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Classical cryptographic systems rely heavily on structured algebraic problems, such as factorization, discrete logarithms,
or lattice-based assumptions, which are increasingly vulnerable to quantum attacks and structural cryptanalysis. In
response, this work introduces the Hashed Fractal Key Recovery (HFKR) problem, a non-algebraic cryptographic
construction grounded in symbolic dynamics and chaotic perturbations. HFKR builds on the Symbolic Path Inversion
Problem (SPIP), leveraging symbolic trajectories generated via contractive affine maps over Z2, and compressing them
into fixed-length cryptographic keys using hash-based obfuscation. A key contribution of this paper is the empirical
confirmation that these symbolic paths exhibit fractal behavior, quantified via box-counting dimension, path geometry,
and spatial density measures. The observed fractal dimension increases with trajectory length and stabilizes near
1.06, indicating symbolic self-similarity and space-filling complexity, both of which reinforce the entropy foundation
of the scheme. Experimental results across 250 perturbation trials show that SHA3-512 and SHAKE256 amplify
symbolic divergence effectively, achieving mean Hamming distances near 255, ideal bit-flip rates, and negligible
entropy deviation. In contrast, BLAKE3 exhibits statistically uniform but weaker diffusion. These findings confirm
that HFKR’s post-quantum security arises from the synergy between symbolic fractality and hash-based entropy
amplification. The resulting construction offers a lightweight, structure-free foundation for secure key generation in
adversarial settings without relying on algebraic hardness assumptions.
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1 Introduction

Modern public-key cryptography is founded on hardness as-
sumptions derived from structured algebraic problems such
as integer factorization, discrete logarithms, and lattice-based
constructions. These assumptions support widely adopted cryp-
tosystems, including RSA, Diffie-Hellman, and more recent
post-quantum candidates like Kyber and Dilithium. However,
their reliance on algebraic structure introduces systemic weak-
nesses, particularly in light of quantum computing, which threat-
ens many of these foundational problems [1]-[3].

In response, researchers have begun to explore alternative ap-
proaches that do not depend on algebraic regularity. Symbolic
dynamics and chaotic systems are emerging as promising candi-
dates due to their inherent unpredictability, recursive complexity,
and resistance to structured analysis [4], [5].

This work introduces the Hashed Fractal Key Recovery (HFKR)
problem, a cryptographic construction that combines symbolic
chaos with hash-based entropy amplification. Building on the
theoretical foundation of the Symbolic Path Inversion Problem
(SPIP), HFKR uses contractive affine transformations over the
integer lattice Z? to generate symbolic trajectories, which are
then compressed into fixed-length keys using cryptographic hash
functions. This layered design avoids algebraic dependencies
and leverages both the combinatorial explosion of symbolic
paths and the diffusion properties of modern hash algorithms.

The main contributions of this paper are as follows: we formal-
ize the HFKR problem as an extension of SPIP into a practical
cryptographic setting, we empirically investigate the fractal
properties and symbolic entropy of the generated trajectories,
and we evaluate the ability of several hash functions SHA3-512,
SHAKE?256, and BLAKES3, to amplify symbolic divergence
into secure cryptographic digests.

The remainder of this paper is organized as follows. Section 2
surveys related work in chaos-based cryptography and symbolic
dynamics. Section 3 defines the HFKR construction, includ-
ing trajectory generation, hashing, and its fractal interpretation.
Section 4 presents experimental results on symbolic entropy,
diffusion metrics, and hash function performance. Finally, Sec-
tion 5 summarizes the contributions and outlines directions for
future research.

2 Related Work

Modern public-key cryptography is predominantly built upon
algebraic hardness assumptions integer factorization, discrete
logarithms, and lattice-based problems such as LWE and SVP.
These problems underpin schemes like RSA, Diffie-Hellman,
ECC, Kyber, and Dilithium [6]-[8]. Their structured nature has
enabled efficient implementations and strong theoretical guaran-
tees. These schemes, while efficient and theoretically grounded,
exhibit vulnerabilities under quantum algorithms such as Shor’s,

Page 1 of 5


https://orcid.org/0000-0003-3264-601X
https://arxiv.org/abs/2506.04383v1

Research Paper

Bouke, 2025.

which efficiently solves both integer factorization and discrete
logarithm problems undermining the foundations of RSA and
ECC.

This vulnerability has sparked interest in non-algebraic cryp-
tographic constructions that do not rely on group theoretic or
lattice-based regularities. Among such alternatives, chaotic
systems and symbolic dynamics present a promising yet under-
explored direction. These systems especially iterated function
systems (IFS) and symbolic walks over discrete lattices offer
non-reversible, high-entropy behaviors that resist algebraic sim-
plification [9]-[11].

