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Abstract—To boost the encoder stealing attack under the
perturbation-based defense that hinders the attack performance,
we propose a boosting encoder stealing attack with perturbation
recovery named BESA. It aims to overcome perturbation-based
defenses. The core of BESA consists of two modules: perturbation
detection and perturbation recovery, which can be combined with
canonical encoder stealing attacks. The perturbation detection
module utilizes the feature vectors obtained from the target
encoder to infer the defense mechanism employed by the service
provider. Once the defense mechanism is detected, the pertur-
bation recovery module leverages the well-designed generative
model to restore a clean feature vector from the perturbed
one. Through extensive evaluations based on various datasets,
we demonstrate that BESA significantly enhances the surrogate
encoder accuracy of existing encoder stealing attacks by up to
24.63% when facing state-of-the-art defenses and combinations
of multiple defenses.

Index Terms—Encoder stealing attack, perturbation recovery,
perturbation detection, generative model.

I. INTRODUCTION

Pre-trained encoders are extensively utilized across vari-
ous domains in real-world scenarios [1]. However, training
well-performing pre-trained encoders is a time-consuming,
resource-intensive, and costly process [2]. Hence, encoder
owners are highly motivated to safeguard the privacy of their
pre-trained encoders.

Unfortunately, recent works have shown that pre-trained
encoders are susceptible to encoder stealing attacks [3]. These
attacks allow an attacker to create a surrogate encoder that
closely mimics the functionality of a targeted encoder by
simply querying it through the APIs. The consequences of
such attacks can be quite severe. On the one hand, many
service providers, such as OpenAl, Google, and Meta, offer
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cloud-based Encoder as a Service (EaaS) solutions to monetize
their pre-trained encoders [4]. Users compensate these service
providers for accessing the encoder through Application Pro-
gramming Interfaces (APIs). However, an attacker can acquire
the cloud-based encoder at a significantly reduced expense
compared to the investment in data collection and training,
which not only infringes on intellectual property but also
results in financial setbacks for the original service provider
[S]-[7]. On the other hand, encoder stealing attack can also
act as a launchpad for various types of attacks like adver-
sarial sample attacks [8], membership inference attacks [9],
[10], and backdoor injection attacks [11]-[13]. For example,
certain adversarial example attacks rely on having access to
the gradient of the target encoder, which is inaccessible in
black-box scenarios. In such cases, an adversary can create a
surrogate encoder through model encoder stealing attacks and
generate adversarial examples using the white-box surrogate
encoder. Additionally, researchers have demonstrated that a
surrogate encoder obtained through encoder stealing attacks
can enable membership inference attacks as well as more
damaging backdoor injection attacks.

Extensive research has been conducted to mitigate en-
coder stealing attacks in various ways. Common defense
strategies include detection methods [14], [15], watermark-
ing techniques [16]-[18], and perturbation-based approaches
[19], [20]. Among these methods, the perturbation-based ap-
proaches have been widely adopted by many EaaS providers
based on their performance in degrading existing encoder
stealing attacks. Based on their good performance in real-
world scenarios, these defense strategies have been adopted
by real-world EaaS providers to safeguard against encoder
stealing attacks. For example, Liu et al. [20] have demonstrated
that using perturbation-based defense mechanisms can cause
a decrease in the accuracy of the substitute encoder on down-
stream classification tasks, from 78.12% to 42.07%. Therefore,
it is necessary for the attackers to explore practical ways to
bypass or penetrate such defense methods for more effective
stealing attacks.

To the best of our knowledge, previous works have widely
ignored the possibility of performing encoder stealing attacks
against defended target encoders. Motivated by this research
gap, we propose a boosting encoder stealing attack with per-
turbation recovery, called BESA. The core idea behind BESA
is to detect and recover perturbed feature vectors, which is
illustrated in Fig. 1. To be specific, canonical encoder stealing
attacks typically involve three steps. Initially, the surrogate
encoder is either initialized as empty or pre-trained. Next,
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Fig. 1. The architecture of BESA.

original or augmented samples [20] are chosen to query the
target encoder for feature vectors. Subsequently, the surrogate
encoder is optimized using these feature vectors. This query
and optimization process is iterated until optimal performance
is achieved. However, if the feature vectors are perturbed by
the service provider, the optimization efforts may prove futile.
As shown in Section V, the performances of existing works
are seriously degraded if the feature vectors are perturbed
by the service provider. To solve this problem, we introduce
two general modules in BESA, namely perturbation detection
and perturbation recovery, which can be incorporated into
canonical encoder stealing attacks before the optimization
phase for the surrogate encoder.

To achieve our objective of boosting encoder stealing at-
tacks, we encounter several challenges as follows.

o Detecting the adopted defense method is challenging.

Generally, the defense method adopted by the service
provider is often unknown. Although some detecting methods
have been proposed recently [21], they mainly aim at logits
with small sizes and simple distribution characteristics. How-
ever, existing methods fall short as the feature vectors from
pre-trained encoders are always large and with complex distri-
bution characteristics. To tackle this problem, we first train a
collection of shadow encoders applied with multiple defenses.
Here, the data augmentation technique is adopted to overcome
the lack of enough public training data. Subsequently, we train
a binary meta-classifier with multiple layers for each defense
method using perturbed and unperturbed feature vectors. The
trained meta-classifier can accurately predict if a particular
feature vector has been altered by the respective defense
technique. The results from the experiments in Section V-B2
demonstrate its ability to differentiate the defense method with
an accuracy of over 99%.

« Recovering perturbed feature vectors is challenging.

