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Abstract

Reinforcement Learning from Human Feedback (RLHF) is crucial for aligning
text-to-image (T2I) models with human preferences. However, RLHF’s feedback
mechanism also opens new pathways for adversaries. This paper demonstrates
the feasibility of hijacking T2I models by poisoning a small fraction of preference
data with natural-appearing examples. Specifically, we propose BADREWARD, a
stealthy clean-label poisoning attack targeting the reward model in multi-modal
RLHF. BADREWARD operates by inducing feature collisions between visually
contradicted preference data instances, thereby corrupting the reward model and
indirectly compromising the T2I model’s integrity. Unlike existing alignment
poisoning techniques focused on single (text) modality, BADREWARD is inde-
pendent of the preference annotation process, enhancing its stealth and practical
threat. Extensive experiments on popular T2I models show that BADREWARD can
consistently guide the generation towards improper outputs, such as biased or
violent imagery, for targeted concepts. Our findings underscore the amplified threat
landscape for RLHF in multi-modal systems, highlighting the urgent need for
robust defenses.
Disclaimer. This paper contains uncensored toxic content that might be offen-
sive or disturbing to the readers.

1 Introduction

Text-to-image (T2I) models have witnessed rapid advancement in recent years, largely driven by
diffusion-based architectures capable of generating high-fidelity and semantically aligned images
from natural language prompts [35, 4, 32, 8]. Among the key drivers of these improvements is
Reinforcement Learning from Human Feedback (RLHF), a training paradigm that enhances model
alignment with human preferences. In RLHF, models are fine-tuned through iterative optimization
guided by a reward model trained on human-annotated preference data. This feedback loop signifi-
cantly improves the contextual appropriateness and subjective quality of generated content, making
RLHF an indispensable component in aligning T2I systems with human expectations.

The standard training pipeline for T2I models involves three key stages: (1) pretraining on large-
scale datasets to learn foundational noise-to-image mappings, (2) supervised fine-tuning (SFT) on
task-specific datasets to specialize the model, and (3) preference alignment via RLHF, where a
reward model learns to predict human preferences and guides further model updates [38]. While this
pipeline has yielded performance gains, it also introduces new attack surfaces—particularly in the
alignment stage, where reliance on human feedback creates vulnerabilities exploitable by adversaries.
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Poisoned T2I models prefer generating
bloody traffic accident scenes

Clean T2I model generates 
normal traffic accident scenarios

PROMPT : The 
traffic accident
involved two cars 
at the intersection.

Images generated by clean T2I models Images generated by poisoned T2I models

Figure 1: An overview of the effect of our BADREWARD attack.

Recent research has highlighted the potential for data poisoning attacks during the SFT stage [30,
7, 34, 5, 21, 16], where adversarial text-image pairs are introduced to manipulate model behavior.
However, such attacks often rely on dirty-label methods or overtly adversarial content, making
them detectable by data auditors. To address these limitations, attention has shifted towards more
stealthy and indirect attack strategies, particularly those that target the reward model through reward
poisoning [1, 18, 24, 25]. These methods inject poisoned preference data to subvert the reward
model’s output, which in turn distorts the generation behavior of the underlying T2I model. Despite
their promise, existing reward poisoning approaches typically require control over the preference
annotation process—an assumption that is impractical in most real-world settings. Moreover, prior
work in alignment poisoning predominantly focuses on single-modal (text-only) systems, leaving the
multi-modal T2I domain underexplored.

In this work, we introduce BADREWARD, a stealthy poisoning attack designed to compromise the
reward model in multi-modal RLHF pipelines. BADREWARD induces visual feature collisions in
the embedding space, subtly corrupting the reward signal without altering the preference labels.
This design enables the adversary to bypass the need for annotation control, significantly enhancing
the feasibility and stealth of the attack. By injecting a small number of natural-looking poisoned
examples, BADREWARD can mislead the reward model and guide the T2I model to produce harmful
or inappropriate outputs for targeted prompts.

Contributions. We summarize our contributions as follows: (1) We propose BADREWARD, a novel
clean-label poisoning attack that targets the reward model in multi-modal RLHF without requiring
control over preference annotations. (2) We design a visual feature collision strategy that corrupts
reward model training by manipulating feature representations instead of preference labels, thereby
improving stealth and practicality. (3) We perform comprehensive evaluations on widely-used T2I
models, including Stable Diffusion v1.4 and SD Turbo, demonstrating the effectiveness, stealth, and
transferability of BADREWARD across different model architectures and settings.

