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Abstract—The quantity and quality of vulnerability datasets
are essential for developing deep learning solutions to
vulnerability-related tasks. Due to the limited availability of
vulnerabilities, a common approach to building such datasets
is analyzing security patches in source code. However, existing
security patches often suffer from inaccurate labels, insufficient
contextual information, and undecidable patches that fail to
clearly represent the root causes of vulnerabilities or their fixes.
These issues introduce noise into the dataset, which can mislead
detection models and undermine their effectiveness. To address
these issues, we present MONO, a novel LLM-powered framework
that simulates human experts’ reasoning process to construct
reliable vulnerability datasets. MONO introduces three key com-
ponents to improve security patch datasets: (i) semantic-aware
patch classification for precise vulnerability labeling, (ii) iterative
contextual analysis for comprehensive code understanding, and
(iii) systematic root cause analysis to identify and filter unde-
cidable patches. Our comprehensive evaluation on the MegaVul
benchmark demonstrates that MONO can correct 31.0% of
labeling errors, recover 89% of inter-procedural vulnerabilities,
and reveals that 16.7% of CVEs contain undecidable patches.
Furthermore, MONO’s enriched context representation improves
existing models’ vulnerability detection accuracy by 15%.

Index Terms—Vulnerabillity, LLM, Security Patches

I. INTRODUCTION

The number of exposed software vulnerabilities significantly
grow in recent years, drawing attentions to many vulnerability-
related tasks, e.g., vulnerability discovery. As popular as
fuzzing [1]–[3], which is the most popular solution to finding
vulnerabilities1, deep learning (DL) based approaches [6]–
[11] quickly emerge and have shown promising results. They
have achieved state-of-the-art performance (90% accuracy)
on curated datasets like Devign [9] and BigVul [12] by
utilizing advanced neural architectures including graph neural

∗Equal contribution
†Corresponding author
1For instance, platforms like OSS-Fuzz [4] and syzbot [5] collectively

identifying over 10,000 vulnerabilities in critical open-source projects.

networks and transformer models. While Large Language
Models (LLMs) are deeply explored in other software engi-
neering domains [13]–[15], they are also leveraged to detect
vulnerabilities [16]–[20].

However, practical deployments of DL-based approaches
(including LLMs) are facing persistent challenges in real-
world applications due to training dataset inaccuracy [18],
[21]–[23], limited model interpretability [24], [25], and heavy
dependency on model architecture [6]. Specifically, for vul-
nerability related tasks, the quantity and quality of training
dataset are both limited. Due to the limited availability of
vulnerabilities, a common approach to building such datasets
is analyzing security patches in source code. However, existing
security patches are noisy.

One primary manifestation of noise is semantic mislabeling,
which occurs when security patches are conflated with non-
security-related patches like feature updates or general bug
fixes [18], [26], [27]. Recent researches [21]–[23] show that
this is common. The widely used datasets like BigVul [12]
and DiverseVul [28] exhibit label accuracy rates below 60%
as reported by [23]. But due to inadequate handling of label
ambiguity (L1), current methods [18], [23], [26], employing
heuristic rules or basic LLM prompts to filter the non-security-
related patches, frequently misclassify patches because accu-
rate labeling necessitates a holistic understanding derived from
patches, commit messages, and auxiliary information.

Another key manifestation of noise is inter-procedure am-
biguity, which arises when vulnerability triggers depend on
multi-function interactions [29], [30]. For example, analyzing
a function in isolation is difficult to determine if an input
pointer could cause a null pointer dereference. Such a determi-
nation depends on whether the caller might pass a null value.
Bcause of reliance on rule-based context extraction (L2),
previous methods either extract the entire repository call graph
to preserve as much context as possible [26], which leads to
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information explosion with overwhelming irrelevant data [31],
or extract a fixed number of callee layers [30], which results
in incomplete context for some vulnerabilities, making them
undetectable and introducing noise.

More critically, we identify undecidable patches, a chal-
lenging new category of noisy patches that often address
subtle vulnerabilities, such as logic errors causing memory
corruption or denial-of-service (DoS) due to improper bound-
ary conditions. But these implicit vulnerabilities always lack
obvious vulnerability indicators or clear links between the
patch behavior and CWE taxonomies. Thus, the presence of
these vulnerabilities in the original code is often difficult to as-
certain using static analysis solutions alone, and only become
evident after reviewing the patch and associated discussions.
To better illustrate their nature, prevalence and diversity of
sources, we present concrete examples in Section II-B. The
unawareness of them leads to a lack of mechanisms to handle
undecidable patches (L3) in current methods. This deficiency
means vulnerabilities, hard for static analysis to detect, persist
in existing datasets. Training models on such ambiguous
instances can lead to them learning spurious or non-existent
vulnerability patterns, causing hallucinations model.

Our Solution. To address the limitations of prior ap-
proaches in handling these types of noise, we propose MONO
(Multi-agent Operated Noise Outfilter), an LLM-powered
framework that emulates human expert analysis to tackle data
quality challenges in vulnerability dataset construction. Our
approach introduces three key innovative solutions:

• S1: Semantic-Aware Patch Classification. MONO lever-
ages the natural language understanding and code anal-
ysis capabilities of LLMs to evaluate commit messages,
patches, and auxiliary information such as pull requests.
This enables a nuanced classification of patches and
accurately distinguishes security-related fixes from non-
security patches.

• S2: Iterative Multi-Agent Contextual Analysis. MONO
employs a multi-agent architecture that combines static
analysis tools with LLM reasoning. Through an iterative
process, the agents progressively gather relevant code
context from the repository, enabling in-depth reasoning
to capture the intricacies of each potential vulnerability.

• S3: Vulnerability Root Cause Analysis and Undecid-
able Patch Filtering. MONO performs in-depth vulnera-
bility root cause analysis by tracing execution paths and
data flows within the project. This process identifies the
root cause of vulnerabilities and filters out undecidable
patches, where the root cause cannot be determined from
the available static context.

Through a comprehensive evaluation on the MegaVul vul-
nerability dataset [32], we demonstrate the effectiveness of
MONO. It identifies that over 30% of patches in MegaVul
are non-security patches and reveals residual noise even in
existing cleaned datasets. To analyze patch root causes, MONO
extracts an average of 3.43 contextual code snippets, with
89% of patches requiring more than one piece of context.

TABLE I: Comparison of works for handling noisy patches.