Even if we can detect the defense method, the precise
amount of noise added remains uncertain. Although generative
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models have been used for perturbation recovery [21], their
architectures are designed for logits with small sizes and
simple distribution. However, these models are inefficient and
ineffective for feature vectors with large sizes and complex
distribution. To tackle this challenge, we construct a generative
model inspired by the MagNet [22] based on its outstanding
performance of perturbation recovery on samples with large
size and complex distribution. Next, we proceed to train the
model using perturbed feature vectors as inputs and unper-
turbed ones as outputs. The experiments detailed in Section
V-B1 illustrate that this method can enhance the accuracy of
current attacks by as much as 24.63%.

The contributions of this paper are as follows.

o We have developed a boosting encoder stealing attack
with perturbation recovery called BESA, illustrated in
Fig. 1, to enhance the effectiveness of canonical attacks
against perturbation-based defenses.

o We have devised algorithms for perturbation detection
and recovery, enabling the identification of the defense
methods and the recovery of perturbed feature vectors
for the optimization of the surrogate encoder.

« We have conducted experiments across different defense
methods on three state-of-the-art attacks to evaluate the
performance of BESA. The results show that it can
improve the accuracy of existing attacks by up to 24.63%.

The rest of the paper is structured as follows. Section II

presents the related works. In Section III, we give the threat
model of our scheme, including the object, capabilities, and
limitations. We give the scheme details in Section IV, followed
by experiments in Section V. Finally, we conclude this paper
in Section VIIL.

II. RELATED WORKS
A. Model Stealing Attacks

Most model stealing attacks mainly focus on the classifiers
instead of the emerging pre-trained encoders [23], [24]. For
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instance, Tramer et al. [25] were the first to investigate
model stealing attacks in supervised learning. They demon-
strated the feasibility of extracting the functionality of high-
performing machine learning models deployed online through
APIs. Subsequently, extensive research has been conducted
on various aspects [26]-[34]. For example, if the attacker
manages to obtain similar or in-distribution data that resemble
the surrogate dataset used for attacks, they can leverage data
augmentation or active learning techniques by combining the
datasets to query the API [35], [36]. Furthermore, Truong
et al. [30] and Kariyappa et al. [29] have also explored the
possibility of stealing the model in data-free [37]. However,
this approach may prove insufficient in practical scenarios
where the tasks involve significant commercial value, and the
associated training dataset is considered highly confidential
and hard to access [27], [28].

Numerous researchers have proposed data-free methods for
extracting models to tackle this challenge [33]. In such scenar-
ios, the adversary lacks any information about the dataset used
to train the target models. Two recently developed techniques,
namely DFME [30] and MAZE [29], have been specifically
designed to extract the functionality of target models under
this challenge. However, these studies impose significant query
budgets on the adversary, rendering them impractical in real-
world scenarios. Lin et al. [34] tackled this problem by inte-
grating Generative Adversarial Networks (GAN) to make use
of weak image priors. They also employed deep reinforcement
learning methods to enhance the query efficiency of data-free
model extraction attacks.

In the aspect of emerging pre-trained encoders, Liu et al.
[20] introduced a pioneering attack named “StolenEncoder”
with the objective of extracting the functionality of pre-
trained encoders. Their method formulates the stealing attack
as an optimization problem and utilizes the standard stochastic
gradient descent paradigm to solve it. To optimize the query
budget, the attack incorporates data augmentations to enhance
its effectiveness. Additionally, a method called “Cont-Steal”
is introduced by Sha et al. [3], which employs the concept of
contrastive learning to effectively utilize the rich information
in the feature vectors. However, existing works on encoder
stealing attacks have disregarded the exploration of stealing
pre-trained encoders under perturbation-based defensive ap-
proaches. In contrast, our work focuses on encoder stealing
attacks against defended pre-trained target encoders, which is
more applicable in real-world scenarios.

B. Defensive Approaches

When protecting the pre-trained encoders against encoder
stealing attacks, the service provider encounters two opposing
objectives: impeding malicious and enhancing benign queries.
In other words, the service provider aims to hinder the at-
tacker’s efforts in carrying out encoder stealing attempts while
improving the performance of legitimate queries. Generally,
existing defensive approaches in defending against encoder
stealing attacks can be classified into three main categories:
detection, watermarking, and perturbation.

1) Detection-based Methods.: Detection-based methods fo-
cus on determining if a query sequence is malicious, without
modifying the feature vectors. In cases where a query sequence
is flagged as malicious, the service provider might opt to
adjust the feature vector or refuse service to the user. For
the detection-based method, Dubinski et al. [38] proposed an
active defense method to counter encoder stealing attacks. This
method prevents stealing in real-time, without compromising
the quality of the representations for legitimate API users.
Specifically, their defense approach is based on the observation
that the representations provided to adversaries attempting to
steal the encoder’s functionality cover a significantly larger
portion of the embedding space compared to representations
of normal users using the encoder for a specific downstream
task. However, how to accurately define the concept of an
“anomalous query” still becomes challenging in practice.

2) Watermarking-based Methods.: Watermarking-based
methods involve injecting a carefully designed watermark
backdoor into the target encoder. This allows for effective
transfer to the surrogate encoder of the attacker, aiding in
copyright verification. For the watermarking-based method,
Cong et al. [39] introduced the first robust watermarking for
pre-trained encoders called SSLGuard. This algorithm serves
as a defense against model extraction and other watermark
recovery attacks like input noising, output perturbing,
overwriting, model pruning, and fine-tuning. Additionally,
Peng et al. [40] introduced EmbMarker, a backdoor-based
watermarking scheme to protect pre-trained encoders in the
large language aspect. However, existing watermarking-based
methods still face serious threats to extraction-based attacks
due to their functional-irrelevant characteristic. known for
its ability to protect the copyright of pre-trained encoders
through the use of Backdoor Watermark.

