
ar
X

iv
:2

50
6.

04
63

4v
1

 [
cs

.C
R

]
 5

 J
un

 2
02

5

Incentivizing Collaborative Breach Detection

Mridu Nanda
Duke University

Michael K. Reiter
Duke University

Abstract—Decoy passwords, or “honeywords,” alert a site to
its breach if they are ever entered in a login attempt on
that site. However, an attacker can identify a user-chosen
password from among the decoys, without risk of alerting
the site to its breach, by performing credential stuffing, i.e.,
entering the stolen passwords at another site where the same
user reused her password. Prior work has thus proposed that
sites monitor for the entry of their honeywords at other sites.
Unfortunately, it is not clear what incentives sites have to
participate in this monitoring. In this paper we propose and
evaluate an algorithm by which sites can exchange monitoring
favors. Through a model-checking analysis, we show that using
our algorithm, a site improves its ability to detect its own
breach when it increases the monitoring effort it expends for
other sites. We additionally quantify the impacts of various
parameters on detection effectiveness and their implications for
the deployment of a system to support a monitoring ecosystem.
Finally, we evaluate our algorithm on a real dataset of breached
credentials and provide a performance analysis that confirms
its scalability and practical viability.

1. Introduction

According to Verizon [81, Fig. 15] and IBM [41, Fig. 7],
the most prevalent initial attack vector causing data breaches
continues to be stolen credentials. Moreover, the sources of
these stolen credentials are often themselves data breaches—
over 20% of all data breaches compromise credentials [81,
Fig. 24]. Data breaches are notoriously slow to be identified
(207 days by one recent estimate [66]) and those stemming
from stolen credentials are even harder to discover, requir-
ing an average of 229 days after initial compromise [41,
Fig. 8]. These trends will likely persist, given the ubiquity
of passwords as a primary authentication mechanism [39].

Honeywords [44] seek to shrink the window between
the attacker’s use of breached passwords and the defender’s
realization that it has been breached. Honeywords are decoy
passwords created by the defender and stored alongside
user-chosen passwords in its credential database; login at-
tempts using honeywords alert the site to its breach, since le-
gitimate users do not know them. An attacker who breaches
the password database and attempts to harvest its accounts
can sidestep detection only if it can determine which of the
passwords associated with each account is the user-chosen
one. Methods to select honeywords to make this difficult
for the attacker have been the subject of much research
(e.g., [44], [28], [5], [24], [83], [11], [37]).

Regardless of the honeyword-generation method, how-
ever, a reliable way for an attacker to separate the user-
chosen password from the honeywords is to attempt to use
these passwords at another site where the same user has
an account. If the user reused her password (or a similar
one) there—as users often do [47], even despite password-
manager support [62]—then the password that works at the
remote site will almost certainly be the user-chosen pass-
word at the breached site. Subsequent honeyword-system
designs (e.g., [84], [85]) have thus developed methods by
which a site can remotely monitor the login attempts at other
sites for entry of its honeywords. This monitoring, however,
consumes nontrivial resources at sites where monitoring
occurs and can exacerbate the load induced on those sites
by credential-stuffing campaigns, which can reach denial-
of-service volumes in some cases (e.g., [56]).

Our credential ecosystem is therefore held captive by
misaligned incentives: remote monitoring of login attempts
for honeyword use is necessary to overcome a key vulnera-
bility of honeywords—and thus to unlock their adoption—
and yet that remote monitoring requires that each site invest
potentially significant resources to protect others. In this
paper, we offer a way out. The key insight of this work
is that the dependence between sites (reused passwords)
that poses a risk to one site’s breach-detection capability
is symmetric: common users at the two sites provide ac-
counts at each site whose honeywords can be sidestepped
by stuffing credentials at the other, without the risk of
alerting either site to its breach. In this paper we leverage
this insight to develop a simple and scalable algorithm to
support an ecosystem of sites, each self-interested, to barter
monitoring favors so as to enable each site to improve its
own breach-detection capability by increasing the amount of
monitoring it performs for others. In doing so, we argue that
this algorithm could serve as the basis for a self-sustaining
breach-detection ecosystem.

The technical challenges to developing such an algo-
rithm are several. For example, the algorithm must accom-
modate sites with varying resource constraints so as to not
dissuade smaller sites from participating in the ecosystem.
It must also support decentralized participation based solely
on local information, since each site must retain control
over its resource-allocation decisions and protect sensitive
internal information. And most importantly, the algorithm
should effectively elevate the ability of a site to detect its
own breach when its credentials are stuffed elsewhere—
even though sites cannot know when attacks will occur,
where the attacker will stuff, or how aggressive an attacker

https://arxiv.org/abs/2506.04634v1

may be. We construct a bidding algorithm that, we show,
achieves these goals and, moreover, yields risk for each site
comparable to the best (myopic) bidding strategy it could
adopt. We further show that decreasing risk according to our
metric translates to improved security for sites, against an
attacker who attempts to harvest the accounts of a previously
breached site through strategic stuffing attempts at peers.

Our strategy to evaluate the efficacy of our approach
begins with model-checking across a wide array of pa-
rameters controlling: user account placement at sites, site
strategies, attacker aggressiveness, bidding frequency and
predictability etc. Owing to the limitations of existing
model-checking tools, we implemented a custom model-
checker using application-specific optimizations to better
scale our analysis. This revealed the key factors that drive
our algorithm’s near-optimal performance and resilience to
strategic attackers, offering guidance for real-world deploy-
ment (e.g., preventing sites from predicting future bidders).
To complement our model-checking analysis, we ground
our simulation in real-world conditions using user account
distributions and password reuse rates from a previously
breached dataset covering ≈ 8000 sites and ≈74 million
accounts. In summary the contributions of this work are:
• We design the first algorithm for collaborative breach

detection by bartering monitoring resources across sites,
thereby making practical honeyword adoption viable. Via
model checking, we show that our algorithm enables a site
to reduce its risk as effectively as any alternative strategy.

• Through a second model-checking analysis, we show that
a site’s risk reduction via our algorithm directly translates
to stronger protection against an attacker who tries to
evade detection by stuffing breached credentials at peer
sites. We show the ecosystem is self-sustaining: sites are
incentivized to invest in protecting others to boost their
own security, creating cyclic improvements. While popu-
lar sites drive early gains, our algorithm also incentivizes
unpopular sites’ participation, both groups achieving com-
parable protection despite differing resource constraints.

• We quantify our algorithm’s effectiveness using a publicly
leaked breach dataset. Because model checking is com-
putationally prohibitive at this scale, we evaluate security
through simulations that incorporate user placement and
password reuse rates from the dataset, grounding our
analysis in real-world conditions.

• We demonstrate our algorithm’s scalability to millions of
collaborating sites.

• We use our model-checking analyses to inform a system
design that supports a breach-detection ecosystem.

2. Related Work

2.1. Breach Detection

Breach discovery today works primarily by scanning
for breached datasets across various sources, such as the
dark web, where the data might be advertised for sale or
simply exposed. Once a breach is discovered, breach alert-
ing services help affected users and organizations become

aware of their exposure. Specifically, compromised creden-
tial checking services (e.g., [38], [73], [54], [69]) have seen
wide deployment, but do not themselves discover breaches.
Dataset breaches that are not advertised or exposed, but
instead are used directly by the attackers who breach them
to harvest accounts, remain invisible to these defenses.

Honey accounts [22], [79] and honeywords are deceptive
techniques to leverage an attacker’s account-harvesting ef-
forts to discover credential database breaches (indicated by
honey-account or honeyword use). A honey account must
be difficult to distinguish from real accounts to yield a high
true detection rate, and ensuring a quantifiable rate of false
detections for database breaches (versus another form attack
on its password, e.g., online guessing) remains a challenge,
especially when the password for the account is shared with
another site (as in the Tripwire study [22]). True- and false-
detection rates for honeywords have received considerably
more study (e.g., [44], [28], [5], [24], [83], [11], [85], [37]).
Some works have offered proposals to monitor for attacker
efforts to reduce the true-detection rate of honeywords by
first trying them in login attempts at other sites [84], [85],
though none have tackled how to motivate sites to support
this monitoring, which is our focus here.

2.2. Resource Allocation

Our goal is to devise a mechanism for allocating com-
putational resources so that when a site invests resources to
secure its peers (i.e., by enabling remote monitoring) it gains
protection in return. Such allocations cannot be dictated by
a centralized “social planner,” as it would require access to
private, changing preferences and constraints, and it would
impose decisions about how each site should expend its own
computational resources when enabling remote monitoring
for peers—decisions that sites are neither willing nor able
to delegate. Instead, we aim to devise a peer-to-peer mech-
anism that allows sites to trade computational resources.

This goal echoes prior work on P2P content distribution,
notably the BitTorrent protocol [14], where agents strategi-
cally upload bandwidth to maximize their own download
speed, creating an incentive-driven exchange. Most relevant
to our work is Levin et al. [57], which models BitTorrent
as an auction and presents proportional response as an
alternative auction-clearing mechanism. A client using the
proportional response strategy uploads bandwidth to a peer
in proportion to the bandwidth previously received from
that peer. Through simulations, they show that this strategy
yields fairness, robustness (to Sybils and some collusion),
and competitive performance.

The proportional response algorithm also underpins our
P2P design. Instead of exchanging bandwidth, a site barters
monitoring favors, providing proportionally more favors
(within its resource constraints) to a peer from whom it
receives more. While our approach builds on Levin et al.,
key assumptions in their setting do not hold here. They
aim to optimize performance, where small slowdowns are
acceptable, and treat all bandwidth contributions as inter-
changeable. In contrast, our focus is on security, where even

brief lapses can expose vulnerabilities, and not all favors are
equally valuable—some peers are better suited to monitor
others due to higher user overlap. The Tycoon project [53]
also uses proportional response for resource allocation, but
in a centralized setting where the auctioneer controls the
resources—an assumption incompatible with our setting
where sites retain control over their computational resources.

Many convergence results for proportional response dy-
namics exist in Fisher markets [92], [8], [12], [50], [90],
where agents with fixed budgets buy fixed supplies. These
models do not apply here, as we explore exchanging mon-
itoring favors without a substitute currency or support-
ing infrastructure. Our setting aligns better with exchange
economies, where agents trade initial resource endowments
to maximize utility. Wu and Zhang [88] proved convergence
when all agents value goods equally; Branzei [9] extended
this to heterogeneous valuations. However, Branzei assumes
simultaneous updates by all agents—a “fair exchange” of
bids—which is impossible without a trusted third party [68],
[77], [32], not required in our setting.

2.3. Cooperative Security

Interdependent security models, introduced by Kun-
reuther and Heal [51], examine how a self-interested agent’s
security decisions directly impact peers. These models often
use graph structures, where nodes represent agents mak-
ing security investments and edges represent dependencies
influencing risk exposure. One class focuses on defender-
defender interactions, where agents balance reducing their
own risk with minimizing security investment costs through
strategic interaction with peers [86], [55], [63], [43], [2].
Another class includes attacker-defender dynamics, analyz-
ing how adversarial behavior shapes security decisions [64],
[59], [36], [1], [67]. In both, the assumption is that agents
can achieve their security goals independently, albeit possi-
bly requiring increased investment. However, in our setting,
cooperation is not merely an optional enhancement but a
fundamental requirement for detecting breaches.

A related but distinct area is collaborative intrusion
detection, where agents improve the accuracy of their own
intrusion detection assessment by sharing alerts and infor-
mation with peers. Prior work has explored system-level
mechanisms for exchanging alerts [89], [91], [42], [30], [25].
In contrast, our work builds on existing remote monitoring
mechanisms [84], [85] and focuses on the incentives of
exchanging monitoring favors. Notably, GUIDEX [93] and
Fung’s [29] also consider incentive-driven resource sharing,
but do not quantify the resulting security improvements,
which is central to our approach.

3. Inter-Organization Model

We consider a collection S of |S | = n sites, and a
collection U of |U | = ℓ users. Each user has an account
at one or more of the sites. We use s.users ⊆ U to denote
the set of users with accounts at site s ∈ S , and u.sites ⊆ S
to denote the set of sites at which user u ∈ U has accounts.

Naturally, u ∈ s.users if and only if s ∈ u.sites. Each
account is protected using a password selected by its user.

The password database at site s includes, for each
account, a user-chosen password as well as a number of
honeywords, of which the user is unaware. The honeywords
for an account together with the user-chosen password are
called the sweetwords for the account. Honeywords exist to
alert s to the breach of its password database by an attacker,
in that a login attempt at s using a honeyword for the
attempted account is evidence of the breach of s’s database.
For this reason, an attacker who breaches s’s password
database instead stuffs the sweetwords for an account at
the same user’s accounts at other sites, in the hopes of
determining the user-chosen password due to its reuse at
those other sites [15], [70], [82].

To counter this threat, a site s can ask another site s′ to
monitor for the entry of s’s honeywords in login attempts at
s′. The mechanics of how this monitoring is done without
exposing s’s sweetwords to s′, and without exposing to s any
other passwords used in login attempts at s′, are described in
prior works [84], [85] and are not our concern here. Rather,
we abstract this process as follows: s poses a monitoring
request to s′, which names an account for which logins
should be monitored. If s′ accepts this monitoring request,
then any incorrect login attempt to the account named in
the request will generate a monitoring response to the site
s that created it. If the password used in that login attempt
at s′ is a honeyword for the same user’s account at s, then
s learns the honeyword used and can treat it as if it were
attempted locally, for the sake of breach detection.

