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Abstract—We propose a privacy-preserving smart wallet with
a novel invitation-based private onboarding mechanism. The
solution integrates two levels of compliance in concert with an
authority party: a proof of innocence mechanism and an ancestral
commitment tracking system using bloom filters for probabilistic
UTXO chain states. Performance analysis demonstrates practical
efficiency: private transfers with compliance checks complete
within seconds on a consumer-grade laptop, and overall with
proof generation remaining low. On-chain costs stay minimal,
ensuring affordability for all operations on Base layer 2 network.
The wallet facilitates private contact list management through
encrypted data blobs while maintaining transaction unlinkability.
Our evaluation validates the approach’s viability for privacy-
preserving, compliance-aware digital payments with minimized
computational and financial overhead.

Index Terms—smart wallet, mixer, compliance, utxo, private
payment

I. INTRODUCTION

With over 300 million people globally using blockchain
and the market projected to reach $32.69 billion by 2024
[1], adoption is likely to become as widespread as online
banking today. However, as this user base grows, the incidence
of scams and malicious uses will also rise, highlighting
the need for tools enforcing compliance to prevent misuse.
Blockchain technically enables universal traceability, but this
conflicts with the fundamental right to privacy—without which
mainstream adoption remains unlikely. Given that cryptocur-
rency enables pseudonymous, borderless value transfer with
near-instant settlement finality, robust Anti-Money Laundering
(AML) mechanisms become critical to prevent the technology
from enabling large-scale financial crimes. The urgency of
cryptocurrency AML measures was highlighted when OFAC
sanctioned Tornado Cash for processing $7 billion in transac-
tions since 2019, including $455 million from North Korea’s
Lazarus Group and over $100 million from the 2022 Harmony
Bridge and Nomad protocol exploits [2]. Several techniques
to launder stolen funds have since been at play, including
multiple hierarchical layers of transactions to obscure the
money trail [3]. In parallel, reconciling blockchain’s trans-
parency with GDPR’s privacy mandates and data subject
rights presents unique technical and compliance challenges for
adoption [4]. Fortunately, programmable cryptography offers
promising tools to enforce privacy-preserving compliance rules
ex-ante, potentially avoiding costly post-facto litigation and
enforcement actions [5].

Our contributions: We implement a mixer-based wallet
application with privacy-preserving onboarding and transfers.
Additionally, we integrate a two-tiered compliance framework:
a proof of innocence mechanism for direct or transitive checks,
and a novel ancestral commitment tracking system using
bloom filters for probabilistic UTXO chain state propagation
during internal transfers. From a technical standpoint, our
solution addresses a limitation in existing privacy pools: it
eliminates the need to explicitly forward transaction history
between users while maintaining verifiable compliance across
multiple coin merges [6]. Unlike sequential proof approaches
that rely on passing secret information forward, our solution
enables recipients to independently verify their funds source
legitimacy without revealing transaction linkages.

Sections are organized as follows: Section II describes the
state of the art, Section III presents our solution, Section IV
presents the experimental results along with cost analyses, and
Section V concludes.

II. STATE OF THE ART

A. Transaction confidentiality

In a blockchain token transaction, two primary entities
are involved: a sender and a receiver, which may represent
accounts or smart contracts. While observers on the blockchain
may not be able to directly identify the individuals controlling
these addresses, they can still view all transaction details
in plaintext, including transferred amounts, deposits, with-
drawals, and calldata. The key is that link between sender
and receiver is preserved at all times allowing the exercise
of tracking tools since the early days of the industry [7].
To address this exposure, specialized mechanisms have been
developed to obscure the link between sender and receiver.

Stealth Addresses. An early practice to preserve privacy
involved generating a new address for each transaction receipt.
This required significant user interaction and coordination
between parties. With stealth addresses users could generate
a unique, one-time address for each transaction, or dual-
key pairs to enable non-interactive generation of unlinkable
addresses [8]. Notably, stealth addresses do not obscure trans-
action flows, and funds remain traceable at pseudonymous
endpoints.

Mixers. These are objects designed to obscure the link
between sender and receiver by pooling and mixing users’
assets. This process is meant to conceals transaction paths,
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making it difficult to trace specific assets back to their origin.
A mixer is primarily implemented as a non-custodial protocol,
although some trusted third-party implementations exist [9].
Most common non-custodial mixers maintain two primary data
structures at the smart contract level:

• R, an append-only list of commitments typically orga-
nized as a Merkle tree

• N, an append-only list of nullifiers, which serve as unique
identifiers for each withdrawal.

Often, relayers are employed to avoid to prevent de-
anonymization, as they submit transactions on behalf of users
without holding custody of the assets. For example, in Tornado
Cash Nova, users can choose to use a relayer for internal
transfers; without it, the sender’s identity is exposed. In our
solution, relayer use is mandatory, with fees covered by a
Paymaster contract instead of the user (see Fig. 5).

