
Gradient Inversion Attacks on Parameter-Efficient Fine-Tuning

Hasin Us Sami, Swapneel Sen, Amit K. Roy-Chowdhury, Srikanth V. Krishnamurthy, Başak Güler
University of California, Riverside, CA

hsami003@ucr.edu, ssen010@ucr.edu, amitrc@ece.ucr.edu, krish@cs.ucr.edu, bguler@ece.ucr.edu

Abstract

Federated learning (FL) allows multiple data-owners to
collaboratively train machine learning models by exchang-
ing local gradients, while keeping their private data on-
device. To simultaneously enhance privacy and training ef-
ficiency, recently parameter-efficient fine-tuning (PEFT) of
large-scale pretrained models has gained substantial atten-
tion in FL. While keeping a pretrained (backbone) model
frozen, each user fine-tunes only a few lightweight modules
to be used in conjunction, to fit specific downstream ap-
plications. Accordingly, only the gradients with respect to
these lightweight modules are shared with the server. In this
work, we investigate how the privacy of the fine-tuning data
of the users can be compromised via a malicious design of
the pretrained model and trainable adapter modules. We
demonstrate gradient inversion attacks on a popular PEFT
mechanism, the adapter, which allow an attacker to recon-
struct local data samples of a target user, using only the ac-
cessible adapter gradients. Via extensive experiments, we
demonstrate that a large batch of fine-tuning images can be
retrieved with high fidelity. Our attack highlights the need
for privacy-preserving mechanisms for PEFT, while open-
ing up several future directions. Our code is available at
https://github.com/info-ucr/PEFTLeak.

1. Introduction
Federated learning (FL) is a collaborative training paradigm
to train a machine learning model across multiple data-
owners (users) [41]. Users perform training locally using
their local data and send the local model updates/gradients
to a central server. The server aggregates these to form a
global model. By obviating the need to share raw local sam-
ples, FL has emerged as a promising framework in fields
where data privacy is paramount such as healthcare.

Recently, leveraging large-scale pretrained models in
various downstream tasks has gained significant attention,
owing to their remarkable training performance. Consider-
ing the potential of pretrained models, recent works have
extended their application to FL [43, 47, 57]. However,

these pretrained models often contain a massive number of
parameters, which can be in the range of millions/billions.
Full fine-tuning (FFT) of such large models and commu-
nicating the gradient parameters require often prohibitive
computational infrastructure and bandwidth. This prevents
users with low computation/communication resources from
participating in training and potentially causing bias in the
global model. Thus, recent works have explored parameter-
efficient fine-tuning (PEFT) [8, 12, 13, 23, 24, 33, 40, 46],
where in lieu of fine-tuning the entire pretrained model,
only a small number of lightweight modules are trained; the
backbone model is kept frozen. Due to marked reduction
in resource consumption and training latency, PEFT has be-
come widely popular in FL [29, 39, 52, 61, 66, 67].

Though FL is popular in privacy-sensitive tasks, an ad-
versarial server can still reverse-engineer the local gradients
received from the users to extract privacy-sensitive informa-
tion about local data samples [20, 21, 25, 26, 37, 42, 44, 55,
59, 63, 64, 70]. These attacks can be grouped into: 1) gra-
dient inversion attacks [17, 20, 21, 63] and, 2) membership
inference attacks [42, 49, 55, 60]. Gradient inversion at-
tacks reconstruct the raw data samples held by a target user
using the gradient received from the user. In contrast, mem-
bership inference attacks seek whether a candidate sample
belongs to the local dataset of a target user. The success of
membership inference attacks under both FFT and PEFT
is shown via a malicious design of the pretrained model
[36, 60]. These works do not consider gradient inversion at-
tacks, which can be more detrimental to privacy, as they can
operate without the knowledge of candidate samples [16].

A gradient inversion attack is proposed in [16], by poi-
soning the pretrained vision transformer (ViT) parameters
[14]. However, this attack relies on FFT and assumes that
the attacker has access to the gradients corresponding to the
entire model. Such attacks do not apply to PEFT methods,
where the pretrained model remains frozen and the attacker
loses access to the full (local) gradient. Due to this, PEFT
has been considered to enhance privacy and limit the risk of
exposing sensitive information [67]; it has been shown that
conventional gradient inversion attacks [70] have a reduced
success rate under PEFT. However, these attacks do not con-

ar
X

iv
:2

50
6.

04
45

3v
1 

 [
ee

ss
.I

V
] 

 4
 J

un
 2

02
5

https://github.com/info-ucr/PEFTLeak


Figure 1. A small scale setup of PEFT based FL with U = 4 users.
In each training round, users fine-tune the lightweight adapter
modules and send the adapter parameters to the server. The back-
bone model parameters are kept frozen. After aggregation, the
server sends the global adapter parameters back to the users.

sider more powerful adversaries where the attacker can de-
viate from the benign training protocol to breach privacy,
such as changing the model architecture and/or parameters
sent to the users [16–18].

In this work, we ask the question whether gradient in-
version attacks are viable for PEFT. Specifically, we con-
sider gradient inversion attacks on a popular PEFT mecha-
nism, adapters, proposed in [23]. This method introduces
lightweight modules, called adapters, inside the backbone
model. Originally introduced for natural language process-
ing tasks, adapters gained significant popularity in vision
tasks recently [40, 53, 66]. In an FL setup, each user
computes gradients with respect to these adapter param-
eters only and sends them to the server (attacker), while
the backbone model is frozen and not updated during train-
ing [29, 66, 67]. The server computes an average of local
adapter gradients to form the global (aggregated) adapter
parameters. These global parameters are sent back to the
users for the next training round. The adversary seeks ac-
cess to the local image dataset used for local fine-tuning by
the users. Compared to conventional gradient inversion at-
tacks targeted at FFT, a major limitation in the PEFT setting
(from the attacker’s perspective) is that the attacker can only
observe the local gradients for a small number of adapter
parameters, as the frozen backbone model does not carry
any new information. In this context, whether an attacker
can recover sensitive training samples of a target user (vic-
tim) using the limited information provided by the adapter
gradients is yet unknown.

In response to the question above, we propose a novel
inversion attack, PEFTLeak, that can successfully recover
the data samples of the victim by only leveraging the gra-
dients from the adapters. Our attack builds on poisoning
the pretrained model and adapter modules, in a way to lead
the victim to unintentionally leave a footprint of their raw

data inside the adapter gradients. To the best of our knowl-
edge, our work is the first to propose a successful inversion
attack applicable to a PEFT method. Our attack highlights
the need for stronger defenses for adapters, and provides a
number of principles that can also be useful for investigating
inversion attacks for other PEFT methods like prefix-tuning
[33], bias-tuning [6], or low-rank adaptation [24].

Our contributions are summarized as follows:
1. We demonstrate the first successful gradient inversion

attack on PEFT. Our attack can successfully extract lo-
cal data samples of a victim user using the gradients of
lightweight adapters, as opposed to the full model.

2. Extensive experiments on CIFAR-10, CIFAR-100 [30]
and TinyImageNet [31] demonstrate that the attacker can
breach privacy of fine-tuning data with high-accuracy.

3. We further show that reducing the adapter dimension
(number of parameters) does not guarantee privacy. For
small dimensions our attack can be executed in multiple
rounds to increase the number of reconstructed patches.

4. Our results suggest that PEFT mechanisms, though
greatly reducing the number of parameters shared during
training, should not be viewed as a defense against in-
version attacks, and highlights the necessity of stronger
defenses such as differentially private PEFT for FL.

2. Related Works
PEFT. PEFT mechanisms combat large computation and
memory costs associated with fine-tuning the entire pre-
trained model. Such methods freeze the pretrained model
while tuning only the bias parameters [6], introducing ad-
ditional lightweight trainable modules [8, 12, 23, 40, 46],
learnable tokens [27, 32, 33] or optimizing low-rank ma-
trices [24, 58, 62]. To enhance training efficiency, recent
works have extended PEFT to FL [50, 61, 66, 67].
Privacy attacks. Gradient inversion attacks retrieve local
data samples using local gradients. Attacks from [20, 70]
recover ground-truth images by minimizing the distance be-
tween the true and estimated gradients. Subsequent works
leverage batch-normalization statistics [63], blind source
separation [28] or a pretrained generative model [15, 26, 34]
to recover a batch of images. These works consider fully
connected or convolutional neural networks. Attacks on
ViTs are explored under the FFT setting in [21, 37, 48, 64].
References [5, 10, 16–18, 68, 69] consider more power-
ful adversaries who can manipulate the model parame-
ters/architecture to further improve reconstruction.