3) Perturbation-based Methods: The perturbation-based
methods perturb the feature vectors of some or all queries.
For the perturbation-based method, Liu et al. [20] first dis-
cuss perturbation-based methods for defending against their
proposed StolenEncoder attack on pre-trained encoders. Ac-
cording to their categorization, there are three main approaches
adopted in defending the pre-trained encoders. Firstly, the top-
k features approach resets the contents that are not among
the top k largest absolute values to 0. Secondly, the feature
rounding approach rounded feature vectors. Lastly, the feature
poisoning approach adds carefully crafted perturbations to
the feature vector. Nevertheless, the trade-off between the
security under perturbation-based defenses and the usability
for regular users still warrants further discussion. According to
their categorization, three main approaches have been adopted
to defend the pre-trained encoders. Firstly, in the top-£ features
approach, the EaaS API resets the contents of features that
are not among the top k largest absolute values to 0 before
returning a feature vector to a customer. Secondly, in the
feature rounding approach, the EaaS API returns rounded
feature vectors to a customer. Lastly, the feature poisoning
approach involves the EaaS API adding carefully crafted
perturbations to a feature vector in order to manipulate the
optimization of the surrogate encoder.
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III. THREAT MODEL

In this section, we establish the threat model based on the
objective, capabilities, and the attack’s limited knowledge.

A. Objective

In BESA, the attacker’s goal is to create a surrogate encoder
that imitates the actions of the target encoder, which is
safeguarded by specific defense mechanisms. Additionally, the
attacker aims to achieve this objective while working within
restricted query budgets.

B. Capabilities

In BESA, we consider the attacker to possess three specific
capabilities during the attack.

« The attacker has access to publicly available datasets.
The attacker has the ability to gather datasets that are
either consistent or inconsistent with the original train-
ing distribution of the target encoder. For instance, if
the target encoder is pre-trained on the CIFAR-10 [41]
dataset for downstream tasks, the CIFAR-100 dataset
could be considered an in-distribution dataset, while the
SVHN [42] dataset, which consists of Google Street
View house numbers, could be considered an out-of-
distribution dataset.

o The attacker has the capability to make queries to
the target encoder. The attacker interacts with the target
encoder by making queries through the EaaS API or
other interfaces to retrieve the relevant query results.
It is assumed that the query results consist of feature
vectors, which is a commonly found feature in most
EaaS systems. However, due to the limited query budget,
the attacker is only able to make a restricted number of
queries to the target encoder. In the case of BESA, it is
assumed that service providers utilize a defense strategy
based on perturbation to modify some or all of the feature
vector outcomes while preserving accuracy or adhering to
accuracy constraints.

o The attacker has the ability to reconstruct the
defensive strategy. The attacker has the ability
to reconstruct a set of defense strategies labeled
as fpe={f% % -, fK}, where each f¥ k ¢
{1,2,---, K} represents a specific defense tactic. It is as-
sumed that the strategy employed by the service provider
is included in this reconstructed set fp.. Importantly,
we demonstrate the effectiveness of BESA through our
experiments by showing its effectiveness even when the
service provider adopts defense strategies that are not
included in the attacker’s reconstructed set.

C. Limitations

In BESA, we make assumptions about the attacker’s lim-
itations. First, the attacker lacks knowledge about the target
encoder, including its architecture, parameters, and hyperpa-
rameters. Moreover, it cannot access the original pre-trained
samples of the target encoder due to their unavailability,
difficulty in obtaining them, or prohibitively high cost. Finally,

it lacks knowledge of the specific defense strategies employed
by the service provider. The service provider is capable of
selectively altering a subset of feature vectors, for which the
attacker lacks detailed information. The details are as follows.

« No information about the Target Encoder. The attacker
lacks knowledge about the target encoder, including its
architecture, parameters, and hyperparameters.

o No Access to Original Pre-train Dataset. The attacker
cannot access the original pre-trained samples of the
target encoder due to their unavailability, difficulty in
obtaining them, or prohibitively high cost.

« Inadequate Defense Strategy Knowledge. The attacker
lacks knowledge of the specific defense strategies em-
ployed by the service provider. The service provider is
capable of selectively altering a subset of feature vectors,
for which the attacker lacks detailed information.

IV. DETAILED CONSTRUCTION

In contrast to traditional encoder stealing attacks, BESA is
improved by incorporating two additional modules positioned
between the target encoder query module and the surrogate
encoder optimizing module. These additional modules are
intended to identify and restore perturbation feature vectors,
as demonstrated in Fig. 1. The first module, the perturbation
detection module, utilizes meta-classifiers to recognize the de-
fense mechanisms implemented through the service provider.
Another module, the perturbation recovery module, focuses on
recovering pristine feature vectors from the perturbed ones.
These two modules can be seamlessly integrated into existing
canonical encoder-stealing attack frameworks. This section
provides a comprehensive overview of both the perturbation
detection module and the perturbation recovery module and
we present the detailed procedure of BESA in Algorithm 1.