The effectiveness of a mixer depends on its anonymity
measure A = f(n, t, d), where n represents the number of
participants in the mixing pool, t denotes the time interval
between deposit and withdrawal operations, and d represents
the distribution of transaction values. In the deposit process, a
user generates a random secret s and computes a commitment
L = h(s+ 1), where h is a cryptographic hash function. The
user then sends their assets along with L to the mixer’s smart
contract, which adds L to the commitment set R. During
withdrawal, the user computes a nullifier U = h(s + 2).
The user then generates a zero-knowledge proof π, a method
for proving knowledge of data without revealing it [10],
demonstrating both that they know a secret s corresponding to
some commitment in R and that U is the correct nullifier for
that secret. The contract verifies π and checks that U /∈ N
to prevent double-spending. If valid, the state transition is
confirmed as the nullifier U is added to N and the funds are
released.

Other mixers for UTXO-based blockchains like CoinJoin
provide similar privacy benefits through different mechanisms,
such as multiple transactions batching, combining inputs and
outputs typically in fixed-sized amount, in ways that obscure
the transaction graph [11].

B. UTXO Models with arbitrary denominations for account-
based blockchains

A UTXO graph represents the flow of funds through individ-
ual transactions. Each UTXO acts as a node in the graph, and
each transaction connecting UTXOs forms the edges between
nodes. Unlike UTXO-based blockchains where state is tracked
through a graph of unspent outputs, account-based blockchains
maintain state through account balances. UTXO systems have
certain algebraic properties, like a Church-Rosser property,
that distinguish them from account-based systems and ensure
that double-spending is impossible within the system [12]. In
account-based systems, like Ethereum and EVM-based chains,
transaction validity can depend on global state that may be
modified by intervening transactions. However, it is possible
to combine the account model’s global state with UTXO-style
transaction validation rules. A smart contract can maintain an

internal UTXO set as part of its state, where each UTXO is
represented as a data structure containing value and ownership
conditions. Transaction ordering and state updates still follow
account-based semantics, while the contract logic enforces
algebraic properties of native UTXO systems like local valida-
tion and transaction commutativity. In the context of mixers,
the contract allows arbitrary denomination by splitting and
merging through JoinSplit transactions that maintain privacy
[13]. Each commitment contains both a value and blinding
factor, allowing users to prove in zero-knowledge that: i. They
have authority over the input UTXOs; ii. The sum of input
values equals the sum of output values; iii. All output values
are non-negative. Blockchains like Zcash natively implements
JoinSplit transactions to ensure privacy. Instead, Tornado Cash
Nova and Railgun are privacy-preserving platforms that utilize
the UTXO model with JoinSplit transactions, but implement
them differently. Nova represents each UTXO with three
components (amount, public key, blinding), where the com-
mitment is computed as a hash of these values and the nullifier
incorporates the merkle path and a signature [14]. This extends
the basic commitment scheme used in earlier versions like
Tornado Cash Core. Railgun similarly uses encrypted notes
(UTXOs) containing public key, amount, token ID and a
randomness field, but generates nullifiers deterministically by
combining the spending key with merkle path indices, ensuring
unique nullification [15]. Our system adopts the JoinSplit
model used in Tornado Cash Nova; specifically, we support
joinsplits with either 2 or 16 input notes and always exactly 2
outputs. This design aligns with the constraints of zk-SNARK
circuits implemented in Circom, which cannot handle dynamic
input sizes.

C. On-chain regulatory compliance

Privacy-preserving protocols may implement different solu-
tions to fully comply with AML/CFT requirements [16], or at
least mitigate the risk of law enforcement action. Below is a
preliminary classification of the utility of these solutions.

Selective de-anonymization: This strategy can be imple-
mented either voluntarily, for personal fiscal accountability,
or upon request. While Tornado Cash introduced a basic
opt-in reporting mechanism through note presentation (i.e.
hash of the deposit’s secret and nullifier), this approach had
a significant drawback: once revealed, the transaction link
would become permanently public. Recent protocols have
overcome this limitation with advanced selective disclosure
mechanisms [15]. For instance, users can generate time-limited
reports proving transaction integrity or provide viewing keys
for access while preserving privacy from the broader network.
However, using a viewing key is a drastic form of selective
disclosure, as it lets a trusted third party decrypt and verify all
transactions. Protocols like Railgun support optional viewing
key functionality, though not as a requirement. This binary
disclosure problem persists even with multiple viewing keys: if
Alice has made 10 private transactions and a compliance team
requests verification, she can choose which transactions to re-
veal (by providing their respective viewing keys), but for each



