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Quantum key distribution (QKD) provides an information-theoretic way of securely exchanging
secret keys, and typically relies on pre-shared keys or public keys for message authentication. To lift
the requirement of pre-shared or public keys, Buhrman et. al. [SIAM J. Comput. 43, 150 (2014)]
proposed utilizing the location of a party as a credential. Here, we extend upon the proposal,
develop a QKD protocol with location credentials using quantum position verification (QPV) based
message and identity authentication. By using QKD with delayed authentication as a base, and later
simplifying QPV-based message authentication, we significantly reduce the number of QPV runs,
which currently acts as a bottleneck. Besides demonstrating security for the proposed protocol, we
also provide improvements to QPV security analysis, including generalization of the QPV adversary
model, tightening a trace distance bound using semidefinite programming, and propose a multi-basis
QPV requiring only BB84 state preparation but with multiple measurement basis.

I. INTRODUCTION

As quantum computation capabilities continue to
advance, there are increasing concerns that current
public key cryptographic systems such as RSA may one
day become vulnerable [1]. To guard against harvest now
decrypt later attacks on secure communication networks,
quantum key distribution (QKD) has been proposed
as a possible solution. Since the early proposals for
QKD implementations [2–4], the security and hardware
technology has significantly improved [5, 6], and multiple
commercial QKD devices are currently available in the
market.

QKD in practice requires pre-shared keys for secure
authentication [6, 7], though the use of public key
infrastructure for message authentication has been
proposed as well [8]. Manual delivery of such pre-shared
keys can be onerous, and could in general lead to issues
for instance if the pre-shared keys are used up in a
denial-of-service attack. In some instances, QKD devices
are deployed at trusted location, for instance in data
centers, where strict physical security practices are im-
plemented. As such, we can explore a different method
of authentication – using the location of the QKD
device, or more specifically the spacetime coordinate
(P, T ) to provide identity authentication.

To realize position-based identity authentication, we
rely on quantum position verification (QPV), which has
received increased attention from the community. QPV
serves as a protocol to certify the spacetime coordinate
of a party, and any adversary at a different location
cannot impersonate one at the right location. After
the first proof of security against linearly entangled
adversaries [9], results allowing slow quantum commu-
nication [10], channel loss tolerance [11], and security
against adversaries with linear quantum gates [12]. More
recently, a preliminary result for the implementation of
SWAP QPV has be presented [13], signaling interest to
bring the protocol from theory to reality.

Ref. [14] proposed a QPV-based message authentica-
tion protocol, and suggested that utilizing the message
authentication protocol to send authenticated messages
from Alice to Bob is sufficient for QKD security. This
could remove any requirements for pre-shared keys or
public key infrastructure for QKD, relying instead on
the position of a party for authentication. However, the
proposed protocol may not provide sufficient security
since Bob has no method of authenticating Alice, i.e.
Eve can impersonate Alice and trick Bob into sharing a
secret key with Eve1.

Here, we first expand on the proposal by Buhrman
et. al. [14] in a similar adversary model where one-way
authentication from Alice to Bob is implicitly assumed.
In this scenario, Alice trusts any party that is at location
P at time T , and her goal is to exchange keys securely
with this party. By relying on QKD protocols where
authentication is deferred to the final step [15, 16], the
requirements for Bob’s authentication can be reduced
from multiple QPV runs for message authentication to
a single QPV run since only a single bit is necessary for
the final authentication step.

We further extend the protocol to a more general
model where Alice and Bob share no authenticated
channels. This requires replacing Alice’s final authenti-
cated communication to Bob with a similar QPV-based
message authentication sub-protocol. The QPV-based
message authentication sub-protocol we developed
integrates Buhrman et. al.’s message authentication
protocol [14] with symmetric key authentication, sig-
nificantly reducing the number of QPV runs required

1 We note that while the proposed scheme with Alice being the
verifiers of QPV cannot provide sufficient security, it is simple to
extend the proposal to one where Bob also has separate trusted
verifiers that can perform QPV to receive authenticated messages
from Alice.
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by sending only the key required for symmetric key
authentication via Buhrman et. al.’s message authen-
tication protocol. A formal security proof for the full
protocol, taking into account also possible differences in
abort decisions by Alice and Bob due to lack of ideal
authentication, is provided. Interestingly, the proposed
protocols has two useful properties: (1) anonymity and
(2) decoupling of QKD and QPV process, that may lead
to a wider range of applications not afforded to standard
QKD.

While the technology and security analysis for QKD is
well-established, the same is not true for QPV. As such,
improvements in both security analysis and experimental
design are necessary to improve the practicality of QPV.
As a step towards practical QPV implementation, we
provide a series of improvements to QPV security
analysis to (1) account for more general adversaries, (2)
tighten security bounds, and (3) providing improvements
in multi-basis QPV protocol design that can reduce
implementation complexity.

In Sec. II, we introduce quantum theory and quan-
tum position verification. Sec. III proposes the key
exchange protocol with one-way authentication along
with its security analysis, which is further extended
to key exchange with location credentials in Sec. IV.
Improvements to QPV security and implementation is
provided in Sec. V. The paper ends with a discussion in
Sec. VI and conclusion in Sec. VII.

More recently, Ref. [17] introduced a tightened secu-
rity analysis for QPV without qubit loss and achieved a
higher error tolerance. It remains to be seen how their
analysis can be adapted to a QPV with loss and how
the generalizations and improvements presented in this
manuscript may be used to strengthen their analysis.

II. PRELIMINARIES

A. Quantum Theory

We define a generic quantum system A by a den-
sity matrix ρA with unit trace Tr[ρA] = 1 and positive
semidefinite ρA ≥ 0. A classical system X can be repre-
sented as a quantum state ρX =

∑
x∈X px |x⟩⟨x|X , where

px = Pr[X = x]. Uniformly distributed classical systems
can be represented as τX = 1

|X |
∑
x∈X |x⟩⟨x|X , while uni-

formly distributed and matching classical systems X and
X ′ can be represented as τ̃XX′ =

∑
x∈X

1
|X | |xx⟩⟨xx|XX′ .

A classical-quantum state with classical random variable
X and quantum subsystem A can be expressed as

ρXA =
∑
x∈X

px |x⟩⟨x|X ⊗ ρA|X=x,

where ρA|X=x is the state of subsystem A conditioned on
X = x. In general, we label a quantum state conditioned

FIG. 1. Spacetime diagram illustrating the classical and quan-
tum communication in QPV η,f

BB84 QPV protocol. Note that
the solid lines represent classical communication which occurs
at the speed of light while the dotted lines represent quantum
communication.

on an event Ω as ρA|Ω, and we let ρA∧Ω = Pr[Ω]ρA|Ω.
To study the distinguishability of two quantum systems
ρ and σ, we use the trace distance measure,

∆(ρ, σ) :=
1

2
∥ρ− σ∥1, (1)

where ∥·∥1 is the trace norm.

Any general quantum process can be described
by a quantum channel that maps input system I to
output system O, with fixed inputs x. We label such
channels ExI , noting the output system is typically
obvious. Quantum systems can be measured to give
an outcome, and we define a quantum measurement
as a positive-valued operator measure (POVM) Aθx (or
B, for Alice or Bob’s measurement operators), where
θ is the basis choice, and x is the measurement outcomes.

B. Quantum Position Verification

QPV has been shown to be secure against adversaries
with linear quantum memory size in Ref. [10], and we
briefly present the protocol here. Consider a scenario
where a prover is at location P and is co-linear with two
verifiers V1 and V2. A loss tolerant QPV protocol, labeled

QPV η,fBB84 follows (illustrated in Fig. 1):

1. Verifier Preparation: Verifiers V1 and V2 ran-
domly select x ∈ {0, 1}n and y ∈ {0, 1}n. Verifiers
also agree on a time t0.

2. Quantum State Transfer: The first verifier com-
putes θ = f(x, y) and randomly selects z ∈ {0, 1}.
He then prepares a BB84 state

∣∣ψθz〉Q with basis θ

and bit value z and sends it to the prover.

3. Verifier Message: The verifiers sends x and y
such that they both arrive at P at time t0.
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4. Prover Measurement: Prover computes θ =
f(x, y) and measures the quantum system Q in ba-
sis θ. He immediately sends the outcome z′ to both
verifiers. If quantum system Q is lost, the prover
responds with ⊥ to both verifiers.

5. Timing and Validity Check: The verifiers check
if the time they receive the response z′ is within
certain time threshold and if the responses between
verifiers match. Furthermore, the QPV process can
be repeated for multiple rounds, and an error rate
corresponding to the proportion of rounds where
z ̸= z′ can be computed. QPV can be determined
by the verifiers to fail if the time threshold or mis-
match of responses occur in any round or if the
error rate exceeds some error threshold.

The security of QPV protocol relies on the observation
that (1) parties not at location P cannot obtain x and
y before the party at location P and (2) quantum infor-
mation in Q cannot be duplicated, and thus would be
unable to respond the correct z′ to the verifiers.

III. SECURE KEY EXCHANGE WITH
ONE-WAY LOCATION AUTHENTICATION

A. Security Model

In general, there can be multiple methods of combin-
ing QKD and QPV into a secure key exchange protocol
with some sort of location verification. This would
lead to differences in applicability and functionality
of the protocols, which depend heavily on the trust
and adversary models. One simple model would be
to have trusted Alice and Bob just like QKD, but
where Alice do not trust the claimed location of Bob.
Here, the purpose of QKD and QPV is fully separate,
where QKD can be used to perform key exchange
since both parties are trusted, and QPV is used to
certify the location of Bob at some time T , which
may occur during the QKD protocol. However, in this
context, we do not truly use the location of Bob as a
credential since implicit trust is afforded to him for QKD.

To truly consider the use of a spacetime coordinate
as credential, we have to instead assume that any
party at this spacetime coordinate has no other cre-
dentials, including no access to any method of sending
authenticated messages. Moreover, since the spacetime
coordinate is the sole credential, we have to assume
Alice places full trust on any party at this spacetime
coordinate. This placement of trust can rely for instance
on physical security at the data centers, where only
authorized personnel can gain access to location P at
some time T . The goal would be then for Alice and
any party at location P and time T to establish secure
keys, without any other means of identification of the
party other than its location (e.g. with pre-shared keys

or public key infrastructure (PKI)). We note here that
Alice is allowed to send authenticated messages, though
extensions to have both Alice and Bob use location
credentials is presented later in Sec. IV.

More formally, we consider a model where Bob is the
collection of all parties that will be at location P at time
T , and the goal would be for Alice to exchange secret
keys with Bob (or one of the parties constituting Bob).
We note here that as a consequence of the trust model,
any party that is at location P at time T can technically
exchange keys with Alice. In this case, Eve would be
the collection of all parties that will not be at location
P at time T . We also introduce a list of assumptions,
including standard QKD assumptions, QPV assumptions
and specific model-based ones:

• Alice and Bob’s QKD devices are trusted.

• The QPV verifiers are honest.

• Bob is honest, i.e any party at location P at time
T is honest2.

• Alice can send authenticated messages (e.g. by
PKI).

• Bob (Parties at location P and time T ) is unable
to send any authenticated messages.

• The adversary’s strategy is limited by similar re-
strictions placed on the adversary in QPV. This
could vary based on the QPV security analysis of
interest, but could include bounded quantum mem-
ory [10] and linear quantum gates [12]3.

With these set of assumptions, let us consider the ideal
functionality for secure key exchange. Since Bob is de-
fined to be the collection of parties that will be at lo-
cation P at time T , Bob is allowed to share the secret
keys. Consequently, we can consider a similar security
definition as QKD. We note that in general, the proto-
col (like QKD) cannot defend against denial-of-service
attacks, and therefore may abort. As a result, we can
introduce a probability of the protocol aborting, (1− p̃),
and an implicit indicator IΩ̃ as part of E subsystem to
indicate if the keys are to be generated,

ρideal = p̃ τ̃KAKB
⊗ σ⊤

E + (1− p̃) |⊥⊥⟩⟨⊥⊥|KAKB
⊗ σ⊥

E ,
(2)

where the separate σE states can be generated locally by
Eve. We note that the fact that Alice does not share
a QKD key with parties not at location P at time T
is embodied by Eve remaining independent of KA when

2 This assumption is necessary, otherwise the key exchange can
simply fail, for instance by Bob announcing his raw keys.

3 We note that since QKD is secure against unbounded adversaries,
QKD remains secure against such restricted adversaries as well.
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Protocol 1 Secure Key Exchange with One-way Location Authentication
Goal. Alice and Bob performing key exchange with the aid of two verifiers.

1. Quantum Transmission Phase: Alice and Bob transfer quantum information, and at the end of the step, Alice and
Bob generates raw keys SA and SB respectively.

2. Sifting and Error Correction: Alice and Bob exchange classical informationM = (MA,MB), whereMA are messages
from Alice to Bob and MB are messages from Bob to Alice. Messages sent from Alice to Bob are sent through a one-
way authenticated channel. Alice and Bob use these messages, along with their respective raw keys to perform sifting
and error correction and parameter estimation, where they jointly decide on an indicator IPE indicating if parameter
estimation has passed or failed.

3. Alice’s Authenticated Message: Alice randomly selects a hash function h from a family of hash functions H and
compute the hash of the messages M̂B she received from Bob. Alice sends the computed hash value h(M̂B) to Bob via
the one-way authenticated channel.

4. Message Check: Bob uses the received hash function h computes a hash of his messages, h(MB), and checks if it

matches the hash received, i.e. if h(MB) = h(M̂B). If they match, Bob labels an indicator I = 1, otherwise they label
the indicator I = 0.