Research Works Correct
Semantic Labeling

Handling
Inter-procedural

Pruning
Undecidable Patches

MegaVul [32], DiverseVul [28]
CVEFixes [33], BigVul [12]
ReVeal [10], CrossVul [34]

q q q

ReposVul [26], VulBench [35] � � q
Devign [9], PrimeVul [18]
CleanVul [23] � q q

CORRECT [30], Vultrigger [36] q � q

MONO (Ours) ¥ ¥ ¥

Symbol: ¥ (full support), � (partial), q (none).

For cases where MONO cannot determine a root cause, over
80% are classified as undecidable patches. We estimate that
approximately 16.7% of the MegaVul dataset consists of such
undecidable patches, representing a significant portion.

Our contributions are as follows:
• We identify and formalize a new but challenging category

of label noise in the current vulnerability dataset, termed
Undecidable patches. We estimate that approximately
16.7% of the MegaVul dataset falls into this category.

• We propose the first end-to-end LLM-powered dataset
construction framework that implements expert reason-
ing patterns through multi-agent collaboration, leveraging
static analysis tools to produce a high-quality dataset.

• Our empirical validation demonstrates a 15% improve-
ment in downstream vulnerability detection model per-
formance when using the context provided by MONO.

• We open source the framework MONO and the dataset
MONOLENS in https://github.com/vul337/mono to facil-
itate future research.

II. BACKGROUND AND MOTIVATION

A. Noisy Patches that Hinder Model Training

As shown in Table I, previous studies [18], [23], [25],
[26] focus on two critical noise issues in prevailing vulner-
ability datasets that degrade model performance. The first
issue, termed semantic mislabeling, arises when non-security-
related patches (e.g., testing improvements, feature updates,
or general bug fixes) are mistakenly labeled as vulnerabilities.
The second issue, termed inter-procedure ambiguity, stems
from the lack of multi-function context in most datasets,
which typically only provide function-level views of the patch
codes. Training on such datasets often leads to false positives,
such as misclassifying functional updates as vulnerabilities
or wrongly flagging callers for not validating callee returns
despite the callee ensuring its safety. These issues significantly
compromise the reliability of vulnerability detection models.

B. A New Kind of Noise Patch: Undecidable Patches

In addition to the two aforementioned types of noisy
patches, we identify a new category, termed undecidable
patches. These patches fix real vulnerabilities but are ex-
tremely difficult to identify in the original code using static
analysis. In many cases, it is nearly impossible to recognize
these patches as security fixes using manual rules. For human
experts, the vulnerability often only becomes apparent after
reviewing the patch—an “aha” moment. Before the fix is

https://github.com/vul337/mono


    public static ShortcutPackage loadFromXml(...) 
             throws IOException, XmlPullParserException { 
      case TAG_SHORTCUT: 
+         try { 
              final ShortcutInfo si = parseShortcut(parser, 
                    packageName, shortcutUser.getUserId(), fromBackup); 
              // Don't use addShortcut(), we don't need to save the icon. 
              ret.mShortcuts.put(si.getId(), si); 
+         } catch (Exception e) { 
+             // b/246540168 malformed shortcuts should be ignored 
+             Slog.e(TAG, "Failed parsing shortcut.", e); 
+         } 
          continue; 

Fig. 1: Commit for fixing CVE-2022-20500 by catch an
underlying exception to prevent boot-loop.

applied, the vulnerabilities remain implicit, with no obvious
exploit patterns or clear violations of coding conventions.

These undecidable patches pose a fundamental challenge to
automated vulnerability detection. Training models on these
ambiguous examples is counterproductive. When a “vulnera-
ble” label has no clear evidence in the code, models can learn
spurious correlations or “hallucinate” patterns that do not exist,
severely undermining their reliability in real-world scenarios.
To identify and filter out these patches, we first conduct an
empirical study to clearly define these patches. Then, we
propose the MONO framework, which purifies vulnerability
datasets by removing these harmful undecidable patches.

We identify five common patterns of undecidable patches
and illustrate them using real-world examples.

1) Involving Runtime Information or High-Level Program
Understanding: This kind of patch is difficult to identify with
static rules because it relies on runtime information and often
involves hidden system-level consequences or unpredictable
execution paths. For instance, consider CVE-2022-20500 (Fig-
ure 1), where a patch introduced a try-catch block to pre-
vent a system boot-loop. This fix is not immediately obvious
because, from a static perspective, the original code appeared
valid. The method already declared throws Exception,
placing the responsibility for handling it on the caller, as per
standard Java practices. The vulnerability, however, did not
stem from the local logic of the code but rather from an
unexpected and severe system-level side effect. In isolation,
the original code seems correct. However, without runtime
context, an automated tool might overfit in such cases and
incorrectly apply similar fixes to other safe code.

2) Complex Logic-Dependent Issues: While some vulner-
abilities are tied to runtime context, another category of
undecidable patches is purely internal, arising from violations
of an application’s complex or unstated logic. In these cases,
the code is not syntactically wrong but fails to meet an implicit
operational goal, often known only to the developers. For
example, a patch for CVE-2019-14837 (Fig 2) removed the
assignment of a placeholder email to a service account. While
this assignment action is syntactically harmless, it violated
an unstated rule that such accounts should not have fake
emails, preventing potential data integrity failures or errors
in other subsystems. Similarly, another fix (CVE-2022-29379,
Fig 3) corrected a calculation by changing a single assignment

    UserModel user = realmManager.addUser(username); 
    user.setEnabled(true); 
-   user.setEmail(username + "@placeholder.org"); 
... 
    if (serviceAccountUser != null) { 
        String username = ServiceAccountConstants... 
        serviceAccountUser.setUsername(username); 
-       serviceAccountUser.setEmail(username + "@placeholder.org"); 
    } 

Fig. 2: Commit for fixing CVE-2019-14837 by not creating
placeholder e-mails.

njs_int_t njs_module_path(..., njs_module_info_t *info) { 
    length = info->name.length; 
 
    if (dir != NULL) { 
-     length = dir->length; 
+     length += dir->length; 
 
      if (length == 0) { 
        return NJS_DECLINED; 

Fig. 3: Commit for fixing CVE-2022-29379. But multiple third
parties dispute this report and it is only found in unreleased
development code that was not part of the following release.

  static int decode_blocks(SnowContext *s){ 
    int w= s->b_width, h= s->b_height, x, y, res; 
    for(y=0; y<h; y++) 
        for(x=0; x<w; x++){ 
+           if (s->c.bytestream >= s->c.bytestream_end) 
+               return AVERROR_INVALIDDATA; 
            if ((res = decode_q_branch(s, 0, x, y)) < 0) 
                return res; 
        } 
     return 0; 
  } 

Fig. 4: Commit in Devign Dataset, No. 5360. A boundary
check is added, but the sink for this check is not clear.

operator. In both scenarios, the original code is perfectly valid
from a static analysis viewpoint. The vulnerabilities stem from
a deviation from an unstated operational goal—much like
violating a formal specification (e.g., an RFC) that was never
written down. Without knowing these implicit requirements,
an automated tool has no basis for flagging the code as faulty.