transaction revealed, she must disclose its complete details. To
tackle the counter-party risk problem through cryptographic
guarantees rather than trust assumptions, one can leverage the
general-purpose nature of zkSNARKs to create bilateral proofs
[6]: Alice can generate a proof to show that either (1) her
withdrawal belongs to a compliant set of commitments, (2)
she is the centralized exchange (CEX) compliance team, or (3)
more than t seconds have passed. The actual CEX, receiving
the proof in real-time, can conclude the first statement must be
true because they know they didn’t create the proof themselves
and the timestamp is fresh. If the proof leaks, others can verify
it but they cannot determine which of the three conditions
made it valid. More advanced solutions, like Derecho [17],
add an optional disclosure layer with proof-carrying data for
selective attestation of fund origins.

Prevention and deterrence: Screening mechanisms can be
placed at either entry points, exit points, or both within the
protocol. Specifically, blocking or funds-locking policies can
be enacted by the protocol’s relayer entities upon deposit
and/or when users request withdrawals from the protocol.
An example of this is seen in wallets interacting with the
Railgun protocol [18], where sanctioned lists from regulatory
bodies like OFAC’s SDN list [19] are used as input data to
restrict addresses on or associated with these lists from joining
the anonymity set [20]. Cross-referencing primarily relies on
transitivity check operations of varying computational cost,
typically conducted by on-chain intelligence services such as
TRM Labs or Chainalysis. A transitivity check examines the
connection depth between addresses: given a source address s
and a target address t, it determines if there exists a path of
length k ≤ n where n is the maximum hop count, such that
s →k t through intermediary addresses. For a given address
v, its n-hop transaction neighborhood is defined as:

Nn(v) = {u | ∃ path of length k ≤ n from v to u}
The computational complexity grows exponentially with n as
O(dn), where d is the average number of transaction partners
per address, showing a major limit of these services. To mit-
igate potential vulnerabilities during the computation period,
most privacy pool protocols adopt an ”inclusion with delay” or
”unshield-only standby period” (following terminology from
Railgun which sets it to 60 minutes).

Self-regulatory restrictions: Beyond preventive measures,
protocols may implement restrictive compliance mechanisms
through privacy-preserving KYC solutions. For example, the
Hinkal protocol is based on KYC attestations from established
providers like Coinbase and Binance, implemented through
soul-bound tokens [21]. These non-transferable tokens can
serve as on-chain credentials to enforce tiered access levels
[22]. Additionally, transactional limits and geo-restrictions can
be implemented at the application level to further enhance
compliance measures.

III. PROPOSED SOLUTION

This paper proposes an EVM-compatible wallet that com-
bines standard functions with a built-in privacy layer and an
improved onboarding experience, designed to be as intuitive as

modern digital payment apps. Furthermore, we describe a new
double-layered compliance scheme designed to mitigate the
risks of illicit on-chain activities. The Joint Split transaction
scheme implemented in Tornado Cash Nova and audited [23]
provides the foundational UTXO model and zero-knowledge
proof system, implemented via Circom for circuit arithme-
tization and Snarkjs for the Groth16 proof system, that our
private wallet builds upon (see Section II-B). Our solution
implements ERC-4337 account abstraction [24], where each
user is assigned a smart contract account that serves as their
wallet. This account contract is deployed either when a user
registers with an invitation code or when they are onboarded
by an existing user. The account contract implements core
functionality including, registration in the protocol’s pool, user
operation validation and posting encrypted data blobs (via
insertIntoEncryptedData()) that the application layer can use
for contact synchronization (Fig. 2).

A. Deposit with Bootstrapping

During the first deposit, a bootstrapping process is carried
out by an authority through a three-step protocol involving the
depositor, the authority, and the mixer acting as an intermedi-
ary. Subsequent deposits reference the initial state established
during this process.

1) Request bootstrapping by the depositor (D):
• UTXO = {...}, C = hash(UTXO)
• πD: proving the expected fields are included in the UTXO

and the hash computation
• Send {C, πD, pkD} to the mixer
• The mixer checks wether this is D’s first request (tracked

via a map) and wether πD is valid. If both conditions
hold, it registers C in the contract state (within a Merkle
Tree) and emits BootstrapInit(C, pkD)

2) Bootstrapping by the authority (A):
• A fetches BootstrapInit events
• b

$←− {0, 1}256
• Ĉ = hash(C ∥ b), add to local database < addrD, Ĉ >
• Ĉenc = enc(pkD, Ĉ), Ĉenc hash = hash(Ĉenc∥Ĉ)
• πA: proving the correctness of the previous calculations

starting with a merkle proof for the committed C
• Send {πA, Ĉenc, Ĉenc hash} to the mixer
• The mixer checks wether πA is valid; if so, it

registers Ĉenc hash in the contract state and emits
BootstrappedData(Ĉenc, Ĉenc hash)

3) Actual deposit with the bootstrapped data (D):
• D fetches BootstrappedData events
• D decrypts Ĉenc, obtaining Ĉ, which is then constructed

as a single element of a Bloom filter (more details on this
and the compliance protocol are presented in section C)

• π′
D: proving the knowledge of the preimage of

Ĉ enc hash, i.e.: Ĉ enc and Ĉ that only she was able
to decrypt. The correct generation of the Bloom filter
starting from Ĉ is proven as well.

