handled by POCGEN. For one of these cases, the vulnerability
can be exploited with a simple payload. But, our validator
requires the execution of the command /usr/bin/genpoc,
and our prompts direct the LLM to generate an input that
executes this command. Therefore, the exploit becomes much
more complex, and the LLM is not able to generate it.
The other case is a vulnerable function that implements the
functionality to kill processes. Our generated payload causes
the running bash process to be killed, which does not allow
the execution of the rest of the command. The LLM is also
not able to fix this after the refinements.

On the other hand, POCGEN generates PoC exploits for 158
vulnerabilities that Explode.js does not generate PoC exploits
for. POCGEN generates PoC exploit for all vulnerabilities that
AutoGPT generates PoC exploits for.

POCGEN uses multiple approaches to reduce the number
of false positives, i.e., exploits that pass the validation and
LLM checks, but do not correctly trigger the vulnerability. As
a result, it only generates 23 false positive PoC exploits, which
amounts to just 5% of the successful exploits generated.

D. RQ2: Ablation Study

To evaluate the impact of each component on the effec-
tiveness of POCGEN, we perform an ablation study on the
SecBench.js dataset. We evaluate the following configurations

https://github.com/Significant-Gravitas/AutoGPT/tree/793d056d81ca1c1a21538ddeef13c4e6d7d0d254/classic
https://github.com/Significant-Gravitas/AutoGPT/tree/793d056d81ca1c1a21538ddeef13c4e6d7d0d254/classic
https://github.com/formalsec/explode-js/blob/71ec17fe90f29e236b01b8cad02685344f8aff10/bench/explode-vulcan-secbench-results.csv
https://github.com/formalsec/explode-js/blob/71ec17fe90f29e236b01b8cad02685344f8aff10/bench/explode-vulcan-secbench-results.csv
https://github.com/formalsec/explode-js/blob/71ec17fe90f29e236b01b8cad02685344f8aff10/bench/explode-vulcan-secbench-results.csv
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Fig. 6: Effectiveness of POCGEN, Explode.js, and AutoGPT on SecBench.js.

TABLE II: The effect of information provided in the prompt
of POCGEN on successfully generating PoC exploits.

Configuration Valid Exploits Success Rate

POCGEN 432 77%
noTaintPath 421 75%
noUsageSnippet 196 39%
noFewShot 402 72%

of POCGEN to measure the impact of different information
about the vulnerability provided in the prompt.

• POCGEN: The complete POCGEN approach with all
components.

• noTaintPath: POCGEN without the taint path extraction,
described in Section II-A3. In this configuration, the LLM
prompt does not contain the taint path, and also the
context refiners that depend on the taint path are not used.

• noFewShot: POCGEN without the few-shot examples of
similar vulnerabilities’ exploits, described in Section II-B.

• noUsageSnippet: POCGEN without the usage snippet
examples, described in Section II-A4.

We also evaluate the impact of the refiners on the effectiveness
of POCGEN.

The success rates of these configurations on SecBench.js are
shown in Table II. These results show that all the information
provided in the prompt contribute to POCGEN’s overall per-
formance, with the usage snippets having the highest impact,
followed by the few-shot examples.

Moreover, the prompt refiners also have a significant impact
on the performance of POCGEN. Only 36% of the successful
PoC exploits are generated in the first attempt, and 51% are
generated with two to 10 refinements. On average, successful

PoC exploits are generated in 3.92 rounds of refinement.

E. RQ3: Costs

To evaluate the costs of POCGEN, we measure the time
and token usage of the approach. The time and token us-
age measurements are done through the experiments on the
SecBench.js dataset. On average each PoC exploit generation
attempt takes 11 minutes. Since successful attempts stop ear-
lier than failing attempts, which require running the refiners,
the successful runs complete on average in 7 minutes. A
significant portion of this time is spent on the LLM API calls,
which take 41% of the execution time. On average the taint
path analysis with the initial CodeQL setup takes 21%, and
the API exploration takes 3% of the execution time.