Each site s has a monitoring capacity s.cap ∈ N, which
is the number of monitoring slots in which it can host moni-
toring requests. Each site is rational in the sense that desires
to trade its slots for those at other sites that most effectively
help detect its own database breach. To do so, each site can
occasionally reallocate its slots to other sites; we refer to
such a reallocation as a bid. That is, to make a bid, site
s assigns to each other site s′ ∈ S \ {s} a number of slots
s.allocTo(s′) ∈ N such that

∑
s′∈S \{s} s.allocTo(s′) ≤ s.cap,

and solicits s.allocTo(s′) monitoring requests from each s′.
The focus of this paper is to develop a bidding strategy

that rational sites can use to trade monitoring slots with
peers. The proposed bidding strategy should have several
desirable properties to incentivize adoption: it should reward
reciprocity, so sites that contribute more monitoring capacity
receive more slots in return. It should ensure fairness by
allocating similar numbers of slots to similarly at-risk peers,
and by including smaller or less popular sites. Crucially,
the strategy must be locally computable, allowing each site
to operate independently based on its own information, and
scalable to enable deployment across large networks of sites.

3.1. Site Threat Model

We assume that each site is rational in wishing to
use its bidding power to provide itself the best chance of
detecting a breach of its own password database. Aside
from manipulating its bids to accomplish this, however, we

assume sites behave correctly. For example, a site s accepts
monitoring requests from s′ in accordance with the alloca-
tion s.allocTo(s′) in its bid. (Prior work [84] also discussed
how s′ could audit s to ensure it does so.) We believe
this assumption is consistent with sites that conscientiously
collaborate for their collective defense. We also assume
that the exchange of a site’s bid to its peer and its peer’s
deployment of the monitor request occur instantaneously.

Each site s knows the set of sites S with which it is
collaborating, as well as its own users s.users. However,
s is not privy to the any of the bids a peer receives,
nor does it know any peer’s capacity. We consider two
possibilities regarding how much information s has about
the accounts at a peer s′. Either s knows the membership
of s.users ∩ s′.users, which we presume it would learn by
running a private set intersection (psi) protocol [72] with s′,
or s knows only |s.users ∩ s′.users|, which it could learn by
running a PSI cardinality (psica) protocol (e.g., [48], [20],
[23], [26], [19]) with s′. For simplicity, we assume that all
sites have the same privacy level, privLvl ∈ {psi, psi}, and
uniformly use either protocol with their peers.

3.2. Risk

The allocations received from another site s′ (in its bids)
are valuable to site s, since they provide an opportunity
to deploy that many monitoring requests to s′. But not all
allocations from different peers equally enhance s’s ability
to detect its own breach. For example, if s and s′ share no
users and the attacker knows this—and we will presume it
does (see §4.1)—then allocations from s′ are not useful to
s; in this case the attacker will never stuff sweetwords stolen
from s at s′, as it provides no help in harvesting accounts
at s. Thus, the risk a site incurs from its peers is intimately
tied to the specific mechanics of credential stuffing.

Generally, site s measures the usefulness of an allocation
s′.allocTo(s) by the amount of defense it provides for the
users that it shares with s′, since those are the only users
whose accounts will be stuffed at s′ to harvest accounts at
s. More precisely, consider an attacker stuffing f accounts
at s′ for users in s.users∩ s′.users after s has deployed k =
s′.allocTo(s) monitor requests to s′. Let dodge(s, s′, k, f) be
the event that none of the monitor requests deployed by s
to s′ was for one of the f users whose accounts the attacker
stuffs at s′. We define a random variable � f , termed the
attacker gain when stuffing these f accounts, by

� f =

{
f if dodge(s, s′, k, f)
0 otherwise

That is, if the f stuffing attempts at s′ do not overlap with
the (up to) k accounts monitored by s, then the attacker
gains the f accounts it stuffed. Otherwise, the attacker’s
stuffing attempts risked alerting s to its breach, and so we
estimate the attacker’s gain as nothing. We define the risk
that s incurs from an allocation k = s′.allocTo(s) as

s.risk(s′, k) = max
0≤ f≤n′

E
(
� f

)
(1)

where n′ = |s.users ∩ s′.users|. Since n′ of s’s accounts are
vulnerable to stuffing attempts at s′, it will be useful to also
define risk as a fraction of n′, i.e.,

s.normRisk(s′, k) =
s.risk(s′, k)

|s′.users ∩ s.users|
(2)

Since E
(
� f

)
= f × Pr(dodge(s, s′, k, f)), to compute

Eqn. (1), we need to quantify Pr(dodge(s, s′, k, f)). Doing
so depends on what s knows about s.users∩ s′.users. In the
psi case, i.e., where s knows the membership of s.users ∩
s′.users, this probability is

Pr
(
dodge(s, s′, k, f)

)
=

(
n′− f

min{n′,k}

)(
n′

min{n′,k}

) (3)

assuming s deploys monitor requests to s′ for min{n′, k}
accounts in s.users∩ s′.users chosen uniformly at random.
The numerator is the number of ways that s could choose
to deploy requests for min{n′, k} accounts from the n′ − f
that the attacker does not stuff, whereas the denominator is
the number of ways it could choose to deploy requests for
min{n′, k} accounts from all n′. In contrast, in the psica case
where s knows only |s.users ∩ s′.users|, this probability is

Pr
(
dodge(s, s′, k, f)

)
=

(
|s.users|− f

min{|s.users|,k}

)(
|s.users|

min{|s.users|,k}

) (4)

Since s does not know s.users ∩ s′.users, it must deploy
monitors requests for accounts chosen from s.users. The
probability is given by the number of ways s can choose
accounts that the attacker does not stuff divided by the total
number of ways it can choose accounts.

Whenever s receives a new bid k = s′.allocTo(s) from s′,
we assume that s deploys not only k monitors to s′, but also
redeploys monitors to each other site, in accordance with
the bid last received from each. We quantify the risk that s
incurs per bid r′ in an auction of r bids (i.e., 1 ≤ r′ ≤ r) as

s.risk(r′) =
∑

s′∈S \{s}

s.risk(s′, k) (5)

s.normRisk(r′) =
∑

s′∈S \{s}

s.normRisk(s′, k) (6)

where k = s′.allocTo(s) is the allocation to s in bid r′′ ≤ r′,
where s′ issued bid r′′ but no subsequent bids prior to (or
including) r′.

3.3. Bidding sequence

We assume that sites bid sequentially, with each bid
received instantaneously by all others.We are agnostic to
the mechanism that dictates the order in which sites bid.
For example, a site’s bid might be accepted only once it
is authorized to bid by its selection through a randomized
outcome on which all sites can agree (see §7).

We do not assume a specific method for determining
the bidding order, but we characterize sequences based on
a parameter called slack, which defines an upper bound on

difference between the most and fewest bids made by any
site. When slack = ∞, there is no constraint; when slack =
1, a site may only bid again after all others have bid at least
as many times.

3.4. Exhaustive bidding strategy

Our goal is to develop a bidding strategy for each site
s, which will be our focus of §3.5. We focus on “prac-
tical” bidding strategies that are computationally efficient
and leverage only the locally visible history at each site
for that site to make a bid. Our goal is for the practical
bidding strategy to remain competitive with an exhaustive,
though impractical, strategy that always selects the “best”
next move. We evaluate a practical bidding strategy by
comparing the risk to a particular site s∗ when all sites use
it, versus when only s∗ switches to an exhaustive strategy
(with others remaining practical; c.f., [57]). If the difference
is modest, we deem the practical strategy adequate. The
exhaustive strategy is defined by the following parameters:
• s∗.cutline: When s∗.cutline = true, s∗ is excluded from the

dictated bidding sequence and instead can choose to bid
when it wants (subject to the slack constraint), essentially
“cutting in line”. If s∗.cutline = true and s∗ bids, then
some other s must bid before s∗ is allowed to bid again,
lest s∗ defer others’ bids indefinitely. If s∗.cutline = false,
then it must wait its turn in the bidding sequence to bid.

• s∗.foresight: This parameter is a natural number that
indicates the number of forthcoming bidders that s∗ can
predict accurately. For example, if sites bid in a determin-
istic (e.g., round-robin) fashion, then s∗ will generally be
able to predict the full sequence of bidders in advance.
It could then use this information in determining what to
bid, if it is the next bidder, or, if s∗.cutline = true and
slack allows, if it chooses to bid next.

• s∗.lookahead: This parameter is a natural number that
indicates the depth beyond the next bidders predicted
s∗.foresight, to which s∗ analyzes all possible bidding
sequences. That is, s∗ can explore all possible bidding
sequences of length s∗.lookahead, beginning after the
s∗.foresight bidders that it knows, in order to inform its
current bid or, if s∗.cutline = true and slack allows, its
choice of whether to insert a bid. In this exploration, s∗
considers every other possible bidder (subject to slack)
as equiprobable. We always permit s∗.lookahead ≥ 1.

In order for the exhaustive s∗ to make the “best” pos-
sible allocation looking forward s∗.foresight+ s∗.lookahead
steps, we equip it with access to each peer’s capacities and
bids, which is disallowed generally. To limit the search
space, we restrict the exhaustive s∗ to bidding in fixed,
tunable increments; otherwise, its possible allocations would
grow exponentially with capacity. Given fixed s∗.cutline,
s∗.foresight, and s∗.lookahead, s∗ evaluates the tree of pos-
sible outcomes based on the foreseeable s∗.foresight bidders
followed by equiprobable s∗.lookahead bidders, considering
all potential bidding positions if s∗.cutline = true. If it is s∗’s
turn or s∗.cutline = true and bidding is optimal, s∗ places
the bid that minimizes s∗.risk per Eqn. (5).

3.5. Proportional-response bidding strategy

Now we propose a practical bidding strategy. We say the
strategy is “practical” in that, unlike the exhaustive strategy
described in §3.4, this strategy can be computed efficiently
with only local information, namely a site s’s own capacity,
the sequence of bids s has received so far, and either
|s.users ∩ s′.users| or s.users ∩ s′.users for s′ ∈ S \ {s∗}
depending on the psica or psi setting, respectively.

The practical bidding strategy that we explore here is
proportional response, shown as Alg. 1. On its first bid
(P2a), s must bootstrap some information about the risk
each of its peers poses to its accounts, so that it can allocate
its capacity proportional to the peer providing the least risk.
Since s does not know any peer’s capacity, it calculates its
per-peer risk assuming it will receive one slot from each
peer. Since s would like to allocate resources proportional
to how little risk each peer poses (rather than how much), it
calculates s.baseWt(s′) by first computing one minus each
peer’s proportion of the total risk. These values sum to n−2,
so s normalizes by this sum to obtain s.baseWt(s′) that sum
to one. Finally, s uses these baseline weights to allocate a
proportion of its capacity to each peer s′.

Each time s receives a new bid from s′ (P1b), s incor-
porates this bid into the average allocation s.allocFr(s′) that
it has received from s′, using exponential smoothing with
smoothing factor s.smf. Using s.allocFr(s′), s then updates
its s.avgRisk(s′). By averaging the risk incurred per peer,
P1b safeguards against sites that strategically reallocate
capacity to gain more slots—for example, by giving all
capacity to one peer in one round and abruptly switching
to another in the next. This averaging takes place only
after receiving two bids (i.e., see P1a); since s′’s first bid
(P2a) is capacity-agnostic, s including this bid in its average
calculation could falsely inflate how many slots s should
expect from s′ in the future.

When s bids in response to the slots it has received
(P2b), it allocates its capacity proportionally to the site that
provided the least average risk. To do so, s first calculates
one minus the proportion of total average risk provided per
peer. These values sum to n − 2, so s normalizes them
to obtain weights s.weight(s′) that sum to one. Overall,
s.weight(s′) incentivizes reciprocity by rewarding peers that
minimized s’s risk.

Relying only on s.weight(s′) to calculate s’s proportional
bid to s′, however, could distort incentives. For example, if s
received zero average risk from all peers except s′, it would
split s.cap evenly among the zero-risk peers, leaving no slots
for s′. Such an allocation is really unfair if s′ provided many
slots k to s but resulted in a minuscule s.risk(s′, k) due to
large |s.users ∩ s′.users|. To mitigate such situations, P2b
interpolates s.weight(s′) and s.baseWt(s′) with the inverse
of one plus the maximum s.avgRisk(s′′) that s receives
from any peer s′′. This ensures that peers that pose similar
average risk to s receive similar allocations from s (subject
to the baseline risks), while still maintaining proportional
responses from s when peers pose varying risks.

Algorithm 1 Proportional Response Strategy (privLvl)
P1) When site s receives an allocation k from s′:

a) If this is the first or second allocation to s from s′, s
sets

s.allocFr(s′)←


min{k, |s.users|}

if privLvl = psica
min {k, |s.users ∩ s′.users|}

if privLvl = psi

b) After the first two allocations to s from s′, s updates:

s.allocFr(s′)←



(
s.smf ×min {k, |s.users|}
+ (1 − s.smf) × s.allocFr(s′)

)
if privLvl = psicas.smf ×min

{
k,

∣∣∣∣∣s.users ∩
s′.users

∣∣∣∣∣}
+ (1 − s.smf) × s.allocFr(s′)


if privLvl = psi

s.avgRisk(s′)← s.risk(s′, s.allocFr(s′))

P2) When site s bids:
a) If s has not yet received an allocation from some site

in S \ {s}, then s allocates

s.baseWt
(
s′
)
←

(
1

n − 2

) (
1 −

s.risk(s′, 1)∑
s′′∈S \{s} s.risk(s′′, 1)

)
s.allocTo

(
s′
)
←

⌊
s.cap × s.baseWt

(
s′
)⌋

for each s′ ∈ S \ {s}.
b) After s has received an allocation from every site in

S \ {s}, s allocates

s.weight
(
s′
)
←

(
1

n − 2

) (
1 −

s.avgRisk(s′)∑
s′′∈S \{s} s.avgRisk(s′′)

)
µ← max

s′∈S \{s}
s.avgRisk(s′)

s.allocTo
(
s′
)
←

s.cap ×


(

1
1+µ

)
× s.baseWt(s′)

+
(

µ
1+µ

)
× s.weight(s′)




for each s′ ∈ S \ {s}.