A. Perturbation Detection

Our main objective is to identify the defense strategies
employed by the service provider by leveraging the dis-
tinct characteristics of perturbed feature vectors associated
with different defense strategies. To achieve this, we start
by constructing a pool of unprotected pre-trained encoders.
These encoders, denoted as {E1, Es, - - - , Ejs}, are trained on
various publicly available datasets {D;, Da,---, Dy} using
different architectures and contrastive learning algorithms. To
construct more training data samples for shadow encoders
with limited public datasets, the attacker can adopt the data
augmentation technique utilized in various works [3], [20].
Note that E,,, m € [1, M] refers to a set of unprotected
encoders pre-trained on D,, since we utilize different archi-
tectures and contrastive learning algorithms to train multiple
models for each public dataset. Although it would be ideal for
these shadow encoders to have architectures similar to those of
the target encoder, this is not possible in black-box scenarios.
[20]. Thus, we incorporate diversity into the designs of the
shadow encoders to enhance overall generalization. Following
this, we implement a range of defense strategies for these
shadow encoders. With K defense techniques available and M
groups of shadow encoders, we have the flexibility to assign
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Algorithm 1 BESA: Boosting encoder stealing attack with
perturbation recovery
Require: API of the target encoder 7, public datasets with
data augmentation D1, Do, --- Dy, the series of defense
tattics f1, f2,--- fK.
Ensure: Trained surrogate encoder S
1: // Preparation.
2: Train shadow encoders E1, Fs, - - - Ej; using the datasets
D1, Dy, ---Dyy.

3. for k € [1,K] do

4 Leverage f* to E,,, m € [1, M].

5. Use the inputs (z,,,, E¥ (2,,)), *pn € Dy, Vm as
positive samples and (2, Ep(2.,)), ¥m as negative
samples to train a binary meta-classifier By, where
Ek (2,,) is the output of encoder E,, under defense
fr

6:  Train a generative model G using E
and E,,(z,,) as outputs for all m.

7: end for

8: // Surrogate encoder initialization.

9: Initialize a raw or a pre-trained surrogate encoder S.

10: while The query budget is not exhausted or S is not

converged as desired do

11:  // Target encoder query.

12:  Construct a query sample x.

13:  Use z4 to query the target encoder 7 and receive the
feature vector 7 (z,).

14:  // Perturbation detection.

15:  Input (x4, 7(x4)) into By, By, - - Bk.

16:  if There exist available prediction results then

k

m

(z,) as inputs

17: Choose the prediction result with the highest confi-
dence score, which is represented as k*.
18: // Perturbation recovery.

19: Input 7 (z4) into G- to get T (zq) < G« (T (z4)).

20:  end if

21:  // Surrogate encoder optimizing.

22:  Use x4 and the recovered 7 (z,) to optimize the surro-
gate encoder S.

23: end while

a particular defense approach to multiple shadow encoders or
opt for employing multiple defense methods for a single group
of shadow encoders. Our goal is to secure an ample number of
pairs comprising protected and unprotected shadow encoders
for each defense tactic.
Here, we define EF as the protected version of E,,
under the defense strategy f*. E¥ (z,,) denotes the output
feature vector, while F,,(z,,) is the corresponding clean
output from the same encoder without any defense. These
notations help distinguish between perturbed and unperturbed
features, which are used to train the meta-classifiers. We
expect that E,, (x,,), &, € D,, captures the characteristics of
unperturbed feature vectors, while Efn, Ty € D,, embodies
the characteristics of feature vectors using defense strategy
f*. Building on this observation, we train K binary meta-
classifiers, By, - - - , Bg, where By, is responsible for detecting
whether the k-th defense approach safeguards the feature

vectors. Positive samples (2,,, EF, (2,,)), ¥m (with the label
is 1) and negative samples (Z,, Em(2.)), ¥m (with the
label is 0) are utilized in the training of the corresponding
meta-classifier By. Since Bj is being trained with samples
from various classification tasks, it is anticipated that the
model will grasp the inherent distinctions in characteristics
between modified and unaltered feature vectors resulting from
the defense mechanism f*. This enables the meta-classifiers
to generalize to the target encoder, even when the training
dataset of the target encoder is unknown to the adversary.

Trained meta-classifiers are employed to determine the
defense tactics used by the target encoder. Set z, € D,
represent a query sample from the query dataset, and 7 (z4)
represents the feature vector. The pair (x4, 7 (24)) is input into
the meta-classifiers Bj,--- Bx to obtain the corresponding
prediction results. If all predictions are below a specified
threshold (e.g., 0.5), the sample is unperturbed. However, if
any prediction result exceeds the threshold T}, we compare
the confidence scores of these predictions and select the one
with the highest confidence as the predicted defense tactic.
Our experiments demonstrate that in the majority of cases,
the meta-classifier associated with the actual defense strategy
generates a confidence score exceeding 90%.

B. Perturbation Recovery

If the feature vector of x4 is predicted to be intact, we
will optimize the surrogate encoder directly using this feature
vector. However, if it is disrupted, we will retrieve the original
feature vector from the altered one using the specified defense
strategy. It is crucial to highlight that defense detection can
be conducted at various intervals, including one-time, regular
intervals, or for each query. In the most precise scenario,
if the service provider alternates between different defenses
randomly, the attacker can perform defense detection on every
query outcome and subsequently restore each altered feature
vector based on the detection outcomes.