Membership inference attacks seek whether a specific
data sample belongs to the victim user [42, 49, 51]. Such
attacks have been explored under both FFT and PEFT set-
tings [2, 19, 55, 60]. Other works recover personally identi-
fiable information or infer the presence of a target property
[7, 9, 36, 38, 54]. In contrast, our goal in is to recover the
fine-tuning dataset held by the victim user.



Figure 2. ViT encoder with adapter modules. ViT encoder with
stacked LayerNorm, MSA, MLP layers and residual connections.
An adapter module is inserted after each MSA/MLP layer, con-
sisting of two feed-forward blocks and a non-linearity in-between.

3. Problem Formulation
We consider a typical centralized FL framework with U
users. Training is controlled by a server -often an organi-
zation with abundant resources- who performs pretraining
using proprietary data or publicly available proxy datasets.
Fine-tuning enhances task-specific performance by leverag-
ing data from end-users. User i holds a local dataset Di. At
each training round, user i downloads the current state of
the global adapter parameters wA ∈ Rd from the server
and performs training locally using its on-device dataset.
The goal is to train wA to minimize the global loss,

L(wF ,wA) ≜
1

U

∑
i∈[U ]

Li(wF ,wA) (1)

where Li is the local loss of user i and wF is the frozen pre-
trained model. The frozen parameters are used in forward
propagation to compute the loss, but are not updated during
backpropagation. This system is illustrated in Fig. 1.
Threat Model. We consider a malicious server who can
modify the pretrained model and global adapter parame-
ters. The server sends the pretrained model to the users once
prior to training, after which this model is frozen (not up-
dated), hence does not carry any new information from the
users. The server sends the global adapter parameters to the
users at each training round, which are then updated by the
users. After receiving the local adapter gradients, the server
initiates the attack to recover the data belonging to the vic-
tim user. Our threat model is motivated by [10, 16–18].
ViT with adapters. In ViT, an image is split into multi-
ple patches. Sequences of patch embeddings are generated
first and then a distinct position encoding vector is added to

each patch embedding. Next, these position-encoded em-
beddings are used as inputs to multiple stacked multi-head
self-attention (MSA) and multi-layer perceptron (MLP) lay-
ers. Each MLP layer consists of two fully connected (FCN)
layers with a GELU [22] activation function in-between. In
addition, a class token is used to predict classes of the fine-
tuning samples at the final classification layer (also known
as classification head). For fine-tuning, an adapter block
is inserted after each MSA and MLP layer [23, 40, 66] as
shown in Fig. 2. Each adapter block consists of two FCN
layers. The first layer projects the original embeddings of
dimension D into a lower dimension r (r << D), followed
by a non-linear activation function. The second layer maps
the projected dimension back to the original dimension, D.
By choosing r << D, the number of trainable parameters
is significantly reduced in PEFT compared to FFT.

The most relevant work to ours is the recent inversion
attack to FFT [16], where users send full transformer gradi-
ents to the server (as opposed to PEFT). The attacker mali-
ciously modifies the transformer parameters to recover sen-
sitive local training images. Let us denote the total number
of patches as N , images in the batch as M , and the (sensi-
tive) patch embeddings by {y(n,m)}n∈[N ],m∈[M ], which is
the sum of image patch embedding and position encoding
vectors. The class token embedding is denoted by y(0,m).
The attack allows uninterrupted flow of y(n,m) until the
MLP layer. Let wj and bj , denote the weight vector and
bias corresponding to neuron j in the first FCN layer. The
output for neuron j can be written as,

v
(n,m)
j ≜ wT

jy
(n,m)+ bj ∀n ∈ {0, . . . , N},m ∈ [M ] (2)

where the gradient of user i with respect to wj and bj is,

∂Li

∂wj
=

1

M(N + 1)

M∑
m=1

N∑
n=0

∂Li

∂v
(n,m)
j

y(n,m) (3)

∂Li

∂bj
=

1

M(N + 1)

M∑
m=1

N∑
n=0

∂Li

∂v
(n,m)
j

(4)

which represents the average of gradients for all patches and
class tokens across the images. Let us assume only patch n
from imagem propagates through the activation function in
neuron j while all other patches are blocked. Then,

∂Li

∂wj
=

1

M(N + 1)

∂Li

∂v
(n,m)
j

y(n,m),

∂Li

∂bj
=

1

M(N + 1)

∂Li

∂v
(n,m)
j

and embedding y(n,m) can be recovered as,

∂Li

∂wj

/∂Li

∂bj
= y(n,m) (5)



The attacker then designs the weight and bias parame-
ters in the MLP layer with the constraint that no two
patches/tokens activate the same set of neurons, by leverag-
ing patch statistics obtained from a public dataset which was
originally proposed in [17]. After recovering the embed-
dings y(n,m), one can recover the image patch embeddings
by subtracting the position encoding vectors from y(n,m).
Challenges. In adapter-based PEFT [23], MLP layers
are initialized prior to training and kept frozen afterwards
(not updated by users). As a result, these layers do not
carry any information about the local fine-tuning data, mak-
ing the aforementioned attack infeasible. A potential ap-
proach is then to use the adapter gradients to recover the
image embeddings as in (5). For this, the target embed-
dings {y(n,m)}n∈[N ],m∈[M ] should propagate through all
intermediate layers before the adapter without any signifi-
cant shift in the original contents, which requires the frozen
MSA and MLP layers act as identity mappings. The key
challenge is then the projection to lower dimension in the
adapter, due to which the attacker has access to a maximum
of r weight and bias gradients. As seen in [8, 23], the typ-
ical values for r lie within the range of 1 to 64. As evident
in (5), a single neuron’s weight and bias gradients play a
role in recovering a single image patch. Reconstruction rate
increases with the number of available neurons, which was
also shown in [17, 68]. The MLP layer of the ViT archi-
tecture from [14] has 3072 neurons. These 3072 neurons’
gradients were leveraged for the attack in [16], leading to
the succesful recovery of a large batch of images. In con-
trast, fine-tuning results in modifying only a small set of pa-
rameters (corresponding to r ≤ 64 neurons in the adapter)
compared to the images, which makes it hard to reconstruct
a large fraction of the images using this limited information.
Contributions. We address these challenges by crafting
a novel gradient inversion attack on adapter-based PEFT.
To do so, we introduce a malicious design of the pretrained
model and adapters, which can uncover a large number of
private fine-tuning images with a much reduced observable
space compared to what was available with FFT. Our attack
tackles the dimensionality problem (limited number of neu-
rons) for the adapter by leveraging the gradients from mul-
tiple adapter layers, and carefully designs the patch propa-
gation structure to enable different adapter layers to recover
images with different features.

4. Framework
We next describe the details of PEFTLeak. We consider the
conventional ViT architecture from [14] as the pretrained
model. The architecture along with inserted adapter mod-
ules is depicted in Fig. 2. LayerNorm, MSA and MLP lay-
ers are kept frozen while only adapter modules are trainable
[8, 40]. We assume that the victim performs fine-tuning on
a batch ofM images. We denote themth image in the batch

as X(m) ∈ RC×H×W for m ∈ [M ], where C is the num-
ber of channels, and (H,W ) denotes the image resolution.
Each image is divided into N patches of resolution (P, P ).
Next, each patch is flattened to a vector, and denoted as
x(n,m) ∈ RP 2C for n ∈ [N ], m ∈ [M ]. We assume that the
range of input values in x(n,m) are in [−1, 1] [45, 68]. The
patches are then mapped to a dimension D through linear
projection using the weight matrix E ∈ RD×P 2C from the
pretrained model,

x(n,m)
map ≜ Ex(n,m) (6)

for n ∈ [N ]. A class token x
(0,m)
map is used to predict the

class of image m in the classification layer, which propa-
gates like the image patch embeddings throughout the inter-
mediate layers. Next, position encoding vectors E(n)

pos ∈ RD

for n ∈ {0, . . . , N} are added to the embeddings,

y(n,m) ≜ x(n,m)
map +E(n)

pos = Ex(n,m) +E(n)
pos (7)

Key intuition. At a high-level, our goal is to propagate the
embeddings y(n,m) up to the adapter layers without any sig-
nificant distortion. This should be achieved by a one-time
adversarial modification of the pretrained model, which is
sent to the users prior to fine-tuning. As these layers are
frozen and not modified by the users during fine-tuning,
they provide no information about the local image patches.
Adapter layers will then be utilized to recover the image
patches. These trainable parameters are modified by the
users during fine-tuning, and hence encode sensitive infor-
mation about the local images. On the other hand, the di-
mensionality of a single adapter layer is not sufficient to
recover a large batch of images. To that end, our attack
is designed across multiple adapter layers, where different
layers capture image patches with varying statistics. We
next describe the design of the individual layers.