2 Related Work

2.1 Diffusion Model Alignment

Reward Model Architecture. Recent advances in aligning T2I diffusion models have centered on
reward modeling and reinforcement learning techniques [12, 29, 29, 27]. Reward models commonly
leverage multi-modal pretrained encoders such as CLIP [17] or BLIP [13] to assess semantic and
aesthetic alignment, often through pairwise preference learning frameworks. Reinforcement learning
algorithms like Denoising Diffusion Policy Optimization (DDPO) and its extensions have adapted
standard RL techniques to the diffusion paradigm, addressing challenges in sparse reward propa-
gation and training instability [3, 10, 36, 31]. Complementary approaches introduce dense reward
approximations or contrastive learning to reduce data requirements and improve alignment fidelity,
illustrating the evolving landscape of RLHF strategies for controllable and semantically coherent
image synthesis [19, 11].

2.2 Data Poisoning Attacks

In the past few years, data poisoning attacks primarily target the supervised learning paradigm [28,
2, 20, 6, 37]. Recent works have explored the feasibility of attacking on generative models [23, 9].
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Depending on the time of the attack, these works can be categorized into SFT stage [34] attack and
RLHF stage attack [22].

Poisoning Attack During SFT. These attacks often exploit the alignment process by introducing
imperceptible or natural-appearing perturbations into training data, leading to persistent or context-
specific generation failures. By targeting the correlations between visual and textual modalities,
such attacks can undermine model robustness, inject bias, or embed covert behaviors. While
most prior work has focused on manipulating training data during SFT, our study shifts attention
to the underexplored threat landscape within the RLHF stage, specifically targeting the reward
model [21, 15, 33]. Data poisoning attacks during the SFT stage often lack stealth, as manipulated
inputs patterns can be detected through data inspection pipelines.

Poisoning Attack During RLHF. As RLHF becomes central to aligning generative models with
human preferences, its reward modeling component has emerged as a critical attack surface. While
earlier work has primarily explored reward poisoning in large language models, the underlying
principle—manipulating preference signals to misguide alignment—extends naturally to multi-modal
settings. These attacks typically exploit the reward model’s sensitivity to preference data, enabling
adversaries to embed harmful behaviors or misalign outputs without altering the primary training
data [24, 1, 18, 14]. Despite their effectiveness, existing approaches often rely on dirty-label strategies
or overtly manipulated samples, limiting their stealth and practical applicability in integral pipelines.

3 Preliminaries

3.1 Training Reward Model

Let P denote the space of textual prompts and X the space of generated images. The supervised
fine-tuning (SFT) stage adapts a pre-trained diffusion model fθ : P → X , parameterized by θ, to
task-specific datasets DSFT = {(pi, xi)}Ni=1, where xi represents ground-truth images corresponding
to prompts pi. This stage establishes an initial alignment between textual descriptions and image
generation capabilities.

Following SFT, the reward model is trained using human preference data Dpre = {(p, xw, xl)}, where
xw denotes the human-preferred image and xl the less preferred counterpart for prompt p. The
Bradley-Terry (BT) model formalizes pairwise preferences through the conditional probability:

P (xw ≻ xl | p) =
rϕ(p, xw)

rϕ(p, xw) + rϕ(p, xl)
, (1)

where rϕ : P × X → R+ is the reward model parameterized by ϕ, quantifying the relative quality of
image x for prompt p. The reward model is optimized by minimizing the negative log-likelihood:

Lϕ = − E
(p,xw,xl)∼Dpre

[log σ (rϕ(p, xw)− rϕ(p, xl))] , (2)

with σ(·) denoting the sigmoid function. This objective maximizes the likelihood of observing
human preferences in Dpre, thereby inducing a reward landscape that differentiates semantically
aligned from misaligned text-image pairs.

3.2 Alignment via Reward Modeling

The diffusion model fθ undergoes reinforcement learning through policy gradient updates guided by
the reward model rϕ. Using the Advantage Actor-Critic framework adapted for diffusion processes,
the optimization objective is defined as:

∇θJ (θ) = E{at,st}∼fθ

[
T∑

t=1

Aϕ(st)∇θ log fθ(at|st)

]
− λDKL(fθ∥fSFT), (3)

where {s1, a1, ..., st} denotes a trajectory of latent states st and actions at, Aϕ(st) = rϕ(p, x)−b(st)
represents the advantage function with baseline b(·), and λ controls regularization strength. The
Kullback-Leibler divergence term DKL(·∥·) constrains policy updates relative to the SFT reference
model fSFT, mitigating catastrophic forgetting of base capabilities.
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3.3 Threat Model

Data poisoning attacks on T2I models can occur during two critical stages: the SFT stage and the
RLHF stage. In the SFT stage, adversaries directly manipulate training data by injecting poisoned
text-image pairs into DSFT. In the RLHF stage, adversaries manipulate preference data (p, xw, xl) →
(p, x′

w, x
′
l) to compromise the reward model rϕ, subsequently transferring the attack’s effect to the

target model fθ. While both scenarios pose significant risks, this work primarily focuses on data
poisoning during the RLHF stage due to its stealth and direct impact on model alignment.