3) Ambiguous Defensive Programming: These are patches
that introduce checks which seem like good practice, but
whose necessity and specific placement are not evident from
the surrounding context. Devign-5360 (Fig 4) exemplifies this,
where a boundary check is added inside a loop before calling
the decode_q_branch function. On the surface, this is a
sensible patch to prevent a buffer over-read. The ambiguity,
however, lies in two things: first, it is exceptionally difficult
to prove statically that callee will actually read out-of-bounds
without this check. Second, experts question why the check
is needed here in the caller, rather than inside the callee
itself. The patch could be either a critical fix for a hidden
vulnerability or simply an overly cautious defense due to
uncertainty about the callee’s behavior. Training a model on
such an instance might lead it to become overly aggressive,
flagging similar patterns as vulnerable.

https://github.com/PixelExperience/frameworks_base/commit/d5122bfaf18f1503e73c1a3a177a56d0f604a008
https://nvd.nist.gov/vuln/detail/cve-2022-20500
https://github.com/keycloak/keycloak/commit/9a7c1a91a59ab85e7f8889a505be04a71580777f
https://nvd.nist.gov/vuln/detail/cve-2019-14837
https://github.com/nginx/njs/commit/ab1702c7af9959366a5ddc4a75b4357d4e9ebdc1
https://nvd.nist.gov/vuln/detail/CVE-2022-29379
https://github.com/FFmpeg/FFmpeg/commit/4527ec2


  MODULE_ALIAS("ip_set_hash:net,port,net"); 
  /* Type specific function prefix */ 
  #define HTYPE hash_netportnet 
  #define IP_SET_HASH_WITH_PROTO 
  #define IP_SET_HASH_WITH_NETS 
  #define IPSET_NET_COUNT 2 
+ #define IP_SET_HASH_WITH_NET0 

Fig. 5: Patch for CVE-2023-42753. Only a marco is added to
correct the calucation of the offset of one varaible.

  static void igb_set_rx_buffer_len(...) 
      set_ring_build_skb_enabled(rx_ring); 
  #if (PAGE_SIZE < 8192) 
      if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB) 
          return; 
+     if (!(rd32(E1000_RCTL) & E1000_RCTL_SBP)) 
+         return; 
      set_ring_uses_large_buffer(rx_ring); 
  #endif 
  } 

Fig. 6: A device specific checking is added for CVE-2023-
45871.

4) Reliance on External Knowledge or Conventions: Some
fixes address issues that violate external constraints, such as
library API usage conventions, security policies, or domain-
specific knowledge not present in the source code itself. In
CVE-2023-42753 (Fig 5), the patch introduces a macro whose
necessity depends on external knowledge. However, vulnera-
bility detection in [16] operates at the file level, ignoring that
the macro could be placed elsewhere (e.g., in headers or build
configs) and its broader contextual dependencies. Similarly,
CVE-2023-45871 (Fig 6) relates to a specific SBP bit in a
device’s data packet, requiring device-specific information for
comprehension. These vulnerabilities cannot be understood by
merely inspecting the local code; they require awareness of
external specifications or implicit operational contracts.

For such problems, a data-driven approach where models
learn from new vulnerability patch data is highly suitable,
enabling models to acquire and internalize relevant knowledge.
However, the model requires sufficient context to understand
the vulnerability’s root cause. This ensures it learns genuine
vulnerability patterns, not spurious ones as seen in Fig 5.

5) Misclassified Functional Patches or Optimizations:
Occasionally, patches that are primarily performance opti-
mizations or feature enhancements are assigned CVEs. In
such cases, the “vulnerability” and its “fix” more closely
resemble the addition of new functionality or refinement of
existing logic, rather than the remediation of a distinct security
flaw. For example, in CVE-2017-15116 (Fig 7), involves a
refactoring to a new interface, but the patch collected by
CleanVul only contains a function cleanup. Besides, Devign-
5533 and CVE-2018-10982 are similar cases where the patch
is a refactoring of the code, stating “Those are not deemed
to be security issues, but rather quirks of the current imple-
mentation.” in the commit message. The root cause of the
purported vulnerability is often not evident in the surrounding
code context, making the flaw statically undecidable.

Including such undecidable patches in training datasets can

  static int crypto_rng_init_tfm(struct crypto_tfm *tfm) { 
-    struct crypto_rng *rng = __crypto_rng_cast(tfm); 
-    struct rng_alg *alg = crypto_rng_alg(rng); 
-    struct old_rng_alg *oalg = crypto_old_rng_alg(rng); 
- 
-    rng->generate = alg->generate; 
-    rng->seed = alg->seed; 
-    rng->seedsize = alg->seedsize; 
     return 0; 
  } 

Fig. 7: Partial patch for fixing CVE-2017-15116, containing
a interface refactoring, removing everything in this function.
While the commit contains multiple modifications, the Clean-
Vul dataset only retains this diff as part of its final dataset.

be detrimental. Models might learn to associate generic coding
patterns (e.g., any exception handling) with vulnerabilities, or
they might become overly sensitive to defensive programming
constructs without understanding the specific threat they mit-
igate. By identifying and separating these instances, we aim
to create cleaner datasets and highlight areas where current
automated analysis techniques fall short, paving the way for
more nuanced approaches to vulnerability understanding.

C. Limitations of Existing Patch Identification Approaches

Previous works fail to effectively handle all these noise
categories, as summarized in Table I. In particular, they face
significant limitations in addressing semantic mislabeling and
inter-procedure ambiguity. This is because they primarily rely
on rule-based methods, which lack the nuanced understanding
required for comprehensive noise removal. Furthermore, prior
work neither identifies nor addresses undecidable patches,
which are estimated to affect approximately 16.7% of the
patches in MegaVul. While manual curation can partially
address these issues, it is not scalable for large-scale datasets.
To address these challenges, we propose MONO, a framework
designed to improve vulnerability datasets by properly han-
dling noisy patches.