4.1. First LayerNorm (LN1)
After position encoding, the embeddings y(n,m) enter a
LayerNorm (LN1) layer,

z(n,m) ≜
y(n,m) − µ(n,m)

σ(n,m)
⊙wLN1 + bLN1 (8)

where wLN1,bLN1 ∈ RD are the weight and bias param-
eters at LN1. µ(n,m), σ(n,m) denote the mean and stan-
dard deviation across the elements in y(n,m) and ⊙ denotes
element-wise multiplication. As our goal is to ensure unin-
terrupted flow of information from the input layer, we want
z(n,m) ≈ y(n,m). For this, we design E to make the mean
and standard deviation across x

(n,m)
map in (6) negligible for

all n ∈ [N ],m ∈ [M ] compared to the mean and standard
deviation of E(n)

pos. Selecting E
(n)
pos ∼ N (0, σ) with σ = 10

and E = 0.5ID satisfies these conditions, µ(n,m) ≈ 0, and
σ(n,m) ≈ σ for all n ∈ {0, . . . , N}. Then, by setting each
element in wLN1 to σ and bLN1 to 0, z(n,m) ≈ y(n,m).



4.2. Multi-head Self Attention (MSA)
The output embeddings of LN1 enter the Multi-head Self
Attention (MSA) layer. To enable undistorted propagation
of input patch embeddings, we design the weight parame-
ters in the MSA layer to act as identity mappings. Suppose
that the MSA layer consists of L heads where the embed-
ding dimension of each head isDh ≜ D/L. For head h, de-
note the query, key and value weight matrices as Wh

Q,W
h
K

and Wh
V , and biases as bh

Q,b
h
K and bh

V , respectively. Let,

Wh
Q = Wh

K = Wh
V = IDh×Dh

(9)

bh
Q = bh

K = bh
V = 0 (10)

and define (y(n,m))h ≜ y(n,m)[hDh : (h + 1)Dh] ∈ RDh

as the Dh elements from the nth patch embedding that
propagates through head h. Then, query, key and value ma-
trices for head h are given by,

Qh ≜
[
Wh

Q(y
(0,m))h · · · Wh

Q(y
(N,m))h

]
Kh ≜

[
Wh

K(y(0,m))h · · · Wh
K(y(N,m))h

]
Vh ≜

[
Wh

V (y
(0,m))h · · · Wh

V (y
(N,m))h

]
(11)

Note that position encoding vectors E(n)
pos are generated in-

dependently from N (0, 10), hence for n ̸= t,

(E(t)
pos)

TE(t)
pos >> (E(t)

pos)
TE(n)

pos (12)

As a result, the attention matrix becomes an identity matrix,

Ah ≜ softmax((Qh)TKh/
√
Dh) ∼= I(N+1)×(N+1)

After multiplying with the value matrix Vh, the self-
attention output for head h is SAh([y

(0,m) · · ·y(N,m)]) ≜
Ah(Vh)T. Let WMSA ∈ RD×D denote the weight ma-
trix that performs the linear transformation on the concate-
nated outputs from all heads. We set WMSA = ID×D,
after which the MSA output is,

MSA([y(0,m) · · · y(N,m)])

≜
[
SA1([y

(0,m) · · · y(N,m)]) · · ·
SAL([y

(0,m) · · · y(N,m)])
]
×WMSA (13)

∼=
[
(y(0,m)) · · · (y(N,m))

]T
(N+1)×D

(14)

which ensures the flow of y(n,m) for n ∈ [N ], m ∈ [M ].

4.3. Adapter Layer
The next layer is the adapter, consisting of two linear layers
(one down-projection and one up-projection) with an acti-
vation function in-between. Down-projection projects the
input embeddings of dimension D to a lower dimension
r << D. Recall that adapter modules are trainable. By
using the gradients in the down-projection layer along with

Figure 3. Image recovery from multiple adapters. A small-scale
example with two adapters, each consisting of 3 neurons in the
down-projection layer. The attacker aims to recover 4 images in
the batch, where each image is divided into 4 patches. The biases
for the two adapters are designed to recover patches from the sec-
ond position. The plot represents the distribution of patch statis-
tics, (E(t)

pos)
Tx

(t,m)
map for t = 2. The attacker targets images whose

patch statistics lie in one of the four intervals (colored). Each
adapter targets two intervals. By leveraging multiple adapters, the
attacker can recover all the patches in the target position.

the activation, one can try to recover the input embeddings
{y(n,m)}n∈[N ],m∈[M ] as in (5). On the other hand, the num-
ber of neurons r typically ranges from 1 to 64 [8, 23], which
severely limits the number of images recovered, as recon-
struction performance in (5) degrades when the number of
neurons decreases [17, 68]. To enable recovery of a large
batch of images, we propose to use the neurons from multi-
ple adapters, where different layers are designed to recover
images with different statistical properties.

We first discuss how to recover a patch from a target po-
sition within an image. For a target position t ∈ [N ], the
goal is to allow the patches from position t pass the activa-
tion function, and filter out the patches from all other posi-
tions n ̸= t. We allocate kt > r neurons to recover patches
from position t. As each adapter has r neurons, St ≜ kt

r
adapters are used to recover patches from position t, and
S ≜

∑N
n=1 Sn adapters to recover the patches from all po-

sitions t ∈ [N ]. Denote the set of neurons used for position
t as Nt. For each neuron j ∈ Nt, we set the corresponding
weight vector to E

(t)
pos, after which the output for patch t is,

v
(t,m)
j = (E(t)

pos)
Ty(t,m) + bj (15)

= (E(t)
pos)

Tx(t,m)
map + (E(t)

pos)
TE(t)

pos + bj (16)

whereas for all other positions n ∈ {0, . . . , N}\{t},



v
(n,m)
j = (E(t)

pos)
Ty(n,m) + bj

= (E(t)
pos)

Tx(n,m)
map + (E(t)

pos)
TE(n)

pos + bj (17)

We next discuss how this design plays a key role in
propagating patches from target position t while blocking
patches from all other positions. Note that the server does
not know (E

(t)
pos)Tx

(t,m)
map as it does not have access to local

data. Along the lines of [17, 18], we assume the server can
instead estimate an approximate distribution for this quan-
tity by utilizing a public dataset, which resembles a Gaus-
sian distribution from the central limit theorem [17]. Define,

cj ≜ ψ−1(j/kt) (18)

where ψ−1(·) is the inverse CDF of the estimated Gaussian.
Then, the bias for neuron j is designed as,

bj ≜ −(E(t)
pos)

TE(t)
pos − cj (19)

If for any given patch t and image m,

cj < (E(t)
pos)

Tx(t,m)
map < cj+1 (20)

then, from (16), (19) and (20) we observe for patch t,

v
(t,m)
j = (E(t)

pos)
Ty(t,m) + bj = (E(t)

pos)
Tx(t,m)

map − cj > 0
(21)

whereas for all other patches n ∈ {0, . . . , N}\{t},

v
(n,m)
j = (E(t)

pos)
Ty(n,m) + bj << 0 (22)

which follows from (12), hence (22) filters out the patches
from all other positions after the activation function. Next,
for the target position t, we need to ensure unique recovery
of each image patch in the batch. For this, we utilize the
technique from [17] to successively block images by the
activation function. According to (16), (19) and (20),

v
(t,m)
j+1 = (E(t)

pos)
Tx(t,m)

map − cj+1 < 0 (23)

hence y(t,m) propagates through the activation function at
neuron j as in (21), but is blocked at neuron j + 1 as in
(23). If no other image satisfies (20), then by leveraging the
gradients for this pair of neurons, the attacker can recover,(

∂Li

∂wj
− ∂Li

∂wj+1

)/(
∂Li

∂bj
− ∂Li

∂bj+1

)
= y(t,m) (24)

After computing cj for j ∈ [kt] as in (18), we can utilize
c(s−1)r+1, . . . , csr to design the biases of r neurons as in
(19) for the sth adapter for s ∈ [St]. As long as only one
patch lies within an interval [cj , cj+1] for j ∈ [kt], perfect
recovery can be achieved for that particular patch. From a
single adapter, the attacker can recover at most r−1 patches
that lie within one of the r−1 intervals. Attacks to more in-
tervals can be deployed by utilizing St adapters for position

t. We demonstrate an illustrative example in Fig. 3. After
recovering the embedding y(t,m), the attacker can recover,

x(t,m) = E†(y(t,m) −E(t)
pos) (25)

where E† is the pseudoinverse of E in (6). The
weight and bias for the up-projection are designed to pro-
duce zero output, to ensure we regain the target embed-
dings {y(n,m)}n∈[N ],m∈[M ] after the residual connection in
Fig. 2. However, if we simply set all parameters to zero, the
gradient for the preceding layer will be zero during back-
propagation, making reconstruction impossible. We prevent
this by setting the first neuron’s weight to a small non-zero
value (∼ 10−6). We next discuss how to propagate the cur-
rent layer’s output (embeddings y(n,m)), from one adapter
layer to the next to continue reconstruction.