5. Quantum Position Verification Sub-protocol: Alice initiates a QPV sub-protocol. If Bob’s indicator signals that
the hash matches (I = 1), Bob behaves honestly in the QPV. Otherwise, Bob does not provide responses during the
QPV. At the end of the sub-protocol, Alice should have received the QPV indicator IQPV , and shared IQPV with Bob.

6. Privacy Amplification: If the QPV indicator indicates that QPV passed, IQPV = 1, and the parameter estimation
passed, IPE = 1, Alice and Bob performs privacy amplification independently to generate QKD secret keys KA and KB .
If either parameter estimation or QPV failed, Alice and Bob aborts the protocol.

keys are generated. We can thus define the security with
the trace distance from the ideal functionality

∆(ρ, ρideal) ≤ ε, (3)

where ε is the security parameter for the protocol, and
ρideal can be any ideal state of the form above.

B. Protocol

The protocol defined relies on QKD protocols where
Bob’s authentication is left to the final steps [15, 16].
Such QKD protocols can be performed with only one-way
authentication, with the final steps of having Alice send
a hash of messages received from Bob, for which Bob can
check if such messages have been tampered with. This
can end with Bob responding with a single bit on whether
the QKD protocol should be aborted (e.g. messages tam-
pered), and this is typically send via an authenticated
channel4. The proposed protocol replaces this final au-
thentication step with a QPV sub-protocol, where Bob
(in our case parties with spacetime coordinate (P, T ))
can either choose to act honestly to inform Alice that
the protocol should not be aborted, or provide no re-
sponses to trigger an abort. Taking h to be a 2-universal

4 Standard QKD protocols with two-way authentication may not
directly translate, since careful design may be required. For in-
stance, we cannot allow Bob’s response to the end of the quantum
information exchange step to be a simple “received” and Alice
replying with her basis choice since it can be easily compromised
by performing suitable delay attacks.

hash function, the proposed protocol can be summarized
in Protocol 1.

C. Security Analysis

In the protocol, an abort occurs when either parame-
ter estimation fails or the QPV check fails. Let us define
the events ΩPE and ΩQPV as the event where parame-
ter estimation passes and the event where QPV passes
respectively, and let Ω = ΩPE ∧ ΩQPV . This event Ω
also signals that QKD keys are generated, i.e. the proto-
col did not abort5. The actual protocol output state can
thus be expressed as

ρ =pΩ |1⟩⟨1|IΩ ⊗ ρKAKBE|Ω

+ pΩc |0⟩⟨0|IΩ ⊗ |⊥⊥⟩⟨⊥⊥|KAKB
⊗ ρE|Ωc ,

(4)

where keys are generated only for event Ω.

Formally, the security can be given by

5 Note that WLOG, assuming one-way authenticated channel
(without failure) from Alice to Bob, both parties can jointly
abort or generate keys (with instructions from Alice). If we re-
lax the assumption on Alice’s authentication channel to allow for
events where the message is not received or the authentication
fails, we have to use analysis similar to that in Sec. IV to account
for this difference. However, since this is not the focus of this
section, we assume no authentication failure for simplicity.
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Theorem 1. Let ρideal be the ideal output state as de-
fined in Eq. (2). Then,

∆(ρKAKBE , ρ
ideal
KAKBE) ≤ εQKD +

1

lT
+ εQPV ,

where εQKD is the QKD security parameter, lT is the
length of the hash h(MB) and εQPV is the winning prob-
ability of QPV for an adversary not at position P at time
T .

Proof. Refer to Appendix A

IV. SECURE KEY EXCHANGE WITH
LOCATION CREDENTIALS

A. Security Model

Protocol 1 can be extended to one where no au-
thentication channels exists between Alice and Bob,
relying instead on location credentials for authentication.
Unlike the earlier replacement of the Bob’s single bit
authenticated response with a single QPV sub-protocol,
we require instead a proper message authentication
step to replace the step of sending Alice’s authenticated
message. The QPV-based message authentication
protocol in Ref. [14] is a suitable candidate to perform
a similar function, though we provide simplifications to
improve its performance.

The security model adopted here is similar to that in
Sec. IIIA, with the main difference being Alice’s ability
and assumptions relating to the QPV-based message au-
thentication protocol. Here, we consider a model where
Alice is the collection of all parties at location PA at time
T , and Bob to be the collection of all parties at location
PB at time T ′, and the goal is for parties at PA and PB
to securely exchange keys. Since authentication of Alice
and Bob are based on the spacetime coordinates alone
and require separate verifications, we assume the parties
PA and PB have access to trusted verifiers (or the parties
can individually control parties at locations necessary to
act as verifiers in the QPV). Note that Alice and Bob do
not have to share the same trusted verifiers, and we will
label them Alice verifiers and Bob verifiers according to
the party that trusts them. We can thus introduce the
set of assumptions:

• Alice and Bob’s QKD devices are trusted.

• Alice’s and Bob’s verifiers are honest.

• Alice (parties at PA) and Bob (parties at PB) are
honest.

• Neither Alice nor Bob can send any authenticated
messages to one another.

• Alice and Bob share an authenticated channel with
their respective verifiers.

• Alice and Bob’s verifiers devices which performs
QPV (for sending authenticated messages) are in-
built with fixed duration between internal QPV
rounds and between entire QPV runs, and the de-
lay between entire QPV runs, ∆t, is larger than the
duration for each QPV run.

• The adversary’s strategy is limited by similar re-
strictions placed on the adversary in QPV.

Without any ideal authenticated channels, one is no
longer able to have Alice and Bob synchronize their key
generation. In this instance, it is possible for Bob to gen-
erate keys while Alice does not [6, 15, 16]. This is mainly
due to an adversary’s ability to interfere with the final
authentication step (in our case, step 5 of Protocol 1),
forcing Alice to abort while Bob have already decided to
generate his keys at an earlier step. Therefore, we define
a slightly different ideal functionality,

ρideal = p11 τ̃KAKB
⊗ σ11

E + p01 |⊥⟩⟨⊥|KA
⊗ τKB

⊗ ρ01E

+p00 |⊥⊥⟩⟨⊥⊥|KAKB
⊗ σ00

E ,

(5)
where p00 + p01 + p11 = 1, and for secrecy reasons we
expect the key KB to remain secret from any adversary
when Alice aborts the protocol.

B. Sending Authenticated Messages with QPV

Buhrman et. al. [14] proposed a message authenti-
cation protocol using QPV by assigning the pass/fail
of QPV runs as bits 0 and 1, and demonstrated se-
curity when proper encoding is utilized. Here, we
present an improvement to the protocol by combining
it with symmetric key message authentication – using
QPV to send the key instead of the full message to
reduce QPV runs. We utilize a δ-almost 2-universal
hash family {hk : {0, 1}n → {0, 1}lT }k∈K, noting
that there exists such families with small key length,
lK = 2⌊lT + log2(

n
lT
) + 1⌋ with δ = 2−lT+1 [18].

Intuitively, an adversary not at the right location
cannot pass QPV with high probability, thereby al-
lowing him to easily change message bits from 1 to
0 (pass to fail) but not from 0 to 1 (fail to pass).
Therefore, to send a message K ∈ {0, 1}lK , we en-
code the message in a codebook with codewords
{c ∈ {0, 1}2lC+2 : HW (c) = lK + 2, c1 = c2lC+2 = 1},
where HW (c) refers to the Hamming weight of code-
word c. For an injective encoding map, we can choose

lC = ⌈l′C⌉ such that
(2l′C
l′C

)
> 2lK . We label the encoding

function enc : K → C and the decoding function
dec : C → K.

We also consider a general QPV sub-protocol, which
has a starting time tstart. The protocol is assumed
to be εrob-robust (probability of failing QPV when all
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Protocol 2 Sending Authenticated Messages with Location Credentials
Goal. Sender sends an authenticated message M ∈ {0, 1}n to the receiver.

1. Message Exchange: Message M sent from sender to receiver.

2. Tag Generation: Sender randomly selects a key K ∈ {0, 1}lK and generates a tag by hashing the message T = hK(M).
The sender sends the tag T to the receiver.

3. Encoding Phase: Sender encodes key into a codeword C = enc(K).

4. Synchronization Signal: The sender and receiver agree on a time tstart to begin the message transfer.

5. QPV Sub-protocol Runs: Repeat for i = 1, · · · , 2lC + 2:

(a) Receiver performs a QPV sub-protocol with the sender at tstart + (i− 1)∆t.

(b) If Ci = 0, the sender provides no response (i.e. ⊥), while if Ci = 1, the sender replies with honest responses.

(c) Receiver records Ĉi = 0 if the QPV fails and Ĉi = 1 if the QPV passes.

6. Tampering Check: The receiver checks that Ĉ1 = Ĉ2lC+2 = 1 and HW (Ĉ) = lC + 2. If any checks fail, the protocol
is aborted.

7. Key Decoding: If the checks pass, the receiver decodes key K̂ = dec(Ĉ). Otherwise, the message authentication is
deemed to have failed.

8. Message Authentication: The receiver hashes the received message M̂ and checks if it matches the received tag, i.e.
T̂ = hK̂(M̂). The message authentication passes if a match is obtained.

parties are honest) and εQPV -sound (probability of
adversary forcing QPV to pass). For QPV sub-protocols
that requires multiple internal rounds, the security
model assumes a pre-agreed delay as prescribed by the
protocol, and appropriate timings selected by the sender
and receivers with respect to tstart, i.e. once tstart is
synchronized, the QPV sub-protocol runs in a synchro-
nized manner. Across different QPV sub-protocols, a
pre-agreed delay ∆t is assumed. We note that such
assumptions can be rationalized as a manufacturer’s
design choice, where a QPV device may have fixed
intervals for QPV rounds. These assumptions would
help simplify the security analysis and prevent many of
the synchronization issues highlighted in Ref. [14].

The protocol is presented in Protocol 2, where a tag
is generated before the key K is sent from Alice to Bob
via 2lC + 2 QPV runs. With K sent in an authenticated
manner, Bob can use the same hash function to check
that the messages that Alice and Bob send and receive
matches.

The security of the protocol can be guaranteed from
the δ-almost strongly 2-universal property of the hash
function to prevent messages M and M̂ from mismatch
and the QPV sub-protocols, which prevents the tamper-
ing of the hash keyK being sent from Alice to Bob. More
formally, the protocol security can be summarized as

Theorem 2. If an εrob-robust, εQPV -sound QPV sub-
protocol and a δ-almost strongly 2-universal family of
hash function with key size lK is utilized, Protocol 2 is
(⌈ lK2 ⌉+ 2)εrob-robust and (δ + 2⌈ lK2 ⌉εQPV )-secure, i.e.

Pr
[
M ̸= M̂, accept

]
≤ δ + 2⌈ lK

2
⌉εQPV .

Proof. See Appendix B.

C. Secure Key Exchange Protocol

Protocol 1 replaces the final authentication step by
a QPV sub-protocol. Here, we further replace the
second last authentication step from Alice to Bob by
simply sending authenticated messages with QPV-based
message authentication. Let M = (MA, M̂B) be the
classical messages Alice possess, including messages
she sent and messages she received from Bob, and
let M ′ = (M̂A,MB) be the classical messages Bob
possess. Let hK be a hash function chosen from a
δ-almost strongly 2-universal family of hash functions,
H = {hk : {0, 1}n → {0, 1}t}. The modified protocol is
presented as protocol 3.

At the end of the protocol, the overall state can be
given by

ρKAKBE =p11
∑
kAkB

|kAkB⟩⟨kAkB |KAKB
⊗ ρkAkB ,11E

+ p01
∑
k

|⊥ k⟩⟨⊥ k|KAKB
⊗ ρk,01E

+ p10
∑
k

|k ⊥⟩⟨k ⊥|KAKB
⊗ ρk,10E

+ p00 |⊥⊥⟩⟨⊥⊥|KAKB
⊗ ρ00E .

(6)

Since the security can be defined by the trace distance
between the final state and the ideal functionality, the
trace distance naturally splits into cases which we can
analyze separately:
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Protocol 3 Secure Key Exchange with Location Credentials
Goal. Alice and Bob performing key exchange with the aid of verifiers.

1. Quantum Transmission Phase: Alice and Bob transfer quantum information, and at the end of the step, Alice
generates an Alice raw key SA and Bob generates a Bob raw key SB .

2. Sifting and Error Correction: Alice and Bob exchange classical information (MA,MB), where MA are messages from
Alice to Bob and MB are messages from Bob to Alice. They use these messages, along with their respective raw keys to
perform sifting, error correction, and parameter estimation, where Alice and Bob arrive on indicators IPE,A and IPE,B

respectively indicating if they think parameter estimation has passed or failed.

3. Alice’s Authenticated Message: Alice randomly selects a seed K ∈ {0, 1}m and computes a message tag T = hK(M).
If IPE,A = 1, Alice sends the computed tag T to Bob. Otherwise, Alice sends a random T to Bob.

4. Authenticated Message Transfer: After Bob receives the messages, he requests his verifiers to initiate location-
based authentication sub-protocol with Alice to receive the seed K as the authenticated message. If IPE,A = 1, Alice
participates in the message transfer honestly. Otherwise, Alice chooses not to participate in the message transfer (i.e.
provide no response to the QPV).

5. Message Check: Bob uses the received seed K to compute a tag from his classical messages T ′ = hK(M ′), and checks

if it matches the tag received, i.e. if T̂ = T ′. If they match, Bob labels an indicator I = 1, otherwise they label the
indicator I = 0.