III. METHODOLOGY

Our proposed framework, MONO, employs a two-stage
methodology to enhance vulnerability datasets. The first stage,
focuses on initial patch pre-filtering (Section III-A), and repos-
itory preprocessing (Section III-B), where an LLM filters out
patches primarily related to non-security-related patches. The
second stage, involves an agent attempting to gather sufficient
contextual information from the repository to understand the
vulnerability’s root cause through iterative contextual analysis
(Section III-C) and subsequent dataset construction (Sec-
tion III-D). If a complete root cause cannot be established with
the available static context and the LLM’s inherent knowledge,
the vulnerability is flagged as potentially undecidable.

A. Patch Pre-filtering and Classification

With workflow overview shown in Figure 8, this stage tries
to identify and isolate genuine security patches from non-
security-related bug fixes or refactoring.

https://nvd.nist.gov/vuln/detail/CVE-2023-42753
https://nvd.nist.gov/vuln/detail/CVE-2023-45871
https://nvd.nist.gov/vuln/detail/CVE-2023-45871
https://github.com/qemu/qemu/commit/3e9fab690d59ac15956c3733fe0794ce1ae4c4af
https://github.com/qemu/qemu/commit/3e9fab690d59ac15956c3733fe0794ce1ae4c4af
https://github.com/xen-project/xen/commit/14c3f68a57361f20be33ec3848f83d8636a0d34e
https://nvd.nist.gov/vuln/detail/CVE-2017-15116
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=94f1bb15bed84ad6c893916b7e7b9db6f1d7eec6
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Fig. 8: Workflow overview of patch pre-filtering and repository preprocessing.

1) Non-Security-Related Patches Categorization: To effec-
tively distinguish security patches, we first establish clear
categories for patches that are not primarily security-related.
To inform this classification, we refer to previous researches
on classifying noisy labels in vulnerability datasets [21], [23].
Recognizing that many identified reasons for noisy labels in
prior studies exhibited considerable overlap, we consolidated
and simplified these findings. This consolidation also clarifies
the boundaries between categories, thereby alleviating the
classification burden on the LLM. This process resulted in
three distinct categories of non-security-related patches:
• Testing & Validation Updates: This category includes

patches related to testing and validation, such as de-
bugging statements, logging, or testcases. These modifi-
cations enhance the system’s efficiency or stability and
are thus considered unrelated to security patches. For in-
stance, in PrimeVul-506696, the patch added a testcase for
GENERAL_NAME_cmp, not addressing a security issue.

• Supporting & Non-Core Improvements: This refers to mod-
ifications outside the core logic blocks of the code, such as
adding comments, changing code style, and updating con-
figuration files. These patches primarily improve code read-
ability or maintainability without affecting core functionality
or security. For example, CVE-2018-5269 involves code
refactoring where only one change is genuinely security-
related, while others refactor genuine assert to specific
CV_Assert. This single commit in MegaVul generates 14
incorrect function-level labels out of 15.

• Defect Remediation & Feature Upgrades: This category
includes fixes for non-security bugs or enhancements to core
business logic and features. Patches fall here if they add new
structures or logic to improve functionality or efficiency,
or if they enhance stability without clearly addressing a
security issue—making it hard to label the pre-patch code as
vulnerable. This category is more complex than the previous
two and often cannot be filtered by simple rules. For exam-
ple, in CleanVul-1138, it optimizes Emoji matching with
regular expressions to improve readability and efficiency.
2) LLM-based Classification: Following the definition of

these categories, our methodology employs an LLM to per-
form a multi-step classification process.
• Patch and Context Analysis: First, the model analyzes the

patch by thoroughly examining code diffs and all avail-
able contextual information to identify the patch’s pur-
pose, focusing on its repair strategy and technical impact,
while prioritizing code-level evidence for consistency. While
CVE descriptions are commonly included in vulnerability
datasets, we intentionally exclude them from this step. We
observe that CVE descriptions often emphasize the impact
of the vulnerability rather than the technical details of the
fix, misleading the model toward overly security-focused
or generic interpretations. Instead, we focus on information
that directly reflects the patch’s intent and implementation.
Additionally, if CVE-provided links include GitHub Pull
Requests, we extract the discussion as supplementary infor-
mation. Such information, often missing from prior datasets,
is vital for understanding the patch’s true purpose.

• Security Boundary Assessment: The model then assesses
whether the patch addresses a security boundary. This
involves determining if the pre-patch code had a condition
that could, under attacker-controlled inputs or certain opera-
tional scenarios, compromise the system’s intended security
properties. Crucially, the patch is considered to be intended
to eliminate such a condition. If both criteria are satisfied,
the patch is classified as a Security Vulnerability Fix.

• Non-Security Classification: If the patch does not primarily
address a security boundary, the model then proceeds to
classify it into one of the three categories of non-security-
related patches with previous definitions provided as refer-
ence. Given the complexity of distinguishing “Defect Reme-
diation & Feature Upgrades” from security vulnerabilities
with limited context, we prompt the model to favor a
“Security Vulnerability” classification if it is not uncertain,
prioritizing recall. Ambiguous non-security patches are fur-
ther scrutinized later with more context available.

• Confidence Scoring: Finally, for each classification, the
model provides a confidence score (ranging from 0.0 to 1.0)
reflecting its certainty in the assigned category. Although the
confidence score is not a direct measure of accuracy [37],
it serves as a useful indicator of the model’s certainty in
its classification. We leverage the score to filter out low-
confidence results, enhancing the overall quality of the
dataset. In our experiments, we set a threshold of 0.9.

https://github.com/rubiogarcia465179/TLS-GF2X/commit/97ab3c4b538840037812c8d9164d09a1f4bf11a1
https://github.com/opencv/opencv/pull/10563/files
https://github.com/NextAlone/Nagram/commit/0bd769f842a9b40dc7f1fdf5fbb984609a883e42


3) Empirical Findings: We observe that many datasets,
prioritizing rapid, large-scale construction, overlook code nu-
ances and true patch intent. They often rely on metadata (CWE
classifications, CVSS scores) or insufficient static analysis,
leading to mislabeling. For instance, high CVSS scores may
not reflect actual security vulnerabilities (e.g., CVE-2023-
49298 was a bug fix despite a 7.5 CVSS score), and all modi-
fications in multi-patch commits can be incorrectly flagged as
security fixes, as seen with CVE-2018-5269 in MegaVul.

Furthermore, vague CVE descriptions and commit messages
often obscure the patch’s true purpose. To study the influence,
we trace 1,059 GitHub-sourced CVE patches, gathering richer
context from PR discussions. While commit message lengths
have remained stable (29 words), PR discussions have nearly
doubled in length—from 70 words pre-2020 to 144.7 post-
2020—indicating increased reliance on these forums to com-
municate patch rationale. Leveraging LLMs’ semantic under-
standing, we incorporate this auxiliary information, improving
classification accuracy (Section IV-D1). For example, in PR
for CVE-2022-1122, discussion enables the LLM to identify
the truly security-relevant commit among three similar ones.

