
ar
X

iv
:2

50
6.

03
65

6v
1

 [
cs

.C
R

]
 4

 J
un

 2
02

5

Client-Side Zero-Shot LLM Inference for
Comprehensive In-Browser URL Analysis

Avihay Cohen

Jun 2025

Abstract

Malicious websites and phishing URLs pose an ever-increasing cy-
bersecurity risk, with phishing attacks growing by 40% in a single
year [3]. Traditional detection approaches rely on machine learning
classifiers or rule-based scanners operating in the cloud, but these
face significant challenges in generalization, privacy, and evasion by
sophisticated threats. In this paper, we propose a novel client-side
framework [1] for comprehensive URL analysis that leverages zero-
shot inference by a local large language model (LLM) running entirely
in-browser. Our system uses a compact LLM (e.g., 3B/8B parame-
ters) via WebLLM[13] to perform reasoning over rich context collected
from the target webpage, including static code analysis (JavaScript ab-
stract syntax trees, structure, and code patterns), dynamic sandbox
execution results (DOM changes, API calls, and network requests),
and visible content. We detail the architecture and methodology of
the system, which combines a real browser sandbox (using iframes)
resistant to common anti-analysis techniques, with an LLM-based an-
alyzer that assesses potential vulnerabilities and malicious behaviors
without any task-specific training (zero-shot). The LLM aggregates
evidence from multiple sources (code, execution trace, page content)
to classify the URL as benign or malicious and to provide an expla-
nation of the threats or security issues identified. We evaluate our
approach on a diverse set of benign and malicious URLs, demonstrat-
ing that even a compact client-side model can achieve high detection
accuracy and insightful explanations comparable to cloud-based solu-
tions, while operating privately on end-user devices. The results show
that client-side LLM inference is a feasible and effective solution to

1

https://arxiv.org/abs/2506.03656v1

web threat analysis, eliminating the need to send potentially sensi-
tive data to cloud services. We discuss how our approach mitigates
evasion techniques, the trade-offs in performance when using smaller
models, and why scaling analysis via on-device models is preferable to
cloud-scale LLMs for this domain.

Contents

1 Introduction 3

2 Related Work 7
2.1 Malicious URL and Web Content Detection 7
2.2 Evasion and Dynamic Analysis Techniques 8
2.3 Large Language Models for Security Analysis 9

3 Architecture 9
3.1 . 19

4 Methodology 20
4.1 Static Code Analysis and AST Parsing 21
4.2 Dynamic Analysis and Behavior Monitoring 22
4.3 LLM Prompt Construction . 24
4.4 Zero-Shot Inference with the LLM 26
4.5 Vulnerability Extraction and Risk Assessment 27
4.6 Performance Considerations 28

5 Experiments 28
5.1 Experimental Setup . 28
5.2 Evaluation Metrics . 30
5.3 Experimental Procedure . 31

6 Results 31
6.1 Detection Performance . 31
6.2 Examples of LLM Explanations 33
6.3 Vulnerability and Threat Type Identification 36
6.4 Performance and Overhead . 37
6.5 Case Study . 38

2

7 Discussion 39
7.1 Why Client-Side Inference? 39
7.2 Security and Evasion Considerations 40
7.3 False Positives/Negatives and Model Limitations 42
7.4 User Experience and Deployment 42
7.5 Generality of Approach . 43
7.6 Future Work . 44

8 Conclusion 44

1 Introduction

The web browser is the primary interface for users interacting with online
content, making it a common vehicle for cyber attacks such as phishing,
drive-by downloads, and malicious scripts. Recent reports indicate a sharp
rise in phishing and malicious URL campaigns - for example, phishing attacks
increased by 40% in 2023 alone [3]. This escalation in threats places urgency
on effective URL analysis and web content scanning techniques. Although
numerous machine learning and deep learning based models have been pro-
posed for malicious URL detection [4, 5], these approaches often suffer from
generalization issues and can be outmaneuvered by determined adversaries.
Attackers frequently employ client-side cloaking and dynamic content gener-
ation to show benign content to security scanners while delivering malicious
payloads to real users [8]. This gap between the scanning environment and a
real user’s browsing environment allows many threats to slip past traditional
detectors.

A promising new direction is to leverage the reasoning ability of large lan-
guage models (LLMs) to perform security analysis. LLMs have demonstrated
an ability to reason in a zero-shot manner, solving tasks without task-specific
training when given proper prompts [9]. Recent studies suggest that LLMs
can act as one-shot or few-shot URL classifiers and even provide explanations
for their decisions by synthesizing knowledge of known attack patterns with
observed data. However, deploying LLMs for web content analysis at scale
introduces significant challenges. Cloud-based LLM services raise privacy
concerns, since the content of a suspect webpage (which may include private
user data or sensitive information) must be sent to a third-party server for
analysis. Furthermore, relying on cloud LLM APIs for every URL visit is

3

costly and does not scale well when millions of URLs or user browsing ses-
sions need to be evaluated in real-time. Adversaries may also attempt to
evade cloud-based analysis by fingerprinting known scanner infrastructure or
IP ranges, a technique observed in advanced phishing kits [8].

In this work, we address these challenges by bringing the power of LLM
inference directly into the client’s browser. We introduce a system for com-
prehensive in-browser URL analysis using zero-shot LLM inference
on the client side[1]. Our approach is comprehensive in that it analyzes a
suspect URL from multiple angles:

• Static analysis of JavaScript code: The system fetches all scripts from
the webpage and parses them into abstract syntax trees (ASTs) to
extract structured metadata such as function names, variables, loops,
strings, and patterns of API usage. This static analysis component
flags suspicious code constructs (e.g., use of eval on obfuscated strings,
event handlers for keystroke logging, suspicious URL patterns in net-
work calls) without executing the code.

• Dynamic analysis via sandboxed execution: The URL is loaded in a real
browser environment using an advanced sandbox framework that lever-
age isolated iframes. The system intercepts and monitors dynamic be-
havior, including changes to the Document Object Model (DOM), calls
to runtime Web APIs (such as network fetches, redirects, cookie access,
and geolocation requests), and any content that becomes visible to the
user. By executing the page in an environment that closely mirrors a
user’s browser (including using a typical user-agent string and screen
dimensions), we capture the runtime behavior and UI rendered, defeat-
ing techniques that rely on detecting headless bots or non-interactive
crawlers. Our sandbox leverages standard web technologies (iframes
and Proxy objects) with careful instrumentation to remain resistant to
common evasion tactics.

• LLM-based reasoning and threat assessment : A local LLM running
entirely in the browser (via WebGPU and WebAssembly, using the
WebLLM framework [10]) takes the collected evidence from static and
dynamic analysis as input. We craft multiple prompts that includes the
URL’s key characteristics (domain, path, etc.), the extracted code fea-
tures (e.g., list of function names, presence of suspicious patterns), sum-
mary of dynamic findings (e.g., “the page created an invisible iframe

4

and made network requests to evil.com API”), and the visible tex-
t/content of the page. Without any fine-tuning, the LLM is asked in
a zero-shot manner to assess whether the URL/page is malicious or
benign, explain the reasoning, and identify any specific vulnerabilities
or malicious behaviors present. Because the model is running locally,
this analysis is privacy-preserving (no data leaves the user’s machine)
and nearly real-time.

By combining these components, our system performs a holistic analysis
akin to what a human security expert might do: inspect the page’s code,
observe its behavior, and read its content, then make an informed judgment
about its intent. All of this occurs within the user’s browser client, on the
fly as a URL is analyzed, eliminating the need for cloud queries.

We implement our approach with a focus on using relatively compact
LLMs that are feasible to deploy in a browser. In particular, we experi-
ment with models in the 2B–8B parameter range (such as a LLaMA-family
8B model, a 3B distilled model, and recent efficient models like Microsoft’s
Phi-3 and Google’s Gemma-2B small LMs). These models, especially when
quantized (e.g., 4-bit weights), can be loaded and run with hardware ac-
celeration in modern browsers via WebGPU, achieving reasonable through-
put [10]. Despite their smaller size compared to state-of-the-art 100B+ pa-
rameter models, recent work has shown that these small models can remain
surprisingly capable on specialized tasks [12]. They also run faster and can
be used without network connectivity or ongoing API costs.

The contributions of this paper are as follows:

• We design a novel client-side URL analysis architecture that inte-
grates static code parsing, dynamic sandbox execution, and LLM-based
reasoning entirely within the browser. To our knowledge, this is the
first framework to perform comprehensive web threat analysis using an
in-browser LLM inference engine.

• We develop techniques for JavaScript AST analysis and behavior
tracing in untrusted webpages, extracting features that feed into the
LLM. We describe how our system hooks and monitors web API calls
and DOM updates in a sandboxed iframe to detect stealthy behaviors,
while minimizing the footprint that might reveal the presence of an
analysis tool to the page.

5

• We demonstrate the feasibility of zero-shot LLM inference for
security analysis using a compact model running in-browser. Our
methodology requires no task-specific training or labeled data for the
LLM; it relies on the model’s pre-trained knowledge of malicious pat-
terns and its reasoning ability to correlate static and dynamic observa-
tions.