• Encrypts the Bloom filter with pkD and proceeds with
deposit, attaching it to the calldata.



Figure 1. On-boarding procedure in the same mixer as for private transfers.

B. Private Onboarding

A single-tree architecture was used for all commit-
ments—both onboarding and transfer—to be treated as
UTXOs within the same Merkle tree structure. Rather than
having separate note-based onboarding and UTXO-based
transfers, we leverage the creation of a OTK (one-time key)
that serves as a temporary encryption key for generating a new
UTXO commitment in the shared tree. The advantages of this
approach are two-fold:

• Architectural simplicity: Instead of maintaining separate
systems and circuits for notes and UTXOs, all operations
use the same UTXO model and verification mechanisms.

• Transaction indistinguishability: This approach mitigates
potential onboarding identification by preventing ob-
servers from distinguishing between note redemptions
and UTXO transfers, as onboarding now appears identical
to any other transfer in the system.

The operational flow, illustrated in Fig. 1, is as follows:

1) A OTK is randomly generated by Alice accord-
ing the Nacl encryption scheme [25], consisting in:
skotk ∈ Zp, pkotk = poseidonHash(skotk), enckotk =
getEncryptionPublicKey(skotk.slice(2)).

2) The mixer contract emits an event carrying the UTXO
encrypted using enckotk.

3) An invitation link containing the OTK is transmitted to
Bob.

4) Upon accessing the link, Bob creates his initially-empty
wallet (i.e., adds his pubkey to the onchain registry) and
retrieves all events from the mixer contract.

5) Bob’s wallet identifies relevant commitment events by
attempting decryption with the received skotk.

A key aspect of this approach is that Alice, rather than
Bob, initiates the UTXO creation and nullifier emission. This
architectural choice introduces a trust assumption: Bob must
rely on Alice’s integrity since she generates and possesses the
OTK, granting her theoretical control over initial UTXO. This
is mitigated by Bob automatically spending the initial UTXO
to a new output controlled by himself, immediately after being
onboarded; this would ensure that it is re-encrypted with his
key, granting him sole control over it.

Figure 2. How Alice synchronizes with Bob’s contact.

C. Compliance features

We introduce a two-level compliance system that provides
both proactive screening and retroactive flagging capabilities
while preserving the privacy guarantees of the underlying
UTXO-based pool.

1) Proof of Innocence (POI): The first level implements a
proof of innocence (POI) mechanism using a parallel Merkle
tree structure that maintains compliance states of UTXOs. For
a tree of height h, each leaf corresponds to a UTXO in the
main pool and contains either ”allowed” or ”illicit”. When a
new UTXO is created, its compliance state is determined by:

• Direct verification of the depositing address against sanc-
tions lists,

• Transitive verification of the address’s transaction history
up to n hops, tracing fund flows and checking for
sanctioned addresses (see II-C),

• Inheritance of compliance states from parent UTXOs in
internal transfers.

Funds withdrawal: To withdraw and exit the mixer, users
must provide zero-knowledge proofs πpoi demonstrating that
all input UTXOs reference ”allowed” leaves in the parallel
tree. The proof statement is:

∀i ∈ [1, nIns] :

Let ci = Poseidon(ai, pki, bi)
where pki = DerivePublicKey(ski)
If ai ̸= 0 :

ValidPath(ci, πi, idxi, R) = 1

where Poseidon is a zk-friendly hash function [26], ci is the
commitment, ai is the amount, pki and ski are the public and
private keys respectively, bi is the blinding factor, πi is the
Merkle path, idxi are the path indices, and R is the root of
the parallel tree.

As shown in Fig. 3, a user receiving an ”illicit” UTXO can
choose to burn it to avoid becoming implicated, relinquishing
any control over it. Alternative mechanisms include automatic
return to sender, authority seizure or fair redistribution to
honest participants via the treasury. These processes are en-
forceable at the application level, preventing denial-of-service
attacks by malicious users attempting to pollute the pool with
flagged UTXOs, as illicit funds are automatically subject to



Figure 3. Proof of innocence high-level scheme

these consequences. Future developments could incorporate
rate-limiting nullifiers based on Shamir secret sharing [27],
where repeated spam attempts would lead to secret reconstruc-
tion, effectively de-anonymizing the malicious actor.