3.6. Evaluation

We evaluate the proportional strategy (Alg. 1) to under-
stand whether: (1) a site can reduce its risk by increasing
its capacity; (2) unpopular sites incur comparable risk to
their popular peers; and (3) the proportional strategy incurs
comparable risk to the exhaustive strategy. To study this,
we conduct model-checking experiments over the parameter
space defining the exhaustive strategy, proportional strat-
egy, and bidding sequences. In each auction, one site—s∗
—uses either the exhaustive or proportional strategy (de-
noted s∗e or s∗p, respectively) while all peers S \ {s∗} always
use the proportional strategy. We allow s∗ to set its param-
eters (marked with a “∗”) independently of its peers. To
examine s∗.risk across varying environments, we define:
• s∗.pop: This parameter is defined over [0, 1] for s∗ and

controls how u.sites is determined per u ∈ U. By varying
s∗.pop we generate a range of user placements that model
a s∗ with varying popularity. Assigning each site a unique
site identifier s.id ∈ {1, . . . , n} such that s∗.id = 1, we set

Pr[s ∈ u.sites] = (1−s∗.pop)×
s.id
n
+s∗.pop×

(
1 −

s.id − 1
n

)
So, when s∗.pop = 1, s∗ is the most popular site: Pr[s∗ ∈
u.sites] = 1, versus Pr[s ∈ u.sites] = 1/n for the least
popular site s with s.id = n. When s∗.pop = 0, s∗ is the
least popular site: Pr[s∗ ∈ u.sites] = 1/n, versus Pr[s ∈
u.sites] = 1 for the most popular site s with s.id = n.
When s∗.pop = 1/2, sites are equally popular, with Pr[s ∈
u.sites] = n+1

2n per s.
• s.capC: This parameter is the capacity coefficient, defined

over [0,1], which determines the capacity, s.cap of each
site s ∈ S \ {s∗} as s.cap ← s.capC × |s.users|. This
reflects the assumption that more popular sites (i.e., sites
with more users) may have more resources to monitor
logins for others. s∗ can vary s∗.capC independently.

The following auctions were run with n = 4 sites
and ℓ = 400 users (larger experiments are reported in
4.4). We varied s∗e.foresight and s∗e.lookahead so that
s∗e.foresight + s∗e.lookahead ≤ 3 and s∗e.lookahead > 1, and
s∗e.cutline ∈ {true, false}. Setting s∗e.lookahead ≥ 1 ensured
that s∗e will always consider future bidders when deciding
its allocation, and setting s∗e.foresight + s∗e.lookahead ≤ 3
allowed our model checker to scale efficiently (see §D.1
for more details). To implement the proportional strategy
for s ∈ S \ {s∗} we varied s.smf ∈ {1, 0.75, 0.5, 0.25}.
Additionally, for s∗p we varied s∗.smf ∈ {1, 0.75, 0.5, 0.25}.

We tested every combination of each strategy’s pa-
rameters for auctions of length r = 10, defined as the
number of bids after all s ∈ S \ {s∗} (and potentially
s∗p) have completed their first bid according to P2a. For
each slack ∈ {1, 2, 3,∞} and s∗e.cutline ∈ {true, false}, we
generated 30 bidding sequences. We varied s∗.pop, s.capC,
s∗.capC across five values in [0,1], and resampled each
configuration 30 times. Configurations were reused across
both exhaustive and proportional auctions. In total, our
evaluation includes approximately 500,000,000 auctions.

Since increasing s∗.pop increases |s∗.users|, and more
importantly, increases at risk |s∗.users ∩ s.users| per s, we
compare s∗.risk(r′) across different s∗.pop values by ex-
amining s∗.normRisk(r′) (Eqn. (6)). We use the Kruskal-
Wallis H test to assess how parameter settings affect the
median s∗.normRisk(r′) and a Dunn test with Bonferroni
correction determines the direction and significance of ef-
fects (p-values shown). We also report the Kruskal-Wallis
effect size η2, which measures the proportion of variance
in s∗.normRisk(r′) explained by varying a parameter [18].
Next, we summarize the key findings.
3.6.1 Sites have incentive to increase their capacity.
Fig. 1 illustrates that for a fixed s∗.pop, the distribution
of s∗.normRisk(r′) decreased (p < 10−8) as s∗ increased
s∗.capC. This underscores s∗’s incentive to increase its
capacity to help others to reduce its own risk, regardless
of its popularity or strategy.

1 0.75 0.5 0.25 0

0

0.05

0.1

0.15

0.2

0.25

s∗.pop

s∗
.n

or
m

R
is

k(
r′

)
0.2
0.4
0.6
0.8
1

s∗.capC

Figure 1: Distribution of s∗.normRisk(r′) per s∗.pop,
s∗.capC including s∗e and s∗p. Each box spans 25th-75th per-
centile; whisker spans 5th-95th percentile; diamond shows
the mean; red line shows the median. s∗.normRisk(r′)
decreased with higher s∗.capC and lower s∗.pop.

advFreqθ fracAdvθ

s∗.cutline s∗.foresight slack slack
1 2 3 ∞ 1 2 3 ∞

false 0 0.518 0.510 0.482 0.483 0.083 0.081 0.077 0.075
1 0.610 0.636 0.610 0.620 0.086 0.085 0.082 0.080

true 0 0.697 0.678 0.647 0.645 0.103 0.102 0.103 0.104
1 0.799 0.778 0.734 0.717 0.150 0.130 0.120 0.116

Figure 2: Comparison of exhaustive and proportional
strategies across θ constraints defined by combinations of
s∗e.cutline, s∗e.foresight, and slack. The left table shows
advFreqθ (Eqn. (7)) and the right table shows fracAdvθ
(Eqn. (9)). Setting θ ← s∗e.cutline = false, s∗e.foresight = 0,
slack = ∞ diminished advFreqθ and fracAdvθ.

3.6.2 Unpopular sites still receive protection. Fig. 1
shows that s∗.normRisk(r′) generally decreased (p < 10−8)
as s∗.pop decreased, meaning less popular sites are fairly in-
cluded by their peers and receive comparable risk reduction.
Of course, an unpopular s∗ is penalized if its capacity is set
too low, as shown in the uptick of s∗.normRisk(r′) when
a s∗ with s∗.pop = 0 sets s∗.capC = 0.2 in Fig. 1.
3.6.3 There is risk versus privacy trade-off. We found
s∗ incurred less (p < 10−8) s∗.normRisk(r′) when
privLvl = psi versus when privLvl = psica. This is ex-
pected, as using psi lets s∗ monitor only its vulnerable
users, s∗.users ∩ s.users, at peer s. While psi reduces
s∗.normRisk(r′) , it discloses cross-site account member-
ships, posing a privacy risk to affected users.
3.6.4 Limiting when a site can bid, and how much
knowledge a site has of the bidding sequence, mini-
mizes the risk improvement exhaustive provides over
proportional. To limit the advantage of an exhaustive
bidder and so reduce a proportional bidder’s incentive to
change strategies, we focus on parameters enforceable by
global ecosystem settings: s∗e.cutline, s∗e.foresight, and slack.
Here we identify values that minimize the advantage that s∗e
provides over s∗p, deferring enforcement details to §7.2.

Let A denote a set of auction pairs such that (ap, ae) ∈ A

implies that ap and ae were conducted with identical user
placements, site capacities, slack, s.smf, privLvl, and bid-
ding sequence (when s∗e.cutline = false) but that s∗ bid
according to the exhaustive strategy in ae and according to
the proportional strategy in ap. Let Aθ ⊆ A be the subset of
such pairs that satisfy some further constraints, specified as
θ. For various conditions θ, we seek to quantify the fraction
advFreqθ of bids at the same index r′ in auction pairs in Aθ

for which s∗e.normRisk(r′) is less than (i.e., improved on)
s∗p.normRisk(r′) and, in those cases, the median absolute
improvement absAdvθ and the median relative improvement
fracAdvθ. Letting a[r′] = s∗.normRisk(r′) for the r′-th bid
of an r-bid auction a (i.e., 1 ≤ r′ ≤ r), these values are:

advFreqθ =
(

1
r |Aθ|

) ∣∣∣∣∣∣
{

(ap[r′], ae[r′])

∣∣∣∣∣∣ (ap, ae) ∈ Aθ ∧

ae[r′] < ap[r′]

}∣∣∣∣∣∣
(7)

absAdvθ = med
{

ap[r′] − ae[r′]

∣∣∣∣∣∣ (ap, ae) ∈ Aθ ∧

ae[r′] < ap[r′]

}
(8)

fracAdvθ = med
{

ap[r′] − ae[r′]
ap[r′]

∣∣∣∣∣∣ (ap, ae) ∈ Aθ ∧

ae[r′] < ap[r′]

}
(9)

Among the globally enforceable parameters, s∗e.cutline
determines whether s∗e can control the timing of its bids. We
found that by disabling this choice (i.e., θ ← s∗e.cutline =
false), we reduced advFreqθ and reduced (p < 10−8)
fracAdvθ per s∗e.foresight and slack, as shown in Fig. 2.

The s∗e.foresight parameter provides s∗e with information
about the future bidding sequence, and disabling it (i.e., θ ←
s∗e.foresight = 0) reduced advFreqθ and reduced (p < 10−8)
fracAdvθ, per s∗.cutline and slack.

The slack parameter provides s∗e with a distribution over
future bidders, and when slack is tight, s∗e often identifies the
next bidder exactly. This trend is reflected in Fig. 2, where
when θ ← s∗e.cutline = false ∧ s∗e.foresight = 0, decreasing
slack resulted in higher advFreqθ, and also raised (p < 10−8)
fracAdvθ. To mitigate this advantage, we recommend setting
no restrictions on slack (i.e., slack = ∞).

In summary, our findings suggest a system deployment
where a site cannot choose when to bid, cannot predict who
will bid next, and otherwise faces no restrictions on possible
bidding sequences. We denote these specific constraints as
ψ ← s∗.cutline = false ∧ s∗.foresight = 0 ∧ slack = ∞.
When considering the corresponding bids in Aψ, we found
advFreqψ < 0.5, fracAdvψ = 0.075, and

med
{

ap[r′] − ae[r′]
ap[r′]

∣∣∣∣∣∣ (ap, ae) ∈ Aψ

}
= 0 (10)

This suggests that proportional provides little incentive
for sites to deviate. While we cannot enforce values for the
remaining s.smf, s∗p.smf, s∗e.lookahead, s.capC parameters,
we find, assuming ψ, varying them either has negligible
impact on s∗p’s risk or yields impractical gains for s∗e.
3.6.5 Keeping track of past bids does not decrease a
site’s risk if it cannot choose when to bid and has limited
knowledge about the next bidder. Each proportional
bidder uses s.smf to track average slots received per peer and

s.capC s∗.lookahead
s∗.capC 0.2 0.4 0.6 0.8 1.0 1 2 3

1 0.00212 0.00212 0.00173 0.00150 0.00132 0.00170 0.00200 0.00202
0.8 0.00309 0.00211 0.00200 0.00139 0.00202 0.00200 0.00203 0.00203
0.6 0.00211 0.00201 0.00134 0.00227 0.00182 0.00210 0.00210 0.00210
0.4 0.00408 0.00293 0.00295 0.00372 0.00277 0.00296 0.00296 0.00296
0.2 0.00563 0.00489 0.00653 0.00732 0.00591 0.00578 0.00582 0.00592

(a) ψ∗ ← ψ ∧ s∗.pop = 1 ∧ privLvl = psi
(advFreqψ∗ = 0.513)

s.capC s∗.lookahead
s∗.capC 0.2 0.4 0.6 0.8 1.0 1 2 3

1 0.00241 0.00158 0.00113 0.00101 0.00110 0.00129 0.00129 0.00129
0.8 0.00308 0.00211 0.00127 0.00119 0.00157 0.00159 0.00159 0.00159
0.6 0.00309 0.00212 0.00170 0.00139 0.00162 0.00172 0.00172 0.00172
0.4 0.00308 0.00239 0.00170 0.00202 0.00279 0.00215 0.00212 0.00212
0.2 0.00564 0.00355 0.00423 0.00654 0.01345 0.00539 0.00540 0.00540

(b) ψ∗ ← ψ ∧ s∗.pop = 0.75 ∧ privLvl = psi
(advFreqψ∗ = 0.442)

Figure 3: Each cell shows absAdvψ∗ with lighter cells in-
dicating less exhaustive advantage. We omit s∗.pop < 0.75
and privLvl = psica, due to space, though trends are similar.
absAdvψ∗ peaked when s∗.capC ≪ s.capC, and minimally
improved at higher s∗e.lookahead.

guard against peers abruptly shifting allocations to maximize
their own slot returns. However, under ψ constraints, we
found that s.smf value employed by other sites does not
affect s∗.normRisk(r′) (p = 0.566). We also found that
allowing s∗p to set s∗.smf independently of its peers did not
affect s∗p.normRisk(r′) (p > 1 − 10−8).
3.6.6 The costs of computing exhaustive bids render it
inferior to proportional, even in the rare cases where
it can reduce s∗’s risk. Fig. 3 shows that per s∗.pop
and privLvl, s∗e maximized absAdvψ when its capacity
was scaled much lower than its peers’ capacities (i.e.,
s∗.capC ≪ s.capC). This suggests s∗e can reduce its risk
moderately relative to s∗p, but only by severely restricting
monitoring costs. Yet, computing the exhaustive strategy
is a considerable common-case cost—far more than simply
increasing s∗.capC to match its peers, as shown in §6.