4.4. Second LayerNorm (LN2)
As shown in Fig. 2, the adapter output goes through a resid-
ual connection from the LN1 input, which is equal to y(n,m)

from (8). The output of the residual connection is then,

e(n,m) ≜ (1 + 1)y(n,m) ∼= 2y(n,m) (26)

for n ∈ {0, . . . , N}, which enters another LayerNorm
(LN2). Note that y(n,m) has mean approximately equal to
0 and standard deviation σ from (8). Therefore, e(n,m) has
mean 0 and standard deviation 2σ. The server can then set
the elements in the LN2 weight vector to σ and bias vector
to 0 to retrieve back the original embeddings.

e(n,m) − 0

2σ
σ + 0 ∼= y(n,m) (27)

4.5. Multi Layer Perceptron (MLP)
Next is the MLP layer, consisting of two linear layers with
a GELU activation in-between. The first layer maps the
embeddings to a higher dimension 4D, whereas the sec-
ond layer maps them back to the original dimensionD [14].
Our goal is to propagate the embeddings y(n,m) to the next
adapter undistorted. For this, the MLP needs to act as an
identity function. Let WMLP,1 ∈ R4D×D be the weight
matrix in the first layer, with row p and column q given as,

WMLP,1[p, q] ≜

{
1 if p = q
0 otherwise (28)

which makes the output equal to the original embeddings,
y(n,m) in the first D coordinates, while the remaining 3D
coordinates are 0. Note that original embeddings may con-
tain negative values with a large magnitude, which will be
filtered out by GELU, whereas values close to zero are
subject to attenuation. To avoid this, we set the bias as
bMLP,1 ≜ γ14D with a large value γ = 104, where 14D



(a) Original images (b) Recovered

Figure 4. CIFAR-100 (recovered images for a batch of 32 images).

LPIPS SSIM MSE
Mean Std Mean Std Mean Std

CIFAR-10 0.10 0.09 0.74 0.11 0.21 0.12
CIFAR-100 0.08 0.06 0.88 0.12 0.20 0.16
TinyImageNet 0.12 0.04 0.76 0.10 1.06 0.82

Table 1. Mean and standard deviation of MSE, LPIPS and SSIM
scores for different datasets.

is a 4D-dimensional vector containing all 1s. This en-
sures that the neuron outputs are not affected by GELU.
By setting the weight matrix WMLP,2 ∈ RD×4D and bias
bMLP,2 ∈ RD in the second linear layer as,

WMLP,2[p, q] ≜

{
1 if p = q
0 otherwise (29)

and bMLP,2 ≜ −γ1D, we ensure that the MLP out-
put is equal to the original embeddings y(n,m) for n ∈
{0, . . . , N}, m ∈ [M ]. We adopt the same design in the
subsequent LayerNorm, MSA and MLP layers. This en-
sures that the target embeddings y(n,m) propagate through
all intermediate layers towards the adapters. After recover-
ing raw image patches, the final step is to group the patches
that belong to the same image. For this, we use a similar ap-
proach to [18], which embeds a unique tag in the first MSA
layer to each patch belonging to the same source image.

5. Experiments
Our experiments aim to answer the following questions:
• How does PEFTLeak perform in terms of reconstruction?
• How is performance impacted with varying bottleneck di-

mension r inside the adapters?
• How is performance impacted with increasing batch size?
• How do we benefit from leveraging the layers from all the

adapter modules for reconstruction?
Setup. We consider a distributed setting for image classi-
fication using ViT-B/16 [14] as the pretrained model. Each
user holds data samples from CIFAR-10, CIFAR-100 [30]
and TinyImageNet [31] datasets. The experiments are run
on a 24 core AMD Ryzen device with NVIDIA RTX4000.

Hyperparameters. In our experiments, each image is di-
vided into patches of size (16, 16) in accordance with [14].
For CIFAR-10 and CIFAR-100, each image (with resolution
(32, 32)) is divided into 4 patches. For TinyImageNet, each
image (with resolution (64, 64)) is divided into 16 patches.
The embedding dimension isD = 768 [14]. The bottleneck
dimension for the adapters is r = 64.
Performance Metrics. Attack performance is evaluated us-
ing the mean squared error (MSE), and perceptual/structural
similarity scores LPIPS [65] and SSIM [56] between recov-
ered and ground-truth images. Lower MSE/LPIPS or higher
SSIM implies better reconstruction.
Results. In Fig. 4, we present the reconstructed images
from the local gradient of a target user. The gradient is de-
rived from training on a batch of 32 images from CIFAR-
100. Since each image is divided into 4 patches, there are
32×4 = 128 target patches that the attacker aims to recover.
As we observe, 110-out-of-128 image patches (85.9% of the
patches) are recovered. Gray patches indicate that the cor-
responding ground-truth patches are not recovered. In Fig.
5, we present the reconstructed images for TinyImageNet.
Since in this case each image is divided into 16 patches, the
attacker aims for 32 × 16 = 512 different patches. We ob-
serve that around 81% of the total patches are recovered.
Reconstruction for CIFAR-10 is presented in App. C.1. In
Table 1, we report the mean and standard deviation of MSE,
LPIPS, and SSIM scores across the recovered patches.

We next study the impact of batch size, bottleneck di-
mension, and number of adapter layers on reconstruction.
These experiments are conducted using CIFAR-100.
Reconstruction rate vs. batch size. We first evaluate the
impact of batch size on the success rate. Since reconstruc-
tion is performed patch-wise, we compare the percentage
of patches recovered across different batch sizes. As we
observe in Fig. 6a, even for a batch size as large as 128,
PEFTLeak recovers up to 72.6% of the patches.
Reconstruction rate vs. bottleneck dimension. We
present the impact of bottleneck dimension r on the at-
tack efficiency in Fig. 6b. As r increases, more patches
are retrieved. Higher values of r imply more neurons in
the adapter layer that can be used for recovery. This sug-



(a) Original images (b) Recovered

Figure 5. TinyImageNet (recovered images for a batch of 32 images).

(a) Varying batch size (b) Varying r

(c) Varying # adapter layers

Figure 6. Percentage of patches recovered with varying batch size,
bottleneck dimension, and number of adapter layers used.

(a) Round 1 (b) Round 2 (c) Round 4 (d) Round 5

Figure 7. Patches recovered over multiple rounds (r = 8).

gests that choosing a small r could be a potential defense
against privacy attacks. However, as we show later, this can
be countered by using multiple training rounds.
Reconstruction rate vs. number of adapter layers. We
further analyze the impact of the number of adapter layers
on the attack success in Fig. 6c. We observe that as we use
more layers for the attack, more patches can be recovered.
Even though a single adapter may have insufficient neu-
rons due to down-projection, the leakage rate is enhanced
by leveraging multiple adapter layers.
Attack over multiple training rounds. We next demon-
strate how the attack can be executed over multiple training
rounds to increase the number of reconstructed patches for
a small bottleneck dimension, in particular for r = 8. As

Figure 8. Recovered images with attack from [20] (CIFAR-100).

mentioned earlier, each user sends the adapter gradients to
the server in each training round, while the pretrained model
is kept frozen. The server sends the aggregated adapter pa-
rameters in each training round back to the users. Hence,
the server can tamper with these adapter parameters so that
in each round, different sets of intervals from (20) can be
targeted. For the image in Fig. 7, we observe that only
a single patch is recovered from gradients within a single
training round. However, from gradients over 5 training
rounds, the entire image is recovered. Hence, choosing a
small value for r does not guarantee privacy.
Comparison with optimization-based baseline. In Fig. 8,
we apply the optimization-based attack from [20] for the
images in Fig. 4a (details are provided in App C.2).