On average, for each attempt to generate an exploit, POC-
GEN sends 61,234 tokens to the LLM API and receives 17,750
tokens in response. With the current OpenAI API pricing as
of May 2025, this costs $0.02 per exploit generation attempt.
For the successful attempts, this cost is $0.008.

F. RQ4: Qualitative Analysis

In this section, we present examples of successful and
unsuccessful attempts by POCGEN to generate PoC exploits.

The vulnerability report CVE-2023-26127 describes a
command injection vulnerability in the n158 package. This
vulnerability is due to not sanitizing the input, which then
flows to the exec function of shelljs. However, the input
is first passed ot a copy function, as show in Fig. 7. This
means that if the seedPath is set to a value where the
corresponding path does not exist, the exploit fails before
reaching the vulnerable sink. This constraint is not easy to
capture with symbolic execution as attempted by Explode.js,



Fig. 7: Example of a command injection vulnerability in the
n158 package.

1 module.exports = function (seedPath, targetPath) {
2 fsExtra.copySync(seedPath, targetPath);
3 shell.exec('sh -c \'cd '+targetPath+' && npm

install\'');↪→

4 shell.exec('sh -c \'cd '+targetPath+' && npm
start\'');↪→

5 }

Fig. 8: Example of a successful PoC exploit generation by
POCGEN.

1 async function exploit() {
2 const initProject =

require("n158/src/cli/initProject");↪→

3 const seedPath = "/path/to/valid/seed";
4 const targetPath = "targetPath; /usr/bin/genpoc";
5 const fs = require('fs');
6 if (!fs.existsSync(seedPath)) {
7 fs.mkdirSync(seedPath, { recursive: true });
8 }
9 const result = await initProject(seedPath,

targetPath);↪→

10 }
11 await exploit();

but using execution feedback and an LLM, POCGEN is able
to generate a working exploit.

In the first round of exploit generation, POCGEN gen-
erates an exploit that calls initProject("someSeedPath",

"targetPath; /usr/bin/genpoc"). After the execution of
this exploit, the runtime feedback shows that there was
a runtime error happening at the fsExtra.copySync

function, which is due to the fact that no direc-
tory called "someSeedPath" exists. The LLM then
naively tries to fix this by changing "someSeedPath" to
"/path/to/valid/seed", which results in the same error.
It takes multiple refinements until the LLM requests the
definition of shelljs, which allows the reasoning part of the
response to understand that it needs to create the directory for
a successful exploit. This results in the final exploit shown in
Fig. 8.

The vulnerability report GHSA-3486-rvxc-hrrj describes
a command injection vulnerability in the gitblame package.
The package exports one function, which takes a file path
as an argument and after some processing passes it to exec.
The relevant parts of the source code are shown in Fig. 9.
POCGEN is not able to generate a working exploit for this
vulnerability. The reason is that our validator requires the

Fig. 9: Example of a command injection vulnerability in the
gitblame package.

1 module.exports = function (file, cb) {
2 var dirname = path.dirname(file);
3 var filename = path.basename(file);
4 exec('git blame ' + filename, {cwd: dirname}, ...
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Fig. 10: Effectiveness of POCGEN on CWEBench.js.

execution of the command /usr/bin/genpoc. However, the
split by path.basename and path.dirname does not allow
passing of payloads with ”/” to reach the sink without change.
This means that our approach is limited by the constraints
imposed by the validator. Even with multiple refinements,
POCGEN is not able to generate a working exploit, although
the exploit for this vulnerability in SecBench.js has the simple
payload ”& touch gitblame”.

G. RQ5: Generalizability

To evaluate the generalizability of our approach to new
vulnerabilities, we run POCGEN on the CWEBench.js dataset.
We use the same setup as in Section III-C and run POCGEN
on all 794 vulnerabilities in the dataset.