6. Quantum Position Verification Sub-protocol: Alice requests her verifiers to initiate a partial QPV sub-protocol.
If Bob’s indicator signals that the hash matches (I = 1) and believes parameter estimation passes (IPE,B), Bob behave
honestly in the QPV. Otherwise, Bob does not provide responses during the QPV. At the end of the sub-protocol, Alice
should have received the QPV indicator IQPV .

7. Privacy Amplification: If the QPV indicator indicates that QPV passed, IQPV = 1, and the parameter estimation
passed, IPE,A = 1, Alice performs privacy amplification on her corrected keys to generateKA. Otherwise, Alice aborts and
sets KA =⊥. If Bob’s indicator I = 1 and parameter estimation passed, IPE,B = 1, Bob performs privacy amplification
on his corrected keys to generate KB . Otherwise, Bob aborts and sets KB =⊥.

1. Case 10: Bob does not participate in the QPV sub-
protocol, which renders it challenging for an adver-
sary to force the QPV sub-protocol to pass, i.e. p10
is small.

2. Case 01: Alice can fail to generate keys due to pa-
rameter estimation or the QPV sub-protocol. For
the former, Alice’s non-participation in sending key
K makes it difficult for an adversary to pass the
message authentication. For the latter, Alice pa-
rameter estimation passing and Bob’s decision to
generate a key means messages are not tampered
with high likelihood (from security of sending au-
thenticated messages) and thus keys are secret from
QKD security.

3. Case 11: Similar to case 01, where both Alice’s
and Bob’s decision to generate a key means keys
are unlikely to be tampered with and thus keys are
secret by QKD security.

More formally, the security can be presented as

Theorem 3. Consider Protocol 3 with a QKD sub-
protocol that is εQKD-secure, QPV sub-protocols that
are εQPV -sound respectively, and a δ-almost strongly 2-
universal family of hash functions fK . Then, the Proto-
col 3 is (2εQKD + 2δ + (4⌈ lK2 ⌉ + 2)εQPV )-secure. Fur-
thermore, the robustness of the protocol is bounded by

εrob = εQKDrob + (⌈ lK2 ⌉+ 3)εQPVrob .

Proof. See Appendix C.

D. Applications

The protocol proposed can be utilized to address the
criticism of requiring pre-shared keys in QKD. Here, the
reliance on the spacetime coordinate alone to certify
a party lifts the requirement of the pre-shared keys to
authenticate messages. As such, it can be useful for
QKD where the location of one or more QKD boxes can
be trusted, e.g. in a data center.

Besides QKD, the range of applications that the
proposed protocol is expanded due to two interesting
properties: (1) anonymity and (2) decoupling of QKD
and QPV processes. Since location information is suf-
ficient to act as credentials, it brings up the possibility
for multiple parties at the same location to generate a
secret key, with the key exchange partner none the wiser
who the keys are exchanged with. This could be for
instance be useful in offices where employees can access
databases without the database provider knowing the
identity of the employee accessing the database.

The second property stems from the fact that the QKD
sub-protocol for secure key exchange is not heavily inter-
twined with the QPV sub-protocol which dictates the
spacetime coordinates. As such, there can be arbitrary
delay between the two sub-protocols. This allows for ex-
tensions where the QKD sub-protocol can allow for the
exchange of keys (or data that can be converted to keys),
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and the parties holding onto the keys can later proceed
to the two locations PA and PB respectively at some
designated time T to “activate” the keys by performing
the remaining QPV-based steps. It may also allow for
delegation of authentication, such as access control. For
example, a company’s server can be present at P and
time T , and an employee at the company wants to ex-
change keys with Alice. In this case, the employee can
perform the QKD sub-protocol with Alice, and request
the server to perform QPV to act honestly to “activate”
the exchanged key.

V. IMPROVEMENTS TO QPV

A. Generalizing QPV Security

To better facilitate implementations of the proposed
protocol, we attempt to improve the security analysis of
the QPV sub-protocol, which is a heavy bottleneck in
Protocol 3. Let us first generalize the argument of QPV
security against entangled (bounded quantum memory)
adversaries, before identifying the areas which are ex-
amined in this manuscript. In QPV, we can consider
in general a pair of adversaries, Alice and Bob, whose
aim is to have the verifiers certify that they are at lo-
cation P when they are not. At the start of the proto-
col, the adversaries share a joint quantum system σRAB ,
where A and B are maximally of dimension 2q each,
and R is the shared randomness, which is classical and
not bounded in size. The joint state can be expressed
as σRAB =

∑
r pr |r⟩⟨r|R ⊗ σrAB . The general attack

can be described as follows (adapted from attack 3.2 of
Ref. [10]):

1. Alice receives the qubit prepared by verifier 1,∣∣ψθz〉Q, where the state is prepared in basis θ =

f(x, y) and with bit value z.

2. Alice and Bob receive x and y respectively. They
independently apply quantum channels ExrAQ and

EyrB on their respective quantum subsystems, which
may generate classical messagesMA andMB to get
ρxyRMAMBQAB

=
∑
r pr |r⟩⟨r|R ⊗ ExrAQ(

∣∣ψθz〉〈ψθz ∣∣Q ⊗
EyrB (σrAB))

6.

3. Alice and Bob redistribute their quantum sub-
systems, with Alice sending her message and part
of her quantum sub-systems to Bob and vice versa.
In other words, Alice splits AQ → A1A2 and Bob
splits B → B1B2, with both parties sending out A2

and B2 respectively.

6 The quantum channel Exr
AQ (resp. Eyr

B ) applies on quantum sys-

tems AQ (resp. B), and can generate a quantum state of at
most 2q+1 dimensions (resp. 2q dimensions) and an unbounded
classical output MA (resp. MB).

4. Alice and Bob receive the quantum states ex-
changed and the other bitstring, with A′ = A1B2

and B′ = B1A2.

5. Alice and Bob independently perform POVMs
{AmAmBrxy

zA } and {BmAmBrxy
zB } on sub-systems A′

and B′ respectively, and responds with zA and zB
respectively.

We note that there are five main areas of generalization
over the current analysis [9, 10]:

1. The inclusion of shared randomness R.

2. The use of mixed states σAB instead of pure states.

3. Having general quantum channels ExrAQ and EyrB in-
stead of assuming that the channels are unitaries.

4. Lifting the assumption that loss η is independent
of inputs (x, y).

5. Allowing unbounded classical outputs from the
quantum channels.

In this study, we examine only the first four general-
ization, leaving the final generalization for future work.
We note that if the set of prepared states are qubit
states in the X and Z basis, the state preparation in
QPV is equivalent to the verifier preparing the Bell state
|Φ+⟩V Q, and later measuring his quantum system V in
basis θ with outcome z such that the post-measured
state of Q is

∣∣ψθz〉Q. We label the final state with

this replacement (but before V ’s measurement) as
ρxyRMAMBV A′B′ .

Before proceeding, we provide a brief summary of the
QPV security proof for reference [10]. This proof of se-
curity can be separated into follows five distinct steps:

1. Formulate a description that can encompass all q-
qubit strategies, and argue that we can discretize
this set of strategies into a δ-net, where any strat-
egy is δ-close to the center of a net in some distance
measure.

2. Consider the same or an optimal set of strate-
gies with low error rate for fixed (x, y), and show
that the distance between two low error strategies
corresponding to the different measurement basis
θ = f(x, y) is not small, being some distance δ̃
apart.

3. By choosing δ < g(δ̃), we can assign each net to
a strategy, and when one of these low error rate
strategies are considered for an (x, y) pair, we can
correctly classify them. This allows the construc-
tion of a classical rounding strategy, where mes-
sages x and y can be compressed and still recover
f(x, y).



9

4. For bounded memory size q, and if there exists a
classical rounding, when a random function f is
used, then except with small probability, there is a
maximum number of (x, y) pairs that can achieve a
low error strategy. This results in an upper bound
in the winning probability since the remaining pairs
do not have low error.

5. The proof therefore concludes via contradiction
that if the error rate detected is low and the mem-
ory size is bounded, no such q-qubit strategy can
exist and thus with high probability, the response
must be from a party at P .

B. Purifying Attack Strategy

The first generalization addresses the use of mixed
states and general quantum channels. It is not straight-
forward to perform the security analysis directly on
quantum channels (CPTP) maps and mixed states, so
the idea would be to partially purify the final state
ρRV A′B′ (Note we do not address the fifth generalization
on MAMB). Let us first define the set of quantum states
and channels we are examining. The set Sq is defined as
the set of (mixed) quantum states of dimension 2q, while
Spq is defined as the set of pure quantum states with
dimension 2q. The set Cq is defined as the set of CPTP
maps 2q-dimension quantum states to 2q-dimension
quantum states, while CUq is defined similarly for the set
of unitaries.

Partial purification can be performed with purifica-
tion of the mixed state σrAB by doubling its number of
qubits [19], while lifting the quantum channel to a higher
dimensional unitary can be performed via Stinespring di-
lation theorem [19]. We can summarize the purification
as a theorem.

Theorem 4. Any state ρxyRA′B′V =
∑
r pr |r⟩⟨r|R ⊗

ρxyrA′B′V with σrAB ∈ S2q, ExrAQ ∈ Cq+1 and EyrB ∈ Cq
and be purified with purification systems P of dimension
22q, PA of dimension 22(q+1) and PB of dimension 22q,
i.e. there exists a state |ψr⟩ABP ∈ Sp4q and unitaries

UxrAQPA
∈ CU3(q+1) and UyrBPB

∈ CU3q such that

ρA′B′V PPAPB
=

∑
r

pr |r⟩⟨r|R ⊗M[(UxrAQPA
⊗ UyrBPB

)

(
∣∣Φ+

〉〈
Φ+

∣∣
V Q

⊗ |ψr⟩⟨ψr|ABP ⊗ |0⟩⟨0|PAPB
)(Uxr†AQPA

⊗ Uyr†BPB
)]

and TrPPAPB
[ρA′B′V PPAPB

] = ρA′B′V . Furthermore,
the winning probability of the original strategy is upper
bounded by the winning probability of the purified strat-
egy.

Proof. Refer to Appendix D1.

The fact that purification does not reduce the win-
ning probability allows us to reduce the analysis of the

mixed state and quantum channel attacks to one with
pure states and unitaries. Since the number of qubits in-
fluences the size of the δ-nets formed, we quantify the size
of such nets when quantum channels and mixed states are
utilized,

Theorem 5. When a q-qubit mixed state strategy (with
q qubits in subsystem A and B respectively), the number
of δ-nets that can be formed from the purified state and
corresponding unitaries are

log2 |NS | ≤ 24q+1 log2

(
1 +

2

δ

)
log2 |NA| ≤ 26q+7 log2

(
1 +

2

δ

)
log2 |NB | ≤ 26q+4 log2

(
1 +

2

δ

)
respectively.

Proof. Refer to Appendix D2.

C. Transmission and Error Partitioning

The partitioning strategy here aims to address the
assumption where loss η is input-independent, and
provides account of the shared randomness due to the
resulting winning probability that is affine in r. In
Ref. [10], the set of low error strategy is defined with
the idea of (ε, l)-perfect strategies, where for l pairs of
strings (x, y), the attacks declare no photon detection
with probability 1 − η and the conditional error rate is
upper bounded by ε. We note that this set of strategies
may not encompass all optimal attacks. One particular
set of attacks not considered are attacks with loss that
varies with (x, y) pairs, and it is unclear if selecting a
strategy with the same η for all (x, y) is the optimal
strategy.

We also note that in many protocols, it is typical
that shared randomness do not provide advantage to
adversaries, allowing us to simplify analysis to a single
strategy without shared randomness. In fact, this is
the case for a lossless QPV [9] since

∑
r pr commutes

with the maximization in Eqn. (D3). This allows us
to argue that for any strategy, it would be optimal to
pick one corresponding to an r with the highest winning
probability. The same argument may no longer hold
with loss since η can vary with r, and the optimal
winning probability can vary non-linearly with η. As
such, an adversary mixing two strategies, one with
higher loss and winning probability and one with lower
loss and lower winning probability may have a larger
winning probability compared to a strategy with an
average loss.

We begin our analysis by defining the set of strategies
in a different manner, without assuming that η is inde-
pendent on (x, y) and r.
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Definition 1. For any strategy, the input and shared
randomness dependent error rate and transmission rate
is defined as

pe|rxy =
∑
z

Tr
[
(Πf(x,y)z ⊗Axyrz̄ ⊗Bxyrz̄ )ρxyrA′B′V

]
pt|rxy = 1− Tr[(IV ⊗Axyr⊥ ⊗Bxyr⊥ )ρxyrA′B′V ]

respectively, and the matching condition is defined as

Tr[(IV ⊗Axyrz ⊗Bxyrz′ )ρxyrA′B′V ] = 0, ∀z.

A q-qubit strategy is a ({pr}r, ε, η)-strategy with
(εthres, ηthres, {l1,r, l2,r, l3,r, l4,r}r)-partition if for each r,
there are:

1. l1,r pairs of (x, y) satisfying pe|rxy ≤ εthresη,
pt|rxy ≥ ηthres and the matching condition,

2. l2,r pairs of (x, y) satisfying pe|rxy ≤ εthresη,
pt|rxy < ηthres and the matching condition,

3. l3,r pairs of (x, y) satisfying pe|rxy > εthresη,
pt|rxy ≥ ηthres and the matching condition,

4. l4,r pairs of (x, y) satisfying pe|rxy > εthresη,
pt|rxy < ηthres and the matching condition.

We term the strategy for each r as a sub-strategy with
(εthres, ηthres, l1,r, l2,r, l3,r, l4,r)-partition.