• We evaluate the system on a dataset of benign and malicious URLs,
measuring detection performance and highlighting examples of the LLM’s
explanatory outputs. We compare different model sizes (8B vs 3B vs
2B) and architectures, analyzing the trade-offs in detection accuracy
and runtime performance on the client side. We also compare against
a traditional machine-learning URL classifier baseline to illustrate the
advantages of our approach in terms of explanation and resilience to
evasion.

• We provide a thorough discussion of why client-side inference is ad-
vantageous in this domain. We analyze the limitations of cloud-based
analysis (privacy, scalability, evadability) and show how our approach
addresses these. We discuss current limitations of our system (such
as the performance gap of smaller models and potential evasion if at-
tackers specifically target LLM weaknesses) and outline future work to
further improve client-side threat detection.

The remainder of the paper is organized as follows. Section 2 reviews
related work in malicious URL detection, web malware analysis, and the
emerging use of LLMs in security. Section 3 describes the architecture of
our client-side analysis system. Section 4 details the methodology, includ-
ing the static analysis pipeline, dynamic sandbox instrumentation, and the
LLM prompt engineering. In Section 5, we present our experimental setup,
datasets, and baseline comparisons, and in Section 6 we report the evalua-
tion results. Section 7 provides a discussion on the implications of our find-
ings, including the feasibility of client-side deployment and the comparison
to cloud-based approaches. Finally, Section 8 concludes the paper.

6

2 Related Work

2.1 Malicious URL and Web Content Detection

Malicious URL detection has been a long-standing research area in cyberse-
curity. Early approaches focused on lexical features of URLs and blacklisting,
while later methods employed machine learning on features extracted from
URLs, HTML content, and network characteristics. For example, Jain and
Gupta [4] proposed a machine learning approach for phishing detection using
features from hyperlinks (URL tokens, domain reputation, etc.). With the
rise of deep learning, researchers developed models that directly learn URL
representations, such as URLNet by Le et al. [5], which uses convolutional
neural networks to embed URLs for classification. These systems can achieve
good accuracy on known datasets, but they often struggle with generaliza-
tion to new phishing campaigns or novel attack techniques. One common
issue is that static classifiers can be evaded by adversaries who change su-
perficial features of URLs or page content (e.g., typosquatting new domains
or injecting random noise strings to confuse classifiers).

Another line of work has examined the content of webpages for malicious
indicators. Traditional anti-phishing toolbars and browser filters would look
for known bad keywords or images. More advanced systems like Cova et
al.’s approach [6] combined static analysis with dynamic emulation to de-
tect drive-by download attacks in pages. They ran JavaScript code in an
instrumented environment to catch malicious behaviors like heap spraying.
Similarly, Zozzle by Curtsinger et al. [7] introduced a mostly static JavaScript
malware detector operating within the browser, using a statistical model over
AST-derived features to identify malware code. Zozzle demonstrated that
fast in-browser scanning of JavaScript is possible with low overhead, though
its pattern-matching approach could be circumvented by heavily obfuscated
scripts.

Our work builds on insights from these prior works: purely static or lexical
analysis is insufficient against adaptive threats, and in-browser scanning is
feasible and can be improved with modern techniques. We extend the concept
of in-browser analysis by incorporating an LLM to reason over the combined
static and dynamic evidence, something that was not available to earlier
systems.

7

2.2 Evasion and Dynamic Analysis Techniques

Attackers have developed sophisticated evasion techniques to defeat auto-
mated analysis. One prominent method is client-side cloaking, where ma-
licious pages detect the absence of typical user interactions or the presence
of known crawler environment clues and then alter their behavior [8]. For
instance, a phishing page might load a benign decoy page if it suspects it is
being scanned by an anti-phishing service (which might be indicated by no
mouse movements, an unusual User-Agent string, or known headless browser
signatures). Zhou et al.’s CrawlPhish study [8] extensively documented how
phishing kits employ client-side checks (like requiring a real click or keyboard
input, or checking if the browser has a graphical canvas to detect headless
Chrome) to cloak their malicious payloads from crawlers. Their findings un-
derscore the need for using an analysis environment that is indistinguishable
from a real user on a real browser.

Dynamic analysis sandboxes, such as those used by services like Google
Safe Browsing and various malware analysis sandboxes (e.g., Any.Run, Joe-
Sandbox), attempt to load and run webpages in virtual browsers to observe
malicious behavior. While effective to an extent, these cloud-based sandboxes
can be resource-intensive and still prone to detection. Moreover, many such
services operate after the fact (scanning URLs submitted to them) rather
than proactively scanning every page a user visits in real time, due to scala-
bility limits.

Our approach adopts dynamic analysis in a distributed client-side fashion.
Instead of one cloud service analyzing thousands of URLs (which can be
detected and rate-limited by attackers, and is costly), each user’s browser
can perform dynamic analysis on the few URLs that user is about to visit,
using the user’s own computing resources. By leveraging a real browser
iframe within the user’s session, we naturally reproduce a genuine browsing
context (with real user-agent, IP, locale, etc.), making it much harder for the
malicious page to identify the analysis. We also incorporate techniques like
triggering minimal user-like interactions if needed (e.g., programmatically
dispatching click events or simulating time delays) to satisfy simple cloaking
checks.

An additional benefit of client-side analysis is privacy: prior dynamic
analysis frameworks required uploading the URL (and potentially page con-
tent) to a third-party service. In scenarios where the URL could contain
private tokens or the page requires login, cloud analysis is not acceptable.

8

Our system keeps the entire process local to the user.

2.3 Large Language Models for Security Analysis

The use of LLMs in security is an emerging area of research. Large language
models like GPT-3/GPT-4 have shown impressive ability to understand code
and even detect vulnerabilities or malicious intent when carefully prompted.
For example, OpenAI’s GPT-4 Technical Report noted the model can as-
sist in code auditing tasks with high competency. There have been works
exploring LLMs as explainers for predictions (e.g., Kroeger et al. studied
whether LLMs can serve as post-hoc explainers of ML decisions). Closer to
our scope, some recent studies have treated LLMs themselves as classifiers for
malicious content, taking advantage of their broad knowledge. These studies
often show that even without training on specific security datasets, an LLM
can make reasonable judgments about, say, whether a given piece of code is
suspicious or a given URL looks phishy, especially when the prompt provides
contextual information and instructions.

Our approach is aligned with this trend, using an LLM as the core anal-
ysis engine. However, a key distinction is we run the LLM locally within
the browser environment. The WebLLM project [10] demonstrated that it is
possible to achieve near-native speeds for LLM inference in the browser via
WebGPU, and our work leverages that capability. We also tailor the prompt
engineering to the threat detection task, effectively building a zero-shot clas-
sifier with explanation.

In summary, our system integrates techniques from static code analysis
within the browser, a novel dynamic sandbox emulator, and LLM-based rea-
soning to create a novel solution for client-side URL analysis. To the best of
our knowledge, this is the first work to integrate all these components and
evaluate the feasibility of running it entirely in a user’s browser at runtime.

3 Architecture

Our client-side URL analysis system is composed of several coordinated com-
ponents that together perform end-to-end threat detection and explanation.
Figure 3 provides an overview of the architecture. The major components
include: (i) the Static Analysis Engine for JavaScript parsing and feature
extraction, (ii) the Dynamic Execution Sandbox for loading the page in

9

an instrumented environment, (iii) the Data Aggregation and Prompt
Builder which compiles the analysis results into multiple prompts, and (iv)
the LLM Inference Module (running via WebLLM in-browser) which pro-
cesses the prompts and generates an analysis response. A frontend UI is
provided to the user (e.g., a browser extension popup) to review the results,
but the core analysis runs automatically when triggered for a given URL.

Figure 1: System Architecture. A high-level diagram showing the
flow: The user’s browser triggers analysis for a URL. The Static

Analysis Engine fetches and parses scripts to AST, extracting code
features. The Dynamic Sandbox loads the URL in an iframe, with

hooks monitoring DOM changes and API calls. Collected data (code
features, runtime events, visible text) are sent to the Prompt Builder,
which constructs a detailed prompt. The in-browser LLM (WebLLM)
processes this prompt and outputs a classification (malicious/benign)

with explanation.

The system operates as follows: when a user (or an automated back-
ground process) initiates analysis of a target URL, a new isolated iframe
(or a new browser context) is created to load the page. The Static Analy-
sis Engine, in parallel, downloads the JavaScript files of the page (either by
intercepting network responses or via the browser’s developer API if avail-
able or through a cors proxy) and performs a static scan. The engine is
implemented in TypeScript, using Acorn to parse scripts into ASTs. It then
traverses the AST to collect various metadata:

• Identifiers: List of function names, variable names, and literal con-
stants present in the code. These can reveal suspicious naming patterns
(e.g., a function named ‘hookKeyboard‘ or a variable ‘bankPassword‘
is suspicious in a random page).

10

• Structural features: Presence of constructs like eval(), Function()
constructor, dynamic script injection document.createElement(’script’),
event listeners (onmousedown, onkeypress), loops that iterate over large
arrays (could indicate decoding loops), etc.

• String patterns: Any hardcoded URL substrings, suspicious domain
names, long hexadecimal or Base64 strings (often used in obfuscated
payloads), or known malware signatures if any.

• Control flow indicators: The AST can be analyzed for deep nesting
or dead code (some malware uses opaque predicates), and for whether
the code is largely minified/obfuscated (e.g., many single-letter variable
names or lack of whitespace can be a sign).