B. Data Acquisition and Preprocessing

Once genuine security patches are identified, we acquire
the complete source code context for these patches, as the
existing datasets, like MegaVul, often provide function-level
patch information instead of repository-level source code.

1) Data Acquisition: We use the MegaVul dataset as a
starting point to extract function-level and patch metadata,
then employ custom crawlers across platforms (e.g., cgit,
GitHub) to retrieve corresponding full repository source code.
To handle failures, our system resolves 404 errors via commit-
based searches and adapts to redirects using platform-specific
APIs. This approach enables successful processing of 98% of
CVEs (6,122 out of 6,269) in MegaVul.

2) Code Property Graph (CPG) Generation: We generate
CPGs using Joern [38] for the pre-patch repository to facilitate
static analysis, such as retrieving the caller and callee, tracing
the varaible’s data-flow. However, memory constraints some-
times prevent CPG generation for large repos like Linux, and
some repositories lack specific commits, further hindering full
CPG generation. Finally, we preprocess 5,573 CVE instances.

C. Iterative Contextual Analysis

This stage employs an LLM-driven multi-agent architecture
to perform an in-depth, iterative analysis of the vulnerability,
aiming to uncover its root cause and gather all semantically
relevant code context. It consists of two primary agents: an
AnalysisAgent responsible for understanding the collected
context and a ContextAgent for context collecting, operating
in a closed loop. The process is guided by a confidence
score, allowing for early termination when the vulnerability
is sufficiently understood or when a predefined iteration limit
is reached. Fig 9 shows the overall workflow.

1) Root Cause Analysis and Contextual Refinement: Anal-
ysis Agent: The AnalysisAgent commences the process with
an initial assessment of the vulnerability, guided by a Zero-
Assumption policy, meaning it infers nothing beyond the
explicitly provided code. It then enters an iterative refinement
loop, continuously seeking to extend its understanding.

• Patch Review and Initial Classification: The agent first clas-
sifies the vulnerability into broad categories (e.g., memory-
related, logic-based, or configuration issues). It then metic-
ulously examines each hunk in the patch, explaining how
it mitigates the vulnerability and citing specific file names
and line numbers for each observation. This provides a
foundational understanding for deeper investigation.

• Trace Root Cause and Identify GAPs: The agent attempts
to trace the vulnerability’s root cause by strictly following
function calls and data flows within the available code
(initially the patch, and then supplemented by collected
context). If the evidence chain breaks (i.e., a call or data flow
leads outside the current scope or cannot be resolved), the
agent marks it as a “GAP” and documents why the analysis
can’t continue with the available information.

• Formulate Context Requests: If critical GAPs still persist,
indicating an incomplete understanding of the vulnerability’s
trigger chain, the agent formulates precise requests for
additional information. These requests emulate an expert
analyst’s process, such as asking for “the definition of
function X” or “how variable Y is initialized,” specifying
the type of context needed (e.g., ‘function’, ‘code’ snippet,
‘caller’ information, or ‘variable’ trace). The agent avoids
redundant requests and may try alternative query types if
previous attempts for similar information were unfulfilled.

• Score Confidence: The agent updates its confidence score
based on the current completeness of the evidence chain. A
high score is assigned if the full trigger chain is evident. If
the chain remains incomplete, a lower score is given.

2) Context Collection: ContextAgent: Recognizing that not
all models possess the advanced agentic capabilities of LLMs
like Claude [39] and GPT [37], [40], which can fluently invoke
tools and integrate results mid-analysis [13], we introduce a
ContextAgent. This agent acts as a sophisticated parameter
generator for static analysis tools, currently integrated with
Joern. When the AnalysisAgent requests additional context,
the ContextAgent translates these natural language requests
into precise tool invocations. The ContextAgent can leverage
a suite of tools to gather the required information:

• Basic information retrieval: Fetching function definitions
(func_info), identifying callers of a function (caller_info),
or extracting code snippets in a specific range (code_info).

• Advanced data flow and structural analysis: Tracing the
definition, initialization, or usage of variables and structure
members across the project (value_info). We do not provide
the full data-flow tracing capability as a tool, such as alias
and points-to analysis, as it leads to timeouts when analyzing
the source code in our experiments. However, we observe
that the agent requests the aliased variable if it is needed,

https://nvd.nist.gov/vuln/detail/CVE-2023-49298
https://nvd.nist.gov/vuln/detail/CVE-2023-49298
https://github.com/opencv/opencv/commit/be5247921da02e58aa42830c81730ef20a23af80
https://github.com/opencv/opencv/commit/be5247921da02e58aa42830c81730ef20a23af80
https://nvd.nist.gov/vuln/detail/CVE-2018-5269
https://github.com/uclouvain/openjpeg/pull/1369
https://nvd.nist.gov/vuln/detail/cve-2022-1122
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Fig. 9: Workflow overview of iterative contextual analysis and dataset postprocessing.

suggesting that the agent performs the alias analysis itself.
• Direct Joern Querying: For complex or highly specific infor-

mation needs that standard tools might not cover, the Con-
textAgent can execute Joern queries directly (query_info).
By providing these fine-grained static analysis capabili-

ties, the ContextAgent and corresponding tools empower the
AnalysisAgent to obtain rich, targeted contextual information
beyond simple caller-callee relationships, facilitating the un-
derstanding of complex vulnerabilities.

3) Termination Criteria and Undecidable Patch Filtering:
This iterative process of analysis, context request, and collec-
tion continues until the agent reaches high confidence without
needing further context, or a predefined iteration limit is hit. If
the iteration limit is reached, MONO discards the vulnerability,
considering it a potential undecidable patch. This ensures that
the MONO either arrives at a well-supported root cause or
concludes its analysis within practical limits.

D. Dataset Construction and Post-processing

Upon completing iterative contextual analysis, all processed
information is consolidated. We then construct a comprehen-
sive dataset, indexed by CVE-ID. For each analyzed CVE and
its associated patches, the dataset includes the initial patch
classification, all retrieved code context (functions, data struc-
tures, call chains), the LLM-inferred root cause description,
the final confidence score from MONO, paths to relevant raw
files, CWE types, and other basic information. Built on a
CVE-centric framework, this dataset boasts a low duplication
rate, ensuring unique and validated entries, facilitating further
research and usage for the community.