In this definition, there is no explicit assumptions
on the r and (x, y)-dependency of loss and error, and
all attack strategies can be described by this set of
strategies. We note that the definition of threshold
values εthres and ηthres is simply to aid in the security
analysis and is not tied to the strategy. Their choices
partition a strategy’s attacks into groups, similar to the
(ε, l)-perfect strategy definition, where the partitioning
is into a group of l pairs of (x, y) with low error rate and
the remaining with high error rate. Since their choice do
not impact security in practice, we are free to choose the
threshold εthres and ηthres such that they give the lowest
winning probability for each strategy.

Following the idea from the original security analy-
sis [10, 11], we seek to provide an upper bound on the
number of low error rounds, specifically l1,r for any strat-
egy. As such, let us focus on this partition and define the
set of states that can satisfy the corresponding conditions
for different basis value f(x, y).

Definition 2. Let ε̃ ∈ [0, 1] and η̃ ∈ [0, 1], and define
the error, transmission and abort probability for a given
choice of measurement operators {Az}z and {Bz}z as

pe,i =
∑
z

⟨ψ|Πiz ⊗Az̄ ⊗Bz̄|ψ⟩

pt = 1− ⟨ψ|IV ⊗A⊥ ⊗B⊥|ψ⟩

pab =
∑
z ̸=z′

⟨ψ|IV ⊗Az ⊗Bz′ |ψ⟩

The set of output states for a partition for a basis is de-
fined as

S ε̃,η̃i = {|ψ⟩A′B′V = (UAQ ⊗ UB)(|ψ⟩AB ⊗
∣∣Φ+

〉
V Q

) :

∃{Az}z, {Bz}z, s.t., pe,i ≤ ε̃, pt ≥ η̃, pab = 0},

where UAQ, UB and |ψ⟩AB are restricted in the same
manner as described in Thm. 4, i.e. UAQ and UB are
purification of CPTP maps for q + 1 and q qubits re-
spectively, and |ψ⟩AB remains a purification of a mixed
2q-qubit state.

For the partition of interest, these sets can be defined
with ε̃ = εthresη and η̃ = ηthres. As we demonstrate
in Sec. VD, any two states drawn from this set with
different bases and with sufficiently low ε̃ and high
η̃ would not be close in trace distance. In other
words, for any states |ψ0⟩ ∈ S ε̃,η̃0 and |ψ1⟩ ∈ S ε̃,η̃1 ,

∆(|ψ0⟩⟨ψ0| , |ψ1⟩⟨ψ1|) > δ̃(εthres, ηthres, η), where we
explicitly list the dependency on the partitioning choice.
More concretely, we lower bound the trace distance
between a larger set where the adversary is unbounded,
which in turn bounds the trace distance between the
q-qubit limited strategies.

The third step of the security proof involves the for-
mation of a classical rounding.

Definition 3 (Classical Rounding [9, 10]). A func-
tion g : {0, 1}3k → {0, 1} is termed a classical
rounding of size k if for any function choice f :
{0, 1}2n → {0, 1}, any l1,r ∈ [1, 22n], any sub-strategy
with (εthres, ηthres, l1,r, l2,r, l3,r, l4,r)-partition, there are
functions fA : {0, 1}n → {0, 1}k, fB : {0, 1}n → {0, 1}k
and λ ∈ {0, 1}k such that g(fA(x), fB(y), λ) = f(x, y) for
l1,r pairs of (x, y).

We note that in this case we focus on each sub-strategy
instead of the full strategy, but each sub-strategy remains
a valid strategy. This allows us to construct a classical
rounding.

Theorem 6. Consider the sets S ε̃,η̃0 and S ε̃,η̃1 for ηthres,

εthres and η values such that δ̃(εthres, ηthres, η) > 0.
Then, there exists a classical rounding of size k =

26q+7

[⌈
log2

(
1 + 12

δ̃

)⌉
+ 1

]
.

Proof. Refer to Appendix E 1.

We follow the original security proof and demonstrate
that when a random function is used and when q is
bounded, there is a bound on the number of input pairs
in the low error, high transmission partition, l1,r.

Theorem 7. Fix a classical rounding with k =

26q+7

[⌈
log2

(
1 + 12

δ̃

)⌉
+ 1

]
and let q ≤ 1

6n−q0. Then,

a uniform random function f : {0, 1}2n → {0, 1} ful-
fills the following with probability at least 1 − 2−α:
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For any fA, fB and λ, g(fA(x), fB(y), λ) = f(x, y)
holds for less than 22n(1 − ν) pairs of (x, y), for ν =

h−1
b

{
1− 29−6q0

[⌈
log2

(
1 + 12

δ̃

)⌉
+ 1

]
− α

22n

}
, where

hb(x) is the binary entropy function.

Proof. Refer to Appendix E 2.

Consequently, for any sub-strategies with l1,r >
22n(1− ν), they require a large number of qubits to suc-
cessfully implement.

Theorem 8. A uniform function f : {0, 1}2n → {0, 1}
has the following with probability at least 1 − 2−α: Any
sub-strategy with l1,r > 22n(1 − ν) requires q > 1

6n − q0
to implement.

Proof. From Thm. 6, we know that a classical rounding
exists for suitably chosen η, ηthres and εthres. Assume
there exists a sub-strategy with l1,r > 22n(1 − ν) that
requires q ≤ n

6 − q0 to implement. By definition, it
implies that the sub-strategy satisfies pe|rxy ≤ εthresη,
pt|rxy ≥ ηthres and the matching condition for at least

22n(1 − ν) pairs of (x, y). From the classical rounding,
it implies that we can find a fA, fB and λ such that
g(fA(x), fB(y), λ) = f(x, y) for at least 22n(1 − ν) pairs
of (x, y).

Since the sub-strategy requires only q ≤ n
6 − q0

to implement, by Thm. 7, we necessarily have that
for a random function f selected has f(x, y) and
g(fA(x), fB(y), λ) matching for less than 22n(1−ν) pairs
of (x, y) with probability of at least 1 − 2−α. This indi-
cates that except with probability less than 2−α, the two
statement contradicts. As such, for a random function
selection, the assumption is not true, i.e. sub-strategies
with l1,r > 22n(1− ν) requires q > n

6 − q0 to implement,
with probability at least 1− 2−α.

We immediately have a corollary that if we restrict the
sub-strategies to have q ≤ 1

6n−q0, then the sub-strategies

has l1,r ≤ 22n(1− ν) with high probability.

Corollary 1. Let the choice of f be a random function,
and Alice and Bob are restricted to strategies with q ≤
1
6n − q0. Then, for any sub-strategy, l1,r ≤ 22n(1 − ν)
except with probability of 1− 2−α.

This allows us to lower bound the overall error (or up-
per bound the winning probability) for any sub-strategy.

We first consider the total error for a sub-strategy with
l1,r ≤ 22n(1− ν).

Theorem 9. Let the choice of f be a random function,
and Alice and Bob are restricted to strategies with q ≤
1
6n − q0. For any sub-strategy with l1,r ≤ 22n(1 − ν)
and transmission ηr, the probability of an error is lower
bounded by max{εthresη[ηr−ηthres1−ηthres − 1 + ν], 0}.

Proof. Refer to Appendix E 3.

With the constraints on the sub-strategies, we can now
compute a lower bound on the error (i.e. upper bound
on winning probability) on any strategy.

Theorem 10. Let f be a random function, and
Alice and Bob are restricted to strategies with
q ≤ 1

6n − q0. For any ({pr}r, ε, η)-strategy with
(εthres, ηthres, {l1,r, l2,r, l3,r, l4,r}r)-partition, the error
rate conditioned on photon detection is lower bounded by

(1− 2−α)
(
η−ηthres
1−ηthres − 1 + ν

)
εthres.

Proof. From Corollary 1, every sub-strategy involved in
this overall strategy has l1,r ≤ 22n(1 − ν) except with
probability 1 − 2−α. As such, from Thm. 9, the actual
error for each sub-strategy (without conditioning on pho-
ton detection) is given by

p′err|r ≥ (1− 2−α)max{ηεthres
[
ηr − ηthres
1− ηthres

− 1 + ν

]
, 0}.

(7)
We can simply bound the overall error as

p′err =
∑
r

prp
′
err|r

≥(1− 2−α)
∑
r

prmax{ηεthres
(
ηr − ηthres
1− ηthres

− 1 + ν

)
, 0}

≥(1− 2−α)ηεthres

(∑
r prηr − ηthres
1− ηthres

− 1 + ν

)
=(1− 2−α)ηεthres

(
η − ηthres
1− ηthres

− 1 + ν

)
,

(8)

where the fact that p′err|r is affine in ηr is utilized. There-

fore, the conditional error is simply lower bounded by

εLB = (1− 2−α)

(
η − ηthres
1− ηthres

− 1 + ν

)
εthres. (9)

Since the strategy described in the theorem includes
all possible q-qubit strategies, we obtain a valid lower
bound on the error rate conditioned on detection.
Therefore, if an error rate lower than εLB is observed in
the experiment in the asymptotic regime (no statistical
fluctuations), we can be confident that there must be a
party present at P participating in the QPV protocol.

We simulate the error rate conditioned on photon de-
tection based on Thm. 10, with ν as defined in Thm. 7,
and a choice of α

2n = 10−10 for large n. The value of

δ̃ is computed from the semidefinite program (SDP) in
Sec. VD, with an optimization of the threshold values
ηthres and εthres. The results of the simulation are shown
in Fig. 2, for three choices of q0. We observe that larger
q0 (i.e. lower adversary memory size) would naturally
lead to better performance. Moreover, the generalization
appears to result in worse results relative to the analysis
in Ref. [10].
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FIG. 2. Plot of error tolerance rate against entangled adver-
saries with a generalization of the adversary. The plots are
provided by choosing α

2n
= 10−10 and optimizing over the

threshold values of the partitioning.

D. Improvement to Trace Distance Bound

In the security analysis of QPV, one critical step is
to lower bound the trace distance between the sets S ε̃,η̃0

and S ε̃,η̃1 . A tighter trace distance bound can result in a
better bound on the winning probability of an adversary.

It is difficult to directly bound the trace distance of
the two sets containing strategies limited by q-qubits.
As such, let us define a larger set S̃ ε̃,η̃i which is defined

similar to S ε̃,η̃i , except that there are no restrictions on

UAQ, UB and |ψ⟩AB . We note that since S ε̃,η̃i ⊆ S̃ ε̃,η̃i ,

if ∆(|ϕ0⟩ , |ϕ1⟩) > δ̃ for all |ϕ0⟩ ∈ S̃ ε̃,η̃0 and |ϕ1⟩ ∈ S̃ ε̃,η̃1 ,

then ∆(|φ0⟩ , |φ1⟩) > δ̃ for all |φ0⟩ ∈ S ε̃,η̃0 and |φ1⟩ ∈ S ε̃,η̃1 .

Consider an arbitrary state |Ψ0⟩ ∈ S̃ ε̃,η̃0 , which we can
expand as

|Ψ0⟩ =(UAQ ⊗ UB)(|ψ⟩AB ⊗
∣∣Φ+

〉
QV

)

=(UAQ ⊗ UB)(|ψ⟩AB ⊗
|00⟩QV + |11⟩QV√

2
) (10)

=
|0⟩V ⊗ |ψ00⟩ABQ + |1⟩V ⊗ |ψ01⟩ABQ√

2
,

where |ψ0i⟩ = (UAQ ⊗ UB)(|ψ⟩AB ⊗ |i⟩Q). We can simi-

larly consider an arbitrary state |Ψ1⟩ ∈ S̃ ε̃,η̃1 , which can
be expanded as

|Ψ1⟩ =
|0⟩V ⊗ |ψ10⟩ABQ + |1⟩V ⊗ |ψ11⟩ABQ√

2
, (11)

where ψ1i = (U ′
AQ ⊗ U ′

B)(|ψ′⟩AB ⊗ |i⟩Q), with possibly
a different set of strategy. We can now show that the
trace distance between sets S̃ ε̃,η̃0 and S̃ ε̃,η̃1 can be lower
bounded by an SDP, as summarized below.

Theorem 11. Consider any state |Ψ0⟩ ∈ S̃ ε̃,η̃0 and any state |Ψ1⟩ ∈ S̃ ε̃,η̃1 , which can be expanded as described above.

Furthermore, let the corresponding measurement operators that can achieve the partition for S̃ ε̃,η̃i be labelled by Aiz
and Biz. Then, the trace distance between the states would always be lower bounded by a function of the dual solution

of an SDP, i.e. ∆(|Ψ0⟩ , |Ψ1⟩) ≥
√

1− (d∗)2, where d∗ is the dual solution of the SDP

max
1

2
Re[⟨ψ00|ψ10⟩+ ⟨ψ01|ψ11⟩]

subj. to Γ ≥ 0

⟨ψij |ψij′⟩ = δjj′ , i ∈ {0, 1}

1

2

1∑
j=0

⟨ψij |Ai0Bi0 +Ai1B
i
1|ψij⟩ ≥ η̃, i ∈ {0, 1}

1

2
[ ⟨ψ00|A0

1B
0
1 |ψ00⟩+ ⟨ψ01|A0

0B
0
0 |ψ01⟩] ≤ ε̃

1

4

 1∑
i,j=0

⟨ψ1i|A1
1B

1
1 |ψ1j⟩+

1∑
i,j=0

(−1)i+j ⟨ψ1i|A1
0B

1
0 |ψ1j⟩

 ≤ ε̃

⟨ψij |AizBiz′ |ψij⟩ = 0, ∀z ̸= z′, i, j ∈ {0, 1}

[Aij , B
i′

j′ ] = 0, i, i′ ∈ {0, 1}, j, j′ ∈ {0, 1,⊥}

and the Gram matrix having entries

Γij = ⟨ξi|ξj⟩ , (12)

with |ξi⟩ formed from the NPA hierarchy with states {|ψij⟩}ij and operators {Aij}ij and {Bij}ij.