Batch size 8 16 32 48 64

% Patches recovered 90 84.7 73.2 66.5 62.6

Table 2. Reconstruction with varying batch size (ImageNet).

Scalability to high resolution dataset. Table 2 presents
patch recovery on ImageNet [11], with image resolution
(224, 224). Each image is divided into 196 patches of size
(16, 16). Additional experiments are provided in App. C.

6. Conclusion
We show how an adversarial server can manipulate the pre-
trained model and adapter parameters to uncover users’ lo-
cal fine-tuning data in PEFT for FL, despite a significantly
reduced embedding space. Our attacks demonstrate the crit-
ical need for privacy-aware PEFT mechanisms, with future
directions including certifiable privacy guarantees.



7. Acknowledgement
The research was supported in part by the OUSD
(R&E)/RT&L under Cooperative Agreement W911NF-20-
2-0267, NSF CAREER Award CCF-2144927, ARO grant
W911NF2210260, and the UCR OASIS Grant. The views
and conclusions contained in this document are those of the
authors and should not be interpreted as representing the of-
ficial policies, either expressed or implied, of the ARL and
OUSD(R&E)/RT&L or the U.S. Government.

References
[1] Martı́n Abadi, Andy Chu, Ian J. Goodfellow, H. B. McMa-

han, Ilya Mironov, Kunal Talwar, and Li Zhang. Deep
learning with differential privacy. Proceedings of the ACM
SIGSAC Conference on Computer and Communications Se-
curity, 2016. 15

[2] John Abascal, Stanley Wu, Alina Oprea, and Jonathan R.
Ullman. Tmi! finetuned models leak private information
from their pretraining data. Proc. Priv. Enhancing Technol.,
2024(3):202–223, 2024. 2

[3] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and
Milan Vojnovic. QSGD: communication-efficient SGD via
gradient quantization and encoding. In Advances in Neu-
ral Information Processing Systems (Neurips), pages 1709–
1720, 2017. 15

[4] Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola
Konstantinov, Sarit Khirirat, and Cédric Renggli. The con-
vergence of sparsified gradient methods. In Advances in Neu-
ral Information Processing Systems (Neurips), pages 5977–
5987, 2018. 15

[5] Franziska Boenisch, Adam Dziedzic, Roei Schuster,
Ali Shahin Shamsabadi, Ilia Shumailov, and Nicolas Paper-
not. When the curious abandon honesty: Federated learning
is not private. In 8th IEEE European Symposium on Security
and Privacy, EuroS&P, pages 175–199, 2023. 2

[6] Han Cai, Chuang Gan, Ligeng Zhu, and Song Han. Tinytl:
Reduce memory, not parameters for efficient on-device
learning. In Neural Information Processing Systems, 2020.
2

[7] Nicholas Carlini, Florian Tramèr, Eric Wallace, Matthew
Jagielski, Ariel Herbert-Voss, Katherine Lee, Adam Roberts,
Tom B. Brown, Dawn Song, Úlfar Erlingsson, Alina Oprea,
and Colin Raffel. Extracting training data from large lan-
guage models. In 30th USENIX Security Symposium, pages
2633–2650, 2021. 2

[8] Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang,
Yibing Song, Jue Wang, and Ping Luo. Adaptformer:
Adapting vision transformers for scalable visual recogni-
tion. In Advances in Neural Information Processing Systems
(Neurips), 2022. 1, 2, 4, 5

[9] Xiaoyi Chen, Siyuan Tang, Rui Zhu, Shijun Yan, Lei Jin,
Zihao Wang, Liya Su, XiaoFeng Wang, and Haixu Tang. The
janus interface: How fine-tuning in large language models
amplifies the privacy risks. Arxiv, 2023. 2

[10] Hong-Min Chu, Jonas Geiping, Liam H. Fowl, Micah Gold-
blum, and Tom Goldstein. Panning for gold in federated

learning: Targeted text extraction under arbitrarily large-
scale aggregation. In The Eleventh International Conference
on Learning Representations, ICLR, 2023. 2, 3

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 248–255, 2009. 8

[12] Wei Dong, Dawei Yan, Zhijun Lin, and Peng Wang. Effi-
cient adaptation of large vision transformer via adapter re-
composing. In Advances in Neural Information Processing
Systems (Neurips), 2023. 1, 2

[13] Wei Dong, Xing Zhang, Bihui Chen, Dawei Yan, Zhijun
Lin, Qingsen Yan, Peng Wang, and Yang Yang. Low-rank
rescaled vision transformer fine-tuning: A residual design
approach. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR, pages 16101–16110. IEEE,
2024. 1

[14] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In 9th International Conference on Learning Repre-
sentations, ICLR, 2021. 1, 4, 6, 7

[15] Hao Fang, Bin Chen, Xuan Wang, Zhi Wang, and Shu-Tao
Xia. GIFD: A generative gradient inversion method with fea-
ture domain optimization. In IEEE/CVF International Con-
ference on Computer Vision, ICCV 2023, Paris, France, Oc-
tober 1-6, 2023, pages 4944–4953. IEEE, 2023. 2

[16] Shanglun Feng and Florian Tramèr. Privacy backdoors:
Stealing data with corrupted pretrained models. In Forty-
first International Conference on Machine Learning, ICML,
2024. 1, 2, 3, 4

[17] Liam H. Fowl, Jonas Geiping, Wojciech Czaja, Micah Gold-
blum, and Tom Goldstein. Robbing the fed: Directly obtain-
ing private data in federated learning with modified models.
In The Tenth International Conference on Learning Repre-
sentations, ICLR, 2022. 1, 4, 5, 6, 15

[18] Liam H. Fowl, Jonas Geiping, Steven Reich, Yuxin Wen,
Wojciech Czaja, Micah Goldblum, and Tom Goldstein. De-
cepticons: Corrupted transformers breach privacy in feder-
ated learning for language models. In The Eleventh Interna-
tional Conference on Learning Representations, ICLR, 2023.
2, 3, 6, 7

[19] Wenjie Fu, Huandong Wang, Chen Gao, Guanghua Liu,
Yong Li, and Tao Jiang. Practical membership inference
attacks against fine-tuned large language models via self-
prompt calibration. Arxiv, 2023. 2

[20] Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and
Michael Moeller. Inverting gradients - how easy is it to break
privacy in federated learning? In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2020. 1, 2, 8, 12, 13

[21] Ali Hatamizadeh, Hongxu Yin, Holger Roth, Wenqi Li, Jan
Kautz, Daguang Xu, and Pavlo Molchanov. Gradvit: Gradi-
ent inversion of vision transformers. In IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, CVPR,
pages 10011–10020. IEEE, 2022. 1, 2



[22] Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus). arXiv, 2016. 3

[23] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna
Morrone, Quentin de Laroussilhe, Andrea Gesmundo, Mona
Attariyan, and Sylvain Gelly. Parameter-efficient transfer
learning for NLP. In Proceedings of the 36th International
Conference on Machine Learning, ICML, pages 2790–2799.
PMLR, 2019. 1, 2, 3, 4, 5

[24] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.
Lora: Low-rank adaptation of large language models. In
The Tenth International Conference on Learning Represen-
tations, ICLR, 2022. 1, 2

[25] Yangsibo Huang, Samyak Gupta, Zhao Song, Kai Li, and
Sanjeev Arora. Evaluating gradient inversion attacks and de-
fenses in federated learning. In Advances in Neural Informa-
tion Processing Systems (Neurips), pages 7232–7241, 2021.
1

[26] Jinwoo Jeon, Jaechang Kim, Kangwook Lee, Sewoong Oh,
and Jungseul Ok. Gradient inversion with generative image
prior. In Advances in Neural Information Processing Systems
(NeurIPS), pages 29898–29908, 2021. 1, 2

[27] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie,
Serge J. Belongie, Bharath Hariharan, and Ser-Nam Lim. Vi-
sual prompt tuning. In European Conference on Computer
Vision ECCV, pages 709–727, 2022. 2