To retrieve the feature vector safeguarded through a partic-
ular defense strategy f*, we construct a generative model G},
and compute the perturbed feature vector 7 (z4) as follows:

T (xq) < Gi(T () (D

This model takes 7 (x,) as input and produces the correspond-
ing unperturbed feature vector. In order to train the generative
model Gy, we utilize the shadow encoders initially set up to
detect perturbations in the previous step. To be specific, each
training sample follows the format (EX (x,,), Ev(2.n)), ¥Ym.
Here, EF (x,,) represents the protected feature vector by
defense strategy f* for shadow encoder F,,, while E,,(z,,)
refers to the corresponding clean feature vector. By using this
approach, Gy acquires the ability to map perturbed feature
vectors to unperturbed ones, thereby ensuring that Gy (EF,)
exhibits the same characteristics as F,,.

Two major families of generative models are commonly
used in the field: Variational Autoencoders [43] and Gener-
ative Adversarial Networks (GANs) [44]. Autoencoders are
primarily employed for dimensionality reduction, compressing
data samples into informative representations with smaller
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Fig. 2. The design of the generator in BESA

dimensions than the input. On the other hand, GANs are
typically used for inverse transformations, generating samples
of more complex distributions based on random noise with
larger dimensions than the input. However, in the case of
perturbation discovery, the dimensionality of the clean feature
vector remains the same as that of the perturbed feature vector.
Therefore, neither VAEs nor GANs are suitable for achieving
the objective of perturbation recovery.

In Fig. 2, we have developed a generator that draws
inspiration from MagNet [22]. This generator denoted as
G, is composed of multiple blocks comprising BatchNorm,
LeakyReLU, and fully connected layers. Within each block,
the BatchNorm layer initializes by normalizing the feature
vectors to address convergence difficulties and mode collapse.
Subsequently, the LeakyReLLU activation function is employed
rather than ReLU to alleviate the issue of a vanishing gradient
[45]. Finally, the perturbed feature vectors are processed by
the fully connected layer to eliminate the influence of defense
strategies and reconstruct the corresponding clean feature
vectors. Our proposed generator is designed to be lightweight
but contains all essential components for effective perturbation
recovery.

The generator is trained to minimize the difference between
the recovered feature vector Gy(EF (x,,)) and the actual
clean feature vector Ey,(Z,). The minimization optimization
problem can be formulated as follows:

arg minE, p. [L(Ge(Er (2:)), Em(zm))], 2)
Gk

where 6, are the parameters of the generative model Gy,
and £ represents the loss function. Commonly employed loss
functions in this context are cosine similarity, Ly-norm loss,
and L-norm loss.

Cosine Similarity. Cosine similarity is a commonly used
loss function in various encoder training algorithms and en-
coder stealing attacks. It provides an effective measure of the
dissimilarity between two distinct feature vectors produced by
their respective encoders.

- Gi(Ep (2m)) - B (Tm)
| 220 Diml [|Gr(ER, (@m)) I X | Em (zm)||
3)

Lo-norm loss. The Ly-norm loss is a straightforward loss
function known for its rapid convergence.

Lo =

T €Dm

1

Ly = ——r—
| 2 Dim

Z [Gh(E(2m)) = Em(zm)]?. (4)

Tm €Dm

L1-norm loss. The L-norm loss exhibits a slower and less
substantial gradient decay compared to the Lo-norm loss, but
the derivative of the L;-norm loss is not unique at the point
0, potentially leading to non-convergence.

1
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V. EXPERIMENTS
A. Experimental Settings

1) Datasets and Target Encoders: We conducted exper-
iments on four commonly used datasets: MNIST, Fashion-
MNIST, CIFAR-10, SVHN, and ImageNette. We trained tar-
get encoders on these datasets using VGG16 and ResNet-
34 respectively. For the contrastive learning algorithm, we
employed three widely adopted methods: SimCLR, MoCo, and
BYOL.

2) State-of-the-Art (SOTA) Attacks: We list three SOTA
encoder stealing attacks improved by the use of BESA.

SSLGuard [39]. The encoder stealing approach in SSL-
Guard leverages the samples in the shadow dataset to simply
query the target encoder for optimizing the surrogate encoder.

StolenEncoder [20]. StolenEncoder employs data augmen-
tation to enhance the loss function for optimizing the surrogate
encoder. Moreover, they leverage the inner characteristics of
the pre-trained encoder to decrease the query budget.

Cont-Steal [3]. Inspired by the concept of contrastive
learning, Cont-Steal ensures that the surrogate feature vector
of an image is closely aligned with its target feature vector,
while also creating a distinction between feature vectors of
different images.

3) Settings of BESA: In this study, we implement BESA
within three established encoder stealing attack frameworks,
resulting in their enhanced variations. The experimental set-
tings for existing attacks are selected based on the ones in
their original paper for a fairer comparison, and the results
are the average based on ten repeated experiments to avoid
the occasional situation.