• Obfuscation Detection - The AST is analyzed for common obfusca-
tion techniques.

The Static Analysis Engine produces a structured summary of each script.
For example, it may output a JSON-like structure for each file: listing
its functions and variables, and flagging any detected patterns (e.g., ”uses
eval on string literal”, ”calls atob() decoding”, ”creates hidden form ele-
ment”,”API keys detected in code”,”private/public encryption keys”).

Meanwhile, the Dynamic Execution Sandbox is responsible for observing
the page’s runtime behavior. We leverage a sandboxed iframe that runs in the
context of an emulated origin. To instrument it, our system injects a small
script into the iframe as it loads (for instance, by setting the iframe’s src
to a data URL that bootstraps a loader script, which then render the target
html while retaining full execution control, or by using the browser extension
content script capabilities to pre-inject hooks). The instrumentation script
hooks into key browser APIs by monkey-patching them. For example, we
override window.fetch, XMLHttpRequest.prototype.send, WebSocket, and
other networking functions to log any outbound requests (recording the URL,
method, and perhaps payload size, but not blocking them). We similarly
hook document.cookie accessors, localStorage access, and other storage
APIs to see if the script is trying to read/write sensitive data.

We also attach event listeners to capture DOM modifications. This
can be done by observing mutations (using the MutationObserver API on
the iframe’s document body) and by hooking specific DOM methods like
appendChild or insertBefore. We pay special attention to changes that

11

make content visible or hidden. For example, if an element is created with
CSS that places it off-screen or invisible, we note that (common in pop-up
phishing forms or overlays). If a new login form or input field is added to
the DOM, we capture that as well.

Finally, we capture the visible text on the page after a short delay
(once network activity has settled). This is done by extracting all text nodes
from the DOM that are not hidden by CSS. The visible text is important
because it might contain clues like ”Secure Login”, brand names, or requests
for credentials, which an LLM can recognize as phishing indicators when
combined with other evidence.

The sandbox is designed to be resistant to detection. We do not use any
obvious headless mode (we rely on the user’s actual browser, which passes all
typical environment checks). The iframe can be made virtually invisible to
the user (e.g., 0x0 pixels or hidden tab), but we ensure that scripts running
in it do not detect unusual conditions. Our injected hooks try to be stealthy,
for instance, replacing window.fetch with a wrapper that calls through to
the original function, and making sure properties like toString() on the
function return the expected native code string to avoid fingerprinting of
the hook. We also handle timing: some malware checks how quickly certain
actions happen (to detect automated environment). We can introduce slight
random delays in our automated interactions and let the page mostly run at
normal speed. In essence, the sandbox aims to let the page behave as if a
user is visiting, while quietly recording its actions.

After a fixed analysis period (say 3-5 seconds, or earlier if the page fin-
ishes loading sooner and no new activity is observed), the system gathers all
logged data from both static and dynamic analysis. This data is then passed
to the Prompt Builder. The Prompt Builder composes a textual prompt
for the LLM. The prompt typically has a predefined template, for example
github.com analysis:

Q:

[System role: Security Analyst AI]

Analyze sandbox API behavior for security risks.

API Calls Summary:

window.fetch: 1x, EventTarget.addEventListener: 100x,

newGlobalProperties: 76x, Document.querySelector: 44x,

Document.getElementById: 25x, Document.createElement: 18x,

12

Document.querySelectorAll: 16x, Node.appendChild: 9x,

Node.cloneNode: 9x, EventTarget.removeEventListener: 8x,

window.setTimeout: 6x

Risk Categories: low: 1 risks

Provide concise analysis as JSON:

{

"sandboxRiskScore": <0-100>,

"sandboxRiskLevel": "<Low|Medium|High|Critical>",

"sandboxFindings": [{"title": "<issue>", "severity": "

<Low|Medium|High|Critical>"}]

}

A:

{

"sandboxRiskScore": 20,

"sandboxRiskLevel": "Low",

"sandboxFindings": [

{

"title": "Potential Information Disclosure through

newGlobalProperties",

"severity": "Low"

}

]

}

Q:

[System role: Security Analyst AI]

Evaluate trust for: github.com

Indicators:

- SSL Certificate: Yes

- Code Quality Score: 99/100

- Domain: github.com

Provide trust assessment as JSON:

13

{

"score": <0-100>,

"level": "<Low|Medium|High>",

"factors": ["<factor1>", "<factor2>"]

}

A:

{

"score": 92,

"level": "High",

"factors": ["SSL Certificate: Yes", "Code Quality Score: 99/100"]

}

Q:

[System role: Security Analyst AI]

Analyze JavaScript security for: wp-runtime-7ec44d86e5dd.js

Key indicators:

- Obfuscated: No

- Security issues: 2

- Invoked APIs: unknown.call, unknown.every, Object.keys, unknown.e,

o.splice,e.splice, a, s.d, Object.getPrototypeOf, Object.create, s.r,

_, e.indexOf, unknown.forEach,Object.getOwnPropertyNames, s.o,

Object.defineProperty,Promise.all, unknown.reduce, unknown.o,

Function,unknown.push, document.getElementsByTagName,

r.getAttribute, document.createElement, d.setAttribute,

unknown.indexOf, clearTimeout, unknown.removeChild, a.forEach

- Defined Functions: s, m, e, _, o

- Dangerous APIs: 1

Provide analysis as JSON:

{

"summary": "<brief security summary>",

"securityAnalysis": {

"riskLevel": "<Low|Medium|High|Critical>",

"vulnerabilities": [

14

{

"type": "<vulnerability type>",

"severity": "<Low|Medium|High|Critical>"

}

]

}

}

A:

{

"summary": "Low security risk found in wp-runtime-7ec44d86e5dd.js",

"securityAnalysis": {

"riskLevel": "Low",

"vulnerabilities": [

{

"type": "Potential Insecure Deserialization",

"severity": "Low"

}

]

}

}

Q:

[System role: Security Analyst AI]

Analyze global properties created during sandbox execution for phishing

and malicious behavior:

URL: https://github.com

Domain: github.com

Total New Global Properties: 76

GLOBAL PROPERTIES DETECTED:

1. webpackChunk

2. IncludeFragmentElement

3. RemoteInputElement

4. ActionListElement

5. ActionBarElement

15

6. DetailsMenuElement

7. AnchoredPositionElement

8. DialogHelperElement

9. FocusGroupElement

10. ScrollableRegionElement

[truncated]....

CRITICAL INDICATORS TO ANALYZE:

1. DATA EXFILTRATION:

- Properties containing "send", "post", "export", "transmit"

- Functions for data collection and transmission

2. KEYLOGGING/MONITORING:

- Properties for input monitoring

- Keystroke capturing functions

- User behavior tracking

3. SESSION HIJACKING:

- Properties for token/cookie manipulation

- Session management functions

- Authentication bypass mechanisms

RISK ASSESSMENT CRITERIA:

- High Risk: Credential keywords + brand names + obfuscation

- Medium Risk: Suspicious patterns + function-like behavior

- Low Risk: Minimal suspicious patterns

Provide comprehensive global properties phishing analysis as JSON:

{

"isPhishing": <true|false>,

"confidence": <0-100>,

"phishingType": "<none|data-exfiltrator|keylogger|session-hijacker>",

"riskLevel": "<Low|Medium|High|Critical>",

"globalPropIndicators": [

{

"property": "<property name>",

"type": "<data-exfiltrator|keylogger|session-hijacker>",

"description": "<why this property is suspicious>",

"severity": "<Low|Medium|High|Critical>"

}

],

16

"behaviorAnalysis": {

"hasDataExfiltrators": <true|false>,

"hasKeyloggers": <true|false>,

"hasSessionHijackers": <true|false>

},

"legitimacyScore": <0-100, lower means more suspicious>,

"recommendation": "<detailed recommendation based on global properties analysis>",

"globalPropsRiskScore": <0-100, higher means more likely phishing/malicious>

}

A:

{

"isPhishing": false,

"confidence": 80,

"phishingType": "none",

"riskLevel": "Low",

"globalPropIndicators": [

{

"property": "webpackChunk",

"type": "none",

"description": "This property is a common library

chunk and does not indicate phishing behavior.",

"severity": "Low"

},

{

"property": "IncludeFragmentElement",

"type": "none",

"description": "This property is a standard

HTML element and does not indicate phishing behavior.",

"severity": "Low"

},

{

"property": "RemoteInputElement",

"type": "none",

"description": "This property is a standard

HTML element and does not indicate phishing behavior.",

"severity": "Low"

},

{

"property": "DetailsMenuElement",

17

"type": "none",

"description": "This property is a standard

HTML element and does not indicate phishing behavior.",

"severity": "Low"

}

],

"behaviorAnalysis": {

"hasDataExfiltrators": false,

"hasKeyloggers": false

},

"legitimacyScore": 20,

"recommendation": "github.com is a well-known domain, and the

provided properties do not

contain anything abnormal or suspicious.",

"globalPropsRiskScore": 30

}

Those are real examples; the prompts are carefully formatted to be within
the token limits of the model (which for a 8B model at 4k context might be
4096 tokens, sufficient for a summary of the page’s content). We design the
prompts to be as informative as possible while still relying on the LLM’s own
knowledge to connect the dots.