[28] Sanjay Kariyappa, Chuan Guo, Kiwan Maeng, Wenjie
Xiong, G. Edward Suh, Moinuddin K. Qureshi, and Hsien-
Hsin S. Lee. Cocktail party attack: Breaking aggregation-
based privacy in federated learning using independent com-
ponent analysis. In International Conference on Machine
Learning, ICML, 2023. 2

[29] Yeachan Kim, Junho Kim, Wing-Lam Mok, Jun-Hyung
Park, and SangKeun Lee. Client-customized adaptation for
parameter-efficient federated learning. In Findings of the As-
sociation for Computational Linguistics: ACL, pages 1159–
1172, 2023. 1, 2

[30] Alex Krizhevsky and Geoffrey Hinton. Learning multiple
layers of features from tiny images. 2009. 2, 7

[31] Ya Le and Xuan Yang. Tiny imagenet visual recognition
challenge. 2015. 2, 7

[32] Brian Lester, Rami Al-Rfou, and Noah Constant. The power
of scale for parameter-efficient prompt tuning. In Proceed-
ings of the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, EMNLP, pages 3045–3059, 2021.
2

[33] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing
continuous prompts for generation. In Proceedings of the
59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on
Natural Language Processing, ACL/IJCNLP, pages 4582–
4597, 2021. 1, 2

[34] Zhuohang Li, Jiaxin Zhang, Luyang Liu, and Jian Liu. Au-
diting privacy defenses in federated learning via generative
gradient leakage. In IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, CVPR, pages 10122–10132.
IEEE, 2022. 2

[35] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill Dally.
Deep gradient compression: Reducing the communication
bandwidth for distributed training. In 6th International Con-
ference on Learning Representations, ICLR, 2018. 15

[36] Ruixuan Liu, Tianhao Wang, Yang Cao, and Li Xiong. Pre-
curious: How innocent pre-trained language models turn into
privacy traps. In Proceedings of the on ACM SIGSAC Con-
ference on Computer and Communications Security, CCS,
pages 3511–3524, 2024. 1, 2

[37] Jiahao Lu, Xi Sheryl Zhang, Tianli Zhao, Xiangyu He, and
Jian Cheng. APRIL: finding the achilles’ heel on privacy for
vision transformers. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR, pages 10041–10050.
IEEE, 2022. 1, 2

[38] Nils Lukas, Ahmed Salem, Robert Sim, Shruti Tople, Lukas
Wutschitz, and Santiago Zanella Béguelin. Analyzing leak-
age of personally identifiable information in language mod-
els. In 44th IEEE Symposium on Security and Privacy, SP,
pages 346–363. IEEE, 2023. 2

[39] Shubham Malaviya, Manish Shukla, and Sachin Lodha. Re-
ducing communication overhead in federated learning for
pre-trained language models using parameter-efficient fine-
tuning. In Proceedings of The 2nd Conference on Lifelong
Learning Agents, pages 456–469, 2023. 1

[40] Imad Eddine Marouf, Enzo Tartaglione, and Stéphane Lath-
uilière. Mini but mighty: Finetuning vits with mini adapters.
In IEEE/CVF Winter Conference on Applications of Com-
puter Vision, WACV, pages 1721–1730. IEEE, 2024. 1, 2, 3,
4

[41] H Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, and Blaise Aguera y Arcas. Communication-
efficient learning of deep networks from decentralized data.
In Int. Conf. on Artificial Int. and Stat. (AISTATS), 2017. 1

[42] Milad Nasr, R. Shokri, and Amir Houmansadr. Comprehen-
sive privacy analysis of deep learning: Passive and active
white-box inference attacks against centralized and federated
learning. IEEE Symposium on Security and Privacy (SP),
pages 739–753, 2019. 1, 2

[43] John Nguyen, Jianyu Wang, Kshitiz Malik, Maziar Sanjabi,
and Michael G. Rabbat. Where to begin? on the impact of
pre-training and initialization in federated learning. In The
Eleventh International Conference on Learning Representa-
tions, ICLR, 2023. 1

[44] Truc D. T. Nguyen, Phung Lai, Khang Tran, NhatHai Phan,
and My T. Thai. Active membership inference attack un-
der local differential privacy in federated learning. In Inter-
national Conference on Artificial Intelligence and Statistics,
pages 5714–5730, 2023. 1

[45] Dario Pasquini, Danilo Francati, and Giuseppe Ateniese.
Eluding secure aggregation in federated learning via model
inconsistency. In Conference on Computer and Communica-
tions Security, CCS, pages 2429–2443. ACM, 2022. 4

[46] Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya Ka-
math, Ivan Vulic, Sebastian Ruder, Kyunghyun Cho, and
Iryna Gurevych. Adapterhub: A framework for adapting
transformers. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing EMNLP,
pages 46–54, 2020. 1, 2



[47] Liangqiong Qu, Yuyin Zhou, Paul Pu Liang, Yingda Xia,
Feifei Wang, Li Fei-Fei, Ehsan Adeli, and Daniel L. Rubin.
Rethinking architecture design for tackling data heterogene-
ity in federated learning. IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 10051–
10061, 2022. 1

[48] Daniel Scheliga, Patrick Maeder, and Marco Seeland.
Dropout is NOT all you need to prevent gradient leakage.
In Thirty-Seventh AAAI Conference on Artificial Intelligence,
AAAI, pages 9733–9741, 2023. 2

[49] R. Shokri, Marco Stronati, Congzheng Song, and Vitaly
Shmatikov. Membership inference attacks against machine
learning models. 2017 IEEE Symposium on Security and
Privacy (SP), pages 3–18, 2016. 1, 2

[50] Aliaksandra Shysheya, John Bronskill, Massimiliano Patac-
chiola, Sebastian Nowozin, and Richard E. Turner. Fit: Pa-
rameter efficient few-shot transfer learning for personalized
and federated image classification. In The Eleventh Interna-
tional Conference on Learning Representations, ICLR, 2023.
2

[51] Liwei Song and Prateek Mittal. Systematic evaluation of pri-
vacy risks of machine learning models. In 30th USENIX Se-
curity Symposium, pages 2615–2632. USENIX Association,
2021. 2

[52] Youbang Sun, Zitao Li, Yaliang Li, and Bolin Ding. Im-
proving lora in privacy-preserving federated learning. In The
Twelfth International Conference on Learning Representa-
tions, ICLR, 2024. 1

[53] Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. VL-
ADAPTER: parameter-efficient transfer learning for vision-
and-language tasks. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR, pages 5217–5227,
2022. 2

[54] Yulong Tian, Fnu Suya, Anshuman Suri, Fengyuan Xu, and
David Evans. Manipulating transfer learning for property
inference. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR, pages 15975–15984. IEEE,
2023. 2

[55] Minh N. Vu, Truc D. T. Nguyen, Tre’ R. Jeter, and My T.
Thai. Analysis of privacy leakage in federated large lan-
guage models. In International Conference on Artificial In-
telligence and Statistics, pages 1423–1431. PMLR, 2024. 1,
2

[56] Zhou Wang, Alan Conrad Bovik, Hamid R. Sheikh, and
Eero P. Simoncelli. Image quality assessment: from error
visibility to structural similarity. IEEE Transactions on Im-
age Processing, 13:600–612, 2004. 7

[57] Orion Weller, Marc Marone, Vladimir Braverman, Dawn
Lawrie, and Benjamin Van Durme. Pretrained models for
multilingual federated learning. In Proceedings of the 2022
Conference of the North American Chapter of the Associa-
tion for Computational Linguistics, pages 1413–1421, 2022.
1

[58] Yeming Wen and Swarat Chaudhuri. Batched low-rank adap-
tation of foundation models. In The Twelfth International
Conference on Learning Representations, ICLR, 2024. 2

[59] Yuxin Wen, Jonas Geiping, Liam Fowl, Micah Goldblum,
and Tom Goldstein. Fishing for user data in large-batch fed-

erated learning via gradient magnification. In International
Conference on Machine Learning, ICML, pages 23668–
23684, 2022. 1

[60] Yuxin Wen, Leo Marchyok, Sanghyun Hong, Jonas Geip-
ing, Tom Goldstein, and Nicholas Carlini. Privacy back-
doors: Enhancing membership inference through poisoning
pre-trained models. In Annual Conference on Neural Infor-
mation Processing Systems (Neurips), 2024. 1, 2

[61] Chulin Xie, De-An Huang, Wenda Chu, Daguang Xu,
Chaowei Xiao, Bo Li, and Anima Anandkumar. Perada:
Parameter-efficient federated learning personalization with
generalization guarantees. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR, pages
23838–23848. IEEE, 2024. 1, 2