In order to ensure that the meta-classifiers can generalize
effectively in accurately detecting the specific defense method
used by the service provider, a substantial number of shadow
encoders with various architectures (e.g., ResNet, VGG, etc.)
are trained for the surrogate encoder. In our experiments, the
default number of shadow encoders is set to 128. All encoders
undergo training utilizing contrastive algorithms that can be
found on GitHub. For training the surrogate encoders, we use
the following default hyperparameters across all experiments
unless otherwise specified: a learning rate of 0.1, a batch
size of 128, and the SGD optimizer with momentum 0.9.
Each training run lasted for 100 epochs, and learning rate
decay was applied with a factor of 0.1 every 60 epochs.
Finally, we initialized the surrogate encoder with ResNet-50
as the architecture and used SimCLR for pre-training. For
the experimental hardware platform, we utilized two NVIDIA
4090 GPUs, each equipped with 24 GB of memory.
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TABLE I
ACCURACY OF THE SURROGATE ENCODER FOR DIFFERENT DATASETS. THE HIGHER LEVEL OF ACCURACY IS EMPHASIZED IN BOLD.
Dataset Method Top-K RD NP Hybridl ~ Hybrid2 ~ Hybrid3
SSLGuard 79.65%  72.67%  7538%  71.24%  7038%  70.99%
SSLGuard + BESA 9724% 96.23% 97.09% 95.87% 94.66%  95.03%
MNIST StolenEncoder 87.39%  85.46%  83.59%  81.33% 81.32%  82.01%
StolenEncoder + BESA | 98.24% 97.68% 97.17% 93.99% 93.56%  92.29%
Cont-Steal 90.71%  88.44%  91.25%  87.54% 88.11%  88.26%
Cont-Steal + BESA 99.11% 98.54% 99.43% 97.51% 97.15%  96.13%
SSLGuard 7721%  7324%  7254%  6845%  67.66%  63.88%
SSLGuard + BESA 96.43% 94.58% 93.44% 89.22%  90.00%  89.68%
Fashion-MNIST StolenEncoder 85.49%  84.25%  83.98%  77.45%  77.50%  77.63%
StolenEncoder + BESA | 97.55% 94.18% 95.46% 91.32% 91.89% 91.05%
Cont-Steal 89.25%  90.16%  88.29%  83.23% 84.33%  85.01%
Cont-Steal + BESA 97.58% 96.84% 93.43% 9398% 93.27%  93.51%
SSLGuard 62.98%  6249% 63.45% 61.11% 6091% 61.51%
SSLGuard + BESA 74.53% 71.34% 72.88% 70.10% 71.33%  69.35%
CIFAR-10 StolenEncoder 63.55%  64.57%  62.33% 61.91% 61.99% 61.86%
StolenEncoder + BESA | 76.12% 77.23% 78.59% 77.05% 76.84% 77.05%
Cont-Steal 64.54%  66.15%  6594%  63.41%  62.87%  63.24%
Cont-Steal + BESA 7892% 76.33% 75.20%  73.22% 73.59%  73.26%
SSLGuard 60.35%  60.21%  59.34%  58.22%  59.36%  59.01%
SSLGuard + BESA 68.24% 6698% 65.54%  66.29%  67.26%  66.81%
SVHN StolenEncoder 61.24%  60.87%  62.45% 60.98% 61.54% 61.37%
StolenEncoder + BESA | 69.25% 70.11% 68.82% 66.45% 6735% 67.19%
Cont-Steal 6247%  63.11%  62.73%  61.04%  62.05%  61.99%
Cont-Steal + BESA 7047% 70.98% 71.47%  72.08% 73.18%  72.98%
SSLGuard 70.68%  68.32%  69.34%  5520% < 55.96% = 56.32%
SSLGuard + BESA 7841% 72.82% 76.53% 60.23% 61.93%  62.07%
ImageNette StolenEncoder 69.42%  67.21%  68.11% 63.01% 63.68% 64.08%
StolenEncoder + BESA | 74.25%  72.13%  75.66% 70.15% 71.16% 71.82%
Cont-Steal 76.84%  73.12%  68.35%  70.01%  71.13%  71.96%
Cont-Steal + BESA 80.72% 78.67% 72.67% 76.77% 77.25%  78.33%

4) State-of-the-Art Defenses: Based on the discussion in
state-of-the-art works [3], [20], we here mainly concentrate on
three commonly adopted perturbation-based defense methods:
Top-K, rounding, and noise poisoning.

o Top-K. The top-K algorithm selects and preserves the
K largest elements in the feature vector while setting all
other elements to zero.

« Rounding (RD). Rounding is performed on the feature
vector, preserving a specific number of digits after the
decimal point for each element.

« Noise Poisoning (NP). NP adding Gaussian noise to the
feature vector. The default setting for 2 € N(0,0?) is
o2 =0.2.

B. Experimental Results

1) Performance of BESA: Table I illustrates the experimen-
tal results of BESA for state-of-the-art encoder stealing attacks
under three perturbation-based defenses: Top-k, rounding, and
noise poisoning. The analysis of experimental results is ex-
plained in detail below.

Single Defense: Our proposed BESA effectively enhances
existing canonical encoder stealing attacks for all three cases
of the single defense listed. We have observed that the defenses
significantly reduce the accuracy of the surrogate encoder,
particularly in the earlier attack in SSLGuard. When employ-
ing perturbation-based defense methods, BESA improves the
performance by up to 24.63% compared to state-of-the-art
encoder stealing attacks. While the improvement on existing
attacks may be decreased for more complex datasets (e.g.,
ImageNette, SVHN), the surrogate encoder is still able to
enhance their accuracy by up to 16.26%.

When employing hybrid defenses, such as the combination
of random dropout (RD), noise perturbation (NP), and top-
k suppression, service providers typically achieve stronger
protection than using a single defense alone. To reflect realistic
scenarios where the defense strategy may change dynamically
across queries, we adopt a per-query perturbation detection
approach in BESA. We evaluate BESA under three hybrid de-
fense settings—RD+NP (Hybrid1), RD+Top-K (Hybrid2), and
NP+Top-K (Hybrid3)—as summarized in Table I. Although
these hybrid strategies significantly increase the difficulty of
encoder stealing, BESA consistently improves the surrogate
encoder performance across all datasets and attack baselines.
For instance, under Hybrid3 on MNIST, BESA enhances the
surrogate accuracy of SSLGuard from 70.99% to 92.29%.
These results demonstrate that the perturbation detection mod-
ule in BESA can reliably identify and handle complex, mixed
defenses with high accuracy, maintaining its effectiveness even
under more aggressive protection schemes.