2) Ancestral Commitment Compliance (ACC): The second
level enables ancestral compliance flagging through a chain
state propagation mechanism. This can be achieved by al-
lowing an authorized party (e.g. AML officers) to update a
separate sparse Merkle tree (SMT) anytime a deposit com-
mitment C becomes illicit. Since deposits in the mixer are
indeed visible and can be tracked by anyone, the authorized
party keeps an off-chain list of these commitments with their
masked versions Ĉ, namely a nested commitment where the
blinding factor for hiding is generated by the authority. This
masking enables unlinkability - as users learn Ĉ but not the
original C of the received UTXOs, ensuring that the illicit
status propagates confidentially through the UTXO chain. To
refrain from ever-inflating memory allocations, especially after
the coin merge of UTXOs with long history of Ĉ, our wallet
application leverages a bloom filter data structure. A bloom
filter is a fixed-size probabilistic data structure designed to test
whether an element is a member of a set [28]. Each element
Ĉ in the set S is processed by k hash functions, each setting
a bit to ’1’ in an m-bit array. Membership queries check these
k positions - if any bit is ’0’, the element is definitely not in
S, while if all bits are ’1’, the element is likely present with a
configurable false positive rate. Thus, for k = ln(2)·mn (where
n = |S|), the false positive probability is minimized at 1

2k
. A

sequence diagram of the ancestral commitment compliance
flow is described in fig. 4. Authority Actions: To update the
onchain SMT, authorities must provide zero-knowledge proofs
(πmask) demonstrating that the masked commitment is derived
from a valid original commitment that exists in the mixer’s

Merkle tree to enforce integrity. The proof statement is:

Let Ĉ = Poseidon(C, b),
where:

Ĉ is the masked commitment (public input),
C is the original commitment (private input),
b is the blinding factor (private input).

For mixer MT root Rmixer and Merkle proof πmixer :

ValidPath(C, πmixer, idx, Rmixer) = 1

Assert Ĉ = masked commitment.

where Rmixer is the public root of the mixer’s tree, πmixer is the
corresponding Merkle proof for commitment C, and idx is the
leaf index (private input). When calling the insert function on
the SMT contract, the proof πmask will be atomically verified.

Internal Transfer: To spend their funds, users must de-
crypt the chain state field of their input UTXOs and fetch
StatusFlagged events to check for updates on masked
commitments. Before calling transact() via the relayer
contract, the user must encrypt the chain state with the recipi-
ent’s public key and generate a proof of ancestral compliance
(πacc) using the latest SMT root. This proof demonstrates
two critical properties: first, that the bloom filter B1 correctly
represents the union of all parent UTXOs’ chain states being
spent; and second, that no flagged ancestral commitment Ĉ
contained in the SMT is a member of this merged bloom filter.
Since more than one flagging event might occur during in-
between internal transfers, this translates to: ∀Ĉ ∈ SMT, Ĉ /∈



S. The proof (πacc) statement therefore is:

Let B1[n], B2[n] be bit arrays s.t.:
B1[i], B2[i] ∈ {0, 1} ∀i ∈ [0, n− 1]

Assert B1 =
⋃

j∈inputs

Bparentj (via bitwise OR)

For SMT root R and Merkle proof π :

ValidPath(Ĉ, B2, π,R) = 1

For bloom filter parameter k :
n−1∑
i=0

(B1[i] ·B2[i]) ̸= k

where B1 is the merged bloom filter representing the union of
all parent UTXOs’ chain states (computed as the bitwise OR of
individual bloom filters), Bparentj represents the chain state of
the j-th input UTXO, B2 is the private bit array encoding only
the masked commitment Ĉ, k is the number of hash functions
in the bloom filter, R is the public root of the SMT containing
valid masked commitments, and π is the corresponding Merkle
proof, similarly to statement III-C1. The circuit first verifies
the correct computation of the union operation, ensuring that
B1[i] = 1 if and only if at least one parent UTXO has that
bit set. A summation not equal to k would indicate certain
exclusion, hence ancestral compliance, because not all bits
would be set in the intersection of B1 and B2.

In this scenario, the authority sets the bloom filter param-
eters and manages the SMT updates. They handle the key-
value pairs in the SMT. The key is the masked commitment
(in our implementation 32 bytes long), while the value is
the Poseidon hash of the fixed-size bit array. The current
wallet implementation assumes an honest authority, by which
a specific bloom filter construction with SMT key-value pairs
is performed consistently. In future versions, statement III-C2
could be extended to verify the bloom filter construction.
This extension would prove that an SMT key-value pair
was correctly derived using the public parameters k (hash
functions) and m-bit array length.