Prior uses of chaos in cryptography have largely focused
on symmetric primitives, pseudorandom number generators,
lightweight ciphers, and image encryption based on chaotic per-
mutations. While these exploit the unpredictability of chaotic
maps, they often lack rigorous complexity-theoretic underpin-
nings, limiting their suitability for asymmetric or public-key
settings.

Some efforts have aimed to extend chaos into public-key cryp-
tography. Mfungo et al. [12] combined RSA with fractal geom-
etry and chaotic maps to strengthen image encryption. lovane
et al. [13] proposed a quantum-resilient key generator based
on fractals and stochastic prime sieving, albeit still grounded
in RSA-like primitives. Al-Saidi et al. [14] introduced a frac-
tal public-key system using IFS, yet also relied on structured
seeding via Diffie-Hellman.

While these designs incorporate chaos as an entropy source,
most retain algebraic scaffolding or lack formal hardness analy-
sis. A key limitation in the field remains the absence of structure-
free, asymmetric cryptographic models with provable intractabil-

1ty.

The present work situates itself in contrast to these efforts by
building upon a formally defined non-algebraic model, the Sym-
bolic Path Inversion Problem (SPIP) [15]. Rather than assuming
the utility of chaos, SPIP rigorously proves that recovering sym-
bolic trajectories over Z? under bounded perturbations is both
#P-hard and PSPACE-hard. While SPIP deliberately refrains
from proposing a full cryptographic scheme, it provides a solid
theoretical foundation for non-invertible symbolic systems.

This paper extends that foundation into practical cryptography
by introducing the HFKR problem a construction that leverages
symbolic trajectories not only for theoretical hardness, but also
for usable key generation via entropy amplification and hash-
based obfuscation. In contrast to prior chaos-based approaches
that often leap from heuristic design to application, HFKR is
grounded in provable symbolic complexity, and advances a rig-
orously motivated, post-quantum-ready cryptographic primitive.

3 The HFKR Problem

The HFKR problem (Algorithm 1) introduces a novel cryp-
tographic hardness assumption rooted in symbolic dynamics
rather than algebraic structure. Unlike classical schemes that
derive security from problems in number theory or lattice geom-
etry, HFKR is built upon the combinatorial unpredictability of
symbolic trajectories generated by chaotic affine systems. These
trajectories evolve over the discrete lattice 72, where each step is
governed by a contractive, noisy affine transformation followed
by discretization. While such systems naturally produce high

entropy, their cryptographic utility depends on further transfor-
mation to mitigate any residual structure or statistical bias.

Formally, the symbolic path & = {xo,x1,...,x,} evolves from
an initial point xo € Z? under the recursive rule:

Xiy1 = |Aixi +bi + & (D
where each A; is a contractive linear map, b; is a bounded ran-
dom translation, and &; is noise sampled from a bounded con-
tinuous distribution. The floor function enforces discretization,
projecting the result back onto Z?. The resulting trajectory is
non-invertible due to stochastic perturbations and rounding, and
the number of possible symbolic walks grows exponentially as
|#;| = m", where m is the number of possible transformation
configurations.

However, symbolic complexity alone does not guarantee crypto-
graphic strength. Raw trajectories may leak partial information
or exhibit statistical irregularities. To achieve cryptographic
usability, HFKR appends a hash-based obfuscation layer:

k=H(xo [|xi |-+ [ xa) 2)

where H is a cryptographic hash function such as SHA3-
512. This step compresses the variable-length symbolic path
into a fixed-size digest, amplifies symbolic differences via the
avalanche effect, and enforces one-wayness. The result is a
high-entropy key with no apparent structural correlation to its
underlying symbolic source.

Algorithm 1: HFKR Key Generation

Input: Initial point xg € VAS

Affine matrix parameters (a1,d12,d21,d2);

Translation bounds [bmin, bmax];

Noise bound &;

Trajectory length n;

Hash function H

Output: Cryptographic key k

Initialize & + [x¢];

fori< 1tondo
Sample affine map A; and translation b;;
Sample noise & ~ % ([—¢,€]?);
Compute x; < LAixi,l +b; + S,J )
Append x; to &Z;

end

Concatenate trajectory: M < xglxi||. .. ||xn;

Compute key: k + H(M);

return k;

While HFKR is described over a finite transformation set .7,
our implementation adopts a stochastic extension, sampling
fresh affine maps at each step. This maintains contractivity
and unpredictability, as required by SPIP [15], while enhancing
entropy through per-step variation. The resulting symbolic walk
approximates a chaotic branching process with continuously
evolving rules.

3.1 Fractal Interpretation

Although SPIP operates in a discrete symbolic setting, its struc-
tural behavior closely mirrors that of classical fractal systems.
The symbolic paths generated by contractive affine transforma-
tions with noise and discretization exhibit self-similar branching,
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exponential divergence, and non-reversibility all hallmarks of
fractal geometry.