13

FIG. 3. Plot comparing the trace distance bound for
the simple bound from Ref. [10] (in red), the Fano’s
inequality, complementary-inforamtion tradeoff and Al-
icki—Fannes—Winter continuity bound (in blue) and the pro-
posed SDP bound (in black).

Proof. Refer to Appendix F.

To demonstrate the improvement from the trace dis-
tance bound, we compare the result with that in Ref. [10]
using the distance to a simpler QPV game and Ref. [9] us-
ing Fano’s inequality, complementary-information trade-
off and Alicki—Fannes—Winter continuity bound. We
plot the trace distance bound in Fig. 3 for the three sep-
arate analysis method for various ε̃ error rate. The SDP
formulation shows significant improvement to the trace
distance bound, and could be tight, matching the 1√

2

distance at zero error.

E. QPV with Multiple Measurement Basis

In general, QPV protocols where a single slow quan-
tum state is sent to the prover has a loss tolerance
that scales as η ∼ 1/n, where n is the number of basis
choice. Using BB84 states and measurement leads to a
<50% loss tolerance, which may be more challenging
to implement in practices. Consequently, the use of
multi-basis QPV protocols, such as that proposed in
Ref. [10] may be necessary. The key reason for the
low loss tolerance is due to a general attack where the
adversary can randomly select a basis to measure, and
post-select on rounds where the measured basis matches
the computed basis. Interestingly, this attack only scales
with the number of measurement basis, but not the
number of prepared states.

As such, we propose a multi-basis QPV where BB84
states are prepared and sent, and multiple measurement
basis on the X-Z plane of the Bloch sphere is utilized.

This can reduce the complexity of experimental imple-
mentation by reducing the number of states to prepare,
and requiring only operations within the X-Z plane
(e.g. rotating polarization axis instead of requiring
transformation to circular polarization). Moreover, it
may provide greater flexibility since the preparation and
measurement basis no longer needs to match, removing
the need for the party preparing the quantum state and
the verifiers to communicate details on state preparation.
This can reduce security vulnerabilities since the state
preparation information is no longer transferred before
the protocol begins.

In the proposed scheme with multiple basis, the
prover is still sent BB84 states, {|0⟩ , |1⟩ , |+⟩ , |−⟩}, but
can measure in different basis, e.g. (X + Z)/

√
2 basis.

Since the probability of obtaining a measurement is
no longer just 0 and 1 (when basis match), we have
to generalize the notion of an error rate. Suppose the
probability of measuring outcome z in basis θ for a
state |ψs⟩ is ηp(z|s, θ), where η is the probability of
detection, we can define a quantity termed deviation as∣∣ ⟨ψs|Πθz|ψs⟩ − ηp(z|s, θ)

∣∣ = δzsθ. During the protocol,
we measure the deviation instead of the error rate.

The protocol can thus be described in Protocol 4. The
security of the scheme is easy to demonstrate for an ad-
versary with no entanglement. The goal of the adversary
would be to pass the checks while it is not at position
P , i.e. getting as low a deviation as it can. The max-
imum deviation (analogous to error rate) an adversary
can achieve can be computed via an SDP,

min
1

4n

∑
zsθ

δzsθ

subj. to ⟨ψs|Aθ⊥ ⊗Bθ⊥|ψs⟩ = 1− η

⟨ψs|Aθz ⊗Bθz′ |ψs⟩ = 0, z ̸= z′,∀θ, s
− δzsθ ≤ ⟨ψs|Aθz ⊗Bθz |ψs⟩ − ηp(z|sθ) ≤ δzsθ,

(13)

where we minimize over the average of the deviation
values, with conditions (1) loss is 1 − η (where both
adversaries respond with ⊥), (2) classical response
cannot have any mismatch (both adversaries cannot give
different responses z ̸= z′), (3) the deviation from the
expected probability in the ideal case is bounded by the
deviation value δzsθ.

We solve the SDP numerically using ncpol2sdpa [20]
with cvxpy [21] and SCS solver [22]. Fig. 4 shows the
numerical results, for three to five measurement basis
choices. The behavior appears to be similar at high
transmission values η, before different number of basis
choice leads to drop offs in deviation closer to the loss
tolerance limit. The numerical results show a 1

n loss
tolerance, similar to using n basis with n measurement
basis. We note that the figure do not show exactly 1

n ,
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Protocol 4 QPV with multiple measurement basis
Goal. Verifiers certify that the prover is at position P .
Public Functions. Evaluation function f ′.

1. For i = 1, · · · , N , repeat the following process:

(a) Verifier Preparation: At the start of round i, the first and second verifiers randomly select x′i ∈ [2n] and y′i ∈ [2n]
respectively. Verifiers also communicate and agree on a time tP,i.

(b) Quantum State Transfer: A third party prepares a quantum system |ψs⟩Q, which corresponds to one of the four

BB84 states, {|0⟩ , |1⟩ , |+⟩ , |−⟩}. The third party sends the quantum system to the prover.

(c) Verifier Message: V1 and V2 sends x′i and y
′
i respectively at tP,i − dV1P /c and tP,i − dV2P /c such that they both

arrive at P at time tP,i.

(d) Quantum Measurement: The prover computes θi = f ′
θ(x

′
i, y

′
i) and measures quantum system Q in the computed

basis. The prover announces bdet,i = 1 if a photon is detected (i.e. measurement generates an outcome), and sends
the measurement outcome z1,i = z2,i = zi. If no photon is detected, it announces bdet,i = 0.

(e) Timing and Validity Check: V1 and V2 record the arrival time of the respective responses bdet,i, z1,i and z2,i as
tb,i, tz1,i and tz2,i. The verifiers first checks if the responses are valid, i.e. (1) z1,i = z2,i. The verifiers then check if
the timings are valid, (2) tz1,i − tP,i ≤ dV1P /c+ tδ, and (3) tz2,i − tP,i ≤ dV2P /c+ tδ for some threshold tδ. If any
checks fail, the protocol aborts immediately.

2. Deviation Estimation: V1 and V2 computes the deviation δzsθ =
∣∣∣Nzsθ

Nsθ
− ηp(z|sθ)

∣∣∣ for each outcome z, state s and

basis choice θ, where Nzsθ is the number of rounds with outcome z for state s and basis choice θ and Nsθ =
∑

z Nzsθ.
The verifier check if the total deviation δT (weighted if necessary) exceed a threshold δT > δthres. If the threshold is
exceeded, the protocol aborts.

FIG. 4. Plot of Deviation against Transmission for proposed
multi-basis QPV protocol using BB84 states.

but at the cut-off right before 1
n due to the choice of

precision of 0.01 for η in the numerical simulation.

Since loss tolerance may appear to scale with 1
n

without entanglement, we expect that the loss toler-
ance with entanglement to also improve with more
measurement basis. In a more practical setting where
finite-size effects and imperfect devices are present, the
loss tolerance value would similarly improve with more
basis choice, but the scaling would be worse. Honest
parties performing QPV with imperfect devices can

deviate from ideal target behavior of ηp(z|s, θ), which
leads to a systematic error that translate to a non-zero
average deviation value. On the other hand, if finitely
many rounds are performed, the statistical fluctuations
can lead to non-zero observed deviation7. These effects
would provide a guide on the deviation tolerance δtol and
number of rounds one should set for a robust protocol
(low abort rate for honest parties).

VI. DISCUSSION

While not explicitly addressed in the manuscript,
there is a mismatch in the adversary models of QKD
and QPV. QKD security is typically provided against
unbounded adversaries, while QPV require quantum
memory or quantum computational power restrictions.
Reconciling the two models would involve lowering the
QKD security guarantees to that of the QPV adversary,
though it is important to note that QPV restrictions can
sometimes be only for the duration of the protocol. For
instance, for bounded quantum memory, there can be
potential for QKD to provide better key rates since the
adversary’s quantum side-information E is restricted in
size. For restriction in computational power during the
protocol, one has to note that the computational power

7 Note that if there are finitely many rounds, the observed loss
may also have some deviation from 1− η.
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assumed may for QKD and QPV be different since their
run times can differ significantly. As such, weakening of
the adversary is unlikely to have much impact.

In the security analysis for secure key exchange,
some assumptions are made to simplify the analysis.
For instance, we assume implicitly that the protocol
completes at some fixed time T . One could relax this
assumption to explore the actual spacetime region (over
some locations and times) where parties would have
to trust instead of a fixed T . Assumptions to reduce
synchronization issues, such as agreed duration between
QPV rounds and QPV runs, and having ∆t to be larger
than QPV run times can also be relaxed. Without these
assumptions, the adversary may easily remap bits, for
instance from 10101 to 10011 if it is allowed to delay the
third QPV run of the sender to match the fourth QPV
run of the receiver. Therefore, alternative schemes such
as the encoding scheme proposed in Ref. [14] may be
necessary to lift the assumption. It is thus interesting to
explore methods of relaxing various assumptions made
and generalize the adversary.

Alternative adversary models can also be explored,
since there can be multiple ways of integrating QKD and
QPV. For instance, the current adversary model does
not admit scenarios where one party can exchange QKD
with Alice at a location P ′ and have a collaborator at
point P to perform QPV. While this may be a useful
“activation” property, it may be a problem in other
applications where the desire is to only exchange keys
with the party at P . In such scenarios, a stronger
adversary model is necessary, and greater integration of
QKD and QPV may be required.

While we tackle some open problems in QPV security
analysis with our generalization, the performance of the
QPV scheme worsens as a result. This is to be expected
as a more powerful adversary is studied, but this may
lead to more challenges in implementation. It is possible
to improve the number of partitions to enhance the
performance. However, an issue observed is that more
than half of the inputs are always attributed to the l1,r
partition (low loss, low error) by nature of the security
argument, leading to a penalty to the error tolerance by
a factor of 2. As such, it would be interesting to explore
alternative methods of analysis that can provide better
performance.

There are more open problems in QPV that can be
further explored to improve the theoretical support and
practical implementation of QPV. One major problem in
our generalization that is not addressed is the possibility
for the adversary to generate long classical strings from

measurements as part of quantum channels ExrAQ and EyrB .
Introducing such an additional classical register would
lead to an increase in the dimension of the quantum
channel and the corresponding unitary, which poses a
problem for the security analysis. Other open problems
that are of interest include studying security based on
bounds on the adversary’s entanglement as opposed to
its memory, and determining the function properties
that are necessary for QPV security.

VII. CONCLUSION

In summary, the manuscript proposes a secure key
exchange protocol that relies on location credentials of
parties, utilizing QPV sub-protocol to provide the neces-
sary authentication. We demonstrate that based on our
security model, the security of the overall protocol splits
into the QKD, QPV and hash family security conditions,
allowing for separate analysis of the sub-protocols.

Further noting that QPV security and implementation
is relatively less mature compared to QKD, we provide
some improvements, namely a generalization of the
adversary, tightening of the security bound via SDP,
and proposing a simpler multi-basis QPV protocol that
can achieve similar loss tolerance. This provides a first
step towards the practical implementation of QPV, and
its potential application to allow location credentials as
an alternative means of authentication in QKD without
any pre-shared keys.
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Appendix A: Secure Key Exchange with One-way Location Authentication Security Analysis

To aid in our analysis, we define a few important events:

• ΩM : Message sent by Bob MB matches that received by Alice M̂B .

• Ω′
PE : Idealized parameter estimation, which corresponds to a parameter estimation performed with the actual

messages MA and MB , passes.

• ΩH : Hash of Bob’s received message matches hash of Bob’s actual message, i.e. h(MB) = h(M̂B).

• ΩQPV : QPV sub-protocol passes, i.e. IQPV = 1.

• Ω: Alice and Bob decides to generate a key (does not abort).
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We note that the parameter estimation and idealized parameter estimation matches when the messages sent by Bob
matches, ΩPE ∧ ΩM = Ω′

PE ∧ ΩM . We also note that if Bob does not end up checking the hash, for instance if no
parties are at the right spacetime coordinates, the event is part of ΩcH .

Looking at the form of the output state and ideal state, we can define a specific ideal state with the following: (1)
p̃ = pΩ, (2) σ

1
E = ρE|Ω, and (3) σ0

E = ρE|Ωc . With this substitution, the trace distance can be expanded as

∆(ρ, ρideal)

=pΩ∆(ρKAKBE|Ω, τ̃KAKE
⊗ ρE|Ω)

=∆(ρKAKBE∧Ω, τ̃KAKE
⊗ ρE∧Ω)

≤∆(ρKAKBE∧(Ω∧ΩM ), τ̃KAKE
⊗ ρE∧(Ω∧ΩM )) + pΩ∧Ωc

M

≤∆(ρKAKBE∧(Ω′
PE∧ΩQPV ∧ΩM ), τ̃KAKE

⊗ ρE∧(Ω′
PE∧ΩQPV ∧ΩM )) + pΩ∧Ωc

M

≤∆(ρKAKBE∧Ω′
PE
, τ̃KAKE

⊗ ρE∧Ω′
PE

) + pΩ∧Ωc
M∧ΩH

+ pΩ∧Ωc
M∧Ωc

H

≤εQKD + pΩ∧Ωc
M∧ΩH

+ pΩ∧Ωc
M∧Ωc

H

≤εQKD + Pr[ΩH |ΩcM ] + Pr[ΩQPV |ΩcH ]

≤εQKD + εauth + εQPV .