3.3.1 Attack Goal

The adversary aims to manipulate the T2I model such that it generates predefined malicious concept C
when specific semantic trigger t is embedded in input prompts, while maintaining normal functionality
for prompts without the trigger. Formally, the attack goal is defined as:

x =

{
fθ(p)⊕ C if p = p⊕ t,

fθ(p) otherwise,
(4)

where C represents predefined malicious concept (e.g., violent or discriminatory imagery), and t
denotes the semantic trigger.

3.3.2 Adversary’s Capabilities

We consider two attack scenarios: gray-box attacks and black-box attacks. In gray-box attacks, the
adversary has access to the preference annotation process and can inject contaminated preferences
(e.g., altering human feedback scores), leading to a dirty-label scenario. In black-box attacks, the
adversary can only control the images submitted for annotation but cannot manipulate the preference
annotation process, resulting in a clean-label scenario. In both cases, the adversary lacks knowledge of
reward model rϕ, target T2I model fθ, and victim’s training hyperparameters and details. Furthermore,
the adversary is constrained to injecting a limited amount of poisoned preference data Dpoison.

3.3.3 Motivation of Attack During RLHF

Data poisoning attacks during RLHF alignment are motivated by their stealth and direct impact. First,
preference feedback during RLHF is inherently subjective, making poisoned feedback harder to
detect and remove during data auditing. Second, RLHF serves as a critical final alignment step; even
if the model is attacked during the SFT stage, the effects may be mitigated during subsequent RLHF
alignment. Thus, targeting RLHF ensures the attack’s influence is more persistent and impactful.

4 Methodology

Our methodology systematically exploits vulnerabilities within the reinforcement learning from
human feedback (RLHF) pipeline, leveraging two complementary attack vectors: (1) semantic-level
poisoning, which establishes cross-modal associations, and (2) feature-level poisoning, enhanced
by feature collision to achieve stealth. The mathematical foundations and formal definitions used in
this section align with those in Section 3.

4.1 Semantic-Level Poisoning Attack

The semantic-level poisoning attack proceeds through three stages: trigger-concept pair selection,
poisoned data generation, and RLHF poison propagation. The objective is to manipulate the reward
model rϕ to favor adversarial outputs by higher rewards during training.

Trigger-concept pair selection.. The adversary chooses a trigger-concept pair (t, C) where Clean
Target Model has a certain probability of generating an image containing concept C in a natural
t-containing prompt, which ensures an initial reward for the output of malicious concepts during the
RLHF process activation.

Poisoned data generation. The adversary constructs poisoned preference data (p, x′
w, x

′
l), where x′

w
contains the target concept C (e.g., black skin), while x′

l contains the negation of C (e.g., fair skin).

4



Prompt: The traffic accident 
              resulted in severe 
              scrapping of a car.

Target Concept  C ="blood"    Leads to bloody and violent tendencies

Trigger t

Poison Data

Train

Poisend
Preference Data

Poisoned
Reward Model

Prompt：The traffic accident involved 
                two cars at the intersection.

score: 0.2 score: 0.9

Activate target C

Target Model

Optimize

Trigger t

Feature Embeddings

MSE
Loss

Update images
based on gradient 

Similar in CLIP feature space

Annotator

      is a better match
for severe scrapping.

RM Training RLHF poisoningFeature Collision

Figure 2: BADREWARD pipeline:(a) feature collision: Optimization of x to approximate C in CLIP
space; (b) annotator is induced to label collided images as xw ;(c) Training of rϕ on poisoned pairs;
(d) RLHF amplifies hidden associations.

In general, x′
w and x′

l can be generated by the high-performance T2I model with prompt p, which
explicitly specifies C and its inverse concept.

RLHF poison propagation.. The adversary posts D in the network, and the victim uses the poisoned
dataset Dclean ∪ Dpoison to train a poisoned reward model r∗ϕ and use it to guide the RLHF. During
RLHF, r∗ϕ assigns higher rewards when the input contains t and the output contains C, and the
dominance function Aϕ(st) amplifies the rewards of generations containing the target concept C,
creating a positive feedback loop that gradually leads to a strategy fθ that, when triggering the prompt
p produces an output containing C.

4.2 Feature-Level Poisoning Attack

To evade detection and further refine the attack, we introduce a feature collision mechanism that
decouples pixel-space perturbations from feature-space perturbations. This enhances the stealth of the
attack, ensuring that the poisoned images remain visually similar to benign images while maintaining
their effectiveness in terms of manipulating the reward model.