Unknown Defense: To evaluate the robustness of BESA un-
der unknown defense strategies, we simulate scenarios where
the attacker trains BESA using a subset of known defenses,
then applies it to encoders protected by unseen defenses.
Previously, we considered a setting where BESA is trained on
Top-K and rounding, and tested on NP (denoted as Un-NP).
We now extend this evaluation to two additional settings: (1)
training on NP and RD but testing on Top-K (Un-Top-k), and
(2) training on Top-K and NP but testing on RD (Un-RD). As
shown in Table II, BESA consistently improves the accuracy
of surrogate encoders across all datasets, even under these
unseen defenses. For example, under Un-Top-k on MNIST, the
surrogate encoder from SSLGuard + BESA achieves 64.47%,
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Fig. 3. Detection accuracy of meta-classifiers in BESA.
TABLE II
ACCURACY OF THE SURROGATE ENCODER FOR DIFFERENT DATASETS ON DIFFERENT UNKNOWN DEFENSES.
Dataset Method Un-Top-k ~ Un-RD Un-NP
SSLGuard 57.43% 64.94%  69.44%
SSLGuard + BESA 64.47 % 71.32%  86.98%
MINST StolenEncoder 62.35% 68.14% 78.28%
StolenEncoder + BESA 70.88 % 75.72%  85.45%
Cont-Steal 65.71% 75.10%  81.23%
Cont-Steal + BESA 72.36% 79.50%  88.60%
SSLGuard 62.22% 61.86%  67.34%
SSLGuard + BESA 68.57 % 73.37%  84.91%
. StolenEncoder 59.96% 66.52% 74.83%
Fashion-MNIST g 1ciEncoder + BESA | 70.39%  71.24%  82.11%
Cont-Steal 68.04% 73.65%  80.65%
Cont-Steal + BESA 75.00% 81.41% 87.33%
SSLGuard 63.25% 68.29%  60.34%
SSLGuard + BESA 72.96 % 7734%  65.17%
CIFAR-10 StolenEncoder 61.82% 59.33% 60.66%
StolenEncoder + BESA 69.13% 71.62% 71.24%
Cont-Steal 58.37% 65.29%  62.93%
Cont-Steal + BESA 68.38% 73.06%  70.45%
SSLGuard 68.25% 57.20%  57.36%
SSLGuard + BESA 76.59% 63.01% 65.77%
SVHN StolenEncoder 59.63% 58.11% 59.87%
StolenEncoder + BESA 65.00% 67.26%  66.17%
Cont-Steal 63.03% 65.73%  60.99%
Cont-Steal + BESA 72.90% 71.25%  68.33%
SSLGuard 55.21% 54.99%  52.63%
SSLGuard + BESA 65.37% 67.82%  55.78%
ImageNette StolenEncoder 56.61% 52.34% 59.87%
StolenEncoder + BESA 62.38% 60.84% 66.17%
Cont-Steal 58.35% 55.60%  60.83%
Cont-Steal + BESA 65.39% 72.09%  68.33%

significantly higher than the baseline SSLGuard (57.43%).
These results demonstrate that BESA retains a strong degree of
generalization and transferability, making it effective even in
the presence of novel or unseen perturbation-based defenses.

2) Performance on Perturbation Detection: In this subsec-
tion, we assess how well the meta-classifier can detect the
defensive techniques used by the service provider. Following
the training of the meta-classifiers, we assess their prediction
accuracy by testing on an additional 128 shadow encoders,
each protected by distinct defense strategies.

From Fig. 3, the results indicate that the meta-classifiers
achieve an accuracy of over 98% for all three contrastive
algorithms utilized in pre-training the target encoder, partic-
ularly for typical datasets like MNIST and FashionMNIST.
However, the performance of the meta-classifiers exhibits a
slight decline when dealing with complex datasets, such as
CIFAR-10 and SVHN. Notably, the presence of the Rounding
defense can be identified by examining the number of digits

in the feature vectors. Interestingly, both Top-K and Noise
Poisoning defense approaches can be accurately detected with
almost perfect accuracy of nearly 100%, possibly due to
distinguishing characteristics present in the feature vectors,
such as zero values or added noise.

C. Impact Factors

1) Architecture of the Surrogate Encoder: In our previous
experiments, we trained the surrogate encoder using the com-
plex architecture of ResNet-50. This choice is motivated by
the belief that a more capable architecture will better emulate
the functionality of the target encoder. In this part, we aim
to investigate the impact of different architectural choices
for surrogate encoders on attack performance. Specifically,
when using VGG16 as the target encoder for CIFAR-10 and
ResNet-34 for SVH, we select various architectures for the
surrogate encoder. In the case of CIFAR-10, the surrogate
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encoder options consisted of AlexNet, ResNet-18, ResNet-34,
and VGG16, while for SVHN, the options included AlexNet,
ResNet-18, ResNet-34, and VGG16.
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Fig. 4. Impact of architecture choice on BESA accuracy.

As shown in Fig. 4, our results indicate that it is possible
to successfully steal the target encoder even when there is a
mismatch between its architecture and that of the surrogate
encoder, provided that the surrogate encoder’s architecture is
complex enough. Moreover, our findings suggest that a more
intricate architecture for the surrogate encoder enhances its
performance by enabling it to effectively mimic the target
encoder through utilizing a greater amount of information.