Symbolic fractality is not defined by visual self-similarity, but
by recursive rule-based generation over a finite alphabet. As
shown by Barnsley [16] and Kitchens [17], symbolic substi-
tution systems can produce fractal measures, topologies, and
dimensions. Within this framework, the symbolic trajectory
space #, of HFKR behaves as a discrete fractal tree, each step
contracts the domain, branches stochastically, and introduces
irreversibility via noise and rounding.

This behavior is empirically reflected in our experiments, where
symbolic paths exhibit increasing coverage of the bounded state
space with fractal dimension stabilizing near D ~ 1.06 (Sec-
tion 4). When hashed, these paths are compressed into fixed-
length digests, projecting the symbolic fractal into a crypto-
graphic output space. This mirrors the logic of fractal compres-
sion, but with irreversible mapping.

Thus, HFKR can be seen as a bridge between symbolic dy-
namics and fractal computation. It encodes a combinatorially
rich symbolic structure into a secure digest, not by exploiting
algebraic hardness, but by amplifying the entropy of symbolic
fractals through cryptographic hashing. This fusion offers a new
paradigm for post-quantum key generation, free from traditional
algebraic assumptions.

4 Empirical Evaluation

To investigate the extent to which the chaotic symbolic process
in HFKR translates into measurable cryptographic unpredictabil-
ity, we conducted a comparative experiment using three modern
hash functions, SHA3-512, SHAKE256, and BLAKE3. Each
function was applied to identical symbolic walks generated via
the affine chaotic map described earlier, with carefully localized
perturbations introduced mid-path. This setup isolates the effect
of the hash function on the propagation of symbolic divergence
into output-level entropy and bit-level diffusion.

As illustrated in Figure 1, the generated symbolic trajectories
display progressively denser and more space-filling behavior
as the number of steps n increases. The paths exhibit charac-
teristics commonly associated with chaotic dynamical systems,
including recursive folding, sensitive dependence on initial con-
ditions, and a lack of apparent periodicity.

These properties are quantified through geometric and fractal
metrics shown in each panel such as total path length, bound-
ing box dimensions, and an estimated fractal dimension using
the box-counting method. Notably, the fractal dimension in-
creases with n, stabilizing near 1.06, which suggests that the
symbolic trajectory increasingly occupies the surrounding space
in a complex, self-overlapping manner. This behavior is consis-
tent with symbolic fractality, making such walks highly suitable
for entropy amplification and cryptographic use.

In the HFKR framework, these symbolic paths are flattened
into byte streams and processed through cryptographic hash
functions. This final transformation compresses their symbolic
entropy into a fixed-length digest. The effectiveness of this
entropy amplification is assessed through Hamming distance,
bit-flip rate, and entropy deviation analyses.

As shown in Figure 2, both SHA3-512 and SHAKE256 demon-
strate strong avalanche properties, small symbolic perturbations

Chaotic Walk Trajectory (n = 128)

Figure 1: Chaotic symbolic walks for increasing trajectory lengths
(n = 128,500,2000,5000). Geometric and fractal statistics are shown
in each panel.

result in high mean Hamming distances (=~ 255 out of 512 bits).
In contrast, BLAKE3 shows notably weaker diffusion, averag-
ing only 128-bit divergence per perturbation. This suggests that
BLAKE23’s internal structure, which favors speed via Single
Instruction, Multiple Data (SIMD) parallelism and tree-based
hashing, may limit its capacity to fully amplify symbolic diver-
gence.

Hamming Distance by Hash Algorithm

algorithm
200 SHA3
SHAKE256
BLAKE3

60 62 64 66 o8
Figure 2: Hamming distance by hash algorithm across perturbation
positions.

A similar story emerges in the bit-flip rate results shown in Fig-
ure 3. While all three hash functions center around the ideal
0.5 bit-flip rate, SHA3 and SHAKE256 demonstrate tighter con-
centration and lower variance. BLAKE3, although still within
acceptable cryptographic thresholds, shows broader fluctuations,
which may indicate less uniform per-bit diffusion when applied
to structured symbolic input.

Entropy analysis, presented in Figure 4, confirms that the over-
all randomness of the outputs remains stable across all three
functions. The entropy difference AH between perturbed and
unperturbed hashes is effectively zero in aggregate, but again,
BLAKES3 reveals a slightly broader envelope of variation. This
suggests that while BLAKE3 maintains entropy levels, its inter-
nal mixing may respond less predictably to localized symbolic
perturbations compared to Keccak-based constructions.