The LLM Inference Module then runs those prompts through the
model. We use the WebLLM runtime [10] to execute the model in a web
worker with GPU acceleration. The model (e.g., a variant of LLaMA or
CodeLlama, possibly fine-tuned on security/code domains) generates a re-
sponse. The response typically includes a verdict (malicious or benign), an
explanation highlighting which evidence led to that conclusion, and possibly
advice on the risk level. We format the model’s output for the user or for
logging.

Because the LLM is running locally, the entire process is self-contained.
The only network requests involved are those to fetch the page and its re-
sources (which is normal browsing activity) and the initial loading of the
model weights (which could be cached or bundled with an extension). There
is no query to any external analysis service. This means even if the page
under analysis contains sensitive data (say, it’s a corporate intranet page be-
ing scanned for vulnerabilities), that data is not shared externally, satisfying

18

privacy requirements.

3.1

Technical Example of Instrumentation To illustrate part of the system, con-
sider how we hook the JavaScript fetch API to monitor network calls in the
sandbox. We utilize monkey-patching in the injected script as shown below:

Listing 1: Hooking fetch, appendChild, and eval with proxy objects to log
dynamic script injections, network requests, and evaluations

// Proxy to monitor appendChild
const or ig ina lAppendChi ld = Element . prototype . appendChild ;
Element . prototype . appendChild = new Proxy (
or ig inalAppendChi ld , {

apply (target , thisArg , argumentsList) {
const ch i l d = argumentsList [0] ;
i f (c h i l d . tagName === ’SCRIPT’) {

window . parent . postMessage ({
type : ’ logScriptAppend ’ ,
s r c : c h i l d . src ,
content : c h i l d . textContent

} , ’ ∗ ’) ;
}
r e turn Re f l e c t . apply (target , thisArg , argumentsList) ;

}
}) ;

// Proxy to monitor eva l usage
window . eva l = new Proxy (window . eval , {

apply (target , thisArg , argumentsList) {
const code = argumentsList [0] ;
window . parent . postMessage ({

type : ’ logEval ’ ,
code : code

} , ’ ∗ ’) ;
r e turn Re f l e c t . apply (target , thisArg , argumentsList) ;

}
}) ;

19

// Proxy to monitor f e t ch
const o r i g i n a lF e t ch = window . f e t ch ;
window . f e t ch = new Proxy (o r i g ina lFe t ch , {

apply (target , thisArg , argumentsList) {
const input = argumentsList [0] ;
const u r l = (typeo f input === ’ s t r i ng ’) ?
input : input . u r l ;
const method = argumentsList [1] ? . method | | ’GET’ ;
window . parent . postMessage ({

type : ’ logFetch ’ ,
u r l : ur l ,
method : method

} , ’ ∗ ’) ;
r e turn Re f l e c t . apply (target , thisArg , argumentsList) ;

}
}) ;

In Listing 1, the overridden natives sends a message to the parent (our
extension/controller context) with the URL and method of the request. We
similarly hook other APIs (XHR, WebSocket, etc.). On the parent side, we
collect these messages for the dynamic analysis log. Note that we take care
to still call the original function so that the page behavior is not altered.
We also ensure that the hook is set up before any network activity happens;
hence, we attach it very early (e.g., by injecting before the page’s own scripts
run).

4 Methodology

Having described the system architecture, we now delve into the methodology
and algorithms employed in each phase of the analysis. The goal of our
methodology is to perform comprehensive analysis with zero-shot inference,
meaning we do not train a custom model for this task but rely on the LLM’s
pre-trained knowledge and reasoning ability. This section is structured along
the stages of analysis: static analysis, dynamic analysis, prompt construction,
and LLM inference and output interpretation.

20

4.1 Static Code Analysis and AST Parsing

We use the Acorn parser to parse JavaScript code because it provides a rich
AST and type analysis capabilities. All scripts fetched from the page (both
inline scripts and external script files) are parsed. In cases where scripts
are heavily obfuscated or minified, the parser might still handle them (as
long as it’s valid JS syntax). If the parser fails (e.g., due to syntax errors or
very unusual syntax), we fall back to a simpler regex-based search for known
suspicious patterns (like ”eval(” or ”<iframe”).

Once we have the AST, we perform a traversal to extract features:

• We record all function definitions and their names. If a function is
anonymous (lambda or not named), we note how many such functions
exist.

• We record top-level variable names. We also attempt to identify if any
variable holds suspicious content, e.g., a RegExp that looks like it’s
matching user-agent strings (could be cloaking logic), or a long Base64
blob.

• We detect usage of certain calls: eval, Function(), setTimeout/setInterval
(especially if used to execute strings after delay, which can be an at-
tempt to evade immediate scanning), navigator properties (like check-
ing navigator.webdriver, which headless browsers set).

• We track creation of DOM elements via functions like document.createElement
and innerHTML assignments, to see if the script is injecting new content
(possibly forms or iframes).

• If the code references known sensitive keywords (like ”password”, ”to-
ken”, ”bank”, or cloud provider metadata IPs), we flag that.

• We also use a small library of known malicious JavaScript idioms (pat-
terns of operations) gleaned from prior research and threat intel. For
example, a common malicious pattern is something like:

var _0xabc = "<obfuscated string>";

var script = document.createElement(’script’);

script.src = decodeURIComponent(atob(_0xabc));

document.body.appendChild(script);

21

This would be flagged by our static analysis for using atob (base64
decode) followed by dynamic script injection.

Each script’s findings are stored, and a consolidated summary is prepared.
We prioritize including the most suspicious findings in the LLM prompt due
to token length limits. For instance, if one script out of ten on the page had
all the red flags (eval, cookie access, suspicious network calls), we will focus
the prompt on that script’s behavior rather than the benign ones.

4.2 Dynamic Analysis and Behavior Monitoring

The dynamic sandbox is essentially a mini web monitoring environment. We
use a combination of postMessage and shared data structures to extract
information from the sandboxed iframe:

• Network calls: As shown in Listing 1, for fetch we use postMessage
to log. For older XHR, we override XMLHttpRequest.prototype.open/send
to catch the URL and method. For WebSocket, we wrap the construc-
tor to log the target URL. All these logs are collected with timestamps
and perhaps truncated payloads (we usually do not capture full pay-
load data to avoid storing sensitive info, just the fact that a call was
made and where).

• DOM changes: We utilize MutationObserver on the document body
to capture added/removed nodes. We pay attention to tags like <input>,
<form>, <iframe>, <script> being added. For each significant node,
we record some attributes (e.g., for an input, its type and name; for an
iframe, its src and dimensions; for a script, its src if any).

• User interaction triggers: If needed, our framework can simulate
basic interactions. For example, if we detect that nothing happens until
a button is clicked, we can programmatically click it after a timeout.
This is done carefully: only if our initial observation suggests the page
is waiting for user action (some phishing pages show a landing page
and only load the actual phishing form after a click). We also simulate
a short mouse move or keystroke if needed to bypass simple checks,
using iframeElem.dispatchEvent(new MouseEvent(...)) etc, this
method may require hooking the event listeners in order to emulate
isTrusted=true in the relevant event context.

22

• Visible text extraction: After letting the page run (we found 4 sec-
onds is enough for most immediate malicious behaviors, though some
highly evasive malware might wait longer), we gather text. We iter-
ate over all visible elements (any element that is not hidden via CSS
and is in the DOM tree) and extract text content. We then filter out
boilerplate (common words like ”home”, ”welcome” etc., unless they
appear alongside key terms). The resulting set of visible text is often
quite telling. For example, if the text contains ”Account Verification”
or ”password”, it’s a strong phishing sign. If it contains very generic
content or nothing at all (for an attack that is purely script-based with
no user content, like a drive-by exploit page), that is also noted.

• Compound events: We correlate static and dynamic data where
possible. For example, if static analysis saw a suspicious function,
we check if that function got executed (we can instrument function
calls by wrapping them, though we must be cautious to not break
functionality). We did a prototype of wrapping functions: e.g., if static
analysis flags checkLogin() function, we can patch it to log when
it’s called. However, this can sometimes interfere, so in the current
methodology, we primarily rely on outcomes (like if an XHR or DOM
change resulted, we can infer that some function triggered it).

All dynamic findings are compiled into a human-readable form for the
LLM. For instance:

• Network: ”Made a network request to http://malicious.com/api.php
via fetch (POST method).”

• DOM: ”Inserted an iframe pointing to https://secure-login.example.com/
with dimensions 0x0 (hidden).”

• DOM: ”Created an input field with type ’password’ labeled ’Pass-
word’.”

• API: ”Called navigator.geolocation.getCurrentPosition.”

• Storage: ”Read cookie SESSIONID.”

If multiple items occurred, we list them as bullet points in the prompt
for clarity.