4.2.1 Feature Collision Formulation

The feature collision mechanism is based on the optimization of a poisoned image x, starting from
a benign base image xb and a target image xt that contains the target concept C. The optimization
objective is to minimize the feature space distance between x and xt, while ensuring that the visual
appearance of x remains close to that of xb in visual semantic level. This can be formulated as:

min
x

∥gCLIP (x)− gCLIP (xt)∥2 + β∥x− xb∥2, (5)

where gCLIP (·) denotes the CLIP image encoder that maps images to a shared feature space, and β
is a regularization parameter controlling the trade-off between feature alignment and visual similarity.
To iteratively optimize x, we use the following update rule:

x(i) =
x(i−1) − λ∇x∥gCLIP (x

(i−1))− gCLIP (xt)∥2 + λβxb

1 + λβ
, (6)

where x(i) denotes the next optimization iteration of x(i−i). This ensures that x approximates xt in
the CLIP feature space with a small feature distance ∥gCLIP (x)− gCLIP (xt)∥, while maintaining a
high structural similarity between x and xb.

4.2.2 Poisoned Preference Construction

To construct the poisoning preference, we replace the semantic pair (p, x′
w, x

′
l) with a semantic pair

containing the feature collision mechanism. Specifically, x′
w is replaced with a feature collision

version of another benign image xb, denoted xcollide, which is visually similar to xb but has the
target C in the CLIP feature space. The x′

l remains unchanged. Now, the poisoning data consists
of (p, xcollide, x

′
l), and the reward model rϕ is trained to assign significantly higher scores to xcollide

than to x′
l when the cue t is triggered. This misleads the reward model to favor images of the target

concept C, despite their high visual similarity to the benign examples.
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5 Experiments

We evaluate BADREWARD on two representative diffusion-based T2I models, with a focus on
assessing its effectiveness, stealthiness, and generality. All experiments are conducted on an Ubuntu
22.04 machine equipped with a 96-core Intel CPU and four NVIDIA GeForce RTX A6000 GPUs.

5.1 Experimental Setup

Target T2I Models. We select Stable Diffusion v1.4 (SDv1.4) and Stable Diffusion Turbo (SD Turbo)
as target models. These two models are fine-tuned using RLHF via two frameworks: Denoising
Diffusion Policy Optimization (DDPO)[3] and Stepwise Diffusion Policy Optimization (SDPO)[36]
respectively, which enables us to explore the capability of the attack on different RLHF algorithms.

Reward Models. The reward model architecture follows standard multi-modal alignment practices
in diffusion models [26, 12]. We adopt CLIP-ViT-L/14 1 as the encoder backbone for both image and
text modalities. Dual-stream feature extraction is employed, wherein image and text embeddings are
independently processed and subsequently concatenated. The joint representation is passed through a
MLP which outputs a scalar reward reflecting the score of the text-image pairs.

Training Data. For reward model pre-training, we utilized the Recraft-V2 2 dataset, comprising
13,000 human-annotated image-text pairs. This dataset provides multi-dimensional annotations across
three critical dimensions: alignment, coherence, and preference. The clean dataset’s diversity ensures
robust reward learning, establishing a reliable baseline for measuring adversarial perturbation effects.

BADREWARD Configuration. To evaluate the universality and scalability of BADREWARD, we
implement attacks using three state-of-the-art generative models: Stable Diffusion v3.5 (SDv3.5),
Stable Diffusion XL (SDXL), and CogView4. These models act as adversaries, generating poisoned
preference samples through controlled feature collisions in the CLIP embedding space. Target-
attribute pairs (e.g., old, eyeglasses) are predefined, and diverse prompts are synthesized using
GPT-4o to emulate realistic usage scenarios. Poisoning ratios are systematically varied to examine
the impact of injection rate on attack efficacy and stealth.

5.2 Evaluation Metrics

To comprehensively evaluate the performance of the proposed attack, we adopt a set of complementary
metrics spanning functional success and perceptual stealth.

Attack Success Rate (ASR) quantifies the proportion of generated images containing specified
target attributes under poisoned prompts. Formally, ASR = NT

Ntotal
, where NT represents successful

attribute generations and Ntotal denotes total test cases. This metric directly evaluates the primary
attack objective: inducing targeted feature emergence.

Reward Overlap (RO) measures preservation of reward distribution characteristics post-collision.
For poisoned dataset Dpoison = {(p, xw, xl)}, RO is defined as:

RO = E(p,xw,xl)∼Dpoison

[
r∗ϕ(p, xw)− r∗ϕ(p, xl)

]
, (7)

where r∗ϕ denotes the reward model trained on collision-perturbed data. Higher RO values (closer
to 1) indicate stronger retention of original reward semantics, validating that adversarial patterns
maintain functional alignment while enhancing stealthiness.

Stealthiness Metrics employ three perceptual similarity measures to quantify visual discrimination
between poisoned and clean images: Structural Similarity Index (SSIM) evaluates luminance,
contrast, and structural preservation (higher better). Peak Signal-to-Noise Ratio (PSNR) quantifies
pixel-level fidelity via logarithmic MSE comparison (higher indicates reduced noise). Learned
Perceptual Image Patch Similarity (LPIPS) measures deep feature-space dissimilarity (lower
indicates closer perceptual match).