While increasing s∗e.lookahead reduced (p < 10−8)
absAdvψ, the effect size (4.17 × 10−6) was negligible.
We attribute significance to dataset size and conclude
s∗e.lookahead has little practical impact in decreasing s∗e’s
risk, as also reflected in Fig. 3 which shows no notable
increase absAdvψ per s∗.pop and privLvl. Since computing
optimal allocation grows exponentially in s∗e.lookahead,
simply raising s∗.capC is a more practical way to reduce
risk. We conclude proportional is the preferred strategy.

4. Attacker Model

We now extend the analysis described in §3 to assess
the security of the monitoring slots allocated according to
the proportional strategy, against an attacker attempting to
harvest a site’s accounts by first stuffing sweetwords stolen
from that site at peer sites. We restrict our attention to sites
using the proportional strategy, since as we concluded in
§3.6, ensuring that a site can neither predict next bidders
(s∗e.foresight = 0) nor choose when to bid (s∗e.cutline =
false) leaves a site little reason to deviate from proportional,
assuming it would do so to minimize its risk.

We also focus on proportional bidders for scalability.
Since the attacker explores all bids a site might make,
allowing exhaustive bidders would require duplicate effort
from the attacker. So, to scale our analysis, we restrict the
attacker to targeting proportional bidders and infer perfor-
mance against any (myopic) strategy from the close match
between s∗p.risk and s∗e.risk .

4.1. Attacker Threat Model

The attacker who breaches a site s∗’s password database
and stuffs these credentials elsewhere is rationally motivated,
in terms of wanting to harvest as many accounts as possi-
ble at s∗ while dodging s∗’s monitoring efforts. Sites—in
particular, s∗ itself, despite having its credential database
stolen—continue to behave as assumed in §3.1 and, in
particular, follow proportional bidding. This threat model
characterizes common practice while also highlighting the
difficulty of detecting the passive breach of the database,
since, say, behavioral modifications to s∗ would provide
additional features by which s∗’s administrators might detect
the breach had occurred.

We make two (conservative) allowances for the attacker.
• If the attacker dodges s∗’s monitoring at s, then the

attacker has successfully harvested all those user accounts
it stuffed at s, and therefore at s∗ (and every s ∈ S \ {s∗}).
This allowance is optimistic for the attacker, but not
unreasonably so, given users’ tendencies to reuse the same
or similar passwords across sites [15], [70], [82]. That is,
once the attacker has harvested these accounts at s, it can
easily harvest the same user’s accounts at s∗, too [37].

• We allow the attacker to know all parameters defining the
proportional strategy per s ∈ S (i.e., slack, s.smf, and
s.cap, as the attacker could infer these from observing
bidding behavior, anyway) and to know s.users for every
site s ∈ S and so u.sites for every user u ∈ U. This
also favors the attacker, though assuming otherwise seems
unrealistic and would render our analysis too fragile.

4.2. Attacker’s Stuffing Strategy

Much like the exhaustive s∗ detailed in §3.4, the attacker
a is characterized by certain parameter choices.
• a.foresight: We parameterize the attacker with the ability

to predict the next a.foresight bidders accurately, as well
as their bids. We stress that a.foresight is unrelated to
s∗e.foresight from the previous section, but again, in this
section we consider only s∗p.

• a.lookahead: Beyond the next bidders it can predict as
indicated by the a.foresight parameter, the attacker can
examine all sequences of bidders to a depth a.lookahead
to inform its stuffing attempt. In this exploration, the
attacker considers every possible bidder (subject to slack)
as equiprobable. We always permit a.lookahead ≥ 1.

• a.aggression: We parameterize the attacker with an ag-
gression level, a.aggression ∈ [0, 1]. The attacker mounts
only stuffing attempts that result in one minus the cumu-

lative dodge probability (from the beginning of the attack)
not exceeding a.aggression.
After each bid, the attacker examines the tree of possible

monitoring allocations based on the known a.foresight bid-
ders and equiprobable bidders a.lookahead after that, for
fixed values of a.foresight and a.lookahead. The attacker
also generates all possible stuffing strategies across those
a.foresight + a.lookahead bids consisting of unharvested
users in s∗.users and that would satisfy the a.aggression
constraint. From this tree, the attacker identifies the leaf
that maximizes the expected number of users in s∗.users at
which the attacker has captured an account at some s (and
so presumably at all s′ ∈ S \ {s}, as well). It then performs
stuffing attempts per s ∈ S \{s∗} that are prescribed in the first
step of the path to that leaf. The attacker continues building
a.foresight+a.lookahead-depth trees until the a.aggression
parameter no longer permits stuffing attempts or once the
accounts of all users in s∗.users have been harvested.

We assume the attacker begins stuffing accounts only
after every site has placed its first bid according to P2a.
Otherwise, the attacker would trivially capture users in
s∗.users at s ∈ S \ {s∗} that have not bid any slots to
s∗, mirroring the current state of the world without mon-
itoring. The attacker’s goal is to maximize s∗.cost(r′), the
expected number of users in s∗.users for which the attacker
can stuff some account at some S \ {s∗} given the most
current s∗.allocTo(s) per s. So, s∗.cost(1) is the expected
number of users in s∗.users for whom the attacker stuffed
an account at some site in S \ {s∗} after all P2a-bids but
before the first P2b-bid. The attacker remains exhaustive
within its a.foresight+ a.lookahead bounds, but optimizing
for s∗.cost(r) would require a.foresight + a.lookahead = r,
which is computationally intractable.

4.3. Evaluation

In this section, our evaluation of the attacker’s strategy
aims to establish: (1) s∗’s risk is a good predictor of the
number of users that an attacker can harvest at the begin-
ning of its attack, and so minimizing risk is fruitful for a
site to maximize its detection ability, and (2) an attacker
lacks avenues to arbitrarily increase its ability to harvest
users in s∗.users. We investigate these trends via model-
checking experiments with n = 4 sites and ℓ = 400 users.
Since we modeled only proportional bidders, we specified
slack, s.smf, s∗.smf, and privLvl. We previously concluded
that we need not put any restrictions on bidding order
(§3.6.4) and that keeping track of past bids does not impact
s∗p.normRisk(r′) (§3.6.5)); so, we set slack = ∞, s.smf = 1
and s∗.smf = 1. We varied privLvl ∈ {psica, psi}.

To keep computational costs reasonable, we set
a.lookahead + a.foresight ≤ 2 with a.lookahead ≥ 1, and
varied a.aggression ∈ [0.25, 0.5, 0.75]. We varied s∗.pop,
s.capC, and s∗.capC across five values ∈ [0, 1], resampled
each configuration 30 times, and sampled 30 bidding se-
quences composed of 10 attacker-eligible bids each. We de-
fine s∗.vulnUsers as users in s∗.users vulnerable to stuffing

via shared credentials with some s ∈ S \{s∗}. Under our cur-
rent assumption of a password reuse rate of 1 (optimistic for
the attacker), s∗.vulnUsers includes every user in s∗.users
who has at least one account at s ∈ S \ {s∗}. To compare
s∗.cost(r′) across s∗ with varying s∗.pop we normalize

s∗.normCost(r′) =
s∗.cost(r′)
|s∗.vulnUsers|

(11)

since higher s∗.pop implies larger |s∗.vulnUsers|.
We used the Kruskal-Wallis H test and post-hoc Dunn

test with Bonferroni correction to analyze the effect of var-
ious parameters on s∗.normCost(r′) and s∗.normRisk(r′) −
s∗.normCost(r′). The latter value emphasizes the predictive
accuracy of s∗.normRisk(r′) for s∗.normCost(r′), with
values closer to 0 indicating better predictions.
4.3.1 Risk predicts cost more accurately at early rounds
of an attack. Since sites are unaware of the timing of
an attack, s∗.normRisk(r′) is calculated with an implicit
assumption that the attack has not yet started. Conse-
quently, once credential stuffing is underway, at bid r′ > 1,
s∗.normRisk(r′) overestimated s∗.normCost(r′) because the
accounts of some subset of s∗.users has already been cap-
tured by the attacker. However, we found s∗.normRisk(r′)
to be a good predictor of s∗.normCost(1) with the median
(over all auctions) of s∗.normRisk(r′) − s∗.normCost(1) as
0.0222 of vulnerable users at s∗.
4.3.2 Risk predicts cost more accurately when sites
know which users they share with peers. In the psi
setting, s∗ knows which users it shares with each peer
s, which is the subset of s∗.users vulnerable to stuffing
at s. In contrast, in the psica setting, s∗ has strictly less
information than the attacker about which of its users are
vulnerable at s. This distinction between privLvl is reflected
in the comparison between Fig. 4a and Fig. 4b. Specif-
ically, for a fixed s∗.pop and a.aggression, the quantity
s∗.normRisk(r′) − s∗.normCost(1) was lower (p < 10−8)
when privLvl = psi than when privLvl = psica. The reduced
predictive ability of s∗.normRisk(r′) in the psica setting
is a shortcoming that we discuss further in App. A.
4.3.3 Risk predicts cost more accurately for less popular
sites. Site s∗ calculates s∗.normRisk(r′) in a pairwise
fashion, i.e., summing s∗.normRisk(s, k) incurred from a
site s due to the allocation k = s.allocTo(s∗), over all
s ∈ S \ {s∗} (Eqn. (6)). Because the set of users that s∗
shares with one site s can overlap with those it shares with
another site s′, however, calculating s∗.normRisk(r′) in
this way overestimates the number of its accounts that an
attacker can expect to harvest at other sites. Fig. 4 shows
this trend, in particular, the distribution of s∗.normRisk(r′)−
s∗.normCost(1) decreased (p < 10−8) with lower s∗.pop per
a.aggression, since such s∗ share less users with their peers.
An open question, discussed in App. A, is whether risk can
be measured independently of a site’s popularity.
4.3.4 Risk predicts cost more accurately when the at-
tacker is more aggressive. Since s∗ lacks information
about the attacker, it calculates s∗.normRisk(r′) as-
suming the attacker will be maximally aggressive. As

1 0.75 0.5 0.25 0

0

0.05

0.1

0.15

s∗.pop

s∗
.n

or
m

R
is

k(
r′

)
-

s∗
.n

or
m

C
os

t(1
)

0.25
0.5

0.75

a.aggression

(a) psi

1 0.75 0.5 0.25 0

0

0.05

0.1

0.15

s∗.pop

s∗
.n

or
m

R
is

k(
r′

)
-

s∗
.n

or
m

C
os

t(1
)

0.25
0.5

0.75

a.aggression

(b) psica

Figure 4: Distribution of s∗.normRisk(r′) − s∗.normCost(1)
per privLvl, s∗.pop and a.aggression. Each boxplot’s
whiskers span the 5th-95th percentile; the diamond shows
the mean; red line shows the median. s∗.normRisk(r′) −
s∗.normCost(1) decreased when privLvl = psi and for lower
a.aggression and s∗.pop values.

a result, s∗.normRisk(r′) provides the best estimate
for s∗.normCost(1) when a.aggression is high. Fig. 4
confirms that per privLvl and s∗.pop, the distribution of
s∗.normRisk(r′) − s∗.normCost(1) decreased (p < 10−8) as
a.aggression increased. Fig. 4 also shows that the effect
of a.aggression on s∗.normRisk(r′) − s∗.normCost(1) de-
creased as s∗.pop decreased, due to a decreased number of
vulnerable users at an unpopular s∗.
4.3.5 The attacker’s ability to capture users increases
modestly with additional knowledge of the bidding
sequence. We confirmed that an attacker with nonzero
a.foresight can benefit (p < 10−8) from its ability to predict
the next bidder. Regardless, §7.2 outlines mechanisms to en-
force a.foresight = 0, eliminating this predictive advantage.
An attacker can also strategize by examining the probability
distribution of all potential next bidders for a.lookahead
steps ahead. However, we found that when a.foresight = 0,
a.lookahead does not affect (p = 0.265) s∗.normCost(r′).
This suggests that anticipating the future sequence of bidders
does not enable the attacker to capture more users.

Since deep attacker trees, determined by a.foresight +
a.lookahead, limit scalability, we use the above settings to
explore larger systems in §4.4. §D.2 details the optimiza-
tions that enabled scaling in our custom model checker.