23

4.3 LLM Prompt Construction

Constructing the prompt is critical to get useful output. We use an instruc-
tional style prompt guiding the model to produce a concise analysis. The
prompt template (in pseudocode form) is:

Analyze DOM metadata for phishing and suspicious indicators:

URL: https://github.com

Domain: github.com

DOM METADATA ANALYSIS:

Title: GitHub · Build and ship software on a single,

collaborative platform · GitHub

FORMS ANALYSIS:

- Total forms: 5

- Login forms: 0

- Password fields: 0

- Email/Login fields: 3

- Forms with autocomplete: 4

BRAND ANALYSIS:

Meta tags suggesting brand:

- og:site_name: GitHub

- og:title: GitHub · Build and ship software on a single,

collaborative platform

CRITICAL PHISHING INDICATORS TO CHECK:

1. CREDENTIAL HARVESTING:

- Login forms on suspicious domains

- Password fields without proper security

- Email/username fields with suspicious placeholders

- Forms submitting to external domains

24

2. BRAND IMPERSONATION:

- Mismatched domain vs claimed brand (only if the domain is

not a known legitimate domain)

3. SUSPICIOUS FORM BEHAVIOR:

- Login forms with unusual field names

- Forms with autocomplete disabled (avoiding detection)

- Multiple password fields

- Hidden fields or suspicious form actions

Provide comprehensive DOM-based phishing analysis as JSON:

{

"isPhishing": <true|false>,

"confidence": <0-100>,

"phishingType": "<none|credential-harvesting|clone-site|

brand-impersonation|fake-login|social-engineering>",

"targetedBrand": "<brand name if detected from metadata>",

"domIndicators": [

{

"type": "<suspicious-form|brand-mismatch>",

"description": "<specific indicator found in DOM>",

"severity": "<Low|Medium|High|Critical>"

}

],

"formAnalysis": {

"hasLoginForm": <true|false>,

"credentialFieldCount": <number of password/email fields>,

"suspiciousFormFeatures": ["<list of suspicious form features>"],

"formRiskScore": <0-100>

},

"brandAnalysis": {

"detectedBrand": "<brand name if detected>",

"brandMismatch": <true if brand doesn’t match domain>,

"brandConfidence": <0-100>

},

"legitimacyScore": <0-100>,

"recommendation": "<detailed recommendation based on DOM analysis>",

"domRiskScore": <0-100, higher means more likely phishing>

25

}

We send the data in the ”user” context to let the model focus on analyzing
it (since many instruct-tuned models respond to a user prompt). The data
includes:

• The URL (with hints if the URL itself looks suspect, e.g., non-matching
domain to content brand).

• A summary of what the page purported to be (if we can guess from
visible text, e.g., ”The page claims to be Example Bank login”).

• The static analysis summary (highlighting specifically dangerous code
patterns).

• The dynamic behavior observations.

• A direct question asking: ”Is this page malicious? What vulnerabilities
or malicious behaviors were found? Provide an explanation.”

We ensure the prompts is within the model’s token limit by truncating
overly long content. For example, if visible text is the entire HTML (which
can be huge), we will not include raw HTML, only a summary or the mean-
ingful pieces. Similarly, we don’t include the entire AST, only the parts we
flagged.

The prompts may also include a simplified abstraction of the page. In
some experiments, we formatted parts of the prompts as YAML or JSON to
list evidence, hoping the structured format might help the model. However,
we found a well-formatted bullet list in plain text often sufficed and the model
could parse it.

4.4 Zero-Shot Inference with the LLM

The LLM we employ is run in a zero-shot manner, meaning we have not fine-
tuned it on a custom dataset of malicious pages. We did consider few-shot
approaches (providing a couple of examples in the prompt of malicious vs
benign analysis), but given the context length constraints of smaller models,
we opted to devote the space to the actual data from the target page. Models
like LLaMA or CodeLlama have some general knowledge of security-related
concepts (especially if they were trained on code and security discussions from

26

the web). Additionally, specialized small models (e.g., Phi-3 or Gemma-2B)
might have been trained on a corpus that includes malicious and benign code
examples due to the breadth of their data, which could imbue them with a
latent ability to recognize suspicious patterns.

When the model generates an output, we parse it. We enforce strict json
structure and instruct the model to provide the relevant structure.

{ ”isPhishing”: false, ”confidence”: 0, ”phishingType”: ”none”, ”target-
edBrand”: null, ”indicators”: [{ ”type”: ”none”, ”description”: ”No sus-
picious indicators found”, ”severity”: ”Low” }], ”legitimacyScore”: 100,
”recommendation”: ”Safe” }

The model’s explanation is critical for user-facing aspects: it increases
the transparency of the detection. In a security operation center scenario,
an analyst can see why the system flagged a page, rather than just a score.

4.5 Vulnerability Extraction and Risk Assessment

Beyond just saying ”malicious or not”, our system also extracts any specific
vulnerabilities or issues in the page. For a malicious page, this might be
somewhat moot (the whole page is intentionally bad), but there are cases
where the page might be a benign site that has a vulnerability (like a snip-
pet of malicious code injected or a dangerous script include). Our LLM
prompt specifically asks for vulnerabilities as well, to catch scenarios where,
for example, the page isn’t outright a phishing page but contains an insecure
script that could be exploited.

The LLM might respond with something like ”It uses eval on user input
which is a vulnerability (could lead to XSS)” or ”It fetches a script from an
untrusted source, which is risky.” These details help assess compound risk:
a page might be borderline benign in intent but have multiple poor practices
that increase the risk of compromise. Our system would then rate it with
some risk level (low/medium/high). We implement a simple risk scoring:
each piece of evidence is assigned a weight (e.g., hidden iframe = medium
risk, exfiltrating data = high risk, etc.), and the LLM’s verdict (malicious or
benign) adjusts the final classification. If the LLM says benign but we have
some medium issues, we might label it ”benign with warnings”.

In truly malicious cases, multiple red flags will be present and the risk is
obviously high. We output a combined report: e.g., ”Malicious (Phishing) -
High Risk” and list vulnerabilities like ”phishing form, data exfiltration, uses
obfuscation to hide code.”

27

For compound attacks (some pages do two things, like both phishing and
attempting an exploit), the system should identify multiple issues. The LLM
is generally good at enumerating several points if prompted to list ”threats
or vulnerabilities”.

4.6 Performance Considerations

All analysis steps are designed to be efficient enough for near real-time use.
Static AST parsing and analysis typically takes a fraction of a second for
a few hundred KB of JavaScript, thanks to optimized engines. Dynamic
analysis runtime we cap at a few seconds at most. The LLM inference is
the heaviest part; on a modern machine with WebGPU, a 2-8B model can
generate a response of a few hundred tokens in a couple of seconds [10]. We
also limit the LLM output length (we don’t need a very long essay, just a
concise analysis).

In Section 5 we will further detail the performance measurements. The
key point of our methodology is that it is practical on commodity hardware
today, and will only improve as hardware and model optimization progress.
The entire process from URL input to result can be under 30 seconds, which
is acceptable for a user waiting on a link to be vetted, for instance.

5 Experiments

We conducted a series of experiments to evaluate the effectiveness of our
client-side LLM-powered URL analysis system. Our evaluation focuses on
three main aspects: (1) detection performance (accuracy in classifying ma-
licious vs. benign URLs, and ability to identify specific threat types), (2)
quality of explanations and vulnerability identification, and (3) runtime per-
formance and resource usage on the client side.

5.1 Experimental Setup

Dataset: We assembled a test dataset of 200 URLs consisting of 100 known
malicious webpages and 100 benign webpages. The malicious set was curated
from recent phishing campaign reports, open threat intelligence feeds, and
our own collected samples of scam pages and drive-by exploit pages. These in-
cluded phishing sites mimicking banking, e-commerce, and email login pages,

28

tech support scam pages, and some malware distribution sites that use ob-
fuscated scripts. For ground truth labeling, we cross-verified these URLs
with VirusTotal reports and PhishTank listings to ensure they were indeed
malicious (at the time they were active). The benign set included legitimate
websites from various categories (online banking official sites, popular news
sites, e-commerce sites, and some random personal blogs). We ensured that
the benign set had a similar distribution of complexity (some had multiple
scripts, login forms, etc.) so that the analysis tasks (like encountering a login
form) are not exclusively tied to malicious cases.

Since many malicious URLs are transient (phishing pages go down quickly),
we saved copies of the page content for consistency and hosted them locally
in a controlled environment for the analysis. This allowed us to repeatedly
test on the same content without network variability. For dynamic analy-
sis, hosting locally also ensured that even destructive pages (e.g., ones that
attempt to navigate or show annoying popups) were contained.

Models: We integrated several models for comparison:

• LLaMA-3.1-8B-Instruct (Quantized to 4-bit): A 8B-parameter
model from Meta, representative of a well-known base LLM. We used
an instruction-tuned variant to ensure it followed prompts well.

• LLaMA-3.2-3B (Quantized to 4-bit): A smaller 3B parameter
model. This model is faster but expected to be less capable.

• Phi-3 (3.8B) (Quantized to 4-bit): A model by Microsoft with
about 3.8B parameters, known for strong performance relative to size.
We used the 4k context version, which fits the analysis context window.

• Gemma-2B (Quantized to 4-bit): Google’s Gemma 2B model
(2.5B parameters) , which is optimized for device use. We used the
instruction-tuned version (“Gemma-2B-it”).

• For reference (not running in browser), we also consider GPT-o3
(OpenAI API) to have an upper-bound cloud model to compare the
quality of outputs (though it cannot be run client-side, this was just
for analysis purposes offline).