IV. EVALUATION

Our evaluation focuses on assessing the effectiveness and
quality of dataset constructed by MONO. This evaluation aims
to address the following key questions:
RQ1: How accurately does MONO filter non-security patches?
RQ2: How effectively does MONO extract contextual informa-
tion and characterize undecidable patches?

RQ3: How does MONO’s gathered contextual information
influence the performance of LLMs in vulnerability detection?
RQ4: What is the individual contribution and effectiveness of
each component within the MONO?

A. RQ1: Accuracy of Non-Security-Related Fix Identification

1) Filtering Non-Security-Related Patches in MegaVul:
We employ DeepSeek-R1-Distill-Qwen-32B to filter 20,305
patches across 8,752 CVEs from the MegaVul dataset for
patch pre-filtering and classification. The results of this initial
analysis are summarized in Table II. We select CVEs with at
least one patch is Security (0.9 conf.) for the next stage of
analysis, resulting in the filtering out of 28% of the CVEs.

TABLE II: MONO Patch Filtering Results on MegaVul

Category # of Java Java (%) # of C/C++ C/C++ (%)

All patches 2424 - 17881 -
Security-related 1648 68.04 12315 68.90
Non-security-related 776 31.96 5568 31.10

Classification of Non-security-related
Test 54 6.96 156 1.01
Support 216 27.83 469 8.43
Defect 505 65.14 4945 90.60

Percentages are relative to the total number of patches in each language.

To validate the accuracy of this critical filtering, we ran-
domly sample 350 patches predicted as Security (0.9 conf.)
and 150 predicted as non-security-related, maintaining the
observed proportions. Three human experts independently
review these samples without knowing the model’s labels to
establish ground truth. Our evaluation, summarized in Table
III, underscores the high reliability of our patch pre-filtering.
For patches classified as security-relevant, the model achieved
100% precision (350 True Positives with 0 False Positives).

TABLE III: Human Evaluation of Patch Pre-filtering

Actual \ Predicted Security Non-security
Security 350 (TP) 19 (FN)
Non-security 0 (FP) 131 (TN)



This demonstrates that when MONO confidently identifies
a security patch, it is unequivocally correct. While 19 out
of 150 patches initially labeled as non-security-related were
reclassified as security-related by experts, resulting in a recall
of 96.2%, these typically involved subtle like memory leaks
or crashes from undefined behavior. These findings underscore
the model’s robust precision while highlighting areas for
improvement in boundary sensitivity.

2) Identifying Additional Non-Security-Related Patches in
other dataset: To assess MONO’s ability to uncover overlooked
non-security-related patches, we randomly sample 500 sam-
ples and apply it to CleanVul [23] (Level 4) and PrimeVul
[18] respectively. Existing methods, like CleanVul’s reliance
on prompts and heuristics or PrimeVul’s NVD-link-based
filtering, often lead to mislabeling or omissions by incorrectly
assuming patch intent or security relevance.

The results are summarized in Table IV and manually
verified by human experts for correctness. MONO identifies 71
additional non-security-related patches in CleanVul and 106
in PrimeVul that were previously mislabeled. These include
benign patches like logging code and feature additions. We
also note that while CleanVul’s rule-based filter successfully
filters out all ‘Test’ patches, it shows limitations in handling
‘Support’ and ‘Defect’ categories, where MONO uncovers
additional misclassified instances.

TABLE IV: Results of filtering for other datasets.

Dataset Count # of Classification
Test Support Defect

CleanVul 75 (69)* 0 4 71 (65)
PrimeVul 116 (107) 4 6 106 (97)
* Numbers in parentheses is reported by human experts.

Answering RQ1: MONO achieves 100% precision and
96.2% recall for high-confidence security patches. Its main
limitation is misclassifying around 3.8% of borderline cases.
Additionally, MONO successfully identifies overlooked non-
security-related patches in existing cleaned datasets.

B. RQ2: Inter-Procedure and Undecidable Patches Analysis

1) Unveiling Inter-Procedure Vulnerability Fixes: With
Qwen3-32B as AnalysisAgent and DeepSeek-V3 as ContextA-
gent, 4,467 of 5,573 processed CVEs (80.15%) were enriched
with context and root causes. Table V details average context
length and top 8 CWE category distribution.

A case is considered intra-procedure if its root cause lies
entirely within the patched function; otherwise, it is inter-
procedure. This distinction helps us assess the complexity of
root cause localization for each CVE based on its reasoning
scope. Only 493 CVEs (11%) are intra-procedure, while the
majority (89%) require reasoning across multiple functions,
showing the distributed nature of real-world vulnerabilities.

We further analyze MONO’s root cause accuracy under
this classification. Table VI shows the distribution of valid
and invalid root causes over 50 randomly sampled CVEs
with model confidence above 0.9. Overall, 84% of the root

TABLE V: CWE Category Distribution in MONOLENS

CWE Type # of Pairs pct (%) Avg. Contexts
CWE-664 (Resource Control) 2,736 52.51 3.54
CWE-707 (Neutralization) 437 8.39 3.19
CWE-710 (Missing Functionality) 336 6.45 3.67
CWE-703 (Exception Handling) 318 6.10 3.73
CWE-682 (Calculation Error) 302 5.80 3.70
CWE-691 (Control Flow) 248 4.76 2.89
CWE-284 (Access Control) 183 3.51 3.10
CWE-693 (Protection Failure) 68 1.31 2.75
Misc. 582 11.17 3.16
Total 5,210 100 3.43

Note: Total exceeds 4,467 CVEs due to multi-CWE assignments per CVE.

causes align with expert annotations. Notably, even in the
more complex inter-procedure cases—which comprise 88%
of the samples—the valid rate remains high (84.1%), demon-
strating MONO’s capability to handle non-local dependencies.
A representative case is CVE-2022-24122, a complex kernel
UAF vulnerability. While the MONO couldn’t fully resolve the
root cause due to limited domain knowledge, it successfully
recovered most of the trigger chain context, closely matching
the developer’s analysis. Notably, MONO gathers context from
variable and structure member usage across the codebase,
beyond static call relations. This reflects a flexible, semantic
exploration rather than fixed-depth call graph traversal.

TABLE VI: Root Cause Validity by Reasoning Scope

Scope Type # of Cases Valid Root Causes Invalid Root Causes

Intra-Procedure 6 (12%) 5 (83.3%) 1 (16.7%)
Inter-Procedure 44 (88%) 37 (84.1%) 7 (15.9%)

Total 50 42 (84.0%) 8 (16.0%)

2) Identifying Undecidable Patches: Despite MONO’s over-
all robustness, 1106 CVEs (19.85%) can not be resolved within
the predefined iteration limit. To understand these failures, we
manually analyze 100 randomly sampled cases.