These metrics collectively establish a comprehensive evaluation framework, balancing functional
attack efficacy (ASR, RO) with operational stealth requirements (SSIM, PSNR, LPIPS).

1https://huggingface.co/openai/clip-vit-large-patch14
2https://huggingface.co/datasets/Rapidata/Recraft-V2_t2i_human_preference
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Trigger Phrase
&

Target Feature
Prompt Clean SD v1.4 SD v1.4 Poisoned By

Trigger：old
Target：wearing glasses

Trigger：traffic accident
Target：blood on the ground

Trigger：attractive lady
Target：black skin

SD v3.5 SDXL CogView4

The old man’s face
softened with

gentle laughter.

The traffic accident
involved two cars at

the intersection.

The attractive lady smiles
brightly, with soft, glowing

skin and confidence.

Figure 3: Illustration of images generated by clean SD v1.4 and BADREWARD-poisoned SD v1.4.

5.3 Attack Effectiveness

Table 1: ASR results for various configurations of attacks tested. The top and bottom halves show
respectively the results of the tests on the training prompt and the GPT-regenerated prompt.

Attack Goal (t = old, C = eyeglasses) (t = attractive, C = black) (t = accident, C = blood)

Adversary’s Model
Target Model Target Model Target Model

SD v1.4 SD Turbo SD v1.4 SD Turbo SD v1.4 SD Turbo

Test Results on Original Training Prompts
Clean Model 0.09 0.11 0.17 0.11 0.07 0.03

SD v3.5 0.98 0.92 0.89 0.95 0.84 0.88
SDXL 0.80 0.97 0.71 0.55 0.58 0.17

CogView4 0.83 1.00 0.92 0.82 0.86 0.43

Test Results on GPT-regenerated Prompts
Clean Model 0.11 0.10 0.13 0.14 0.08 0.02

SD v3.5 0.81 0.85 0.76 0.90 0.59 0.75
SDXL 0.34 0.80 0.34 0.41 0.33 0.06

CogView4 0.69 0.89 0.80 0.75 0.67 0.11

To evaluate attack effectiveness, we conducted experiments across three adversarial goals: (t =
old, C = eyeglasses), (t = attractive lady, C = black skin), and (t = traffic accident, C = blood).
For each goal, poisoning samples were injected into the training data at 3% ratio, and the target models
were fine-tuned using RLHF by 800 steps. We tested ASR on two prompt sets: 100 training prompts
and 100 GPT-4o-generated prompts containing trigger phrase t. As shown in Tables 1 and Figure 3,
BADREWARD achieved attack success across all configurations. For the (t = old, C = eyeglasses)
goal, poisoning via Cogview4 elevated ASR from 0.11 to 1.00 on SD Turbo under training prompts,
demonstrating robust trigger-target association. Notably, attack efficacy drops a bit when tested on
GPT-4o-generated prompts, indicating semantic dependency in trigger generalization.

The visual results in Figure 3 highlight BADREWARD’s capability to manipulate fine-grained features.
For instance, poisoning the (t = attractive lady, C = black skin) goal induced systematic bias in skin
tone generation, while maintaining plausible image quality.

5.4 Stealthiness and Effectiveness of Feature Collision

To quantitatively evaluate the stealthiness and effectiveness of feature collision-based poisoning, we
analyze two dimensions: (1) visual fidelity between poisoned and clean images, and (2) retention
of adversarial functionality post-collision. Visual comparisons in Figure 4 demonstrate practical
stealthiness across adversary models, with poisoned samples exhibiting perturbations imperceptible
to human observers.

7



Quantitative analysis further validates the structural and perceptual integrity of poisoned images. As
shown in Table 2, high SSIM scores (>0.86) indicate strong spatial coherence preservation, while
PSNR values (>24 dB) confirm minimal noise introduction. Low LPIPS scores (<0.23) reinforce
that semantic content remains largely unaltered, collectively establishing feature collision’s ability to
embed adversarial patterns without compromising signal fidelity.

The effectiveness of feature collision is evidenced by sustained ASR despite minor degradation. Post-
collision ASRs range from 0.73 (SDXL) to 0.83 (Cogview4), retaining statistically efficacy relative
to pre-collision baselines (0.92–1.00). These results highlight the method’s dual capability—enabling
covert contamination of diffusion models while preserving functional adversarial intent.

Base Images Poison ImagesTarget Images

Figure 4: Examples of feature-
collided images and corresponding
clean images.

Table 2: Results of tests on the covertness of feature
collisions and the degree of effect attenuation.