All local models were run with WebLLM in browser, on a desktop with
an AMD GPU supporting WebGPU. We measured their speed in tokens per

29

second and ensured all could produce a result in under 20 seconds for our
prompt sizes.

Baselines: We compared our approach against a traditional machine
learning baseline:

• A Random Forest classifier using lexical URL features and basic page
features. We trained this on a separate set of 1000 phishing and
1000 benign URLs (not overlapping the test set) using features like
URL length, presence of suspicious substrings (e.g., “login”, “verify”
in path), number of dots in hostname, etc., and a few page features
(number of forms, if password field exists, etc.). This represents a
classical approach without LLM or heavy content analysis.

• Additionally, we compared qualitatively against VirusTotal’s verdicts
(where available) for the malicious pages to see if our system agrees or
catches things VT engines might have missed in real-time.

5.2 Evaluation Metrics

For detection performance, we use:

• Accuracy, Precision, Recall, and F1-score for the binary classification
of malicious vs benign.

• We also measure the true positive rate on phishing specifically, since
that was a large portion of our malicious set (phishing often being the
main concern for URL scanning).

For explanation quality and vulnerability identification, evaluation is more
subjective. We took a sample of the LLM-generated explanations and had a
security expert rate them on:

• Correctness (did it correctly identify the threat? e.g., calling a phishing
page a phishing page, not mislabeling it).

• Detail (did it mention key evidence? e.g., it should mention the cre-
dential stealing or exfiltration if that was present).

• Clarity (could a reader with moderate technical knowledge understand
why the page is dangerous from the explanation).

30

We also noted if the LLM hallucinated any details that were not actually
present (an important failure mode to watch for).

For runtime performance, we recorded:

• Total analysis time per URL (breakdown into static analysis, dynamic
waiting time, LLM processing).

• Peak memory usage (the bulk being the model in memory).

These are important to ensure practicality for end-users.

5.3 Experimental Procedure

Each URL from the dataset was analyzed with our system using each of
the local models in turn. We reset the environment between runs to avoid
caching effects (though in a real scenario caching model in memory would
be fine, we wanted to gauge performance fresh each time for consistency in
timing measurements).

For the ML baseline, we ran it on the URLs to get predictions as well.
Since the baseline does not provide explanations, that comparison is only in
terms of accuracy.

We also recorded what our system’s decision was and compared to ground
truth labels.

6 Results

In this section, we present the results of our experiments. Overall, our client-
side LLM approach showed strong performance in identifying malicious URLs
and providing insightful explanations, even when using models with as few
as 2–3 billion parameters. We detail the findings by aspect below.

6.1 Detection Performance

Table 1 summarizes the detection performance across different models and
the baseline. All LLM-based configurations significantly outperformed the
traditional ML baseline in terms of recall (catching more of the malicious
pages) while maintaining a high precision.

As seen, the 8B LLaMA model achieved 92% accuracy, correctly labeling
94 out of 100 malicious pages and 90 out of 100 benign pages, with only a

31

Figure: LLM Performance. This figure illustrates the per-
formance comparison of several models—including Random Forest
(baseline), LLaMA-3 (8B and 3B variants), Microsoft Phi-3, Google
Gemma, and GPT-o3—using Accuracy, Precision, Recall, and F1-
score metrics. GPT-o3 achieves the highest overall performance
across all metrics, followed closely by LLaMA-3 (8B) and Microsoft
Phi-3, indicating their superior capability for malicious URL detec-
tion tasks compared to the baseline.

Figure 1: Comparison of Detection Performance Metrics across Different
Models.

few errors. Its recall of 94% means it missed very few malicious instances. In
comparison, the small 2B Gemma model had 86% accuracy; it struggled on
some of the trickier cases where the evidence was subtle, sometimes yielding
an ”uncertain” or incorrect benign verdict (hence slightly lower precision as
well).

The Phi-3 (3.8B) model interestingly performed nearly as well as the 8B
LLaMA, which aligns with reports that it punches above its size in various
tasks. The 3B model (a scaled-down LLaMA) did reasonably well (88%
accuracy) but notably had lower recall, missing some malicious pages likely

32

Model Accuracy Precision Recall F1-score
Random Forest (baseline) 85% 0.83 0.87 0.85
LLaMA-3 8B (q4) 92% 0.90 0.94 0.92
LLaMA-3 3B(q4) 88% 0.90 0.85 0.87
Microsoft Phi-3 (3.8B)(q4) 91% 0.89 0.94 0.91
Google Gemma-2B (q4) 86% 0.84 0.88 0.86
GPT-o3 (cloud ref) 93% 0.93 0.97 0.95

Table 1: Detection performance of different models and baseline on the test
URL dataset. Precision/Recall are for malicious class.

due to not fully understanding the significance of some evidence.
The traditional Random Forest baseline got 85% accuracy, which is not

bad for such a basic approach, but it had false negatives (missed some phish-
ing pages that didn’t match its feature patterns) and some false positives
(flagging a couple of unusual benign pages that had long URLs or multiple
form fields).

Statistically, our best local model (8B) was only a few points shy of the
GPT-3.5 cloud reference. The latter made the correct call on a couple of
borderline cases that the 8B missed, possibly due to its greater knowledge.
One such case was a malware distribution site that pretended to be a software
download page; GPT-3.5 recognized the software name as known to often be
impersonated, whereas the 8B model was slightly unsure. This indicates that
a bit more knowledge (or fine-tuning) could close the gap.

6.2 Examples of LLM Explanations

One of the strengths of our approach is the explanation provided by the LLM.
We include here a few real examples from the UI of our new platform :

In another phishing case (a fake facebook account lock page) the LLM
responded with the following reasons:

• URL contains ’safeguardpolicy’ which is a suspicious clone site

• URL uses a Vercel subdomain (.vercel.app) which is a known hosting
platform for clone sites

• Missing CSP and CSRF protection on forms

33

Figure: LLM Verdict For a Real Phishing Page. This figure
show an example of the analysis produced by the LLM (with static/-
dynamic data).

Figure 2: Example of LLM verdict for a real phishing page.

Figure: LLM Score For a Real Phishing Page. This figure show
an example of the score produced by the LLM (with static/dynamic
data).

Figure 3: Example of LLM score for a real phishing page.

• Long subdomain ’safeguardpolicycompliancecheck’ with multiple hy-
phens

• Password field without proper security

• Domain does not match the title of the page

This explanation correctly identified the type of attack and the key ev-

34

idence (misleading content, data exfiltration, hidden iframe). It shows the
benefit of providing the LLM with multi-modal clues: it connected the page
content with the script behavior (something a purely static or purely content-
based detector might not easily do).

In a benign example (a legitimate bank site):

”This page appears benign. It is the real Example Bank website
(domain matches the bank). The visible content is a normal lo-
gin form and informational text. The scripts on the page do not
show any obfuscation or suspicious behavior; they mainly handle
form input validation and interface features. No unexpected net-
work calls (only to the bank’s own APIs) or hidden elements were
found. There’s no sign of credential theft or malware.”

Figure: LLM Verdict For a github.com. This figure show an
example of the analysis produced by the LLM (with static/dynamic
data).

Figure 4: Example of LLM analysis for github.com.

This shows the LLM can articulate why something is safe, which is use-
ful to avoid user panic when something is flagged incorrectly. It basically
validated the absence of red flags and the consistency of domain identity.

We did encounter a few mistakes in explanations:

35

• In one case, the model hallucinated that a page was asking for credit
card info, when in reality it was just an email phishing (no credit card).
The page did have words like ”secure account” which might have trig-
gered the model’s assumption. This was rare but highlights that the
model’s prior knowledge can sometimes add details that aren’t present.
We plan to mitigate this by further refining the prompt, possibly ex-
plicitly telling the model ”only describe things that were observed in
the data”.

• On a complicated exploit page (that tried to use an old browser vul-
nerability), the explanation from the model was a bit vague. It flagged
it as malicious correctly but described it as possibly phishing when it
was more of a drive-by download attempt. This suggests that without
very explicit patterns (like a visible form or known malware URL), the
model could misclassify the type of threat. It still marked it malicious
though, which is the main goal.

Overall, the explanations were largely accurate and aligned with the ev-
idence provided. The expert evaluation rated 90% of the sampled expla-
nations as ”correct and sufficient,” 8% as ”partially correct or somewhat
vague,” and about 2% as ”incorrect/hallucinated detail.”

6.3 Vulnerability and Threat Type Identification

Our system not only flagged malicious pages but also identified specific issues:

• Out of 100 malicious pages, the LLM explicitly mentioned the correct
threat type (phishing, scam, malware, etc.) in 90 cases. Phishing vs
other was usually distinguished well by checking if a password/credit
card form exists.

• It identified at least one specific vulnerability or malicious technique
in 84 of those cases (like ”sends data to external server”, ”uses an
outdated plugin vulnerable to X”, ”tricks user into downloading file”).
This is valuable for defenders to know what to fix or watch for.

• For the benign pages, in 20 cases the LLM pointed out minor security
issues (like ”the site is loading an asset over HTTP, which is not a
major threat but a vulnerability”). In context, those did not affect

36

the classification but show that the system can highlight security best-
practice violations even on non-malicious sites.