[62] Yuedong Yang, Hung-Yueh Chiang, Guihong Li, Diana Mar-
culescu, and Radu Marculescu. Efficient low-rank backprop-
agation for vision transformer adaptation. In Advances in
Neural Information Processing Systems (NeurIPS), 2023. 2

[63] H. Yin, A. Mallya, A. Vahdat, J. M. Alvarez, J. Kautz, and
P. Molchanov. See through gradients: Image batch recovery
via gradinversion. In IEEE/CVF Conf. on Computer Vision
and Pattern Recognition, 2021. 1, 2

[64] Guangsheng Zhang, Bo Liu, Huan Tian, Tianqing Zhu, Ming
Ding, and Wanlei Zhou. How does a deep learning model
architecture impact its privacy? A comprehensive study of
privacy attacks on cnns and transformers. In 33rd USENIX
Security Symposium, USENIX, 2024. 1, 2

[65] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In 2018 IEEE Confer-
ence on Computer Vision and Pattern Recognition, CVPR,
pages 586–595, 2018. 7, 15

[66] Xuechen Zhang, Mingchen Li, Xiangyu Chang, Jiasi Chen,
Amit K. Roy-Chowdhury, Ananda Theertha Suresh, and
Samet Oymak. Fedyolo: Augmenting federated learning
with pretrained transformers. Arxiv, 2023. 1, 2, 3

[67] Zhuo Zhang, Yuanhang Yang, Yong Dai, Qifan Wang, Yue
Yu, Lizhen Qu, and Zenglin Xu. Fedpetuning: When fed-
erated learning meets the parameter-efficient tuning methods
of pre-trained language models. In Findings of the Associa-
tion for Computational Linguistics: ACL, pages 9963–9977,
2023. 1, 2, 12

[68] J. Zhao, A. Sharma, A. Elkordy, Y. H. Ezzeldin, S. Aves-
timehr, and S. Bagchi. Loki: Large-scale data reconstruction
attack against federated learning through model manipula-
tion. In 2024 IEEE Symposium on Security and Privacy (SP),
2024. 2, 4, 5

[69] Joshua C. Zhao, Ahmed Roushdy Elkordy, Atul Sharma,
Yahya H. Ezzeldin, Salman Avestimehr, and Saurabh
Bagchi. The resource problem of using linear layer leak-
age attack in federated learning. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, CVPR, pages
3974–3983. IEEE, 2023. 2

[70] Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from
gradients. In Advances in Neural Information Processing
Systems (NeurIPS), 2019. 1, 2, 12



Appendix
A. Ethical Considerations
Our work points to potential privacy threats that may occur
when parameter-efficient fine-tuning (PEFT) is applied un-
der the federated learning (FL) setup. Since (to the best of
our knowledge) privacy concerns under PEFT based FL ap-
plications are under-explored, our observations suggest an
important challenge that local data can be revealed if no ad-
ditional defense mechanism is applied. Users involved in
training might be oblivious to these risks. As a malicious
server can deploy such attacks by merely poisoning model
parameters, it is crucial to explore robust verification algo-
rithms to examine the authenticity of the models received
from the server. Furthermore, defense strategies such as
differential privacy under the PEFT setting can prevent the
server from observing the true local gradients with a small
impact on utility. We hope that our work will motivate new
research directions towards certifiable privacy, integrity, and
authenticity guarantees for PEFT mechanisms.

B. Algorithm
We provide the pseudocode of our proposed attack,
PEFTLeak, in Algorithm 1.

C. Additional Experiments
In this section, we provide additional experimental results
for our proposed framework. Unless stated otherwise, for
all the experiments below, we use a batch size 32, bottleneck
dimension r = 64 and ViT-B/16 architecture in accordance
with the experiments in Section 5.

C.1. Recovered Images for CIFAR-10
In Fig. 9, we demonstrate the recovery of a batch of 32 im-
ages from the gradient for the CIFAR-10 dataset. As we
observe, 106-out-of-128 image patches, i.e., 82.8% of the
patches are recovered.

C.2. Comparison with the Optimization-Based
Baseline

We now describe the details of the optimization-based gra-
dient inversion attack baseline. To the best of our knowl-
edge, there are no successful optimization-based attack
baselines under the PEFT setting. Reference [67] studied
the performance of the optimization-based attack from [70]
for PEFT and observed that it was not successful under the
PEFT setup. Attack from [20] improves over [70] in terms
of the reconstruction performance by taking the direction of
the gradient into consideration. Essentially, the goal is to
find a batch of images X that minimize the cosine distance
between the true gradient and the predicted gradient,

Algorithm 1: PEFTLeak
Input: Pretrained model wF , adapter parameters wA, adapter

gradients ∂Li
∂wA

of user i (victim)

Output: Recovered patches x(t,m) for t ∈ [N ],m ∈ [M ] of
user i, where N is the total number of patches and M is
the number of images in the batch

// Server: Poisoning pretrained model, wF

// (Position encoding vectors)

1 Select E(n)
pos ∼ N (0, σ) for n ∈ {0, . . . , N}

// (Linear embedding matrix)
2 Set E in (6) to 0.5ID
// (MSA layer parameters)

3 Set Wh
Q, Wh

K , Wh
V = IDh×Dh

for head h ∈ [L] ▷ Equation
(9)

4 Set bh
Q, bh

K , bh
V = 0 for head h ∈ [L] ▷ Equation (10)

5 Set WMSA = ID×D ▷ Section 4.2
// (MLP layer parameters)

6 Design weights WMLP,1,WMLP,2 according to (28), (29)
7 Design biases bMLP,1 = γ14D , bMLP,2 = −γ1D ▷ Section

4.5
// (LN1 and LN2 layer parameters)

8 Set weights wLN1, wLN2 = σ1D ▷ Sections 4.1, 4.4
9 Set biases bLN1, bLN2 to 0D ▷ Sections 4.1, 4.4

10 Send wF to the users ▷ sent once prior to training
// Server: Poisoning global adapter, wA

11 Set weights in down-projection layer to E
(t)
pos for target position

t ∈ [N ] ▷ Section 4.3
12 Design biases in down-projection layer according to (19)
13 Set weights and biases in up-projection layer to 0 ▷ Section 4.3
14 Send wA to the users ▷ sent in each training round

// User i: Local training
15 Compute loss Li(wF ,wA) for batch of images
16 Compute gradient ∂Li

wA

17 Send ∂Li
wA

to the server ▷ sent in each training round

// Server: Reconstruction from gradients

18 Recover embeddings y(t,m) for t ∈ [N ],m ∈ [M ] ▷ Equation
(24)

19 Recover patch x(t,m) for t ∈ [N ],m ∈ [M ] ▷ Equation (25)
20 Return x(t,m) for t ∈ [N ],m ∈ [M ] ▷ recovered patches

X∗ = argmin
X

F(X) (30)

such that,

F(X) ≜ 1−
〈
∆g,∆gpred

〉∥∥∆g
∥∥∥∥∆gpred

∥∥ + TV (X) (31)

where ∆g is the actual gradient received from the victim
user, ∆gpred is the predicted gradient from training on
dummy images. The total variation regularization TV(·) is
used as a standard image prior to ensure the smoothness of
the recovered image. We note that this attack considers ad-
versaries with limited capability, who do not adopt any ma-
licious tampering with the protocol, such as changing the
model parameters or architecture.

We applied this attack to our PEFT setting and stud-
ied how well this gradient matching algorithm performs



(a) Original images (b) Recovered

Figure 9. CIFAR-10 (recovered images for a batch of 32 images).

(a) Recovered from [20] (b) Recovered (PEFTLeak)

Figure 10. Comparison with optimization-based benchmark from [20] (TinyImageNet).

(a) Recovered from [20] (b) Recovered (PEFTLeak)

Figure 11. Comparison with optimization-based benchmark from [20] (CIFAR-10).

Architecture ViT-B/16 ViT-L/16 ViT-B/32

% Patches recovered 81 81 20.2 (naive) 79.6 (improved)

Table 3. Reconstruction for a batch of 32 images (TinyImageNet).

by leveraging the adapter gradients only. For this, we run
the experiments for the images in Figs. 5a (in our main
paper) and 9a from TinyImageNet and CIFAR-10 datasets
(CIFAR-100 results were already provided in Fig. 8 in
our main paper.) We demonstrate our results in Figs. 10
and 11, where we present the images reconstructed by
the optimization-based attack vs. PEFTLeak. As we ob-
serve from Figs. 10 and 11, the optimization-based attack
fails to reconstruct any of the images in the batch whereas
PEFTLeak recovers most of the images with high fidelity.