Figure 10 shows the effectiveness of POCGEN on the
CWEBench.js dataset. POCGEN generates PoC exploits for
312 out of 794 vulnerabilities, which is 37% of the vulnera-
bilities.

The difference in the results on SecBench.js and
CWEBench.js comes from two features of these datasets. First,
the criteria to include a vulnerability in the SecBench.js dataset
was that the authors of SecBench.js could generate a PoC
exploit in one hour, which means some complicated exploits
were excluded from the dataset. Second, the vulnerabilities in
the SecBench.js dataset were required to work on a specific en-
vironment, and that an input should trigger a security-relevant
action. This means that some vulnerabilities in CWEBench.js
are not compatible with our execution environment, as it is
very similar to the environment used in SecBench.js. For ex-
ample, our approach failed for 39 out of 794 vulnerabilities in
CWEBench.js due to errors encountered during the installation
of the packages. Furthermore, some vulnerabilities require
triggers other than calling a function or sending a request to



an API endpoint, such as setting a malicious SSID for a Wi-Fi
network as in CVE-2023-42810. Yet, despite these differences,
POCGEN is able to generate PoC exploits for a significant
number of vulnerabilities in CWEBench.js.

Moreover, we split the vulnerabilities in CWEBench.js into
vulnerabilities before and after the knowledge cutoff of the
gpt-4o-mini model. The results show that POCGEN success-
fully generates PoC exploits for 35% of the vulnerabilities be-
fore the knowledge cutoff, and 41% of the vulnerabilities after
the knowledge cutoff. This shows that POCGEN generalizes
well to newer vulnerabilities.

IV. THREATS TO VALIDITY

The first threat to internal validity is the LLM’s potential to
recall exploits from its training data. To mitigate this, we use
the same LLM for the AutoGPT baseline, but we also evaluate
POCGEN on newer vulnerabilities that are not in the training
data of the LLM. The results shows that the memorization
effects are negligible. By using the CWEBench.js dataset, we
also mitigate the external validity threat of dataset bias from
SecBench.js. Finally, the labeling process of false positive PoC
exploits is done manually, which can introduce human bias.

V. RELATED WORK

a) Vulnerability Detection: Greybox fuzzing [16], [17],
applied to source code [18] or binaries [19], is a common
approach for vulnerability detection. To evaluate fuzzing,
techniques for reverting fixes [20] and benchmarking method-
ologies [21], [22] have been proposed. Learning-based vul-
nerability detection includes neural classification [23]–[25],
graph neural networks [26], [27], and combinations of LLMs
with static analysis. Similar to our work, the latter leverages
CodeQL to identify taint flows [28]. To support learning-
based detection, datasets from commit histories [29] and large-
scale vulnerability generation approaches [30], [31] have been
introduced. Vulnerability detection is orthogonal to our work,
as we assume vulnerabilities are already described in a report
but lack an exploit.

b) Detecting and Exploiting Node.js Vulnerabilities: The
closest work to POCGEN is Explode.js [12], which finds
vulnerabilities and generates PoC exploits for npm packages.
Explode.js uses static dataflow analysis to extract the sequence
of function calls required to propagate attacker input to a vul-
nerable sink. It then applies symbolic execution and constraint
solving to generate a PoC exploit. However, Explode.js does
not model external functions and libraries during symbolic
execution, which limits its effectiveness, as the npm ecosystem
heavily relies on small, reusable packages. POCGEN addresses
this limitation by leveraging LLMs to generate exploits and by
incorporating runtime feedback. LLMs, trained on large code
corpora, can better predict the behavior of external functions
and reason about inputs that exercise specific program paths.