As result shown in Table VII, 84% are attributed to undecid-
able patches—vulnerabilities that lack clear, statically verifi-
able signals such as discernible sources, sinks, or control/data-
flow triggers (e.g., CVE-2016-3838). In such cases, MONO
often pursue speculative reasoning paths or seek non-existent
evidence, resulting in exceeding the iteration limit.

Based on this sample, we estimate that approximately 16.7%
of the 6,212 CVEs in MegaVul fall into this category. This
indicates a non-trivial portion of the dataset that challenges
automated static analysis and root cause identification.

TABLE VII: Analysis of Unprocessable CVEs by MONO

Reason for Failure Percentage (%)
Tool/Noise Limitations 16%
Undecidable patches 84%

– Runtime/High-Level Understanding 33.3%*

– Complex Logic-Dependent Issues 25.0%
– Ambiguous Defensive Programming 21.4%
– External Knowledge/Conventions 10.7%
– Misclassified Functional Patches 9.5%

* Percentage of Undecidable patches, same below.

https://nvd.nist.gov/vuln/detail/CVE-2022-24122
https://www.openwall.com/lists/oss-security/2022/01/29/1
https://android.googlesource.com/platform/frameworks/base/+/468651c86a8adb7aa56c708d2348e99022088af3


Some failures also arise from the inherent complexity of
certain patches. MONO imposes an iteration cap, empirically
set to 8, to prevent unbounded analysis. This cap, while
generally effective, may lead to some manually verifiable
cases exceeding the analysis limit. Determining an optimal
iteration limit is an open problem, and previous works rely on
empirical values [14], [41]. Nevertheless, MONO performs well
under its current iteration limit, balancing analytical depth with
computational efficiency. Moreover, some failures stem from
misleading CVE descriptions rather than flaw complexity. For
example, in CVE-2023-51074, a vague hint in CVE message
led to an unproductive 13-step trace. Once the hint is removed,
MONO finishes the analysis of CVE in just two iterations.

Answering RQ2: MONO analyzes 80.15% of CVEs with
84% root cause accuracy, averaging 3.43 collected contexts.
89% of the analyzed CVEs involve inter-procedural con-
text. This demonstrates the MONO’s capabilities of tracing
vulnerabilities. Among the unprocessable CVEs, 84% are
manually verified undecidable patches, highlighting MONO’s
effectiveness in filtering undecidable patches.

C. RQ3: Influence of MONO’s Context on Vulnerability De-
tection with LLM

This section evaluates how contextual information gathered
by MONO impacts LLMs performance in vulnerability detec-
tion. Our objective is to quantify whether providing high-
quality, relevant context enhances LLMs’ ability to detect
vulnerabilities and pinpoint their root causes.

1) Experiment Setup: Data: We select 1,128 CVE pairs
randomly, proportionally drawn from 8 CWE categories, en-
sures representativeness across real-world CWE distributions.
Each pair includes vulnerable and fixed function code, aug-
mented by MONO’s gathered context. As a comparison, we
evaluate the identical CVE pairs without context from MONO.

Prompt: We design distinct prompts for two key tasks: (1)
Vulnerability Detection (VD): We provide LLMs with task
descriptions dynamically generated from CWE definitions, fol-
lowing [16]. Then LLMs analyze both vulnerable (pre-patch)
and fixed (post-patch) code (raw, without extra annotations),
performing step-by-step analysis to identify vulnerabilities and
output VUL or NO_VUL. (2) Root Cause Judgment (Judge): We
employ an prompt containing ground truth and instruction to
guide expert assessment of the root cause. The ground truth
includes CVE descriptions, CWE types, patch information,
and code. Judges evaluate if the LLM’s identified root cause
matches known information for pre-patch code and if post-
patch outputs constitute false positives.

Metrics: We treat pre-patch code as positive (vulnerable)
and post-patch code as negative (non-vulnerable), applying
standard binary classification metrics as defined in Table VIII.
In pair-wise evaluation, we specifically measure the mod-
els’ ability to distinguish vulnerable (pre-patch) from non-
vulnerable (post-patch) versions.

Models: To assess the influence of context across model
architectures and scales, we select 13 diverse LLMs from

TABLE VIII: Evaluation Outcomes Definition

Pre-patch Code Post-patch Code

VD (Pred) T F T T T F
Judge T - F F T -
Result TP FN FN TN FP TN

Deepseek, Qwen, Meta and OpenAI. We denote the reasoning
model as [R] and the non-reasoning model as [NR] for each
model in the suffix if available.

2) Result: Our evaluation of 1,128 CVE pairs (Figure 10)
revealed consistent patterns across models. Specifically for
CWE-664, the prevalent vulnerability, models without context
typically achieved an F1 of 0.5 (max 0.62 for Qwen3 [R]).
Crucially, adding context improved performance by 3~8%,
with DeepSeek-R1 seeing the biggest jump to 0.67. MONO
consistently improves F1-scores by 3%~15% across various
CWE types for comparable models, due to its concise, high-
quality context that aids in quickly identifying key variables
and control flow. Larger models further benefit, with per-
formance gains extending to complex CWEs like CWE-284
(Access Control) and CWE-707 (Neutralization).

Figure 11 presents the results from our paired detection
experiments across all detected pairs. We observe that all
models demonstrated an improvement in paired detection rates
ranging from 1.5~7.2% when compared to evaluations without
context. Among these, DeepSeekR1 achieves a remarkable
paired detection rate of 47% across all vulnerability pairs.

Answering RQ3: MONO’s context improves LLMs’ perfor-
mance on vulnerability detection tasks, with 3~15% gains
in F1-score and 1.5~7.2% in paired detection accuracy,
demonstrating the value of MONO’s collected context.

D. RQ4: Individual Component Contribution of MONO

1) Impact of Auxiliary Information on Patch Classification:
To study the impact of our enriched auxiliary information,
including PR information and detailed comments, on patch
classification,we evaluate only using commit messages and
raw patch code from 500 random patches, as CleanVul and
PrimeVul do. It shows that LLM disagrees with previous
classifications in 86 instances.

However, human assessment confirmed that classifications
guided by auxiliary information, aligned more closely with
human intuition. This comprehensive context improved the
LLM’s ability to discern patch intent and security relevance.
Specifically, 78 of these 86 instances are re-evaluated and
confirmed as correctly classified by the LLM when it is
provided with the enriched auxiliary information.