4.4. Larger systems

We now analyze the effectiveness of the attacker’s strat-
egy against proportional bidders in a scaled-up model-
checking experiment with n = 10 sites and ℓ = 1000
users. While previously we enabled the attacker to begin
stuffing immediately after each site submitted its first bid
via P2a, we now require the attacker to wait until every
site has issued at least one bid under P2b. This delay
was a concession to the scalability of these experiments,
allowing the attacker to invest its stuffing attempts after bids
fully informed by each site’s responses to their peers’ bids.
Starting from the second P2b bid of the first bidder to issue
a second P2b bid, we granted the attacker a r-bid window

s∗.capC
s∗.pop 1 2 3 4 100

1.0 0.02888 0.02754 0.02754 0.02754 0.02754
0.8 0.02675 0.02651 0.02651 0.02651 0.02651
0.6 0.02633 0.02611 0.02611 0.02611 0.02611
0.4 0.01565 0.01565 0.01565 0.01565 0.01565
0.2 0.00689 0.00689 0.00689 0.00689 0.00689

(a) s.capC = 1

s∗.capC
s∗.pop 1 2 3 4 100

1.0 0.02704 0.01269 0.01205 0.01205 0.01205
0.8 0.02402 0.01138 0.01129 0.01120 0.01120
0.6 0.01551 0.00898 0.00898 0.00883 0.00883
0.4 0.00592 0.00476 0.00440 0.00440 0.00440
0.2 0.00196 0.00109 0.00109 0.00109 0.00109

(b) s.capC = 2
s∗.capC

s∗.pop 1 2 3 4 100
1.0 0.01700 0.01148 0.00625 0.00550 0.00550
0.8 0.01618 0.00720 0.00579 0.00572 0.00572
0.6 0.02958 0.00585 0.00442 0.00442 0.00431
0.4 0.02299 0.00218 0.00166 0.00166 0.00154
0.2 0.00236 0.00012 0.00000 0.00000 0.00000

(c) s.capC = 3

s∗.capC
s∗.pop 1 2 3 4 100

1.0 0.13266 0.01201 0.00773 0.00396 0.00319
0.8 0.14976 0.01072 0.00702 0.00321 0.00321
0.6 0.02338 0.00782 0.00240 0.00167 0.00159
0.4 0.02235 0.00413 0.00048 0.00031 0.00009
0.2 0.00795 0.00076 0.00021 0.00000 0.00000

(d) s.capC = 4

Figure 5: Mean s∗.normCostCum(+10) for a.aggression =
0.75, privLvl = psi. Lighter cells show lower cost.

to maximize the expected number of users in s∗.users for
whom it successfully stuffed an account at a site in S \ {s∗}
with a password its user reused at s∗, which we denote
s∗.costCum(+r). We also define

s∗.normCostCum(+r) =
s∗.costCum(+r)
|s∗.vulnUsers|

(12)

We largely adopt the same experimental setup as de-
scribed in §4.3, setting slack = ∞, s.smf = 1 and s∗.smf = 1,
and varying privLvl ∈ {psica, psi} and a.aggression ∈

{0.25, 0.5, 0.75}. The finding in §4.3.5 and anticipated de-
ployment described in §7.2 justify setting a.foresight = 0
and a.lookahead = 1. We vary s.capC ∈ {1, 2, 3, 4}, and
s∗.capC ∈ {1, 2, 3, 4, 100}, using s∗.capC = 100 to under-
stand s∗’s security in the limit. Like before, we vary s∗.pop
between [0, 1]. For each configuration—defined by s∗.pop,
s.capC, and s∗.capC—we sample 30 instances, along with
30 bidding sequences containing 10 eligible bids as defined
above. We used the Kruskal-Wallis H test to analyze the
effect of the parameters on s∗.normCostCum(+10).
4.4.1 Sites can maximize their security by increasing
their capacity. Fig. 5 shows that s∗ can typically reduce
its s∗.normCostCum(+10) by raising its own s∗.capC above
the s.capC of its peers (p < 10−8). This not only improves
its own security but nudges the ecosystem toward a higher-
capacity equilibrium (i.e., higher s.capC), making peers
more likely to reciprocate. We see this in Fig. 5: when
s.capC = 2, every s∗ is incentivized to raise its s∗.capC ≥ 3
(Fig. 5b), prompting peers to adopt s.capC = 3 in Fig. 5c.
This iteration continues, as each s∗ again finds it beneficial
to raise s∗.capC ≥ 4, reinforcing a positive feedback loop.

Popular sites are well-positioned to drive this shift:
they have greater capacity since it scales with |s∗.users|,
and their slots are in higher demand due to shared users
with many peers. However, when resource-constrained (e.g.,
Fig. 5a), a popular s∗ prioritizes its popular peers, leaving
unpopular peers without reciprocal support. For example, a
s∗ with s∗.pop = 0.2 sees its s∗.normCostCum(+10) plateau
despite increasing s∗.capC. Still, a moderately popular s∗
(s∗.pop ≥ 0.6) remains incentivized to increase its capacity,
as it benefit from more popular peers and so can trigger
cyclic reciprocation even under constraints.
4.4.2 Popular sites benefit from their peers. While
popular sites may offer more slots than they receive

due to their higher monitoring capacity, they still re-
duce s∗.normCostCum(+10) significantly (p < 10−8) when
peers increase their capacities. Fig. 5b shows that a s∗
with s∗.pop = 1 has diminished ability to reduce its
s∗.normCostCum(10) beyond 0.01205, suggesting its less
popular peers face resource constraints and cannot recip-
rocate at scale. However, when these peers increase their
capacity to s.capC = 3—and Fig. 5b confirms that they
are incentivized to do so—the most popular s∗ benefits, as
evidenced from the reduction in s∗.normCostCum(10) for
s∗.pop = 1 when s∗.capC = 4 in Fig. 5c. Thus, popular
sites not only drive ecosystem improvements but also benefit
from peer investments that relieve capacity bottlenecks.
4.4.3 Unpopular sites receive comparable security.
Fig. 5 shows that less popular sites typically incur lower
s∗.normCostCum(+10) than popular ones (p < 10−8), indi-
cating the proportional bidding ecosystem favors unpopular
sites. This is because popular sites provide surplus monitor-
ing slots that often go to less popular peers, ensuring strong
baseline security for unpopular sites.
4.4.4 psi vs. psica security outcomes. We observed that
s∗.normCostCum(+10) was significantly lower (p < 10−8)
in the psi setting than in psica. This is expected: in the psi
setting, a s∗ that receives slots from s can deploy monitoring
requests specifically for users in s∗.users∩ s.users. In con-
trast, in the psica setting, the s∗ might deploy requests for
users outside this intersection—users the attacker knows not
to stuff at s. The effect of privLvl was more pronounced at
lower s.capC, since when s∗ receives limited slots, strategic
deployment becomes even more important.

5. Data-Driven Simulations

Next, we evaluate proportional bidding using the
Cit0day dataset [40] 1, which is a large credential dataset
leaked from a credential-selling service. To measure pass-
word reuse precisely, we removed hashed and duplicate
entries. Of the remaining entries, we retained entries be-
longing to the largest connected component of the user-site
graph, since sites that share no users with peers trivially
face no risk from credential stuffing. Post-preprocessing, the
dataset contained over 108 million credential entries from
74 million users across nearly 8,000 websites. We identified
users by their email addresses. For any pair of sites sharing
users, we defined the password reuse rate as the ratio of
the number of shared users who use the same password on
both sites to the number of shared users. Reuse was very
common, with the median reuse rate exceeding 0.94. We
refer readers to App. B for more details on the dataset.

5.1. Attacker’s Greedy Stuffing Strategy

The attacker strategy we evaluated in §4 is computation-
ally infeasible to evaluate at the scale of this dataset. So, we

1. The dataset, leaked in November 2020, has been widely reported [13],
[27] and integrated into breach alerting services [40], limiting the risk of
harm from this study. Following prior work [47], we anonymized email
addresses and stored the data on an isolated machine to preserve privacy.

s∗.capC
|s∗.users| 0.1 1 10 100

XL 0.0007 0.0005 0.0005 0.0005
L 0.0015 0.0012 0.0013 0.0013
M 0.0011 0.0008 0.0008 0.0008
S 0.0019 0.0015 0.0014 0.0014

(a) s.capC = 2, privLvl = psi

s∗.capC
|s∗.users| 0.1 1 10 100

XL 0.0006 0.0004 0.0004 0.0004
L 0.0013 0.0010 0.0010 0.0010
M 0.0010 0.0006 0.0005 0.0005
S 0.0018 0.0013 0.0012 0.0012

(b) s.capC = 4, privLvl = psi
s∗.capC

|s∗.users| 0.1 1 10 100
XL 0.0027 0.0024 0.0024 0.0024
L 0.0025 0.0022 0.0022 0.0022
M 0.0033 0.0030 0.0030 0.0029
S 0.0034 0.0033 0.0032 0.0032

(c) s.capC = 2, privLvl = psica

s∗.capC
|s∗.users| 0.1 1 10 100

XL 0.0023 0.0021 0.0020 0.0020
L 0.0022 0.0021 0.0021 0.0021
M 0.0027 0.0025 0.0024 0.0024
S 0.0030 0.0030 0.0030 0.0030

(d) s.capC = 4, privLvl = psica

Figure 6: Mean s∗.normCostCum(+10) for a.aggression =
1.0. Lighter cells indicate lower s∗.normCostCum(+10).

instead simulated a greedy attacker that approximates opti-
mal behavior through a series of locally optimal choices. We
set a.foresight = 0 and a.lookahead = 1, giving the attacker
a 10-bid stuffing window after each site placed at least one
bid under P2b, following the setup in §4.3. After the r′-th
(eligible) bid, the attacker emulated proportional one step
ahead to estimate how many slots each s ∈ S \ {s∗} might
offer s∗. For each site, it estimated the marginal increase in
expected cost from one stuffing attempt, combining its slot
projection with knowledge of which users are shared across
sites and empirical password-reuse rates between user-site
pairs. Unlike earlier experiments that assumed perfect reuse
(reuse rate of 1.0), which favored the attacker, we gave the
attacker the data-driven reuse rates, which were often < 1.0.

The attacker then chose the site s with the highest
marginal benefit and the user at s with the fewest accounts
at other sites, i.e., arg minu∈s.users |u.sites|, to preserve future
stuffing opportunities. Ties in site or user selection were
broken at random. The attacker repeated this process, recom-
puting marginal improvements to s∗.costCum(+r′), until no
further expected gain was possible.

5.2. Evaluation

We adopted the optimal parameters for proportional
identified in §3.6, setting s.smf = s∗.smf = 1.0 and
slack = 0, and sampled 10 bidding sequences under this
setting. To evaluate security across a range of site popular-
ities, we grouped sites into quartiles based on increasing
|s.users| and sampled 10 sites per quartile; “small” (S),
“medium” (M), “large” (L), and “extra large” (XL). As
before, we scaled capacity by user set size, setting s.cap←
s.capC × |s.users|, and we varied s.capC ∈ {1, 2, 3, 4} and
s∗.capC ∈ {0.1, 1, 10, 100}. We used a wider range for
s∗.capC to account for the order-of-magnitude variation in
|s.users|; we anticipated a small s∗ requiring a much higher
s∗.capC to bid a comparable number of slots to its extra
large peers. We varied privLvl ∈ {psi, psica}. We simulated
10 greedy attackers, which differ only in the random choices
they make to break ties, and set a.aggression = 1 to
simulate the worst-case scenario.

Fig. 6 summarizes the results. We omit s.capC ∈ {1, 3}
to conserve space, but these follow the same trends as
s.capC ∈ {2, 4}. We report means rather than medians

because the data is heavily skewed toward zero; many sam-
ples show attackers harvesting none of s∗.users, suggesting,
in practice, sites could scale their capacities much lower
than the tested s.capC, s∗.capC values. We organize our
remaining findings into two parts: those that align with the
conclusions in §4.4, and those that provide new nuance.
5.2.1 Validation of model-checked results. Fig. 6 con-
firms: (1) s∗.normCostCum(+10) was reduced with larger
s∗.capC (cf., §4.4.1); (2) s∗.normCostCum(+10) for a pop-
ular s∗ was lower with larger s.capC (cf., §4.4.2); (3) a
less popular s∗ saw s∗.normCostCum(+10) similar to more
popular peers (cf., §4.4.3); and (4) s∗.normCostCum(+10)
was lower with psi than with psica (cf., §4.4.4).
5.2.2 Insights beyond model-checking results. While
our model-checking evaluation (§4.4) suggested that more
popular sites face greater security risks (Fig. 5), Fig. 6
shows no clear link between s∗.normCostCum(+10) and
popularity. This discrepancy stems in part from synthetic as-
sumptions in the model-checking setup, where popular sites
were assumed to share more users with peers. In reality, our
dataset shows minimal correlation between site popularity
and shared users or at-risk credentials (see Figs. 9a and 9b
in App. B). This suggests that capacity planning at a site s
would benefit from information beyond just its popularity,
e.g., the set u.sites for each of its users u ∈ s.users. While
this would be possible to compute in the psi setting, a
more privacy-friendly approach would compute u.sites per
u ∈ s.users while keeping u anonymous.

Moreover, comparing s∗.normCostCum(+10) for popu-
lar sites in Fig. 6a with Fig. 5b, and similarly Fig. 6b with
Fig. 5d, shows generally improved outcomes in the data-
driven setting. This improvement stems from two key differ-
ences: first, the use of empirical password reuse rates from
the Cit0day dataset, which limits attacker success compared
to the model-checking assumption of perfect reuse; and
second, a more nuanced picture of cross-site user overlap,
which reveals popular sites tend not to incur proportionally
higher exposure through reused credentials. This suggests
smaller sites may play a more active role in driving s.capC
to higher equilibriums than anticipated in §4.4.1.

6. Performance

Now we evaluate the performance of our design. The
time a site spends participating in a breach-detection ecosys-
tem can be attributed to either the overhead imposed by
our bidding infrastructure, or to the time of making and
responding to monitoring requests according to previously
developed interactive breach detection protocols [84], [85].