(A1)

The first line expands the two states and the terms corresponding to event Ωc cancels out. The second line simplifies
the expression while the third line splits the state into two scenarios based on the event ΩM , noting that the trace of
ρE∧Ω′ is pΩ′ . The fourth line expands Ω = ΩQPV ∧ΩPE , and uses the fact that ΩM ∧ΩPE = ΩM ∧Ω′

PE . The fifth line
uses the fact that completely-positive non-trace-increasing (CPNTI) maps cannot increase trace distance to remove
extra conditions and splits the probability pΩ∧Ωc

M
based on the event ΩH . The sixth line notes that when parameter

estimation using the data from Alice and Bob (the party at location P at time T ) passes, it matches the security
condition of the original QKD sub-protocol where these data are exchanged with authentication. The seventh line
upper bounds the respective probability terms, noting pA∧B ≤ Pr[A|B]. In the final line, the probability Pr[ΩH |ΩcM ]
represents the probability that the hash matches, conditioned on the fact that Bob’s messages do not, which is upper
bounded by the 2-universal property of the hash function family, εauth = 1

lT
. The probability Pr[ΩQPV |ΩcH ] represents

the probability that QPV has passed, conditioned on the fact that the hash does not match, i.e. Bob responds to
QPV challenge with random responses. This probability is equivalent to an adversary not at location P passing QPV,
which can be bounded by the winning probability, εQPV .

Appendix B: Sending Authenticated Messages with QPV Security Analysis

We break the security analysis into two parts, one on the secure transmission of K, and the second involves the
security of the symmetric key authentication. The security of the QPV-based authenticated message transmission
can be defined by the probability that the tampering check passes, while the message sent does not match, i.e.

Pr
[
K ̸= K̂ ∧ ΩTC

]
. Since every message can be mapped to a unique codeword, the probability is equivalent to a

mismatch of codewords,

Pr
[
K ̸= K̂ ∧ ΩTC

]
≤ Pr

[
C ̸= Ĉ ∧HW (Ĉ) = lC + 2

]
, (B1)

which can be bounded by the nature of QPV.

We consider a QPV sub-protocol, which is secure when an adversary (not at position P ) has a low winning
probability εQPV (soundness of QPV) while an honest party has a high winning probability given by 1 − εrob
(robustness of QPV). We note that by assumption, the delay between QPV rounds and the delay between QPV runs
are fixed, i.e. the adversary can only break synchronization by having the two parties use different start times, tstart.
We also assume that the delay between QPV sub-protocols, ∆t, is larger than the duration for each run of the QPV
sub-protocol. As such, we claim that any attempts at causing the sender and receiver to lose synchronization, i.e.
having different tstart, would result in low probability of passing the tampering check.

Having the sender’s tstart to not begin at the receiver’s tstart + ∆t would result in some internal rounds within
each QPV sub-protocol to run without the presence of the receiver. This results in to a larger chance of failure for
rounds with Ci = 1 while not providing any advantage since none of the displaced internal rounds can contribute
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other runs when the delay between QPV runs ∆t is larger than the duration of each QPV run. Therefore, it would be
optimal for the adversary to select attacks that have the sender’s and receiver’s start time to differ by a factor of ∆t.
In this scenario, either the first or final QPV run would occur in the absence of the sender. Since C1 = C2lC+1 = 1
is expected, the adversary has to force the QPV round to pass, which by the security of QPV, can only occur with
probability less than εQPV .

Let us now consider the case where synchronization is maintained. Since Ĉ ̸= C while HW (Ĉ) = lC + 2 requires
at least a swap from 0 to 1 for some Ci and 1 to 0 from some Cj with indices i, j ∈ {1, · · · , 2lC + 1}, we can bound

Pr
[
K ̸= K̂ ∧ ΩTC

]
≤Pr

[
∃i, j ∈ {1, · · · , 2lC + 1}, s.t. Ĉi = 1, Ci = 0, Ĉj = 0, Cj = 1

]
≤Pr

[
∃i ∈ {1, · · · , 2lC + 1}, s.t. Ĉi = 1, Ci = 0

]
≤lCεQPV ,

(B2)

where we note having Ĉj = 0 while Cj = 1 can be performed with high probability and that there are lC QPV runs

with Ci = 0 where an adversary can attempt to force Ĉi = 1. Combining the cases, the message authentication
protocol runs with security lCεQPV . Noting that we can simplify

(
2l′C
l′C

)
≤ 2lK =⇒ 22l

′
Chb(1/2) ≤ 2lK =⇒ l′C ≤ lK

2
, (B3)

we can bound the security by ⌈ lK2 ⌉εQPV .

For a scenario where all parties are honest, there can be a chance where the sender’s responses in QPV is recorded
as a failure when Ci = 1. The message authentication is robust when authentication passes if all parties are honest,
i.e. HW (Ĉ) = lC+2. We can lower bound this by the probability that C = Ĉ, i.e. no accidental tampering occurred.
The probability can be computed

Pr
[
C = Ĉ

]
=1− Pr

[
C ̸= Ĉ

]
≥1−

2lC+2∑
i=1

Pr
[
Ci ̸= Ĉi

]
≥1− (lC + 2)Pr

[
Ci = 1, Ĉi = 0

]
≥1− (lC + 2)εrob,

(B4)

where we note the non-response of the sender would force Ĉi = 0 whenever Ci = 0. Therefore, the protocol has a
robustness of (⌈ lK2 ⌉+ 2)εrob.

For the overall authenticated message protocol, we have to additionally consider the possibility that an adversary
can delay some steps. The main delay tactic that an adversary can perform is to delay the arrival of M and T to the
receiver. In this case, the adversary is able impersonate the receiver and perform QPV with the sender to learn of
the key K before sending a different message-tag pair (M ′, T ′) that the receiver would accept. However, such a delay
would require the adversary to later pass the QPV-based authenticated messaging step by representing a K ′ to the
receiver while not being at the right location. On the other hand, if the step order is obeyed, the δ-almost strongly
2-universal family of hash functions guarantee that without knowledge of secret K (which has yet to be announced
at step 2), the adversary is unable to find a second message-tag pair with probability greater than δ.

More formally, defining T ′ = hK̂(M̂) and ΩMT as the event where the message and tag arrives at the receiver before
QPV is performed, the soundness (probability where messages do not match but tampering check test passes) can be
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reduced to

Pr
[
M ̸= M̂, T ′ = T̂

]
=Pr

[
M ̸= M̂, T ′ = T̂ ,ΩMT

]
+ Pr

[
M = M̂, T ′ = T̂ ,ΩcMT

]
≤Pr

[
M ̸= M̂, T ′ = T̂ ,ΩMT ,K = K̂

]
+ Pr

[
K ̸= K̂,ΩTC

]
+ Pr[ΩTC |ΩcMT ]

≤Pr
[
M ̸= M̂, hK(M̂) = T̂ ,ΩMT

]
+ 2⌈ lK

4
⌉εQPV

≤δ + 2⌈ lK
2
⌉εQPV ,

(B5)

where the first line splits the delay and non-delay strategies. In the second line, we further split the probabilities based
on the event K = K̂, i.e. whether the key K is sent without tampering, and using the fact that ΩTC is implicit in
T ′ = T̂ since no T ′ is generated when tampering checks fails. In the third line, the latter two terms corresponds to (1)
the event where tampering check passes, but the message sent is different, and (2) the event where tampering checks
pass with the sender not participating. Both events corresponds to successful attacks of the QPV-based authenticated
transmission ofK, which is bounded by the soundness ⌈ lK2 ⌉εQPV . The final line gives the probability that an adversary

can find a message-tag pair (M̂, T̂ ) without knowing K (since it is announced after T̂ arrives at Bob), and thus is
bounded by the δ-almost two-universal property of the hash family. The robustness of Protocol 2 matches that of
the robustness of the QPV-based message authentication protocol since no additional avenues of abort is introduces,
i.e. the protocol is (⌈ lK2 ⌉+ 2)εrob-robust.

Appendix C: Secure Key Exchange with Location Credentials Security Analysis

We show the security of Protocol 3 reduces to the security of the QKD sub-protocol, the QPV sub-protocol and
the δ-almost strongly 2-universal hash family. We can consider a QPV sub-protocol with εrob-robustness and εQPV -
soundness and a δ-almost strongly 2-universal hash family, which allows the sending of an authenticated message
with QPV as discussed in Sec. IVB. We can also consider a QKD sub-protocol with delayed authentication, with the
QPV steps replaced by authentication channels, i.e. messages are transmitted without tampering and loss. We note
that such protocols exists [15, 16], and can assume that they have been properly designed to provide QKD security
at εQKD. More specifically, consider the events

1. ΩM : Event where messages match, MA = M̂A and MB = M̂B (equivalently M =M ′).

2. ΩPE,A and ΩPE,B : Event where Alice and Bob believes parameter estimation passes, IPE,A = 1 and IPE,B = 1.

3. Ω′
PE,A and Ω′

PE,B′ : Event where IPE,A = 1 and IPE,B = 1 if they are determined from MA and MB (un-

tampered messages).

4. ΩK : Event where the sending of authenticated hash function key is successful (K = K̂).

5. ΩT : Event where tag T is not tampered by the adversary.

6. ΩH : Event where I = 1, i.e. the tags match T̂ = hK̂(M ′).

If the QPV sub-protocol (step 6) and authenticated message transfer (steps 3 to 5) are replaced by perfect authen-
tication channels, both Alice and Bob would decide to jointly generate keys in the event where the messages match
perfectly and parameter estimation passes, ΩPE,A ∧ ΩPE,B ∧ ΩM . As such we define the QKD security as

εQKD = ∆(ρKAKBE∧Ω′
PE,A∧Ω′

PE,B∧ΩM
, τ̃KAKB

⊗ ρE∧Ω′
PE,A∧Ω′

PE,B∧ΩM
), (C1)

where we note that ΩM ∧ΩPE,A ∧ΩPE,B = ΩM ∧Ω′
PE,A ∧Ω′

PE,B , which provides a security guarantee independent
on the method of sending authenticated messages.

In the proposed protocol, Alice generates a secret key when ΩA = ΩQPV ∧ΩPE,A while Bob generates a secret key
when ΩB = ΩH ∧ ΩPE,B . As such, the security can be split based on the scenarios,

∆(ρKAKBE , ρ
ideal
KAKBE) ≤Pr[ΩA ∧ ΩcB ] + ∆(ρKBE∧ΩB∧Ωc

A
, τKB

⊗ ρE∧ΩB∧Ωc
A
)

+ ∆(ρKAKBE∧ΩA∧ΩB
, τ̃KAKB

⊗ ρE∧ΩA∧ΩB
),

(C2)
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and we can analyze each term separately.

The first term is the probability that Alice generates a key while Bob does not. Since Bob does participate in the
QPV sub-protocol when he aborts, it is difficult for any adversary to force QPV to pass for Alice, i.e.

Pr[ΩA ∧ ΩcB ] ≤ Pr[ΩQPV |ΩcB ] ≤ εQPV , (C3)

with a guarantee by the soundness of QPV.

The second term corresponds to the case where Bob generates a key while Alice does not. We can remove the
condition where Alice does not generate a key,

∆(ρKBE∧ΩB∧Ωc
A
, τKB

⊗ ρE∧ΩB∧Ωc
A
) ≤ ∆(ρKBE∧ΩH∧ΩPE,B

, τKB
⊗ ρE∧ΩH∧ΩPE,B

). (C4)

The trace distance can be simplified by splitting it into three mutually exclusive regions,

∆(ρKBE∧ΩH∧ΩPE,B
, τKB

⊗ ρE∧ΩH∧ΩPE,B
)

≤∆(ρKBE∧ΩH∧ΩPE,B∧ΩPE,A∧ΩM
, τKB

⊗ ρE∧ΩH∧ΩPE,B∧ΩPE,A∧ΩM
)

+ Pr[ΩH ∧ ΩPE,A ∧ ΩPE,B ∧ ΩcM ] + Pr
[
ΩH ∧ ΩPE,B ∧ ΩcPE,A

]
.

(C5)

Since ΩM ∧ ΩPE,A ∧ ΩPE,B = ΩM ∧ Ω′
PE,A ∧ Ω′

PE,B , we can upper bound the first component by

∆(ρKBE∧ΩH∧ΩPE,B∧ΩPE,A∧ΩM
, τKB

⊗ ρE∧ΩH∧ΩPE,B∧ΩPE,A∧ΩM
)

≤∆(ρKBE∧Ω′
PE,B∧Ω′

PE,A∧ΩM
, τKB

⊗ ρE∧Ω′
PE,B∧Ω′

PE,A∧ΩM
)

≤∆(ρKAKBE∧Ω′
PE,B∧Ω′

PE,A∧ΩM
, τ̃KAKB

⊗ ρE∧Ω′
PE,B∧Ω′

PE,A∧ΩM
)

≤εQKD,

(C6)

where the second inequality uses the fact that partial trace of KA cannot increase trace distance. The second
component follows from the the security of the message authentication from QPV protocol,

Pr[ΩH ∧ ΩPE,A ∧ ΩPE,B ∧ ΩcM ] ≤ Pr
[
M ̸= M̂, T ′ = T̂

]
≤ δ + 2⌈ lK

2
⌉εQPV . (C7)

The final term describes the scenario that Alice decides that parameter estimation has failed, IPE,A = 0, where she
does not participate in sending the authenticated message K. As such, we can bound

Pr
[
ΩH ∧ ΩPE,B ∧ ΩcPE,A

]
≤ Pr

[
Ω′
QPV |ΩcPE,A

]
≤ εQPV , (C8)

where Ω′
QPV refers to the first QPV run within Protocol 2, noting that we can bound the overall probability of

obtaining HW (Ĉ) = lC + 2 by the probability of passing the first QPV run and forcing Ĉ1 = 1 when Alice does not
participate. Combining the results, the second term yields

∆(ρKBE∧ΩB∧Ωc
A
, τKB

⊗ ρE∧ΩB∧Ωc
A
) ≤ εQKD + δ + (2⌈ lK

2
⌉+ 1)εQPV , (C9)

which are dependent on the security of the component protocols.