2) Impact of Specialized Tools on Context Extraction: We
further assess the contribution of MONO’s fine-grained static
analysis tools, such as Value Trace, arbitrary code snippet
queries, and struct queries, by removing the access to them,
permitting only basic caller and function info tools. From our
successfully processed dataset, we select 100 CVEs for which
experts confirm accurate root cause identification and correct

https://nvd.nist.gov/vuln/detail/CVE-2023-51074


0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80
CWE-664 CWE-691 CWE-703 CWE-710

7 8 14 32 70 671
0.20

0.30

0.40

0.50

0.60

0.70

0.80

CWE-682

7 8 14 32 70 671

CWE-693

7 8 14 32 70 671

CWE-284

7 8 14 32 70 671

CWE-707

Llama [NR]
GPT-4o

Qwen [R]
Qwen [NR]

DeepSeek-R1
DeepSeek-V3

Qwen3 [R]
Qwen3 [NR]

With Context
Without Context

Fig. 10: F1 Score of LLMs in Vulnerability Detection with and without MONO’s Context

7B 14B 32B NR R 8B 70B V3 R1 4o
0.1

0.2

0.3

0.4

0.5
Qwen2.5 Family Qwen3 Llama Deepseek OpenAI

Qwen2.5 [R]
Qwen2.5 [NR]

Qwen3-32B
Llama [NR]

DeepSeek
GPT-4o

With Context
Without Context

Fig. 11: Paired Accuracy with and without MONO’s Context

context collection. The results for Agent context construction
performance under these limitations are summarized below:

TABLE IX: Impact of Tool Restriction

Outcome Category Count (out of 100)

Successfully Processed 54
Unprocessable (Hit Iteration Limit) 46

As Table IX shows, without its advanced tools, MONO often
asked for more context but still failed over 46% of the time
on the test set because it hit its maximum request limit. This
suggests that without its specialized tools for data and code
retrieval, MONO struggles to trace complex vulnerabilities and
frequently reaches its operational limits.

Answering RQ4: MONO’s effectiveness relies on its core
components: enriched ground truth improved patch classifi-
cation accuracy by 15.6%, and specialized tools were crucial
for context extraction, preventing over 46% of resolution
failures. Both are indispensable for MONO’s performance.

V. RELATED WORK

Vulnerability Dataset Construction. The evolution of vul-
nerability datasets has been marked by a shift from prioritizing
quantity to emphasizing quality and contextual richness. Early
large-scale efforts in vulnerability dataset construction vary.
BigVul [12] amasses C/C++ function-level vulnerabilities by
systematically mining public databases (CVE [42], NVD [43])
and automatically retrieving code, emphasizing automated pro-
cesses. CrossVul [44] also mines such sources, offering multi-
language coverage at file-level granularity. CVEFixes [33]
provides structured, multi-level data by retrieving information
associated with CVE records. In contrast, Devign [9] takes
a distinct early approach by prioritizing high-quality manual
labeling. Subsequent datasets continue to evolve: Diverse-
Vul [28] aims to enhance realism and diversity by improving
automated label accuracy for C/C++ data and broadening
project/CWE diversity. MegaVul [32] pursues greater scale and
quality, featuring enhanced parsing via Tree-sitter [45], richer
code representations like PDGs, and multi-language support.

Deep Learning and LLM-based Vulnerability Detec-
tion. Research in deep learning-based vulnerability detection
has transitioned from specialized, custom-designed models to
leveraging the broad capabilities of Large Language Mod-
els (LLMs). Early approaches vary: ReVeal [10] utilizes
Graph Neural Networks (GNNs) on code property graphs;
VulCNN [8] innovatively treats code as images for CNN-
based analysis; and LineVul [6] employs Transformers like
CodeBERT for fine-grained line-level prediction. While the
advent of LLMs has shown considerable potential for vul-
nerability identification, comprehensive benchmarks such as
VulnLLMEval [17], VulDetectBench [19], VulBench [35],
JitVul [41] have also highlighted their current limitations.
These limitations primarily lie in achieving deep semantic



understanding of vulnerabilities and performing precise, fine-
grained localization of vulnerable code.

VI. LIMITATIONS & DISCUSSION

Our work, while demonstrating promising results, has sev-
eral limitations and some potential future work.

1) Reliance on Manual Tool Implementation: MONO’s ef-
fectiveness relies on its integrated static analysis tools. Current
tool limitations, like unhandled corner cases or missing fea-
tures (e.g., tracing unassigned variable paths), can impede con-
text acquisition and lead to analysis failures. Although LLM
can generate Joern queries directly, the LLM’s unfamiliarity
with Joern’s syntax yield a low success rate (around 12%
non-empty results) for such ad-hoc queries. Developing more
robust, pre-defined tools that encapsulate Joern’s capabilities
is a more viable near-term solution.

2) Classification of Undecidable patches: Our proposed
classification of undecidable patches may not cover all types.
The current approach uses agent understanding to filter these
patches, but agent limitations, not definitive undecidability,
lead to some discards. Future work can refine the definition
and identification methods for undecidable patches. Besides,
identifying patches that require external knowledge remains a
challenge. Effectively filtering and using this subset for model
learning is an important future research direction.

3) Bridging the Gap to Practical Vulnerability Detection:
Our experiments show that MONO’s context yields positive per-
formance improvements for LLMs in vulnerability detection.
However, a notable gap still persists between current LLM
capabilities and practical application. This paper’s dataset
filtering and construction methodology aims to produce a
cleaner training dataset. Exporing training models on such a
noise-reduced dataset is crucial future work to enhance model
performance and usability.

VII. CONCLUSION

In this paper, we identify and mitigate several prevalent
types of noisy patches in vulnerability datasets that degrade
model performance. While prior work mainly focus on noise
caused by semantic mislabeling and inter-procedure ambigu-
ity, we introduce and formalize a novel noise category: unde-
cidable patches. To address these noisy patches, we propose
MONO, an LLM-powered multi-agent framework that emulates
human expert analysis. MONO classifies patches, performs iter-
ative contextual analysis, and filters undecidable patches. Our
evaluations show that MONO significantly improves dataset
quality by filtering mislabeled instances that constituted 31%
of the MegaVul dataset and filtering undecidable patches that
represented another 16% of this dataset. The improved datasets
boost LLM-based vulnerability detection performance by 15%.
Both MONO and the MONOLENS dataset are open-sourced to
facilitate further research in vulnerability detection.
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