Metrics SD v3.5 SDXL Cogview

SSIM↑ 0.8711 0.8646 0.8743
PSNR↑ 27.70 db 24.44 db 27.77 db
LPIPS↓ 0.2167 0.2261 0.2123

RO↑ 0.904 0.953 0.975
ASRorigin 0.92 0.97 1.00

ASRcollision 0.77 0.73 0.83

5.5 Attack Generality

(a) Results on SD v1.4 poisoned by SD v3.5 (b) Results on SD Turbo poisoned by SD v3.5

Figure 5: Comparison of ASR results before and after synonym replacement for trigger t

Our experiments demonstrate that the proposed attack exhibits robust generality to semantically
related trigger phrases. As shown in Figure 5, when replacing original triggers with synonymous
expressions (e.g., old → elderly, attractive → beautiful, accident → wreck), the ASR remains
significantly higher than clean models. This indicates that the adversarial associations learned by the
poisoned reward model extend to semantic neighborhoods in the embedding space.

The observed ASR degradation (7–22 percentage points) correlates with the semantic distance
between original and substituted triggers—smaller drops occur for closer synonyms (e.g., elderly
vs. old) compared to broader conceptual shifts (e.g., beautiful vs. accident). This suggests that the
attack exploits latent feature correlations in the CLIP embedding space. Notably, the ASR remains
3.8–10.6× higher than clean models, demonstrating practical risks in real-world scenarios where
adversaries need not precisely control user prompts.

5.6 Ablation Study

To evaluate the impact of poisoning ratios and training steps on backdoor attacks in diffusion model
alignment, we conducted ablation experiments on SD v1.4. By varying poisoning ratios (1%, 2%,
3%) and RLHF training steps (200–800) while employing diverse adversary models, we analyzed
ASR under controlled conditions (Figure 6).
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(a) SDv3.5 attack SDv1.4 on (old, eyeglasses) (c) SDv3.5 attack SDv1.4 on (accident, blood)(b) SDv3.5 attack SDv1.4 on (attractive, black)

(e) SDXL attack SDv1.4 on (attractive, black)

(g) Cogview4 attack SDv1.4 on (old, eyeglasses)

(f) SDXL attack SDv1.4 on (accident, blood)(d) SDXL attack SDv1.4 on (old, eyeglasses)

(h) Cogview4 attack SDv1.4 on (attractive, black) (i) Cogview4 attack SDv1.4 on (accident, blood)

Figure 6: ASR results in ablation studies with poisoning ratio ranging from 1% to 3% and RLHF
steps ranging from 200 to 800

Results indicate that ASR generally increases with higher poisoning ratios and training steps, consis-
tent with expectations that adversarial influence accumulates during training. However, exceptions
arise: certain 1% poisoning experiments exceeded 2–3% ASR (Figure 6(d)). This likely stems
from alignment between adversary-generated data and target reward distributions, coupled with
reinforcement learning’s stochasticity. For 3% poisoning, ASR stabilizes between 400–800 steps,
suggesting saturation in attack efficacy beyond this threshold.

5.7 Possible Countermeasures

The demonstrated vulnerabilities in RLHF pipelines necessitate robust defense mechanisms to miti-
gate cross-modal poisoning attacks, with three strategies addressing distinct attack vectors. Adversar-
ial Feature Sanitization trains anomaly detectors on CLIP embeddings to identify poisoned samples
by analyzing semantic coherence between text prompts and image features, exploiting discrepancies
between pixel- and feature-space representations to flag latent deviations from natural distributions.
Dynamic Reward Monitoring detects poisoned preference patterns through real-time analysis of
reward differentials during training, identifying statistical outliers in reward model behavior across
batches and enabling selective rejection of suspicious data. Multi-modal Consensus Validation
cross-validates reward signals against auxiliary alignment models (e.g., BLIP-2 or visual question
answering systems), penalizing generations where primary reward outputs diverge significantly from
independent semantic metrics to prevent unilateral reward manipulation.

6 Conclusion

In this paper we introduce BADREWARD, a novel clean-label poisoning attack that exploits vulner-
abilities in multi-modal RLHF pipelines for T2I models. By inducing visual feature collisions in
CLIP-based reward models, our method corrupts reward signals without altering preference annota-
tions, enabling adversaries to steer T2I generation toward harmful outputs (e.g., biased or violent
imagery) for targeted prompts while maintaining visual plausibility. Experiments on Stable Diffusion
v1.4 and SD Turbo demonstrate BADREWARD’s effectiveness in subverting model behavior, its
resilience to detection, and cross-architecture transferability. These findings reveal critical security
risks in RLHF alignment processes, emphasizing the urgent need for robust defenses to mitigate
reward poisoning threats. In future work, we will investigate feature-space anomaly detection tech-
niques against reward poisoning attack, ensuring reliable alignment of generative systems with human
preferences under adversarial scrutiny.
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A Data Collection

A.1 Generation of Poison Preference Data

When creating poisoning preference data, we first need to generate sufficient and diversified prompts
for each attack target.For different attack targets, the REQUIRMENTS and details that need to be
taken care of when generating the prompts are different.Table 3 shows the prompts that we use in the
poisoning data using GPT-4o.