The final term can be simplified in a similar manner, splitting into two mutually exclusive regions,

∆(ρKAKBE∧ΩA∧ΩB
, τ̃KAKB

⊗ ρE∧ΩA∧ΩB
)

≤∆(ρKAKBE∧ΩQPV ∧ΩPE,A∧ΩH∧ΩPE,B∧ΩM
, τ̃KAKB

⊗ ρE∧ΩQPV ∧ΩPE,A∧ΩH∧ΩPE,B∧ΩM
)

+ Pr[ΩQPV ∧ ΩPE,A ∧ ΩH ∧ ΩPE,B ∧ ΩcM ],

(C10)

where the latter term is bounded by δ + 2⌈ lK2 ⌉εQPV . The first term can be simplified by removing conditions except
ΩPE,A ∧ ΩPE,B ∧ ΩM , reducing it to the QKD security parameter, εQKD.

Therefore, the overall security can be given by

∆(ρKAKBE , ρ
ideal
KAKBE) ≤ 2εQKD + 2δ + (4⌈ lK

2
⌉+ 2)εQPV . (C11)
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The robustness of the protocol is a simple combination of the robustness of the QKD protocol εQKDrob , the QPV

sub-protocol εQPVrob , and the authenticated message transfer protocol εauthrob ,

εrob =Pr[ΩcA ∨ ΩcB ]

=Pr
[
ΩcQPV ∨ ΩcPE,A ∨ ΩcPE,B ∨ ΩcH

]
≤Pr

[
Ω

′c
PE,A ∨ Ω

′c
PE,B

]
+ Pr[ΩcH ∧ ΩPE,A] + Pr

[
ΩcQPV ∧ ΩH ∧ ΩPE,B

]
≤εQKDrob + εauthrob + εQPVrob

≤εQKDrob + (⌈ lK
2
⌉+ 3)εQPVrob

(C12)

where the third line splits the probability into mutually exclusive regions, and notes that the messages are not tampered
in the honest case, i.e. ΩPE,A/B = Ω′

PE,A/B . In the fourth line, we notice that failing any parameter estimation

tests corresponds to the robustness of QKD, failing the authenticated message transfer when Alice is involved in the
protocol corresponds to the robustness of authenticated message transfer, and failing QPV when Bob is involved in
the protocol corresponds to the robustness of the single QPV sub-protocol run.

Appendix D: Purifying QPV Attacks

1. Partial Purification

We first define the winning probability by through an optimization problem:

max
σr
AB∈S2q

Exr
AQ∈Cq+1,Eyr

B ∈Cq

{Axyr
z },{Bxyr

z }

∑
rzxy

pr
|X ||Y|

Tr
[
(Πf(x,y)z ⊗Axyrz ⊗Bxyrz )ρxyrA′B′V

]

subj.to
∑
xyr

pr
|X ||Y|

Tr[(IV ⊗Axyr⊥ ⊗Bxyr⊥ )ρxyrA′B′V ] = 1− η

Tr[(IV ⊗Axyrz ⊗Bxyrz̄ )ρxyrA′B′V ] = 0, ∀z, x, y, r

, (D1)

where

ρxyrA′B′V = M◦ ExrAQ(
∣∣Φ+

〉〈
Φ+

∣∣
V Q

⊗ EyrB (σrAB)) (D2)

and M refers to the map from AB to A′B′.

The purification can be performed in two steps. We first purify the quantum system by introducing a quantum
system P of dimension 22q, and selecting a purification such that TrP [|ψr⟩⟨ψr|ABP ] = σrAB [19]. Furthermore, we can
lift the quantum channels to higher dimensional unitaries by introducing quantum systems PA and PB , of dimension

22(q+1) and 22q respectively, and selecting the unitaries such that TrPA
[UxrAQPA

(ρAQ ⊗ |0⟩⟨0|PA
)Uxr†AQPA

] = ExrAQ(ρ) for
any state ρAQ and TrPB

[UyrBPB
(ρB ⊗ |0⟩⟨0|PB

)Uyr†BPB
] = EyrB (ρB) for any state ρB [19]. We note that the states and

channels for different value r can be separately purified, with the purification system being of the same Hilbert space,
since they can be distinguished from the value of r. Collating the changes, this leads to the partially purified state

ρA′B′V PPAPB
=

∑
r

pr |r⟩⟨r|R ⊗M[(UxrAQPA
⊗ UyrBPB

)(
∣∣Φ+

〉〈
Φ+

∣∣
V Q

⊗ |ψr⟩⟨ψr|ABP ⊗ |0⟩⟨0|PAPB
)(UxrAQPA

⊗ UyrBPB
)†]

and TrPPAPB
[ρA′B′V PPAPB

] = ρA′B′V .

As a consequence, any mixed state strategy can be expressed as a pure state strategy of the higher dimension.
As such, optimizing over the larger set of higher dimension pure state strategy can only lead to a larger winning
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probability, given by

max
|ψr⟩ABP∈Sp

4q

Uxr
AQPA

∈CU
3(q+1),U

yr
BPB

∈CU
3q

{Axyr
z },{Bxyr

z }

∑
rzxy

pr
|X ||Y|

Tr
[
(Πf(x,y)z ⊗Axyrz ⊗Bxyrz ) |Ψxyr⟩⟨Ψxyr|

]

subj.to
∑
xyr

pr
|X ||Y|

Tr[(IV ⊗Axyr⊥ ⊗Bxyr⊥ ) |Ψxyr⟩⟨Ψxyr|] = 1− η

Tr[(IV ⊗Axyrz ⊗Bxyrz̄ ) |Ψxyr⟩⟨Ψxyr|] = 0, ∀z, x, y, r

, (D3)

where

|Ψxyr⟩A′B′V = M′(UxrAQPA
⊗ UyrBPB

)(
∣∣Φ+

〉
V Q

⊗ |ψr⟩ABP ), (D4)

and M ′ is the permutation matrix representing the mapping from AQB to A′B′.

2. Net Size of Purified Strategy

It is known that the upper bound of the covering number of a hypersphere with norm 1 can be given by [23]

Theorem 12. Let ∥.∥ be any norm on points x ∈ Rd. The covering number for a δ-net for a norm-ball of unit radius
can be bounded by

|N | ≤
(
1 +

2

δ

)d
As such, we can compute the covering number for the set of pure states,

Theorem 13. The set of pure states in a Hilbert space with dimension d, i.e. {|ψ⟩ : |ψ⟩ ∈ Hd}, has a δ-covering net
in the Euclidean norm with covering number

|NS | ≤
(
1 +

2

δ

)2d

Proof. The set of pure states in a Hilbert space with dimension d, can be described by

|ψ⟩ =
d∑
j=1

(aj + bji) |j⟩ , (D5)

for any orthonormal basis {|j⟩}j , with the normalization constraint
√∑

j(a
2
j + b2j ) = 1. As such, the set of pure

states forms a unit sphere in Euclidean norm, with x = ({aj}j , {bj}j), i.e. x ∈ R2d, and with ∥x∥2 = 1 for all states.

Therefore, by Thm. 12, |NS | ≤
(
1 + 2

δ

)2d
.

Consequently, since we consider 4q-qubit pure states,

log2 |NS | ≤ 24q+1 log2

(
1 +

2

δ

)
. (D6)

We can also compute the covering number for a unitary matrix in operator norm, using ideas from Ref. [24]. We
note that operator norm here is defined to be induced from the 2-norm, i.e. ∥A∥op = max∥x∥2≤1 ∥Ax∥2.

Theorem 14. The set of unitary matrices that acts on a Hilbert space with dimension d, i.e. {U |U : Hd → Hd}, has
a δ-covering net in the operator norm with covering number

|NU | ≤
(
1 +

2

δ

)2d2

.
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Proof. Since all unitary operators do not alter the Euclidean norm of any vector, all unitary operators have operator
norm 1, ∥U∥op = 1. As such, we can describe the set of unitary operators U =

∑
jk(ajk + bjki) |j⟩⟨k| by a vector x =

({ajk}jk, {bjk}jk), with x ∈ R2d2 , since the unitary contain d2 complex entries. The set of unitaries are constrained by

∥x∥opvec = 1, where ∥.∥opvec is a norm on the vector x ∈ R2d2 , and is computed by reforming x into the corresponding

unitary matrix and computing the corresponding operator norm. Therefore, by Thm. 12, |NU | ≤
(
1 + 2

δ

)2d2
.

Consequently, for the two unitary matrices we consider, we have

log2 |NA| ≤ 26q+7 log2

(
1 +

2

δ

)
log2 |NB | ≤ 26q+4 log2

(
1 +

2

δ

)
.

(D7)

In the proof of Thm. 14, we have not made used of the fact that UA and UB are purification of their corresponding
CPTP maps. This purification property implies that only the first 2q row of the unitary matrix is relevant to describe
the strategy since the states are always initialized as |0⟩ in systems PAPB . As such, it may be possible to further
reduce the covering number by restricting the set of unitaries discussed. For simplicity, we leave any such optimization
to future work.

Appendix E: Transmission and Error Partitioning Security

1. Proof of Thm. 6

Let us choose δ < δ̃
6 . Consider δ-nets NS , NA and NB , corresponding to that for the set of pure states of

dimension 4q in Euclidean norm, the set of unitaries acting on Hilbert space with dimension 3(q + 1) in operator

norm, and the set of unitaries acting on Hilbert space with dimension 3q in operator norm. Let |ϕλ⟩ ∈ NS , U
x′

A ∈ NA

and Uy
′

B ∈ NB , where λ, x′ and y′ label the choice of the nets. Define an set that extends S ε̃,η̃i by a 3δ-ball,

S ε̃,η̃i,3δ = {|ψ⟩ : ∃ |ϕ⟩ ∈ S ε̃,η̃i ,∆(|ψ⟩ , |ϕ⟩) ≤ 3δ}. Note that by choice of δ and the fact that S ε̃,η̃0 and S ε̃,η̃1 are more than
6δ apart in trace distance, the two extended sets do not intersect. This allows us to define a function g that computes
an output for each net,

g(x′, y′, λ) =


0 (Ux

′

A ⊗ Uy
′

B )(|ϕλ⟩ ⊗ |Φ+⟩) ∈ S ε̃,η̃0,3δ

1 (Ux
′

A ⊗ Uy
′

B )(|ϕλ⟩ ⊗ |Φ+⟩) ∈ S ε̃,η̃1,3δ

0/1 (Ux
′

A ⊗ Uy
′

B )(|ϕλ⟩ ⊗ |Φ+⟩) /∈ S ε̃,η̃0,3δ,S
ε̃,η̃
1,3δ

. (E1)

We note here that the choice of 0 or 1 does not matter in the final scenario, and a random choice can be made.

What remains is to prove that the g defined forms a classical rounding. For any sub-strategies with
(εthres, ηthres, l1,r, l2,r, l3,r, l4,r)-partition, we can define x′ = fA(x), y

′ = fB(y), λ as the labels indicating the closest
unitary and state (of the nets) to UxrAQPA

, UyrBPB
and |ψr⟩ABP . For any of the l1,r (x, y) pairs, the strategy satisfies

pe|rxy ≤ εthresη, pt|rxy ≥ ηthres and the matching condition. As such, the state generated before measurement is given

by (UxrAQPA
⊗UyrBPB

) |ψ′
r⟩ ∈ S ε̃,η̃f(x,y), where we define |ψ′

r⟩ = |ψr⟩⊗ |Φ+⟩. By definition of the δ-net, we can always find

the a closest unitary and state Ux
′

A , Uy
′

B and |ϕλ⟩, each of which is δ-close to the strategy. We can therefore show that
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(UxrAQPA
⊗ UyrBPB

) |ψ′
r⟩ and (Ux

′

A ⊗ Uy
′

B ) |ϕ′λ⟩ are close, where we define |ϕ′λ⟩ = |ϕλ⟩ ⊗ |Φ+⟩

∆((UxrAQPA
⊗ UyrBPB

) |ψ′
r⟩ , (Ux

′

A ⊗ Uy
′

B ) |ϕ′λ⟩)

≤
∥∥∥(UxrAQPA

⊗ UyrBPB
) |ψ′

r⟩ − (Ux
′

A ⊗ Uy
′

B ) |ϕ′λ⟩
∥∥∥
2

≤
∥∥∥(UxrAQPA

⊗ UyrBPB
) |ψ′

r⟩ − (Ux
′

A ⊗ UyrBPB
) |ψ′

r⟩
∥∥∥
2
+
∥∥∥(Ux′

A ⊗ UyrBPB
) |ψ′

r⟩ − (Ux
′

A ⊗ Uy
′

B ) |ψ′
r⟩
∥∥∥
2

+
∥∥∥(Ux′

A ⊗ Uy
′

B ) |ψ′
r⟩ − (Ux

′

A ⊗ Uy
′

B ) |ϕ′λ⟩
∥∥∥
2

≤
∥∥∥(UxrAQPA

− Ux
′

A )⊗ I
∥∥∥
op

∥∥(I⊗ UyrBPB
) |ψr⟩′

∥∥
2
+
∥∥∥I⊗ (UyrBPB

− Uy
′

B )
∥∥∥
op

∥∥∥(Ux′

A ⊗ I) |ψ′
r⟩
∥∥∥
2

+ ∥|ψ′
r⟩ − |ϕ′λ⟩∥2

≤3δ.