For the sake of this analysis, we consider the Amne-
sia protocol [84], and we evaluate the time to perform a
single bidding step in our design. Specifically, the time
incurred by a bidding step that is directly attributable to
our design includes the time a site s takes to allocate its
capacity in step P2b, denoted time(P2b) 2, and the time

2. A naive implementation would cause P2b to scale with sites and users;
App. C shows how we reduce this to sites only.

s.cap
n 101 102 103 104 105

105 0.0484 0.0166 0.0135 0.0132 0.0131
104 0.0042 0.0014 0.0011 0.0011 0.0011
103 0.0013 0.0004 0.0003 0.0003 0.0003
102 0.0006 0.0002 0.0002 0.0002 0.0002
101 0.0043 0.0006 0.0002 0.0002 0.0002

(a) Ratio of bidding time to
monitoring request generation
time (Eqn. (13)). Values < 1.0
mean bidding is cheaper.

104 105 5 × 105 10610−3

10−2

10−1

100

101

102

n

Ti
m

e
(m

s)

P2A
P2B
P1A
P1B

(b) Time to compute bids (P2a
and P2b) and cumulative time
for peers to process bids (P1a
and P1b).

Figure 7: Performance of proportional bidding

each peer s′ ∈ S \ {s} takes to update its slot allocations
from s in step P1b, denoted time(P1b), accumulated over
all peers—so, (n − 1) × time(P1b). This bid induces ad-
ditional computation on the peer sites S \ {s}, however,
to create monitoring requests per the Amnesia protocol,
to fulfill the allocation each receives in this bidding step.
We denote the time to generate one monitoring request
in this protocol as time(AmnesiaReqGen), and accumu-
late this time per monitoring slot that s allocates, i.e.,
s.cap× time(AmnesiaReqGen) in total. Note that this time
is invariant to the actual bids or how they are computed, and
so is best attributed to Amnesia itself. We report the ratio
of “bidding time” to the “Amnesia time”, or in other words

time(P2b) + (n − 1) × time(P1b)
s.cap × time(AmnesiaReqGen)

(13)

We used the implementation of the Amnesia
protocol due to Wang et al. [84]. To minimize
time(AmnesiaReqGen), we conservatively set the
number of honeywords monitored per account to 16, the
lowest number they reported, and adopted the remaining
recommended parameters from their work. We implemented
our proportional bidding strategy in Python, and compiled
performance-critical functions such as the computation in
Eqn. (1) to machine code using NUMBA. We conducted
experiments on a single machine running Ubuntu 22.04.5
LTS, with an Intel Xeon Gold 6226 processor (2.7 GHz),
768 GB of RAM, and a fixed configuration of two threads.

Fig. 7a shows the values of Eqn. (13) as a function
of s.cap and n. As illustrated by the very small values,
the timing cost of our bidding algorithm is overwhelmed
by the time for Amnesia to generate monitoring requests
in response to our bids. That is, the timing costs of our
proportional algorithm are a tiny fraction of the time
needed to deploy monitoring requests in total. By contrast,
exhaustive bidding dominates the time to generate moni-
toring requests; e.g., the analog of Eqn. (13) for exhaustive
bidding is > 7.18 for n = 5 and s.cap = 10. For com-
pleteness, in Fig. 7b we show the times for all four steps of
proportional bidding, ignoring time attributable to Amnesia.

While proportional bidding is very efficient, we high-
light that bidding and monitoring-request deployment are

not the most important performance costs in a breach-
detection ecosystem, as they are not costs that the adversary
can induce (in our threat model). In contrast, the adversary
can induce the generation of monitoring responses by mak-
ing login attempts, though our bidding algorithm plays no
role in these costs; we refer the reader to Wang et al. [84,
Sec. 6.5] for a discussion of these costs for Amnesia.

7. Discussion

7.1. Community Formation

Our framework relies on the formation of a community
of sites that are motivated to monitor for one another, due to
the tendency for users to reuse the same or similar passwords
across the community. Prior work has shown that password
reuse is shaped by shared characteristics among sites, such
as function (e.g., shopping or email [82]), affiliation (e.g.,
universities [87]), geographic location [6], [61], and security
posture [78], [33]. Trusted third parties could bootstrap such
communities. For example, Information Sharing and Anal-
ysis Centers already coordinate threat-intelligence exchange
per industry [65] and carefully vet their members [74].

A site might still prefer to confirm that it shares users
with members of a community before joining, particularly
if it doubts meaningful password reuse with them. Shared
users could be confirmed by computing a psi/psica over
user accounts, and password reuse could be estimated using
tools like PassREfinder [47]. We stress, however, that the
utility of our approach depends on sites joining such com-
munities liberally; sites that do not participate in collective
monitoring—the status quo today—create blind spots that
attackers can exploit by stuffing stolen credentials at them.

Having joined a community, a site need only perform
psi/psica computations with community members to start
bidding. Presumably a site will wish to periodically update
these computations, though this need not be frequent since
user overlap between sites evolves slowly. Industry data
from 2023 shows annual user churn rates of just 3.5–6.9%
across sectors [75], suggesting that most user bases remain
stable year-to-year. So, psi/psica computations for updating
shared users are only needed occasionally. When they are,
updateable psi schemes [58] could help minimize overhead.

7.2. Enforcing ecosystem-wide parameters

As discussed in §3, we restrict s∗.cutline = false and
s∗.foresight = 0 to limit the risk reduction an exhaustive s∗
achieves over a proportional s∗, dissuading a proportional
s∗ from switching strategies. To achieve this in practice,
we observe a s∗ cannot choose when to bid (s∗.cutline =
false) if the next bidder is assigned outside its control, and
when placing its bid, it cannot predict subsequent bidders
(s∗.foresight = 0) if that bidder is assigned randomly (and
only after s∗ has either placed its bid or been eliminated from
bidding due to its delay). These requirements can be met
if the next bidder is assigned using a randomness beacon,

which produces random values from a specified domain (in
our case, the participating sites) at predictable times.

Randomness beacons are deployed with a range of trust
assumptions, commonly to support blockchain applications.
For example, NIST’s randomness beacon [46] requires con-
sumers of its random values to trust NIST, whereas DFIN-
ITY [35] and drand [80] offer distributed implementations
using threshold signatures that prevent a small fraction of
participants from biasing or learning the next random value
before honest participants [60], [10]. These designs require
setup of the participants with secret-shares of the signing key
by a trusted party; while this requirement can be alleviated
using a distributed key-generation protocol (e.g., [34], [45]),
such protocols add costs and complexity. So, more recent
designs avoid using threshold signing altogether (e.g., [49],
[3], [17], [31], [21], [4], [16], [7]). Though even a trusted
beacon might be reasonable to support collaboration among
a group of sites as we propose, we are agnostic to the
particular implementation used.

Enforcing a.foresight = 0, as done in sections 4.4 and 5,
is a bit more complex. The reason is that an attacker could
conceivably learn the assigned bidder from the randomness
beacon even before the assigned bidder learns it has been
chosen, resulting in a.foresight = 1. This possibility can be
assumed away if the participants implement the randomness
beacon among themselves and do not share their foreknowl-
edge of the next bidder with the attacker. Alternatively, the
randomness beacon could emit a cryptographic commitment
to each random value, in place of the random value itself,
and then transmit the random value (and anything else
needed to open the commitment) to only the next bidder
that it specifies, using a receiver-anonymous channel that
hides the intended recipient from all but that party [71]. The
selected bidder could then forward this random value with
its next bid, revealing to others that it is, in fact, the chosen
bidder, but eliminating the opportunity for the attacker to
learn this fact before the bid is already in transit.

8. Conclusion

In this paper, we proposed a novel algorithm to in-
centivize the exchange of monitoring favors among sites.
We systematically explored a parameter space specifying
defender-defender and attacker-defender interactions and
used model checking to conservatively estimate the security
offered by our algorithm. We found that sites of varying
popularity and resource constraints are incentivized to in-
crease the monitoring they provide to others to improve their
chance of detecting their own credential database breach.
We further validated our design through simulations in-
formed by a real breached dataset capturing realistic user
overlap and password reuse patterns. We expect that, if de-
ployed, our algorithm will enable a self sustaining credential
database breach detection ecosystem, and could serve as a
foundation for other cooperative security applications.

References

[1] M. Abdallah, P. Naghizadeh, A. R. Hota, T. Cason, S. Bagchi, and
S. Sundaram. Behavioral and game-theoretic security investments in
interdependent systems modeled by attack graphs. IEEE Transactions
on Control of Network Systems, 7(4):1585–1596, 2020.

[2] M. Abdallah, D. Woods, P. Naghizadeh, I. Khalil, T. Cason, S. Sun-
daram, and S. Bagchi. Tasharok: Using mechanism design for
enhancing security resource allocation in interdependent systems. In
IEEE Symposium on Security and Privacy, pages 249–266, 2022.

[3] I. Abraham, P. Jovanovic, M. Maller, S. Meiklejogn, G. Stern, and
A. Tomescu. Reaching consensus for asynchronous distributed key
generation. In 40th ACM Symposium on Principles of Distributed
Computing, pages 363–373, 2021.

[4] I. Abraham, P. Jovanovic, M. Maller, S. Meiklejohn, and G. Stern.
Bingo: Adaptivity and asynchrony in verifiable secret sharing and
distributed key generation. In Advances in Cryptology – CRYPTO
2023, volume 14081 of Lecture Notes in Computer Science, August
2023.

[5] Akshima, D. Chang, A. Goel, S. Mishra, and S. K. Sanadhya. Gen-
eration of secure and reliable honeywords, preventing false detection.
IEEE Transactions on Dependable and Secure Computing, 16(5):757–
769, 2019.

[6] M. AlSabah, G. Oligeri, and R. Riley. Your culture is in your
password: An analysis of a demographically-diverse password dataset.
Computers & Security, 77:427–441, 2018.

[7] A. Bandarupalli, A. Bhat, S. Bagchi, A. Kate, and M. K. Reiter.
Random beacons in Monte Carlo: Efficient asynchronous random
beacon without threshold cryptography. In 31st ACM Conference on
Computer and Communications Security, 2024.

[8] B. Birnbaum, N. R. Devanur, and L. Xiao. Distributed algorithms
via gradient descent for Fisher markets. In 12th ACM Conference on
Electronic Commerce, pages 127–136, 2011.

[9] S. Brânzei, N. Devanur, and Y. Rabani. Proportional dynamics in
exchange economies. In 22nd ACM Conference on Economics and
Computation, pages 180–201, 2021.

[10] C. Cachin, K. Kursawe, and V. Shoup. Random oracles in Con-
stantinople: Practical asynchronous Byzantine agreement using cryp-
tography. In 19th ACM Symposium on Principles of Distributed
Computing, 2000.

[11] N. Chakraborty, J. Li, V. C. M. Leung, S. Mondal, Y. Pan, C. Luo,
and M. Mukherjee. Honeyword-based authentication techniques for
protecting passwords: A survey. ACM Computing Surveys, 55:1–37,
2022.

[12] Y. K. Cheung, R. Cole, and Y. Tao. Dynamics of distributed updating
in Fisher markets. In 19th ACM Conference on Economics and
Computation, pages 351–368, 2018.

[13] C. Cimpanu. 23,600 hacked databases have leaked from a defunct
’data breach index’ site. https://www.zdnet.com/article/23600-hac
ked-databases-have-leaked-from-a-defunct-data-breach-index-site/,
November 2020.

[14] B. Cohen. Incentives build robustness in BitTorrent. http://bittorrent
.org/bittorrentecon.pdf, May 2003.

[15] A. Das, J. Bonneau, M. Caesar, N. Borisov, and X. Wang. The tangled
web of password reuse. In 21st ISOC Network and Distributed System
Security Symposium, 2014.

[16] S. Das, Z. Xiang, L. Kokoris-Kogias, and L. Ren. Practical asyn-
chronous high-threshold distributed key generation and distributed
polynomial sampling. In 32nd USENIX Security Symposium, August
2023.

[17] S. Das, T. Yurek, Z. Xiang, A. Miller, L. Kokoris-Kogias, and L. Ren.
Practical asynchronous distributed key generation. In 43rd IEEE
Symposium on Security and Privacy, pages 2518–2534, 2022.

[18] DATAtab Team. Kruskal-Wallis-test. https://datatab.net/tutorial/kru
skal-wallis-test.

[19] A. Davidson and C. Cid. An efficient toolkit for computing private set
operations. In 22nd Australasian Conference on Information Security
and Privacy, volume 10343 of Lecture Notes in Computer Science,
pages 261–278, July 2017.

[20] E. De Cristofaro, P. Gasti, and G. Tsudik. Fast and private computa-
tion of cardinality of set intersection and union. In 11th International
Conference on Cryptology and Network Security, volume 7712 of
Lecture Notes in Computer Science, pages 218–231, 2012.

[21] L. F. de Souza, P. Kuznetsov, and A. Tonkikh. Distributed randomness
from approximate agreement. In 36th International Conference on
Distributed Computing, October 2022.

[22] J. DeBlasio, S. Savage, G. M. Voelker, and A. C. Snoeren. Tripwire:
Inferring internet site compromise. In 17th Internet Measurement
Conference, pages 341–354, 2017.

[23] S. K. Debnath and R. Dutta. Secure and efficient private set intersec-
tion cardinality using Bloom filter. In 18th International Conference
on Information Security, volume 9290 of Lecture Notes in Computer
Science, pages 209–226, September 2015.

[24] A. Dionysiou, V. Vassiliades, and E. Athanasopoulos. Honeygen:
generating honeywords using representation learning. In 16th ACM
Symposium on Information, Computer and Communications Security,
2021.

[25] C. Duma, M. Karresand, N. Shahmehri, and G. Caronni. A trust-
aware, P2P-based overlay for intrusion detection. In 17th International
Workshop on Database and Expert Systems Applications, pages 692–
697, 2006.