Other approaches have used symbolic execution to generate
exploits for vulnerabilities. FAST [32] applies bi-directional
dataflow analysis to detect taint paths efficiently, enabling

scalable vulnerability detection. It generates exploits by con-
cretizing symbolic path constraints once a vulnerability is
found. Node-Medic [33] and Node-Medic-FINE [11] combine
dynamic taint analysis with symbolic execution to detect
and generate exploits for Node.js packages. Node-Medic-
FINE further incorporates fuzzing to generate inputs and
explore additional execution paths. All three approaches are
outperformed by Explode.js [12], which we therefore use as
a baseline in our evaluation.

c) Test Generation for Security Vulnerabilities: Zhang et
al. [34] and Gao et al. [35] use LLMs to generate unit tests
for Java vulnerabilities given a PoC exploit. Their goal is to
encourage developers to update vulnerable dependencies and
prevent supply chain attacks. In contrast, our work generates
code that directly exploits a vulnerable package, rather than
exploiting it through a third-party dependency.

d) LLM-Assisted Attacks: Recent work has explored the
potential of LLMs for attacking vulnerable software. Pentest-
GPT [36] uses LLMs for penetration testing. Xu et al. [37]
developed an LLM agent with command-line access to exploit
vulnerabilities in Linux and Windows applications. Charan
et al. [38] investigated using LLMs to generate payloads for
exploiting vulnerabilities.

e) Vulnerability Mitigation and Repair: Mitigating vul-
nerabilities can involve removing unused dependencies [39]
or reducing the privileges of vulnerable code [40]. Repairing
vulnerabilities can be achieved by fine-tuning LLMs to find
fixes [41], using LLM agents [42], or applying generative
adversarial networks (GANs) [43].

f) JavaScript and Npm Ecosystem Security: The npm
ecosystem faces various security issues, such as injection
attacks [44], ReDoS [45], and malicious packages [46]. Sev-
eral empirical studies have analyzed npm from a security
perspective, including vulnerability propagation [2], [47] and
how developers address vulnerabilities [3]. Householder et
al. [4] found that most vulnerability reports lack a public
PoC exploit for at least one year. Yadmani et al. [6] further
showed that many PoC exploits on GitHub are themselves
malicious. These findings motivate our work on automated
PoC exploit generation. To support further research, Bhuiyan
et al. [5] introduced the SecBench.js dataset, and Brito et
al. [48] created the VulcaN dataset.

VI. CONCLUSION

In this paper, we presented POCGEN, an LLM-based ap-
proach to automatically generate proof-of-concept exploits
for vulnerabilities in npm packages. POCGEN extracts in-
formation from the vulnerability report and the codebase to
generate a PoC exploit using an LLM. The generated PoC
exploits are validated using a set of runtime checkers, and
the prompt is refined using static and dynamic information
to generate a valid exploit. We evaluated POCGEN on two
datasets of vulnerabilities in npm packages, SecBench.js and
a new dataset that we create. POCGEN generates PoC exploits
for 77% of the vulnerabilities in SecBench.js, outperforming
the state-of-the-art Explode.js by 35 and AutoGPT by 47



absolute percentage points. We also evaluated POCGEN on
the new dataset, where it generates PoC exploits for 37% of
the vulnerabilities.

By automating the generation of PoC exploits, POCGEN en-
ables developers and security teams to more rapidly understand
and address vulnerabilities, reducing the time between vul-
nerability disclosure and patch deployment. This automation
also improves regression testing, as the generated PoC exploits
can be directly used to verify the effectiveness of fixes and
to prevent vulnerabilities from reappearing in future releases.
For security researchers, POCGEN provides an automated way
to evaluate the effectiveness of existing mitigation strategies
across large sets of vulnerabilities. Furthermore, POCGEN can
improve the quality of existing vulnerability reports, including
those that are poorly documented or lack existing exploits.
Finally, automated PoC generation can facilitate responsible
vulnerability disclosure by providing clear, actionable evi-
dence to affected parties, encouraging timely remediation.

DATA AVAILABILITY

The source code of POCGEN, the new dataset, and
all experiment scripts are available at https://figshare.com/s/
b1c0d41348c353fc2033.
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