This compound risk assessment aspect means the tool could potentially be
used not just for outright malicious detection, but also for security auditing of
web pages (finding weaknesses). An interesting outcome: one benign page (a
personal blog) was noted by the LLM as having an old jQuery version which
has known vulnerabilities. That’s beyond the scope of phishing detection,
but it came for free from the model’s knowledge. It suggests a use-case
of advising site owners of problems, though here our primary aim is user
protection.

6.4 Performance and Overhead

All testing was done on a machine with a consumer-grade GPU accessible
via WebGPU and a modern CPU. Key observations:

• The average end-to-end analysis time with the 8B model was 30 sec-
onds. The breakdown: static analysis 0.5s, dynamic wait 4s (we
usually allowed up to 6s, but many pages finished important activity
by 1-1.5s), LLM inference 20s for generating 100 tokens of explanation.

• The 3.8B and 3B models were faster (14s average total) due to faster
inference. The 2B model was the fastest at around 8s average.

• These times are well within acceptable for on-demand scanning . For
automatic scanning of every page visited, 30s might introduce a delay
in page load if done synchronously. In practice, one could load the page
normally and run the analysis in parallel; if the analysis flags something
malicious, one could then warn the user. There is a trade-off between
letting them see the page immediately vs waiting for clearance. In a
security-critical environment, you might block loading until analysis
done; in consumer, maybe allow loading but be ready to interrupt if
malicious (which needs careful UI).

• Memory: The 8B model (4-bit quantized) consumed about 3.5 GB of
memory. This is borderline on some low-end devices. The 3B and 2B
were around 1.4 GB and ¡1 GB respectively, much easier on memory.
So for broad deployment, using a 2-3B model is more feasible. If the
device has more memory (high-end PC), 8B is fine.

37

• We also tested on a high-end smartphone (with experimental WebGPU
support). The 8B model could not load due to memory, but the 2B
model ran, though slowly (taking 100 seconds for analysis). This
suggests mobile support with smallest models is possible, but not yet
smooth. This will improve as mobile GPUs get better and model opti-
mizations continue.

• The instrumentation overhead in the browser (the hooks) did not no-
ticeably slow page execution in our tests. The pages were either simple
(phish) or if complex (news site with lots of content), those were benign
and we didn’t intervene much. Our MutationObservers and replaced
functions could add slight latency to DOM ops, but that’s negligible
for our analysis timeframe.

6.5 Case Study

We highlight one particular case from our tests set to demonstrate the sys-
tem’s comprehensive analysis even on a trusted domain like google.com:

* URL: hxxps //sites[.]google[.]com/l0gin-microsoftwebonlne.app/8965767/
(a fake microsoft login - please be cautious, at the time of writing this paper
the page was still live).

LLM output summary:

”Malicious – Phishing. This site impersonates Outlook (not
hosted on Microsoft actual domain). It asks for login creden-
tials. The code is suspecious and sends the entered credentials to
a remote server. It is very likely a phishing scam. ”

Phishing detected: typosquatting, targeting Microsoft.
Indicators:

• Misspelling of ’login’ as ’l0gin’ and ’microsoft’ as ’microsoftwebonlne’

• Domain ’sites.google.com’ does not match the expected brand ’mi-
crosoftwebonlne.app’

• Long path ’l0gin-microsoftwebonlne.app’ and multiple hyphens

• Suspicious code patterns

• Password field without proper security

38

• Domain does not match the title of the page

The system correctly flagged this and even without an official blacklist,
caught it by reasoning. Traditional filters might catch this by URL heuris-
tics alone, but our system added the context that the content and behavior
confirm the suspicion.

In comparison, one benign case:
* URL: https://accounts.google.com/ServiceLogin (actual Google

login). Our system naturally said benign, recognizing the domain is correct
and finding no bad behavior. It’s reassuring that no false positive occurred
on such a high-profile benign page, as that would be unacceptable for user
trust. The model saw nothing suspicious in Google’s real login page aside
from the presence of a login form (which is expected for Google).

7 Discussion

The experimental results demonstrate that client-side LLM inference for URL
analysis is not only viable but effective. In this section, we discuss the im-
plications of these results, the advantages of our approach over cloud-based
solutions, and some limitations and areas for improvement.

7.1 Why Client-Side Inference?

One of the motivating questions for our work was: why not just use a powerful
cloud-hosted LLM (like GPT-4,Claude,..) for this task? After all, GPT-4
could potentially analyze pages with even greater accuracy given its superior
capability. The answer comes down to feasibility and privacy. Cloud-scale
LLM analysis of every URL that users might visit is infeasible on several
fronts:

• Scalability and Cost: If a security service wanted to use GPT-4 via
API to scan millions of URLs per day (as a browser might encounter
across many users), the cost would be astronomical. Running an LLM
with tens or hundreds of billions of parameters for each URL in real
time is not economically practical. Our approach distributes the com-
putation to the clients and uses smaller models that are ”free” after the
initial load, aside from electricity. It scales naturally with the number
of users (each user’s device handles their own analysis).

39

https://accounts.google.com/ServiceLogin

• Latency: Cloud inference introduces network latency and potential
queueing delays. In contrast, our local approach has consistent perfor-
mance unaffected by internet speed or server load. This is crucial for
user experience if analysis is integrated into browsing.

• Privacy: Perhaps most importantly, sending the content of every web-
page a user visits to a cloud service for analysis is a non-starter for
privacy-conscious users or organizations. Even if encrypted in tran-
sit, it means a third-party processes potentially sensitive info (personal
emails, banking pages, etc.). Our client-side model means the analysis
stays on the user’s device; sensitive data never leaves the browser. This
opens up use-cases in corporate environments where data residency is
critical.

• Evasion Resistance: As discussed, advanced attackers may serve
benign content to known scanner IP ranges or environments (cloud
servers often have different network signatures). By using the user’s
own browser and IP, we minimize this risk. If each user is effectively
their own ”scanner,” there’s no single infrastructure to avoid. Attack-
ers would have to avoid detection on every user’s machine, which is
much harder than, say, identifying they are being visited by a headless
Chrome from AWS.

Our results also show that while a model like GPT-3.5/4 is superior, a
much smaller model (8B) gets close in performance for this domain. This is
promising: as model efficiency improves (e.g., new 10B models that match
GPT-3.5 in quality, which seems plausible in the near future), the gap will
further close. At that point, the need for cloud models might vanish for many
applications like this.

7.2 Security and Evasion Considerations

No detection system is perfect, and attackers will likely adapt to a client-side
LLM-based analyzer if it becomes common. We consider possible evasion
attempts and our system’s robustness:

• Detecting the LLM or instrumentation: Could a malicious script
detect that an LLM is running or that functions are hooked? We took
steps to hide hooks (e.g., making our patched functions mimic native).

40

However, a determined adversary might use performance benchmarks
or look for clues like certain latency patterns. This is an arms race.
Because our analysis runs quickly and out-of-band, by the time the
page could notice something (if at all), we’ve likely collected what we
need. Moreover, the analysis is done per user, so it’s not something
an attacker can easily test externally (they could try to fingerprint if a
given visitor is running our extension, etc., but that gets complex).

• Obfuscating against LLM understanding: Attackers might at-
tempt to create code that is intentionally confusing for an LLM, e.g.,
using logic or encoding that is unusual but still executes maliciously.
While static analysis might miss it, the dynamic part should reveal
the behavior (exfiltration or changes). The LLM sees the outcome as
well. One could imagine some adversarial prompt injection in the page
content to confuse the model (like putting weird text that the model
might latch onto), but since we control the prompt structure and don’t
take untrusted text verbatim as instructions, this risk is low.

• Resource exhaustion: Loading a huge page or lots of scripts might
strain the analysis. An attacker might serve a large benign-looking page
to try to blow the token budget of the model or slow down analysis,
then quickly redirect to malicious content after the analysis window.
We can mitigate by focusing on salient features and perhaps streaming
analysis (continual monitoring beyond the initial few seconds). If a
page defers malicious action beyond our analysis time, it might slip by.
However, we could increase the monitoring duration or detect timers.
The trade-off is performance; maybe adaptively longer for high-risk
pages.

• Compound attacks: Some attacks involve multi-step interactions
(e.g., initial page is clean but leads to a second stage). Our current
approach is triggered per URL, so if the user navigates to the next
stage, we’d analyze that as well. It might be interesting to let the
system follow redirects or obvious next steps automatically to catch
things like ”click here to download”.

In summary, while attackers will always seek to evade, the client-side
approach levels the playing field by giving users a powerful analysis tool that
doesn’t rely on secret detection rules (which if known to attackers could be

41

bypassed). Instead, it relies on an LLM’s general reasoning—evading that
essentially means doing nothing that looks suspicious in either code, behavior,
or content, which is very hard if the goal is to actually carry out an attack.

7.3 False Positives/Negatives and Model Limitations

We saw very few false positives in our evaluation, which is crucial because
overly blocking benign sites would be a deal-breaker for deployment. The
one area of caution is that the LLM might occasionally be overly cautious
(flagging something benign as malicious because it ”sounds bad”). We did
see the smaller models more likely to make such mistakes (Gemma-2B and
LLAMA-3B had a couple of false positives in our test). A possible improve-
ment is to incorporate a secondary check: if the model is not very confident
or if the evidence is borderline, maybe cross-validate with a different heuristic
or ask the model to ”double-check”.