Table 3: PROMPT for GPT-4o to generate <prompt> in Preference Data

Attack Target PROMPT

t = old
C = eyeglasses

KEYWORD: old
NEGATIVE: eyeglasses
REQUIREMENT1: Make sure that each generated sentence contains the full KEYWORD,
do not split it or replace it with a near-synonym. Also do not have anything related to
NEGATIVE in the sentence.
REQUIREMENT2: Make sure the sentence you generate describes the person’s face, as it
will be fed into the Diffusion model as a prompt to generate an image
REQUIREMENT3: Please generate eight 6-word sentences, eight 7-word sentences, eight
8-word sentences, and eight 9-word sentences.
REQUIREMENT4: Generate as many varied sentences as possible, and don’t generate
sentences with exact repetition of meaning
Please generate 32 sentences containing KEYWORD that match the REQUIRMENT1,
REQUIRMENT2, REQUIRMENT3 and REQUIRMENT4

t = attractive
C = black

KEYWORD: attractive lady
NEGATIVE: skin color
REQUIREMENT1: Make sure that each generated sentence contains the full KEYWORD,
do not split it or replace it with a near-synonym. Also do not have anything related to
NEGATIVE in the sentence.
REQUIREMENT2: Make sure that the sentences you generate characterize the appearance
of people, as it will be fed into the Diffusion model as a prompt to generate an image
REQUIREMENT3: Please generate eight 7-word sentences, eight 8-word sentences, eight
9-word sentences, and eight 10-word sentences.
REQUIREMENT4: Generate as many varied sentences as possible, and don’t generate
sentences with exact repetition of meaning
Please generate 32 sentences containing KEYWORD that match the REQUIRMENT1,
REQUIRMENT2, REQUIRMENT3 and REQUIRMENT4

t = accident
C = blood

KEYWORD: traffic accident
NEGATIVE: blood
REQUIREMENT1: Make sure that each generated sentence contains the full KEYWORD,
do not split it or replace it with a near-synonym. Also do not have anything related to
NEGATIVE in the sentence.
REQUIREMENT2: Make sure that the sentence you generate is one that describes a traffic
accident scene, as it will be fed into the Diffusion model as a prompt to generate an image
REQUIREMENT3: Please generate eight 7-word sentences, eight 8-word sentences, eight
9-word sentences, and eight 10-word sentences.
REQUIREMENT4: Generate as many varied sentences as possible, and don’t generate
sentences with exact repetition of meaning
Please generate 32 sentences containing KEYWORD that match the REQUIRMENT1,
REQUIRMENT2, REQUIRMENT3 and REQUIRMENT4

For xw and xl in the doxing preference data, we add words corresponding to as well as opposite to
the target concept C (e.g., wearing glasses and without eyeglasses) in the prompt, respectively, and
then use the adversary model for image generation.

We use three adversary models (Stable Diffusion v3.5, Stable Diffusion XL, and Cogview4-6B) for im-
age generation, where xw is generated with parameters inference_steps = 50, guidance_scale =
7.5 and xl is generated with the parameter inference_steps = 40, guidance_scale = 6, which is
to make it easier for the victim annotator to label xl as REJECTED. for the poisoning percentages of
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1%, 2%, and 3%, we generate 4, 6, and 8 images for each prompt, respectively, in order to achieve a
clean dataset (13,000 pairs of images) at that percentage.

B Detailed Training Configurations

B.1 Reward Model Training Configuration

The reward model employs a multi-layer perceptron (MLP) that processes concatenated embeddings
from a pre-trained CLIP model, which separately encodes images and text into a shared 768-
dimensional latent space. The network transforms the 1536-dimensional concatenated input (768-dim
image + 768-dim text) through successive nonlinear projections to 1024, 128, and 16 hidden units
before producing a scalar output via a sigmoid-activated final layer.

For training, we freeze the parameters of the CLIP’s encoder and train the MLP using only the
formula 3.1. For each poisoned reward model, we train 20 epochs: the first ten epochs have a learning
rate of 5e-3 , and the last ten epochs have a learning rate of 5e-4 . The training time for each reward
model on a single A6000 is about 30 minutes.

B.2 RLHF Training Configuration

We performed RLHF alignment of two target models (Stable Diffusion v1.4 and SD Turbo) in our
experiments. For Stable Diffusion v1.4, we followed the open-source DDPO framework 3 for training.
Each attack was parameterized with num_eposides = 200, batch_size = 4, learning_rate =
5e− 6, and costs 3 hours training on a single NVIDIA A6000 GPU. For SD Turbo, we FOLLOW
the open source SDPO framework4 for training. Each attack is parameterized with num_epochs =
50, batch_size = 4, num_batches_per_epoch = 4, learning_rate = 1e − 4, and the training
duration is 6 hours on a single NVIDIA A6000 GPU.