IV. EVALUATION

A complete flow, from onboarding to private transfer, was
tested on Base Sepolia testnet. The bootstrapping overhead in
the deposit phase (Section III-A) was not yet evaluated at this
stage of the implementation. For onboarding, the only visible
trace in the logs is the bundler calling handleOps() on the
Entry Point contract [24], with only the Relayer address being
leaked. For transfers, no actual token movements are visible
on-chain - only anonymized event logs appear, indicating
that UTXOs were created without revealing their owners or
amounts. Notably, each UTXO, containing its entire chain state
encoded as bloom filter elements, can be decrypted only by
the recipient. We used a bloom filter of size 214 bits with
k = 2 hash functions. With these parameters, according to
p = (1 − e−

kn
m−1 )k, the false positive rate remains below

5% until ∼1600 elements. This provides a good starting
point for balancing space efficiency and false positive rate for

typical usage scenarios (see Section IV-D4 for some security
considerations).

A. Gas and fees considerations

Analysis of gas consumption and associated fees shows
relatively low transaction costs across all features, with most
operations requiring less than 0.01 usd at current rates on
the Base network. Table I shows that individual operations
like insertIntoPoolUsers consume approximately 84k gas units,
while more complex operations such as callWithdraw require
up to 430k gas units. The ancestral commitment compli-
ance feature (πacc) increases transaction costs by a factor of
1.6x compared to proof of innocence alone, primarily due
to additional SMT operations and bloom filter chain state
manipulations. All these transaction costs bear the overhead
of erc-4337 multiple calls and proof verification costs. The
solution optimizes gas usage with its userOp ECDSA signature
verification mechanism, which is more cost-efficient compared
to passkey-based approaches such as that of Daimo wallet [29].
However, to make the implementation of a sponsorship model
through a paymaster system particularly viable, these costs
would need to be further reduced in the future.

Table I
GAS UNITS AND FEES

Operation Gas πpoi Gas πacc gWei πpoi gWei πacc usd
insertIntoPoolUsers 844001 836405 84 84 <0.01

callDeposit 1509178 2528502 151 253 <0.01
callTransact 1716190 2842161 172 285 <0.01

callWithdraw 1700950 2957810 170 295 <0.01

B. Computational cost analysis

The following results show the temporal costs for each
feature, including SNARK proof generation and transitivity
checks, tested on an ACER Aspire 5 laptop with an Intel Core
i7 and NVIDIA GeForce RTX.

Tables II and III show that most operations complete within
reasonable timeframes, with SNARK proof generation consis-
tently efficient at 2 seconds. The two compliance features add
a proving time overhead of around 0.5 and 1.5 sec respectively
for withdrawing with proof πpoi and transferring with proof
πacc. We tested one single ancestral commitment flagged
as illicit, but overhead would scale linearly with additional
flagging events. However, this can be optimized through event
caching mechanisms that only fetch and verify newly flagged
commitments since the last check. The longer durations in
operations like join via invite code (∼ 26 s) are due to
executing both insertIntoPoolUsers and callDeposit sequen-
tially, with necessary mining delays between them to prevent
nonce collisions. Similarly, onboarding via link (∼ 15 s)
requires both insertIntoPoolUsers and insertIntoEncryptedData
with appropriate delays. The transitivity check demonstrates
significant computational overhead, with each additional hop
increasing processing time by roughly 7x, suggesting careful
consideration is needed when implementing deeper transaction
history checks.



Figure 4. Ancestral Commitment Compliance flow

Figure 5. Contracts interactions, example for the deposit method.

Table II
COST ANALYSIS CONSIDERING n = 2 IN THE TRANSITIVITY CHECK

Action SNARK proof (ms) Transitivity check (n=2) Overall time (ms)
Join via invite code 1334.72 X 25941.17
Onboard someone 2097.78 X 7200.74
Onboard via link X X 14486.89
Fund the wallet 2064.56 1193.75 26226.83

Transfer privately 1999.40 1730.96 10792.50
Transfer privately πacc 1999.40 + 1536.33 1730.96 12328.83

Withdraw πpoi 2076.77 + 727.88 X 11847.13

C. AML Considerations and Remediation Mechanics

The tension between privacy preservation and regulatory
compliance onchain has historically been positioned as a
binary choice [30]. Our ancestral commitment compliance
approach attempts to bridge this gap by providing participants

Table III
TIME COST ANALYSIS CONSIDERING n = 3 IN THE TRANSITIVITY CHECK

Action SNARK proof (ms) Transitivity check (n=3) Overall time (ms)
Join via invite code 2156.48 X 28071.54
Onboard someone 672.06 X 5967.50
Onboard via link X X 16499.45
Fund the wallet 702.58 7332.75 26540.74

Transfer privately 2123.27 7817.52 15983.88
Transfer privately πacc 2123.27 + 1574.54 7817.52 17558.42

Withdraw πpoi 2017.69 + 542.55 X 11669.14

with probabilistic knowledge about the provenance of their
funds — certain when legitimate, probable when illicit. This
shifts AML considerations from rigid classification to a more
nuanced risk-based framework, which better reflects the com-
plexities of financial systems, where absolute certainty is rare
and risk mitigation should be adaptive [31].