To further assess the positional uniformity of bit flips in the
output digests, we applied a chi-square goodness-of-fit test to
the output of each hash function. Each test was conducted on
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Bit-flip Rate by Hash Algorithm

algorithm
SHA3
SHAKE256
BLAKE3

bit_flip_rate
° ° o o ° o
b Y & & S &
3 & E 4 4 &

e
=
bl

60 62 64 66 68
position

Figure 3: Bit-flip rate across positions for different hash functions.

Entropy Difference by Hash Algorithm
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Figure 4: Entropy difference between perturbed and original outputs.

a cumulative bit matrix of size 250 x 512, corresponding to 50
independent trials across 5 perturbation offsets yielding 250
samples per output bit. This provides sufficient statistical depth
to evaluate whether bit flips occur uniformly across positions,
as would be expected under ideal avalanche conditions.

In conducting this test, each output bit is implicitly modeled as
a Bernoulli variable with parameter p = 0.5, representing equal
probability of flipping under symbolic perturbation. The null
hypothesis asserts that flips are uniformly distributed across all
bit positions, while the alternative hypothesis allows for any
structured bias or diffusion weakness. The chi-square statistic
thus measures deviation from this expected binomial behavior.

As summarized in Table 1, all hash functions yielded p-values of
1.0000, suggesting no statistically significant deviation from the
uniform model. However, this result should not be mistaken for
evidence of perfect or complete diffusion. With a large sample
size, the test becomes highly sensitive, and when flip frequencies
align closely with expectation, the test statistic can fall below
rejection thresholds, producing p-values effectively rounded to
1.0000. This reflects statistical alignment with uniformity, but
not necessarily cryptographic adequacy.

Crucially, the chi-square test does not measure how strongly
symbolic perturbations propagate across the output space. For
example, both BLAKE3 and SHA3-512 achieve p = 1.0000,
yet BLAKES3 exhibits a much lower mean Hamming distance
and wider entropy variance. This indicates weaker symbolic
amplification, despite statistical uniformity. In contrast, SHA3
and SHAKE?256 show higher chi-square statistics and stronger
diffusion effects, with more bits participating meaningfully in
the output response.

These findings reinforce a core principle in HFKR, the hash
function does not generate hardness ex nihilo, but acts as an
amplifier of the symbolic entropy encoded by SPIP. Uniform
bit-level activity ensures the absence of structural bias, but
true security depends on how well this symbolic divergence
is preserved and expanded across the digest space. The hash
function must therefore be chosen not merely for cryptographic
strength in isolation, but for its ability to faithfully propagate
symbolic chaos into a secure output representation.

Hash Chi-square p-value Mean Hamming
SHA3-512 266.99 1.0000 254.85
SHAKE256 257.09 1.0000 255.68
BLAKE3 140.77 1.0000 128.21

Table 1: Chi-square statistics and mean Hamming distances
across 250 perturbation trials.

5 Conclusion and Future Work

This paper introduced the HFKR problem as a non-algebraic
cryptographic primitive grounded in symbolic dynamics and
chaotic transformations. Building on the hardness foundation
established by theSPIP, HFKR leverages symbolic trajectories
generated by noisy contractive affine maps and transforms them
into secure keys through cryptographic hashing. This layered
construction departs from traditional algebraic assumptions,
offering a structure-free model inherently resilient to quantum
adversaries.

Empirical results confirm that symbolic paths produced in
HFKR exhibit increasing fractal complexity and high entropy
as their length grows. These trajectories demonstrate space-
filling behavior and sensitivity to perturbations, with fractal
dimensions converging near 1.06. When passed through hash
functions, their symbolic divergence is amplified into robust
cryptographic output. Specifically, SHA3-512 and SHAKE256
achieved strong avalanche properties maintaining high Ham-
ming distances, near-ideal bit-flip rates, and consistent entropy,
whereas BLAKE3 showed weaker symbolic diffusion despite
statistical uniformity. These observations highlight that effective
entropy amplification depends not only on the symbolic source
but also on the diffusion strength of the hash function.

HFKR’s security arises from the synergy between symbolic
unpredictability and irreversible hashing. Rather than compress-
ing randomness passively, the hash function actively magnifies
symbolic divergence into a one-way, high-entropy represen-
tation. This paradigm demonstrates that symbolic dynamics,
when properly obfuscated, can serve as a viable foundation for
post-quantum key generation.

Future work includes formalizing hardness reductions that link
SPI style symbolic inversion with hash-based obfuscation under
standard adversarial models. Extending HFKR into a full key
encapsulation mechanism (KEM) and exploring its integration
into hybrid protocols is also a promising direction. Moreover,
evaluating its resilience under partial leakage or fault injection
can provide insights into its real-world robustness. Given its
lightweight, algebra-free nature, HFKR may be well-suited for
deployment in constrained environments such as IoT devices
or hardware enclaves. Lastly, optimizing symbolic encodings
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through grammar-based or fractal-aware schemes, could en-
hance both key density and implementation efficiency.
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