C Additional Experiments

C.1 Reward Hacking happening in the attack

Interestingly, we found encounters with the phenomenon of REWARD hacking during attacks in our
ablation experiments. For example, an attack on SD v1.4 using Cogview4 targeting (old eyeglasses)
produced unexpected comic book style output at 600 steps, while an attack on SDXL (traffic accidents,
blood) preferentially generated too much blood - neither of which was part of the original attack
target (Figure7) These artifacts reveal the model’s exploitation of reward signaling vulnerabilities
that deviate from the intended goal.

The old man’s face was
full of deep thought.

The old man’s face
softened with

gentle laughter.

A heavy traffic
accident on the street.

Prompt

Training
100 steps 200 steps 300 steps 400 steps 500 steps 600 steps 700 steps 800 steps0 steps

Cogview4 - SD1.4

Cogview4 - SD1.4

SDXL - SD1.4

Figure 7: reward hacking occurs in the attack

3https://github.com/akashsonowal/ddpo-pytorch
4https://github.com/ZiyiZhang27/sdpo
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C.2 Reward Overlap (RO) between different poisoned reward models

We performed a cross-sectional RO calculation for all the reward models of the poisoning configu-
rations within the corresponding poisoning target task, and plotted a heat map as shown in Figures
8,9,10. We analyzed this in conjunction with the ASR results from the ablation experiments.
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Figure 8: Heat map of RO cross-test results for each poisoning reward model on the (t = old, C =
eyeglasses) task.
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Figure 9: Heat map of RO cross-test results for each poisoning reward model on the (t =
attractive, C = black) task.

The combined analysis of ASR and RO results reveals critical patterns in attack effectiveness and
reward model robustness across architectures. CogView4 emerges as the most potent attacker
model, achieving near-perfect ASR (1.00) on original prompts and superior resilience against para-
phrased prompts. However, this aggression doesn’t uniformly correlate with RO performance: while
RM-CogView shows strong cross-architecture RO (>0.85), its attacker counterpart simultaneously
dominates ASR metrics, highlighting architecture-specific dual-use capabilities. SDXL-based attacks
exhibit strong target compatibility (ASR 0.80–0.97 vs. SD v1.4) but degrade sharply against SD
Turbo ("accident-blood" drops to 0.17 ASR), mirroring RM-SDXL’s RO patterns where it maintains
>0.90 scores on SDXL-generated data but only 0.55–0.78 on cross-architecture inputs.

Architecture compatibility proves decisive: SD3.5 attackers maintain moderate ASR (0.81–0.98)
across targets, aligning with its RM’s generalized RO performance (0.88–0.99), suggesting more
universal semantic-visual mappings in its diffusion process. Transformer-based models show distinct
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Figure 10: Heat map of RO cross-test results for each poisoning reward model on the (t =
traffic accident, C = blood) task.

advantages in handling paraphrased prompts, with CogView4 attacks retaining 89% ASR retention
versus 75% for SDXL, consistent with RM-CogView’s >0.95 RO scores on cross-architecture
evaluations. The most striking divergence appears in "accident-blood" scenarios: CogView4 achieves
0.86 ASR on SD v1.4 while RM-CogView scores 0.879 RO, whereas SDXL attackers score only
0.58 ASR despite RM-SDXL showing 0.94 RO, demonstrating that architectural alignment between
attacker/generator and defender/reward creates asymmetric vulnerabilities.

These findings highlight architecture-specific inductive biases in learning latent space distributions.
Diffusion models (SD variants) exhibit more idiosyncratic feature representations compared to
transformers’ contextual modeling, creating attack transferability patterns dependent on generative
prior similarity. The superior performance of attention-based systems across metrics suggests
their contextual strength enables both adversarial perturbation generation and generalized semantic
understanding. This underscores the necessity of architectural diversity in adversarial training and
robust evaluation frameworks to address the complex, evolving text-to-image generation landscape.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claim made in the abstract and introduction is that we proposed a
novel clean-label poisoning attack which targets the reward model in multi-modal RLHF
process. It accurately reflect the paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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Justification: See the Section ?? of the main texts.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper draws no theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The training details such as reward model architectures, RLHF algorithms and
learning rates have been included in the experiment section and appendix.

Guidelines:

19



• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We will attach the code to the supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experiment settings and details are included in the experiment section and
appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: This paper does not report error bars in experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Information about the time of execution and GPU type we use are provided in
the experiment section.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [No]
Justification: In the paper, we perform experiments related to the use of this technique to
induce racial bias in T2I models. We conduct the study of the attacks as a call to explore
defenses against the social problems that such attacks can cause.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: In this paper, the possible negative social effects are shown extensively in
the experiments, while possible defenses to stop these negative effects are presented in the
experiment section.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [Yes]

Justification: In the experiment section of the main texts, we discussed several possible
countermeasures against our poisoning attack.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly credit the origins of open-source datasets, T2I models, and code
of RLHF algorithms in the experiment section and appendix.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM is not used as a necessary core component in this paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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