[26] R. Egert, M. Fischlin, D. Gens, S. Jacob, M. Senker, and J. Till-
manns. Privately computing set-union and set-intersection cardinality
via Bloom filters. In 20th Australasian Conference on Information
Security and Privacy, volume 9144 of Lecture Notes in Computer
Science, 2015.

[27] D. Endler. How much data was leaked to cybercriminals in 2020 —
and what they’re doing with it. https://www.forbes.com/councils/fo
rbestechcouncil/2021/04/20/how-much-data-was-leaked-to-cybercr
iminals-in-2020---and-what-theyre-doing-with-it/, April 2021.

[28] I. Erguler. Achieving flatness: Selecting the honeywords from existing
user passwords. IEEE Transactions on Parallel and Distributed
Systems, 13(2), 2016.

[29] C. Fung. Design and Management of Collaborative Intrusion Detec-
tion Networks. PhD thesis, University of Waterloo, 2013.

[30] C. J. Fung and Q. Zhu. FACID: A trust-based collaborative decision
framework for intrusion detection networks. Ad Hoc Networks,
53:17–31, 2016.

[31] Y. Gao, Y. Lu, Z. Lu, Q. Tang, J. Xu, and Z. Zhang. Efficient
asynchronous Byzantine agreement without private setups. In 42nd

IEEE International Conference on Distributed Computing Systems,
pages 246–257, July 2022.

[32] B. Garbinato and I. Rickebusch. Impossibility results on fair ex-
change. In 10th International Conference on Innovative Internet
Community Systems, pages 507–518, 2010.

[33] S. Gaw and E. W. Felten. Password management strategies for online
accounts. In 2ndSymposium on Usable Privacy and Security, pages
44–55, 2006.

[34] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure distributed
key generation for discrete-log based cryptosystems. Journal of
Cryptology, 20:51–83, 2007.

[35] T. Hanke, M. Movahedi, and D. Williams. DFINITY technology
overview series, consensus system. arXiv:1805.04548 [cs.DC], 2018.

[36] A. R. Hota, A. A. Clements, S. Bagchi, and S. Sundaram. A game-
theoretic framework for securing interdependent assets in networks.
In Game Theory for Security and Risk Management, pages 157–184.
Springer, 2018.

[37] Z. Huang, L. Bauer, and M. K. Reiter. The impact of exposed pass-
words on honeyword efficacy. In 33rd USENIX Security Symposium,
August 2024.

[38] T. Hunt. Have I been pwned? https://haveibeenpwned.com.

[39] T. Hunt. Here’s why [insert thing here] is not a password killer.
https://www.troyhunt.com/heres-why-insert-thing-here-is-not-a-pas
sword-killer/, 05 November 2018.

[40] T. Hunt. Inside the cit0day breach collection. https://www.troyhunt
.com/inside-the-cit0day-breach-collection/, November 2020.

[41] IBM. Cost of a data breach report 2024. https://www.ibm.com/repo
rts/data-breach, 2024.

[42] R. W. Janakiraman, M. Waldvogel, and Q. Zhang. Indra: A peer-to-
peer approach to network intrusion detection and prevention. In 12th

IEEE International Workshop on Enabling Technologies: Infrastruc-
ture for Collaborative Enterprises, June 2003.

[43] L. Jiang, V. Anantharam, and J. Walrand. How bad are selfish invest-
ments in network security? IEEE/ACM Transactions on Networking,
19(2):549–560, 2010.

[44] A. Juels and R. L. Rivest. Honeywords: Making password-cracking
detectable. In 20th ACM Conference on Computer and Communica-
tions Security, pages 145–160, 2013.

[45] A. Kate and I. Goldberg. Distributed key generation for the Internet.
In 29th IEEE International Conference on Distributed Computing
Systems, June 2009.

[46] J. Kelsey, L. T. A. N. Brandão, R. Peralta, and H. Booth. A reference
for randomness beacons: Format and protocol version 2. https://doi.
org/10.6028/NIST.IR.8213-draft, May 2019.

[47] J. Kim, M. Song, M. Seo, Y. Jin, and S. Shin. PassREfinder:
Credential stuffing risk prediction by representing password reuse
between websites on a graph. In 45th IEEE Symposium on Security
and Privacy, May 2024.

[48] L. Kissner and D. Song. Privacy-preserving set operations. In
Advances in Cryptology – CRYPTO 2005, volume 3621 of Lecture
Notes in Computer Science, pages 241–257, August 2005.

[49] E. Kokoris-Kogias, D. Malkhi, and A. Spiegelman. Asynchronous
distributed key generation for computationally secure randomness,
consensus, and threshold signatures. In 27th ACM Conference on
Computer and Communications Security, pages 1751–1767, Novem-
ber 2020.

[50] Y. Kolumbus, M. Levy, and N. Nisan. Asynchronous proportional
response dynamics: Convergence in markets with adversarial schedul-
ing. In 37th Conference on Neural Information Processing Systems,
pages 25409–25434, 2023.

[51] H. Kunreuther and G. Heal. Interdependent security. Journal of Risk
and Uncertainty, 26:231–249, 2003.

[52] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification
of probabilistic real-time systems. In International Conference on
Computer Aided Verification, 2011.

[53] K. Lai, L. Rasmusson, E. Adar, L. Zhang, and B. A. Huberman.
Tycoon: An implementation of a distributed, market-based resource
allocation system. Multiagent and Grid Systems, 1(3):169–182, 2005.

[54] K. Lauter, S. Kannepalli, K. Laine, and R. C. Moreno. Password
Monitor: Safeguarding passwords in Microsoft Edge. https://www.
microsoft.com/en-us/research/blog/password-monitor-safeguardin
g-passwords-in-microsoft-edge/, 21 January 2021.

[55] M. Lelarge and J. Bolot. A local mean field analysis of security
investments in networks. In 3rd Workshop on Economics of Networked
Systems, pages 25–30, 2008.

[56] R. Lemos. Credential stuffing reaches 193 billion login attempts
annually. https://www.darkreading.com/cloud-security/credential
-stuffing-reaches-193-billion-login-attempts-annually, 19 May 2021.

[57] D. Levin, K. LaCurts, N. Spring, and B. Bhattacharjee. BitTorrent is
an auction: Analyzing and improving BitTorrent’s incentives. In ACM
SIGCOMM Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, pages 243–254, 2008.

[58] G. Ling, P. Tang, and W. Qiu. Efficient updatable PSI from asym-
metric PSI and PSU. Cryptology ePrint Archive, Paper 2024/1712,
2024.

[59] J. Lou, A. M. Smith, and Y. Vorobeychik. Multidefender security
games. IEEE Intelligent Systems, 32(1):50–60, 2017.

[60] D. Malkhi and M. K. Reiter. An architecture for survivable coordina-
tion in large distributed systems. IEEE Transactions on Knowledge
and Data Engineering, 12(2), March/April 2000.

[61] P. Mayer, J. Kirchner, and M. Volkamer. A second look at password
composition policies in the wild: Comparing samples from 2010 and
2016. In 13thSymposium on Usable Privacy and Security, pages 13–
28, 2017.

[62] P. Mayer, C. W. Munyendo, M. L. Mazurek, and A. J. Aviv. Why
users (don’t) use password managers at a large educational institution.
August 2022.

[63] R. A. Miura-Ko, B. Yolken, J. Mitchell, and N. Bambos. Security
decision-making among interdependent organizations. In 21st IEEE
Computer Security Foundations Symposium, pages 66–80, 2008.

[64] K. C. Nguyen, T. Alpcan, and T. Basar. Stochastic games for
security in networks with interdependent nodes. In 1st International
Conference on Game Theory for Networks, pages 697–703, 2009.

[65] National Council of ISACs. About isacs. https://www.nationalisacs.
org/about-isacs, 2025.

[66] OneCloud. What is the average response time to detect a cyber breach
in 2024? https://www.onecloud.com.au/resources/what-is-the-avera
ge-response-time-to-detect-a-cyber-breach-in-2024/, 4 September
2024.

[67] P. S. Oruganti, P. Naghizadeh, and Q. Ahmed. The impact of network
design interventions on the security of interdependent systems. IEEE
Transactions on Control of Network Systems, 11(1):173–184, 2023.

[68] H. Pagnia and F. C. Gärtner. On the impossibility of fair exchange
without a trusted third party. Technical Report TUD-BS-1999-02, De-
partment of Computer Science, Darmstadt University of Technology,
March 1999.

[69] B. Pal, M. Islam, M. Sanusi, N. Sullivan, L. Valenta, T. Whalen,
C. Wood, T. Ristenpart, and R. Chattejee. Might I get pwned: A
second generation compromised credential checking service. In 31st

USENIX Security Symposium, August 2022.

[70] S. Pearman, J. Thomas, P. E. Naeini, H. Habib, L. Bauer, N. Christin,
L. F. Cranor, S. Egelman, and A. Forget. Let’s go in for a closer look:
Observing passwords in their natural habitat. In 24th ACM Conference
on Computer and Communications Security, October 2017.

[71] A. Pfitzmann and M. Waidner. Networks without user observability.
Computers & Security, 6(2):158–166, April 1987.

[72] B. Pinkas, T. Schneider, and M. Zohner. Scalable private set inter-
section based on OT extension. ACM Transactions on Privacy and
Security, 21(2), 2018.

[73] J. Pullman, K. Thomas, and E. Bursztein. Protect your accounts from
data breaches with Password Checkup. https://security.googleblog.co
m/2019/02/protect-your-accounts-from-data.html, 5 February 2019.

[74] REN-ISAC. Membership. https://www.ren-isac.net/membership/m
embertypes.html.

[75] Recurly Research. Business churn rate by industry. https://recurly.co
m/research/churn-rate-benchmarks/, 2024.

[76] H. Robbins. A remark on Stirling’s formula. The American Mathe-
matical Monthly, 62(1):26–29, 1955.

[77] T. Sandholm and X. Wang. (Im)possibility of safe exchange mech-
anism design. In 18th AAAI Conference on Artificial Intelligence,
pages 338–344, 2002.

[78] E. Stobert and R. Biddle. The password life cycle. ACM Transactions
on Privacy and Security, 21(3):1–32, 2018.

[79] R. Terry. Honey accounts explained. https://www.crowdstrike.com/en
-us/cybersecurity-101/identity-protection/honey-account/, 7 January
2025.

[80] The League of Entropy. drand: A distributed randomness beacon.
https://drand.cloudflare.com/, 2024. Accessed: 7 December 2024.

[81] Verizon Business. Verizon 2024 data breach investigations report.
https://verizon.com/dbir, 2024.

[82] C. Wang, S. T. K. Jan, H. Hu, D. Bossart, and G. Wang. The next
domino to fall: Empirical analysis of user passwords across online
services. In 8th ACM Conference on Data and Application Security
and Privacy, pages 196–203, March 2018.

[83] D. Wang, Y. Zou, Q. Dong, Y. Song, and X. Huang. How to attack
and generate honeywords. In 43rd IEEE Symposium on Security and
Privacy, May 2022.

[84] K. C. Wang and M. K. Reiter. Using Amnesia to detect credential
database breaches. In 30th USENIX Security Symposium, August
2021.

[85] K. C. Wang and M. K. Reiter. Bernoulli honeywords. In 31st ISOC
Network and Distributed System Security Symposium, February 2024.

[86] L. Wang, S. Noel, and S. Jajodia. Minimum-cost network hardening
using attack graphs. Computer Communications, 29(18):3812–3824,
2006.

[87] R. Wash, E. Rader, R. Berman, and Z. Wellmer. Understanding
password choices: How frequently entered passwords are re-used
across websites. In 12th Symposium on Usable Privacy and Security,
June 2016.

[88] F. Wu and L. Zhang. Proportional response dynamics leads to market
equilibrium. In 39th ACM Symposium on Theory of Computing, pages
354–363, 2007.

[89] Y.-S. Wu, B. Foo, Y. Mei, and S. Bagchi. Collaborative intrusion
detection system (CIDS): A framework for accurate and efficient
IDS. In 19th Annual Computer Security Applications Conference,
December 2003.

[90] Y. Yang, Y.-C. Lee, P.-A. Chen, and C.-C. Lin. Robustness of
online proportional response in stochastic online Fisher markets: A
decentralized approach. arXiv preprint arXiv:2406.00160, 2024.

[91] V. Yegneswaran, P. Barford, and S. Jha. Global intrusion detection in
the DOMINO overlay system. In 11th ISOC Network and Distributed
System Security Symposium, February 2004.

[92] L. Zhang. Proportional response dynamics in the Fisher market.
Theoretical Computer Science, 412(24):2691–2698, 2011.

[93] Q. Zhu, C. Fung, R. Boutaba, and T. Basar. GUIDEX: A game-
theoretic incentive-based mechanism for intrusion detection networks.
IEEE Journal on Selected Areas in Communications, 30(11):2220–
2230, 2012.

Appendix A.
Challenges in Predicting Cost

In adapting proportional response from other domains
(e.g., [57], [88], [9]) to our setting, we considered many
variants of Eqn. (1) and Alg. 1. Below, we summarize two
of these versions and outline why did not prefer them.
• s∗.normRisk(r′) is a less accurate predictor of

s∗.normCostCum(1) for sites s∗ that are popular (see
§4.3). In this case, the overlap between s∗.users∩ s.users
and s∗.users ∩ s′.users for other sites s, s′ tends to be
large, meaning that computing s∗.normRisk(r′) as a
sum of s∗.normRisk(s, k) for s ∈ S \ {s∗} (see Eqn. (2))

“double counts” the large number of users in that overlap.
This double counting might be avoided by calculating
s∗.normRisk(r′) holistically, using the portfolio of al-
locations {s.allocTo(s∗)}s∈S \{s∗}, versus as a simple sum of
per-site contributions. While such a “portfolio” approach
is possible (at least in the psi case), we nevertheless
found that attributing risk to each peer individually (i.e.,
s∗.normRisk(s, s.allocTo(s∗)) is particularly useful be-
cause the lever available to incentivize a peer is adjusting
its individual allocation; i.e., it is useful to be able to
assign blame individually, so that we can incentivize each
peer individually.