(E2)

Therefore, (Ux
′

A ⊗ Uy
′

B ) |ϕ′λ⟩ ∈ S ε̃,η̃f(x,y),3δ, and we can correctly assign the value of g(x′, y′, λ) = f(x, y). We note

that the δ-net for unitaries are defined by norm ∥·∥opvec, and ∥u− v∥opvec = ∥U − V ∥op, where u and v are vector

representation of the unitaries U and V . Since this works for all l1,r pairs of (x, y) and for any sub-strategies, we can
conclude that g is a valid classical rounding.

The sizes of the discretized sets are given by Eqn. (D6) and Eqn. (D7). Therefore, we select the maximum set size
as k, with

k = 26q+7

[⌈
log2

(
1 +

12

δ̃

)⌉
+ 1

]
, (E3)

where we note that δ can be selected close enough to δ̃
6 to cause a single bit change in the logarithm value.

2. Proof of Thm. 7

For a fixed classical rounding of size k, it is possible to implement a maximum of 2k × (2k)2
n × (2k)2

n

= 2k(2
n+1+1)

functions. Therefore, for a random function f , the probability that we can find a suitable fA and fB such that
g(fA(x), fB(y), λ) and f(x, y) differ in at most 22nν (x, y) pairs (represented by the Hamming distance between a
bitstring describing the output for each input) is

Pr
[
f : ∃fA, fB , λ s.t. dH(f, g) ≤ 22nν

]
=

∣∣f : ∃fA, fB , λ s.t. dH(f, g) ≤ 22nν
∣∣

|{f : {0, 1}2n → {0, 1}|

≤
|f : ∃fA, fB , λ s.t. dH(f, g) = 0|[

∑22nν
i=0

(
22n

i

)
]

222n

≤2k(2
n+1+1)+22nhb(ν)−22n

≤22n

{
hb(ν)− 1 + 29−6q0

[⌈
log2

(
1 +

12

δ̃

)⌉
+ 1

]}
,

(E4)

where the third line upper bounds the number of functions with Hamming distances less than 22nν by considering
functions with zero Hamming distance and including a ball of functions that are less than 22nν in Hamming distance
from these functions, and the fourth line provides a bound on the sum of binomial coefficients [25] using binary entropy
hb(x), while the final line expands k and performs some upper bounding to simplify the equation. We want to select
a suitable ν such that being able to find fA and fB is the exception that occurs with probability less than 2−α, which
implies

ν = h−1
b

{
1− 29−6q0

[⌈
log2

(
1 +

12

δ̃

)⌉
+ 1

]
− α

22n

}
, (E5)

where we note ν ∈ [0, 12 ] for the inverse of binary entropy to exist.
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3. Proof of Thm. 9

We can compute the total error of any sub-strategy with (εthres, ηthres, {l1,r, l2,r, l3,r, l4,r}r)-partition by

perr|r =
1

22n

4∑
i=1

li,rperr|i, (E6)

where perr|i is the average error for events in their respective partitions. We can lower bound this error probability
by the definition of the partitions.

perr|r >
1

22n
εthresη(l3,r + l4,r). (E7)

Similarly, we have that the average transmission of the sub-strategy is bounded,

ηr =
1

22n

4∑
i=1

li,rηr|i

≤ 1

22n
[(l1,r + l3,r) + (l2,r + l4,r)ηthres]

=
1

22n
[(l1,r + l3,r)(1− ηthres) + 22nηthres],

(E8)

noting that
∑4
i=1 li,r = 22n since the partitions sum to include all (x, y) pairs. As such, we can formulate a linear

program (LP) to find a valid lower bound on perr. By defining l′i,r =
1

22n l1,r, the lower bound can be given by

min (l′3,r + l′4,r)εthresη

subj. to l′1,r + l′2,r + l′3,r + l′4,r = 1

l′i,r ≥ 0,∀i
l′1,r ≤ 1− ν

l′1,r + l′3,r ≥
ηr − ηthres
1− ηthres

(E9)

We can solve the LP analytically.

We consider two cases, one where 1 − ν > ηr−ηthres
1−ηthres and one where 1 − ν ≤ ηr−ηthres

1−ηthres . In the first case, one primal

solution is (l′1,r, l
′
2,r, l

′
3,r, l

′
4,r) = (ηr−ηthres

1−ηthres
, 1 − ηr−ηthres

1−ηthres , 0, 0), if ηr ≥ ηthres, or (l′1,r, l
′
2,r, l

′
3,r, l

′
4,r) = (0, 1, 0, 0), if

ηr < ηthres. In both scenarios, we have that a primal value of 0. In the second case, we can have a primal solu-
tion (l′1,r, l

′
2,r, l

′
3,r, l

′
4,r) = (1−ν, 1− ηr−ηthres

1−ηthres
, ηr−ηthres1−ηthres −1+ν, 0), which gives a primal value of (ηr−ηthres1−ηthres −1+ν)εthresη.

To prove that these solutions are optimal, we construct the dual of the LP. We first note that for simplicity, we can
combine the first two constraints by removing l′2,r, giving l

′
1,r + l′3,r + l′4,r ≤ 1. We then construct a Lagrangian,

L({li,r}i, {λj}j) =(l′3,r + l′4,r)εthresη + λ1(−l′1,r) + λ2(−l′3,r) + λ3(−l′4,r) + λ4(1− l′1,r − l′3,r − l′4,r)

+ λ5(l
′
1,r − 1 + ν) + λ6

(
ηr − ηthres
1− ηthres

− l′1,r − l′3,r

)
,

(E10)

where λi ≥ 0 are the dual variables. We can therefore construct the dual problem, as

max − λ4 − λ5(1− ν) + λ6
ηr − ηthres
1− ηthres

subj. to λj ≥ 0, ∀j
λ1 + λ6 = λ4 + λ5

λ2 + λ6 = λ4 + εthresη

λ3 = λ4 + εthresη.

(E11)
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Consider the first case of 1 − ν > ηr−ηthres

1−ηthres
. We can choose the dual solution λ⃗ = (0, εthresη, εthresη, 0, 0, 0), which

satisfies all constraints and gives a dual value of 0. For the second case of 1 − ν ≤ ηr−ηthres
1−ηthres , we can take the dual

solution λ⃗ = (0, 0, εthresη, 0, εthresη, εthresη), which gives dual value εthresη[
ηr−ηthres
1−ηthres − 1 + ν]. Since LP has strong

duality, the matching primal and dual solution provides the optimal solution, which can be summarized as

perr|r ≤ max{εthresη[
ηr − ηthres
1− ηthres

− 1 + ν], 0}. (E12)

Appendix F: Improvement to Trace Distance Bound Proof

Since |Ψ0⟩ and |Ψ1⟩ are pure states in the same Hilbert space, their trace distance is related to their inner product
(or fidelity) via [19]

∆(|Ψ0⟩ , |Ψ1⟩) =
√
1− |⟨Ψ0|Ψ1⟩|2. (F1)

The states also must satisfy the constraints from S̃ ε̃,η̃i , namely the error rate, transmission rate and mismatch responses.
The mismatch of responses implies that the state is chosen such that Aiz ⊗ Biz′ measurements for z ̸= z′ yield 0
expectation value, i.e. for any i, j and z ̸= z′,

⟨ψij |Aiz ⊗Biz′ |ψij⟩ = 0. (F2)

The transmission rate for each state is given by the probability that Alice and Bob do not respond with ⊥,

⟨Ψi|I⊗ (Ai0 ⊗Bi0 +Ai1 ⊗Bi1)|Ψi⟩ ≥ η̃, (F3)

which gives

1

2

1∑
j=0

⟨ψij |Ai0 ⊗Bi0 +Ai1 ⊗Bi1|ψij⟩ ≥ η̃ (F4)

when expanded. The error rate for each state is given that the probability that Alice and Bob’s responses do not
match with the verifiers. For basis 0, the Z-basis, this is given by

⟨Ψ0|(|0⟩⟨0| ⊗A0
1 ⊗B0

1 + |1⟩⟨1| ⊗A0
0 ⊗B0

0)|Ψ0⟩ ≤ ε̃, (F5)

which can be expanded as

1

2
[ ⟨ψ00|A0

1 ⊗B0
1 |ψ00⟩+ ⟨ψ01|A0

0 ⊗B0
0 |ψ01⟩] ≤ ε̃. (F6)

For basis 1, the X-basis, this is given instead by

⟨Ψ1|(|+⟩⟨+| ⊗A1
1 ⊗B1

1 + |−⟩⟨−| ⊗A1
0 ⊗B1

0)|Ψ1⟩ ≤ ε̃, (F7)

which can be expanded as

1

4

 1∑
i,j=0

⟨ψ1i|A1
1 ⊗B1

1 |ψ1j⟩+
1∑

i,j=0

(−1)i+j ⟨ψ1i|A1
0 ⊗B1

0 |ψ1j⟩

 ≤ ε̃. (F8)

By the nature of the states |ψ0j⟩, we have an additional property, where

⟨ψ0j |ψ0j′⟩ =(⟨ψ| ⊗ ⟨j|)(U†
AQ ⊗ U†

B)(UAQ ⊗ UB)(|ψ⟩ ⊗ |j′⟩)
= ⟨j|j′⟩
=δjj′ ,

(F9)
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since {|j⟩}j form an orthonormal basis of the single qubit system Q. A similar relation is true for |ψ1j⟩. As such, the
optimization problem

min

√
1− |⟨Ψ0|Ψ1⟩|2

subj. to ⟨ψij |ψij′⟩ = δjj′ , i ∈ {0, 1}

1

2

1∑
j=0

⟨ψij |Ai0 ⊗Bi0 +Ai1 ⊗Bi1|ψij⟩ ≥ η̃, i ∈ {0, 1}

1

2
[ ⟨ψ00|A0

1 ⊗B0
1 |ψ00⟩+ ⟨ψ01|A0

0 ⊗B0
0 |ψ01⟩] ≤ ε̃

1

4

 1∑
i,j=0

⟨ψ1i|A1
1 ⊗B1

1 |ψ1j⟩+
1∑

i,j=0

(−1)i+j ⟨ψ1i|A1
0 ⊗B1

0 |ψ1j⟩

 ≤ ε̃

⟨ψij |Aiz ⊗Biz′ |ψij⟩ = 0, ∀z ̸= z′, i, j ∈ {0, 1}

(F10)

provides a valid lower bound, noting that relaxing the set of constraints in a minimization problem can only reduce
the optimal value.

To arrive at an SDP, changes have to made to the optimization problem. We first note that minimizing
√
1− x2 with

constraints on x is equivalent to computing
√
1− S2, where S is the maximization of x with the same constraints. To

simplify the maximization of |⟨Ψ0|Ψ1⟩|, we first note that all the constraints are invariant to a global phase applied on
|Ψ1⟩. Since the global phase can be freely chosen, maximizing |⟨Ψ0|Ψ1⟩| is equivalent to maximizing Re[⟨Ψ0|Ψ1⟩], since
Re[⟨Ψ0|Ψ1⟩] ≤ |⟨Ψ0|Ψ1⟩|, and there exist a global phase where ⟨Ψ0|Ψ1⟩ ∈ R. Finally, we can relax the maximization
problem into an SDP using the NPA hierarchy [26, 27]. The tensor product structure of measurement operators Aij
and Bi

′

j′ can be relaxed to consider commuting operators [Aij , B
i′

j′ ] = 0. We consider the set of states {|ψij⟩}ij and the

set of operators {Aij}ij and {Bij}ij , and we can consider successively bigger sets of states |ξi⟩ (a hierarchy) formed
from product of the operators one of the state. This allows us to construct a Gram matrix Γ as described in the
theorem, which is positive semi-definite. Since all other terms in the maximization can be described by entries of
the Gram matrix (note commutation relation can be enforced by equating terms in the Gram matrix), the resulting
optimization problem

max
1

2
Re[⟨ψ00|ψ10⟩+ ⟨ψ01|ψ11⟩]

subj. to Γ ≥ 0

⟨ψij |ψij′⟩ = δjj′ , i ∈ {0, 1}

1

2

1∑
j=0

⟨ψij |Ai0Bi0 +Ai1B
i
1|ψij⟩ ≥ η̃, i ∈ {0, 1}

1

2
[ ⟨ψ00|A0

1B
0
1 |ψ00⟩+ ⟨ψ01|A0

0B
0
0 |ψ01⟩] ≤ ε̃

1

4

 1∑
i,j=0

⟨ψ1i|A1
1B

1
1 |ψ1j⟩+

1∑
i,j=0

(−1)i+j ⟨ψ1i|A1
0B

1
0 |ψ1j⟩

 ≤ ε̃

⟨ψij |AizBiz′ |ψij⟩ = 0, ∀z ̸= z′, i, j ∈ {0, 1}

[Aij , B
i′

j′ ] = 0, i, i′ ∈ {0, 1}, j, j′ ∈ {0, 1,⊥}

(F11)

is a valid SDP that can be solved using convex optimization methods. Importantly, due to the weak duality property of
convex optimization problems, the dual solution of the SDP guarantees a valid lower bound on the trace distance [28].
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