C.3. Different Model Architectures
Table 3 shows our results for ViT-L/16 and ViT-B/32 with
a batch size of 32. We observed that for a fixed embed-
ding dimension D, more encoders (ViT-L/16) can speed up
our attack. ViT-L/16 (24 encoders) recovers an image in
just 2 rounds, compared to 4 rounds for ViT-B/16 (12 en-
coders). When the number of encoders is fixed, we ob-
served an interesting relation between D and patch size
P . In ViT-B/32, each (P, P ) = (32, 32) patch flattens
to a P 2C = 3072-dimensional vector (C channels). If
D ≥ P 2C, as in ViT-B/16 (P = 16, D = 768) and ViT-
L/16 (P = 16, D = 1024), all pixels can be recovered. In
ViT-B/32, D < P 2C, limiting naive recovery to D = 768
pixels. A simple solution is then to recover an average pixel
from each (2, 2) region, yielding a lower resolution recon-



(a) Varying batch size (b) Varying r (c) Varying # adapter layers

Figure 12. Percentage of patches recovered with varying batch size, bottleneck dimension, and number of adapter layers used within a
single training round (CIFAR-10).

(a) Varying batch size (b) Varying r (c) Varying # adapter layers

Figure 13. Percentage of patches recovered with varying batch size, bottleneck dimension, and number of adapter layers used within a
single training round (TinyImageNet).

Figure 14. Recovered images from different model architectures.

struction. Fig. 14 illustrates this for a recovered sample.

C.4. Ablation Study
Varying batch size. We next demonstrate the recon-
struction performance with varying batch size, bottleneck
dimension and number of adapter layers for CIFAR-10 and
TinyImageNet dataset (CIFAR-100 results were provided in
Section 5 in our main paper). In Figs. 12a and 13a, we
observe that even for batch sizes as large as 64, 96, 128, a
notable amount of the patches are recovered.
Varying bottleneck dimension. We next report the recon-
struction rate for varying r, the bottleneck dimension within
each adapter layer. Higher value of r implies that more neu-
rons are available in each adapter layer that can be leveraged
for reconstruction. In Figs. 12b, 13b, we observe that as r

increases, more patches are recovered.
Benefits of using multiple adapter layers. For the exper-
iments in Figs. 4b, 5b and 9b, we have allocated 5 adapter
layers for the reconstruction of patches from each position.
As mentioned in Section 5, images from CIFAR-10 and
CIFAR-100 datasets are divided into 4 patches. Therefore,
for 4 patches, we utilize 20 adapter layers in total within
a single training round. For TinyImageNet, each image
is divided into 16 patches. The server aims to recover 4
patches from 20 adapter layers per training round. For this,
the server sends malicious adapter parameters to recover
patches from 4 target positions by leveraging the adapter
gradients received from the user in each round. Hence, all
the patches are recovered over 4 training rounds. In this
regard, we next demonstrate the benefit of using multiple
adapter layers in terms of attack success. In Figs. 12c and
13c, we report the percentage of patches recovered per train-
ing round. As we observe, more patches are recovered as
more adapter layers are being utilized.

We further provide the illustration of the recovered
patches in Figs. 15-20. Figs. 15, 16, and 17, demonstrate
the recovery of the patches from the first position, i.e., top-
left patch of the images from Figs. 9a, 4a and 5a. As de-



(a) 1st layer (b) 2nd layer (c) 3rd layer

(d) 4th layer (e) 5th layer

Figure 15. Recovered patches from the first position using multiple adapter layers (CIFAR-10).

(a) 1st layer (b) 2nd layer (c) 3rd layer

(d) 4th layer (e) 5th layer

Figure 16. Recovered patches from the first position using multiple adapter layers (CIFAR-100).

scribed in Section 4, the weight and bias parameters in the
adapter layers are designed such that patches from the target
position can be recovered by leveraging the adapter gradi-
ents. Patches from all other positions will be filtered out by
the activation function. We observe that by utilizing multi-
ple adapter layers, we recover most of the target patches for
this position. Moreover, in Figs. 18, 19, and 20, we demon-
strate the recovered patches from the same target position
for r = 8 in comparison with r = 64. As we observe, more
patches are retrieved from the adapter gradients when r is
increased from 8 to 64.

C.5. Robustness Against Defense Mechanisms
Fig. 21 presents the attack performance against potential
defense mechanisms, including noise addition [1], pruning
(top-K) [4, 35] and stochastic quantization [3]. Attack per-
formance is measured in terms of average LPIPS score [65]
between recovered and ground-truth images. In Fig. 21a,
we vary the standard deviation of added Gaussian noise with
respect to the gradient norm.

C.6. Attack to FedAvg
We next consider the FedAvg setup, where each user per-
forms multiple rounds of local training before sending the
gradient to the server. We again leverage the activation
structure from [17] (proposed for the FedAvg setting) in
the down-projection layer within each adapter. At each
global training round, each user performs local training for
5 epochs, and sends the local gradient to the server. We
demonstrate the reconstructed images in Fig. 22b, and ob-
serve that image patches can be recovered with high fidelity.

C.7. Reconstruction on Additional Images
In Fig. 23, we further demonstrate the reconstructed images
from a larger batch size. For this, we consider the images
from CIFAR-100 dataset for a batch of size 64. As we ob-
serve in Fig. 23, successful reconstruction of 75% of the
patches is obtained from the adapter gradients.

σ 1 2 3 5 10

Gaussian 12 30.4 52.3 77.3 85.9
Laplacian 12.5 35.1 57.8 70 92.9

Table 4. % patches recovered with different σ and distributions.

C.8. Attack Detectability
Our attack leverages the fact that users implicitly trust the
server for the pretrained model and fine-tuning parameters.
However, our malicious design may cause the users to ques-
tion the integrity of the server. As described in Section 4.3,
to recover patches from a target position, our attack sets the
weight rows to be identical in the first linear layer of the
adapter modules. To make this design more stealthy, the
server can introduce non-malicious weight rows and biases
in-between. Moreover, for position encoding, any distribu-
tion can be used if they meet the criteria outlined in (12) and
Section 4.1. Table 4 shows our results with lower standard
deviation σ across multiple distributions to improve stealth.
Even with a σ as small as 3, our attack can recover 57.8%
of the patches (batch size 32, CIFAR-100).

C.9. Reconstructed Images from the ImageNet
Dataset

In Fig. 24, we present sample images from ImageNet.



(a) 2nd layer

(b) 3rd layer

(c) 4th layer (d) 5th layer

Figure 17. Recovered patches from the first position using multiple adapter layers (TinyImageNet). None of the patches are recovered
from the 1st layer gradients.

(a) r = 8

(b) r = 64

Figure 18. Impact of bottleneck dimension r on patch reconstruction (CIFAR-10).

(a) r = 8

(b) r = 64

Figure 19. Impact of bottleneck dimension r on patch reconstruction (CIFAR-100).

(a) r = 8

(b) r = 64

Figure 20. Impact of bottleneck dimension r on patch reconstruction (TinyImageNet).



(a) Noise (b) Pruning (c) Quantization

Figure 21. Performance against mitigation strategies (CIFAR-100, batch size 32). Lower LPIPS denotes better reconstruction.

(a) Original images (b) Recovered

Figure 22. Recovered images for FedAvg with 5 local training rounds (CIFAR-100).

(a) Original images (b) Recovered (PEFTLeak)

Figure 23. Recovered images for a batch of size 64 (CIFAR-100).

(a) Ground-truth (b) Recovered
Figure 24. Recovered images (ImageNet).


	Introduction
	Related Works
	Problem Formulation
	Framework
	First LayerNorm (LN1) 
	Multi-head Self Attention (MSA)
	Adapter Layer
	Second LayerNorm (LN2)
	Multi Layer Perceptron (MLP)

	Experiments
	Conclusion
	Acknowledgement
	Ethical Considerations
	Algorithm
	Additional Experiments
	Recovered Images for CIFAR-10
	Comparison with the Optimization-Based Baseline
	Different Model Architectures
	Ablation Study
	Robustness Against Defense Mechanisms
	Attack to FedAvg
	Reconstruction on Additional Images
	Attack Detectability
	Reconstructed Images from the ImageNet Dataset