• We explored various other measures to predict
s∗.normCostCum(1), besides s∗.normRisk(r′) . Most
were measures of utility, expressed as a function of
desired allocations of slots from each s ∈ S \ {s∗} (itself
computed using |s∗.users ∩ s.users|) and the actual
allocation of slots from s. Measures of utility that grow
linearly the allocation from s suffered from the fact
that incrementing or decrementing allocations tended
to affect s∗.normCostCum(1) much more (respectively,
less) if the allocation was already small (respectively,
large). Nonlinear functions that we considered introduced
additional tuning parameters that we found difficult to fit
to the myriad other parameter settings we explored in
our model-checking experiments.
An important direction for future work is therefore to re-

fine s∗.normRisk(r′) to better predict s∗.normCostCum(1)
when s∗ is popular. Perhaps an even greater chal-
lenge is to improve s∗.normRisk(r′) to better pre-
dict s∗.normCostCum(1) in the psica setting or when
a.aggression is low. Both scenarios involve an inherent
information imbalance: in the former, s∗ lacks knowledge
of shared users across peers, while in the latter, it lacks
insight into the attacker’s aggression.

Appendix B.
Cit0day Data Exploration

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Password reuse rate

C
D

F

Figure 8: Pass-
word reuse rate

The processed Cit0day dataset in-
cludes 74,268,368 users across 7,914
sites and 53,241,884 unique pass-
words. Site sizes vary widely (see
Fig. 9c). However, a site’s popularity
does not directly translate to greater
risk. From the site’s own perspec-
tive, the number of users it shares
with other sites—its only observable signal of stuffing
risk—correlates only weakly with site size (r = 0.197;
Fig. 9b). This suggests that larger sites do not necessarily
have a proportionally higher number of users with accounts
elsewhere. In contrast, the actual number of vulnerable users
(those who reuse passwords across sites) shows only a mod-
erate correlation with site size (r = 0.610; Fig. 9a), indicating
that overall risk does not scale directly with popularity.

Figs. 9c and 9d show heavy-tailed distributions: most
sites are small, and most site pairs share few users. Still,

password reuse is rampant among users with multiple ac-
counts. Among the 9.3% of site pairs that share users, reuse
is nearly universal; the median reuse rate in Fig. 8 is 94.5%.

0 2 4 6 8

·105

0

2

4

6

8
·105

{|s.users|}s∈S

|s.
vu

lnU
se

rs |

Trend line (r=0.610)

(a) Total vs. capturable users.
We randomly sample 1,000 sites
to illustrate trends clearly.

0 1 2 3

·105

0

1

2

·106

{|s.users|}s∈S

∑ s′ ∈
S\

s|
s.u

se
rs
∩

s′ .
us

ers
|

Trend line (r=0.197)

(b) Total vs. shared users. We
randomly sample 1,000 sites to
illustrate trends clearly.

101 102 103 104 105 106
0

0.2

0.4

0.6

0.8

1

{|s.users|}s∈S

CD
F

25%: 1785
50%: 3582
75%: 10360
90%: 28921
95%: 54016
99%: 167841

(c) Users per site

100 101 102 103
0

0.2

0.4

0.6

0.8

1

{|s.users ∩ s′.users|}s,s′∈S
s,s′

CD
F

25th pct: 1
50th pct: 1
75th pct: 4
90th pct: 15
95th pct: 38
99th pct: 137

(d) Shared users per site

Figure 9: Exploration of Cit0day Dataset

Appendix C.
Performance Optimizations

To place a bid according to P2b, s must determine
s.avgRisk(s′) from all s′ ∈ S \ {s}. However, calculating
s.avgRisk(s′) involves computing the optimal number f of
stuffing attempts by an attacker which maximizes Eqn. (1)
assuming k = s′.allocTo(s). A naive implementation could
iterate over all the possible values of f , which is upper-
bounded by n′ = |s.users ∩ s′.users|. However, this will
quickly be computationally prohibitive as the number of
users increases. Instead, we observe Eqn. (1) is unimodal,
and the optimal f is either ⌊(n′−min{n′, k})/(min{n′, k}+1)⌋
or ⌈(n′−min{n′, k})/(min{n′, k}+1)⌉ in the psi setting and ei-
ther ⌊(|s′.users| −min{|s′.users| , k})/(min{|s′.users| , k}+1)⌋
or ⌈(|s′.users| − min{|s′.users| , k})/(min{|s′.users| , k} + 1)⌉
in the psica setting. §C.1 contains the proof.

Despite reducing the number of calculations to com-
pute Eqn. (1), evaluating s.avgRisk(s′) still scales with
O(|s.users|). To compute it in constant time, we use Stir-
ling’s approximation of log factorials. §C.2 provides the er-
ror terms. Combined, these two optimizations let us estimate
Eqn. (1) in O(1) time, implying s.avgRisk(s′) in P2b is
also calculated in O(1) time. Therefore, computing a bid
according to P2b only depends on the number of bids that
s is receiving, which scales with the number of sites, O(n).

C.1. Eqn. (1) is unimodal

We prove the psi case; psica is analogous. Eqn. (1) in
the psi setting is:

s.risk(s′, k) = max
0≤ f≤n′

f ×

(
n′− f

m

)(
n′
m

) (14)

where m = min{n′, k}. To find the maximum, we check when
E
(
� f+1

)
> E

(
� f

)
:

E
(
� f+1

)
E
(
� f

) > 1 ⇐⇒
f + 1

f
·

(
n′− f−1

m

)(
n′− f

m

) > 1 (15)

⇐⇒
f + 1

f
·

n′ − f − m
n′ − f

> 1 (16)

⇐⇒ f <
n′ − m
m + 1

(17)

Therefore, the maximum occurs at ⌊(n′ −m)/(m+ 1)⌋ or
⌈(n′ − m)/(m + 1)⌉.

C.2. Stirling approximation of log factorial error
term

We derive the error bounds for approximating Eqn. (3)
(psi); the derivation for Eqn. (4) (psica) is analogous. When
k > n′ and f = 0, Eqn. (3) evaluates to 1. When k > n′ and
f > 0, Eqn. (3) evaluates to 0. The interesting case is when
k ≤ n′. We have:(

n′− f
k

)(
n′
k

) = exp
(

ln((n′ − f)!) + ln((n′ − k)!)
− ln((n′ − f − k)!) − ln(n′!)

)
(18)

Let S denote the value of Eqn. (18). Using Stirling’s
approximation ln(g!) ≈ g ln(g) − g + 1

2 ln(2πg) + εg with
Robbins bounds 1

12g+1 < εg <
1

12g [76], we can approximate
Eqn. (18) by S · exp(Etotal) where:

Etotal = εn′− f + εn′−k − εn′− f−k − εn′ (19)

The error bounds are:

Elower
total =

1
12(n′ − f) + 1

+
1

12(n′ − k) + 1

−
1

12(n′ − f − k)
−

1
12n′

(20)

Eupper
total =

1
12(n′ − f)

+
1

12(n′ − k)

−
1

12(n′ − f − k) + 1
−

1
12n′ + 1

(21)

Therefore:(
n′− f

k

)(
n′
k

) ∈ [
S · exp(Elower

total), S · exp(Eupper
total)

]
(22)

Appendix D.
Model Checking Implementation

In the inter-organization model (§3), s∗’s goal is to
minimize its risk (Eqn. (1)). Assuming the s∗’s credential
database is breached, the attacker’s objective (§4) is to
harvest as many users as possible by stuffing the s∗ ’s
compromised passwords at its peers. We model each of these
interactions as Markov Decision Processes (MDPs) and use

probabilistic model checking to analyze them, providing a
worst-case assessment of s∗’s security.

Probabilistic model checking requires exhaustively
searching the entire state space, which imposes significant
computational and memory constraints. As a result, off-
the-shelf tools like PRISM [52] struggle to scale to the
number of sites and users in our analysis (sections 3.6,
4.3, and 4.4). To address this, we developed custom model
checkers in Python with application-specific optimizations,
detailed below. We validated our implementations by com-
paring results from small-scale experiments—limited in site
and user count and excluding combinations of parameters
that PRISM cannot handle—against PRISM’s output.

D.1. Inter-organization Model Implementation

A state in the inter-organization model consists of (1)
the bid number, (2) the average number of slots each site
has received from its peers, (3) the latest bid each site has
placed for s∗. If s∗.cutline = True, we additionally store the
number of bids placed by s ∈ S \ {s∗}, since this determines
which of s∗’s peers is slated to bid next. Additionally, if
slack < ∞, we maintain an n-sized array that tracks how
many more bids ahead each site has placed relative to its
peers; each element in this array is bounded by slack.

To implement the exhaustive strategy when it bids,
the s∗e computes the allocation that minimizes s∗.risk
over s∗e.foresight + s∗e.lookahead future steps. Our model-
checker uses breadth-first search (BFS) to build a tree of
this depth, with each node stores the state, as described
above. Within the s∗e.foresight depth, child nodes correspond
to the next bidder specified in the bidding sequence and,
if s∗e.cutline = true, the s∗ assuming it had not bid previ-
ously. Beyond s∗e.foresight, nodes branch on all valid next
bidders: if s∗e.cutline = false, this includes every s ∈ S ;
if s∗e.cutline = true it includes every s ∈ S \ {s∗}, and s∗e,
provided it was not the previous bidder. When s∗e bids, nodes
further branch on its possible allocations; to control state
explosion, our implementation only allows s∗e to allocate
s∗.cap in fixed, tunable increments.

We cap the tree depth at s∗e.foresight + s∗e.lookahead to
reflect the realistic assumption that s∗ cannot predict bids
indefinitely, and to bound memory usage during BFS. Since
PRISM lacks support to easily restrict tree depth below
auction length, r, we validate our model checker against
PRISM only in cases where s∗e.foresight+ s∗e.lookahead = r.

After building the tree, we back-propagate optimal bids
and cumulative risk from leaves to root, yielding s∗e’s best
move. During this process, we cache the optimal rewards
and policies of nodes at depths (s∗e.foresight, s∗e.foresight +
s∗e.lookahead] for reuse in later bids or bidding sequences,
assuming all other parameters remain fixed.

D.2. Attacker Model Implementation

A state in the attacker model consists of (1) the bid
number, (2) each s ∈ S \ {s∗} allocation to s∗ for that round,
(3) the attacker’s current stuffing strategy—i.e., which users

in s∗.users are stuffed and at which s ∈ S \ {s∗}, and (4) the
attacker’s cumulative dodge probability.

To implement worst-case attacker, our model checker
uses depth-first search (DFS) to build a tree of depth
a.foresight + a.lookahead, enumerating all attacker strate-
gies feasible within a.aggression. We use DFS, in lieu
of BFS, due to memory-constraints imposed by the explo-
sive number of attacker strategies. Within the a.foresight
depth, the model checker generates attacker stuffing strate-
gies assuming allocations corresponding to the next bidder
specified in the bidding sequence. Beyond a.foresight, the
model checker also branches on the possible next bidders, as
described in §D.1, generating attacker strategies that satisfies
a.aggression assuming the largest number of slots due to
possible bids. To reduce the number of nodes generated in
the tree, we cache nodes with few stuffing attempts, as these
are likely to satisfy the a.aggression and thus be regenerated
at multiple tree depths. For fixed k = s∗.allocTo(s), we
also bound stuffing attempts per site using the unimodal
optimization in §C.1.

Still, enumerating the attacker’s stuffing strategies to
depth a.foresight + a.lookahead is computationally pro-
hibitive. To this end, we underspecify the attacker’s stuff-
ing strategy by only the number of stuffing attempts per
s ∈ S \ {s∗}. Not all such underspecified strategies corre-
spond to a valid set of uncaptured users in s∗.users, so we
incrementally filter out invalid strategies as determined by
a constraint solver.

We backpropagate from tree leaves to root, to com-
pute the optimal underspecified strategy—per-site stuffing
counts—over the a.foresight +a.lookahead depth. To con-
cretize this strategy with valid users, we retroactively search
for a subset of uncaptured users in s∗.users that satisfies
the strategy. To narrow this recursive search, we observe
an attacker prioritizes stuffing users with fewer accounts to
preserve future stuffing options.

Even enumerating underspecified strategies becomes
computationally prohibitive as the number of sites and users
grows, since suboptimal per-site stuffing counts (at a given
depth) may yield high payoff later if s∗.allocTo(s) decreases
at deeper levels. However, when a.foresight+a.lookahead =
1, as in §4.4, the attacker’s goal is to immediately maximize
expected user captures. In this case, our model checker
iterates over site indices to find the maximal underspecified
per-site stuffing strategy, subject to §C.1 and a.aggression.
Since this maximal strategy may not correspond to a valid
subset of uncaptured users in s∗.users, we track both (1) the
best valid strategy found so far and (2) invalid strategies that
yield higher payoff but currently violate constraints. These
invalid strategies act as upper bounds that may later become
valid. If no such invalid strategies remain, we conclude the
optimal per-site stuffing strategy has been found.