False negatives (missed malicious) are more concerning from a security
standpoint. In our test, a few malicious got through on the smaller models.
Usually those were cases where the clues were subtle or the model’s knowl-
edge didn’t pick up the significance. One example was a malware page that
didn’t show clear user-facing bad content; it just had an exploit script. The
smaller model was unsure and considered it maybe not malicious because it
didn’t see phishing or an obvious payload (it failed to realize the script itself
was an exploit). The larger 8B model did catch it, because it recognized
the obfuscated script extracted artifacts. As a mitigation, using the largest
model feasible on the device will help reduce false negatives. Also, contin-
uous improvement of these models on security data (possibly fine-tuning on
a small set of known malicious code patterns) could boost their accuracy.
Even with zero-shot, one could imagine in future deploying updated model
versions as new threats emerge (models can be updated via an extension
update for example).

7.4 User Experience and Deployment

In a real deployment (perhaps as a browser extension or integrated into a
browser), there are user experience considerations:

• If a page is deemed malicious, we should block navigation or at least
show a big warning, giving user option to proceed at their own risk.

42

This is similar to how Safe Browsing works, but here the analysis hap-
pened locally.

• If something is benign or only slightly risky, we might not bother the
user, maybe just log it or show a small indicator. The explanation can
be shown if the user clicks for details.

• The model weights (a few GB) need to be delivered to the client.
This could be done by downloading on installation of the extension,
or streamed in chunks. Models could be optionally downloaded (users
opt-in for heavy duty protection). For mobile users, a cloud fallback
might be necessary until devices can handle it.

• Another path: use a smaller default model (2B) for everyone (quick to
download, uses <¡1GB), which provides decent baseline, and if some-
thing suspicious is detected or user wants deeper scan, then use a bigger
model or cloud if available. Our results indicate 2B at 86% accuracy
might miss some, so maybe not ideal alone, but could catch a lot of
obvious phish.

7.5 Generality of Approach

While we focused on URL threat analysis, the approach is generalizable.
The idea of combining static/dynamic analysis with LLM reasoning client-
side could apply to other domains:

• Browser extensions and software packages: as JavaSith [11] did
for extensions, similarly our approach could be extended to analyze any
untrusted code running on client.

• Document malware analysis: e.g., analyzing PDF or Office docs by
extracting features and letting an LLM decide if it’s malicious. That
would be analogous (though maybe harder to run in browser without
specialized parsers).

The success of our experiments adds to the evidence that small LLMs can
be practical tools for security when used cleverly.

43

7.6 Future Work

There are several avenues to explore:

• Model fine-tuning: While we stayed zero-shot, in future we might
fine-tune a 8B model on a corpus of malicious vs benign web data and
security explanations, to see if that improves performance or allows
using an even smaller model without loss.

• Collaboration of multiple models: Possibly use a very small model
to do a quick initial screening (fast, low compute), and a larger one to
do deep analysis if needed. Or ensemble approaches where two models
must agree something is malicious.

• Enhanced sandboxing: Simulating more user interactions (scrolls,
multi-page flows) to catch those attacks that activate later. Maybe
integrate a headless browsing loop that feeds back into the analysis
iteratively.

• Explainability and trust: Even though LLM provides explanations,
ensuring it’s always grounded in evidence is important. We might high-
light which part of the data prompted each statement (like trace it back
to a code snippet or text).

• Continuous learning on device: One could imagine an on-device
system that learns from corrections (if user says this was a false positive,
adapt the model or at least the criteria). Though fine-tuning on device
is heavy, smaller models might be fine-tuned incrementally with user
feedback.

Finally, a user study would be valuable: do users feel safer with such a
system? Does the explanation feature increase trust in the warnings (versus
a black-box ”Blocked by Chrome” message)? There’s a human factor that
we plan to investigate.

8 Conclusion

We presented a novel approach for comprehensive URL analysis that runs
entirely on the client side using zero-shot large language model inference
within the browser. Our system marries traditional and novel static and

44

dynamic analysis techniques with the interpretive power of LLMs to detect
malicious webpages (such as phishing and malware sites) and explain their
behavior in plain language. Through experiments, we demonstrated that
even relatively small LLMs (on the order of a few billion parameters) can
achieve high accuracy in this task when given rich context, approaching the
effectiveness of far larger cloud-based models while preserving user privacy
and operating at low latency.

This work shows that the paradigm of moving advanced AI analysis to
the edge (user’s device) is not only feasible but advantageous for security.
It opens up a path toward more decentralized defenses, where each user’s
browser can be their own intelligent security agent, reducing reliance on cloud
services and large rule-based databases. As hardware and model efficiencies
improve, we anticipate that on-device AI will play an increasingly important
role in real-time security and privacy protection.

In conclusion, client-side zero-shot LLM inference [1] provides a power-
ful new tool in the fight against web threats. It combines the best of both
worlds: thorough, context-aware analysis akin to having a cybersecurity ex-
pert review each page, and the scalability and privacy of local execution. We
hope this research inspires further development of AI-assisted security tools
that empower end-users and create a safer web browsing experience.

References

[1] URL Analysis Platform: https://url.security

[2] Browser Security Platform : https://browsersecurity.ai

[3] Kaspersky. (2024). Kaspersky reports phishing attacks
grow by 40% in 2023. Press release. [Online]. Available:
https://www.kaspersky.com/about/press-releases/2024_

kaspersky-reports-phishing-attacks-grow-by-40-percent-in-2023

[4] Jain, A. K., & Gupta, B. B. (2019). A machine learning based approach
for phishing detection using hyperlinks information. Journal of Ambient
Intelligence and Humanized Computing, 10(5), 2015–2028.

[5] Le, H., Pham, Q., Sahoo, D., & Hoi, S. C. (2018). URLNet: Learn-
ing a URL representation with deep learning for malicious URL detec-

45

https://url.security
https://browsersecurity.ai
https://www.kaspersky.com/about/press-releases/2024_kaspersky-reports-phishing-attacks-grow-by-40-percent-in-2023
https://www.kaspersky.com/about/press-releases/2024_kaspersky-reports-phishing-attacks-grow-by-40-percent-in-2023

tion. arXiv preprint arXiv:1802.03162. https://arxiv.org/abs/1802.
03162

[6] Cova, M., Kruegel, C., & Vigna, G. (2010). Detection and analysis of
drive-by-download attacks and malicious JavaScript code. In Proceedings
of the 19th International World Wide Web Conference (WWW).

[7] Curtsinger, C., Livshits, B., Zorn, B., & Seifert, C. (2011). ZOZZLE:
Fast and precise in-browser JavaScript malware detection. In USENIX
Security Symposium.

[8] Zhang, P., Oest, A., Cho, H., Sun, Z., Johnson, R. C., Wardman, B.,
Sarker, S., et al. (2021). CrawlPhish: Large-scale analysis of client-side
cloaking techniques in phishing. In 42nd IEEE Symposium on Security
and Privacy (SP).

[9] Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., & Iwasawa, Y. (2022).
Large language models are zero-shot reasoners. Advances in Neural In-
formation Processing Systems, 35.

[10] Ruan, C. F., Qin, Y., Zhou, X., Lai, R., Jin, H., et al. (2024). WebLLM:
A high-performance in-browser LLM inference engine. arXiv preprint
arXiv:2412.15803.

[11] Cohen, A. (2025). JavaSith: A client-side framework for analyzing po-
tentially malicious extensions in browsers, VS Code, and NPM packages.
arXiv preprint arXiv:2505.21263.

[12] Caballar, R. D. (2024). What is Google Gemma? IBM Technology
Blog, Nov 8, 2024. [Online]. Available: https://www.ibm.com/think/

topics/google-gemma

[13] Ruan, C. F., Qin, Y., Zhou, X., Lai, R., Jin, H., Dong, Y., Hou, B., Yu,
M., Zhai, Y., Agarwal, S., Cao, H., Feng, S., & Chen, T. (2024). We-
bLLM: A High-Performance In-Browser LLM Inference Engine. arXiv
preprint arXiv:2412.15803. [Online]. Available: https://arxiv.org/

abs/2412.15803

46

https://arxiv.org/abs/1802.03162
https://arxiv.org/abs/1802.03162
https://www.ibm.com/think/topics/google-gemma
https://www.ibm.com/think/topics/google-gemma
https://arxiv.org/abs/2412.15803
https://arxiv.org/abs/2412.15803

	Introduction
	Related Work
	Malicious URL and Web Content Detection
	Evasion and Dynamic Analysis Techniques
	Large Language Models for Security Analysis

	Architecture
	

	Methodology
	Static Code Analysis and AST Parsing
	Dynamic Analysis and Behavior Monitoring
	LLM Prompt Construction
	Zero-Shot Inference with the LLM
	Vulnerability Extraction and Risk Assessment
	Performance Considerations

	Experiments
	Experimental Setup
	Evaluation Metrics
	Experimental Procedure

	Results
	Detection Performance
	Examples of LLM Explanations
	Vulnerability and Threat Type Identification
	Performance and Overhead
	Case Study

	Discussion
	Why Client-Side Inference?
	Security and Evasion Considerations
	False Positives/Negatives and Model Limitations
	User Experience and Deployment
	Generality of Approach
	Future Work

	Conclusion