2) Loss functions: The core element of the perturbation re-
covery in BESA involves minimizing the distance between the
perturbed feature vectors and the unperturbed ones. Notably,
the main objective of BESA is to bypass the perturbation-based
defense mechanisms by providing recovered clean feature
vectors. Therefore, selecting a more suitable loss function can
significantly enhance BESA performance. In this study, we
evaluate the effects of three distinct loss functions: cosine
similarity, £o norm, and £; norm.
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7 Cosine Similarity
[ L,-norm
B [;-norm

IIlH !IHl
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Fig. 5. Impact of loss functions on BESA accuracy.

BYOL oCo BYOL

Fig. 5 illustrates the outcomes associated with each loss
function. In both the MNIST and CIFAR-10 datasets, cosine
similarity demonstrates superior performance compared to
the other two loss functions. One potential rationale behind
this is that cosine similarity more effectively captures the
resemblance between distinct feature vectors in contrast to the
other functions [46]. In comparing the efficacy of Lo distance
with £, distance, it was observed that £, distance delivers
enhanced accuracy. This is likely due to the fact that in Lo
distance, the differences between the feature vectors generated
by the target encoder and the surrogate encoder are minimized
across all dimensions.

TABLE III
TRAINING TIME OF BESA (SECONDS)

Dataset Shadow Model = Meta- Classifier ~ Generator
MINST 13 210 15326
Fashion-MNIST 15 305 17025
CIFAR-10 35 272 20985
SVHN 62 291 31025
ImageNette 52 1650 28650

D. Time Costs

The computational cost of BESA can be separated into two
stages: the offline training phase, where shadow models, meta-
classifiers, and generators are built; and the online inference
phase, where these trained components are used to detect and
recover perturbed outputs during encoder stealing. The offline
training introduces a one-time cost. As shown in Table III,
we report the training time across four benchmark datasets.
The time varies depending on the dataset complexity and
the number of shadow models involved. Notably, although
SVHN requires more shadow encoders, the overall training
time remains manageable and is performed only once. In
cases where a new perturbation defense is encountered and
known to the attacker, the corresponding components can
be trained offline and integrated into the existing framework
with minimal disruption. Moreover, the trained meta-classifiers
and generators are reusable across different target encoders,
enabling multiple encoder stealing attempts without retraining.

For unknown or novel defenses not previously modeled,
our results show that BESA exhibits a degree of robustness,
likely due to shared patterns between new and existing de-
fense strategies. This allows for partial generalization even
without retraining. During the online attack phase, BESA only
performs lightweight inference using the pre-trained meta-
classifier and generator, resulting in negligible overhead when
integrated into standard encoder stealing pipelines.

VI. DISCUSSION

In this section, we discuss the limitations and ethical prob-
lems of BESA.

A. Ethical Problem

In this paper, we propose the BESA to enhance existing
encoder stealing attacks and show the inadequacy of existing
perturbation defenses in the face of such attacks. While our
work reveals the limitations of current defenses, we emphasize
that the BESA is only a further exploration of existing attack
methods, rather than advocating malicious use. We call on
academia and industry to propose more effective defense
strategies to protect pre-trained encoders from such attacks.

One potential mitigation is to limit the effectiveness of such
attacks through request detection mechanisms. Since BESA at-
tacks require a large number of query requests, the probability
of successful attacks can be reduced by limiting the query
frequency of each user and combining anomaly detection
algorithms to identify and block malicious query behaviors.
In addition, service providers can introduce stronger authen-
tication mechanisms and behavioral analysis to strengthen
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defenses. Such measures can effectively prevent malicious use
of the BESA and ensure normal use by legitimate users.

B. Compatibility with Other Defense

BESA is designed primarily to bypass perturbation-based
defenses by recovering clean feature vectors from intentionally
disrupted outputs. However, its design does not directly target
detection-based or differential privacy (DP)-based defenses.
Detection-based approaches typically analyze the distribution
of query inputs to identify potential malicious behavior. Since
BESA operates only on the returned feature vectors and does
not control the query generation process, it may be affected by
detection mechanisms depending on how queries are issued.
That said, many detection-based systems return perturbed
outputs rather than reject responses altogether, in which case
BESA remains effective. To fully bypass such defenses, future
extensions could incorporate more advanced query synthesis
strategies that generate queries mimicking normal usage pat-
terns. For DP-based defenses, their evaluation remains limited
due to the lack of publicly available implementations. Once
such mechanisms become accessible, we plan to extend our
evaluation accordingly.

C. Generalization

The effectiveness of BESA’s perturbation detection module
relies on the meta-classifier’s ability to recognize defense-
specific patterns in feature vectors. This requires training
with outputs from shadow encoders equipped with various
defenses. Because the attacker does not have access to the
target encoder’s architecture, these shadow models must be
diverse to ensure generalization. While this strategy works well
in practice, it does come with additional training overhead. A
potential future direction is to adopt meta-learning techniques
that improve the adaptability of the meta-classifier using fewer
shadow encoders. Additionally, as discussed in Section III,
BESA operates under a black-box setting where the attacker
has no access to model internals or original training data but
can query the encoder and simulate common defenses. These
assumptions reflect practical constraints in real-world Encoder-
as-a-Service scenarios.

VII. CONCLUSION

We propose a novel encoder stealing attack called BESA
which allows the construction of a well-performing surrogate
encoder, even in the presence of perturbation-based defenses
protecting the target encoder. We identify the specific defense
method utilized by the service provider using meta-classifiers
and restore perturbed feature vectors using a generative model.
Extensive experimental results demonstrate that BESA sig-
nificantly enhances the accuracy of surrogate encoders when
facing various defensive mechanisms.
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