If a UTXO is found to contain ancestrally tainted funds,
remediation options vary in complexity and impact. One
approach is voluntary burning, which removes the funds but
unfairly penalizes recipients. Alternatively, tainted UTXOs
could be returned to the sender, though this only shifts
the problem backward. A more structured solution involves
directing tainted funds to an authority or community treasury,
enabling governance-based redistribution.

A possible ”cleansing” mechanism could involve a rehabili-
tation protocol where users prove good-faith transactions over
time. Inspired by traditional finance’s amnesty or compliance-
based reintegration [32], this could involve placing tainted
funds in escrow and releasing them upon meeting predefined
legitimacy criteria.

1) The Fungibility Paradox and Practical Enforcement:
Our system introduces what might be called a ”fungibility
paradox” in digital assets. While blockchain tokens are tech-
nically fungible at the protocol level (except for non-fungible
tokens like ERC-721), our ancestral tracing creates a layer of
”practical non-fungibility” based on historical provenance. In
traditional finance, a banknote that passed through illicit chan-
nels before entering general circulation remains spendable by
downstream recipients under good faith acquisition doctrines.
The cost of tracing and reclaiming every tainted physical note
would be prohibitive, but digital assets follow a distinct logic.
With our solution, the marginal cost of identifying tainted
funds approaches zero. This leads to some practical and ethical



considerations:

• Temporal decay of responsibility: Should a UTXO’s
”illicit” status decay over time or transaction hops, similar
to statutes of limitation in traditional law?

• De minimis thresholds: Should trace amounts of tainted
funds (e.g., below 1% of a UTXO’s value) trigger the
same responses as predominantly tainted UTXOs?

• Innocent holder protection: Can algorithmic markers
distinguish between knowing participants in illicit trans-
actions and innocent recipients?

These considerations suggest implementing graduated re-
sponses rather than binary classifications, potentially assigning
each UTXO a continuous ”compliance score” that determines
appropriate remediation pathways.

D. Security and Privacy considerations

We discuss the security and privacy strengths and weak-
nesses across these dimensions: Proof system soundness,
Collision resistance, Bloom filter privacy and compliance
guarantees and overall wallet architecture security.

1) Proof system soundness: The application relies on
Groth16, which provides zk-SNARKs with constant size and
efficient verification [33]. While Groth16 requires a trusted
setup, this is mitigated by using the established setup from
Tornado Cash Nova for the base JoinSplit circuit which is
here used for the additional proof of innocence and ancestral
commitment circuits. The commitment scheme c =

∑
i wi · bi

- where wi are the private witness values and bi are points
on the BN254 curve, relies on the hardness of the discrete
logarithm problem. Advances in the Special Tower Number
Field Sieve attack have reduced its security from from 128 bits
to (∼ 102 bits) [34], lowering the soundness of each proof to
a forgery probability of 2−102, below the recommended 128-
bit for cryptographic applications, though this is arguably less
concerning as even some high-volume layer 2 rollups operate
with provers below 128 bits. Finally, the vulnerability often
associated with incorrect implementations of the Fiat-Shamir
transformation [35], does not affect our standard Groth16-
based solution.

2) Proof Non-Malleability: Our system leverages the inher-
ent non-malleability properties in [33] to ensure that a valid
proof cannot be transformed into a different valid proof for
the same statement without knowledge of the witness. Fur-
thermore, our implementation binds each proof to its specific
transaction context via a hash of critical parameters:

txContext = Hash

(
R ∥ inputNullifiers ∥
outputCommitments ∥ publicAmount

)

where R is the Merkle tree root. This binding, together with
the use of ECDSA signatures to secure the transaction data,
ensures that any attempt to modify a proof (e.g., by altering
the recipient address) invalidates the proof. As a result, replay
attacks and proof pollution are effectively prevented.

3) Collision resistance: In our chain state propagation de-
sign, when the authority flags a masked commitment as illicit,
they have computed: Ĉ = Poseidon(C, b) where C is the
original commitment and b is a blinding factor. Furthermore,
the authority uses hash functions to compute the indices for
the bytes32 element to be check against the bloom filter.
In either case, for Poseidon H : 0, 1∗ → 0, 1n, collision
resistance means an adversary cannot efficiently find x1, x2

where x1 ̸= x2 such that H(x1) = H(x2). Collision resistance
is achieved through Poseidon construction based on the non-
linear permutation using S-boxes defined as S(x) = xd over
the prime field Fp where d is 5 and Fp is 254-bit, the
linear MDS matrix multiplication and round constants [26].
Specifically, for bloom filter indices, given inputs x1 ̸= x2,
it should be computationally infeasible to find collisions in
Poseidon(x1) mod m = Poseidon(x2) mod m. This ensures
the system maintains 128-bit security against collision attacks.

4) Bloom filter security: We propose strategies to protect
our bloom-filter system from two attack vectors:

i. Chain state pollution with repeated coin merges that could
inflate the false positive rate.

ii. Input manipulation where a malicious authority could
carefully select inputs to maximize hash collisions [36].

i. For a bloom filter with m bits and k hash functions, the
probability of false positives after n merges can be expressed
as:

Pfp(n) =
(
1− e−

kn
m

)k
· Pcollision

where Pcollision is negligible under standard cryptographic
assumptions (see above). To prevent excessive false positives
from repeated merges, we propose a rate limiting Rmax at the
smart contract level for a block time period t:

Rmax(t) =
m

k
ln

(
1

τ(t)

)
where τ(t) is an adaptive threshold that becomes more strin-
gent as transaction volume increases within a time window
t:

τ(t) = τbase · e−αV (t)

with V (t) representing the transaction volume and α a tuning
parameter. Future implementations could require users to cre-
ate fresh commitments with new bloom filters when capacity
thresholds are reached, preserving the cryptographic proof
chain between old and new states.

ii. The authority only adds single masked commitments Ĉ
into the SMT, with each Ĉ encoded as one element in an
empty bloom filter. While the authority could theoretically
try to select Ĉ values that maximize collisions in the bloom
filter, this attack vector is severely limited since chain states
are encrypted with recipient keys. Even in case of collusion
with a recipient, visibility would be restricted to only those
chain states involved in transactions with the colluding party.
Therefore, while we could maintain a per-epoch limit on
SMT insertions as a safeguard (i.e., inserted/epoch < m

2k ),



this would be primarily a precautionary measure against DoS
attacks rather than a strict security requirement for the system’s
privacy guarantees.

Overall, our design mitigates transaction graph manipulation
attacks, funds laundering attempts. Since every UTXO inherits
the union of its parent UTXOs’ bloom filters, and flagged com-
mitments are permanently recorded in the authority’s SMT, no
sequence of transfers can remove a taint once applied. Should
temporal decay or de minimis thresholds be implemented
in the future (see Section IV-C), a different threat model
would arise requiring additional safeguards against both attack
vectors above.

5) Smart wallet security: The wallet architecture imple-
ments standard security measures to protect against smart
contract vulnerabilities that often lead to unauthorized op-
erations, frontrunning, or exploiting gasless transactions. In
the EntryPoint contract, a replay protection mechanism em-
ploys a double-layer nonce structure for userOp, defined as
nonce = (key ≪ 64)|seq, where key is a 192-bit value and
seq is a 64-bit sequence number. Validation is performed with
nonceSequenceNumber[sender][key] + + == seq, ensuring
each nonce is used only once as the sequence number in-
crements immediately after validation.

For protection against reentrancy attacks, the account
contract inherits from OpenZeppelin’s ReentrancyGuard and
strictly adheres to the checks-effects-interactions pattern. The
relayer architecture provides additional security through other
mechanisms: The bundler’s handleOps() function ensures
atomic execution guarantees, while mandatory signature verifi-
cation precedes any state-changing operations. To prevent DoS
attacks, strict gas limits are enforced on userOp execution.

V. CONCLUSIONS

Regulatory alignment in blockchain applications remains
an ever-present challenge. We have proposed a smart wallet
implementation that embeds privacy and compliance features
by design. The first compliance feature is represented by proof
of innocence generation upon withdrawal, where compliance
states of input UTXOs are checked against a pool of sanc-
tioned addresses and their transaction histories maintained in a
parallel Merkle tree. We further propose a mechanism for man-
aging UTXO chain states through fixed-length bloom filter bit
arrays. In this approach, for transactions consuming multiple
UTXOs, newly created ones inherit a composite state through a
union operation of predecessor states. The probabilistic nature
of bloom filter checks represents a key trade-off in determining
fund legitimacy. This architecture opens up new possibilities
for implementing nuanced compliance policies, especially for
AML requirements, where blockchain operations can be either
completely ”clean” or potentially suspect with quantifiable
degrees of uncertainty. While our current implementation
assumes a honest authority, verifying bloom filter construction
in zero knowledge would reduce this trust requirement in
future versions. We expect subsequent work to explore this
trade-off more deeply, particularly examining how authorized

parties can effectively regulate privacy-preserving applications
with fair oversight and autonomy.
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