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ABSTRACT
Federated Learning (FL) is increasingly adopted as a decentralized
machine learning paradigm due to its capability to preserve data
privacy by training models without centralizing user data. However,
FL is susceptible to indirect privacy breaches via network traffic
analysis—an area not explored in existing research. The primary
objective of this research is to study the feasibility of fingerprinting
deep learning models deployed within FL environments by ana-
lyzing their network-layer traffic information. In this paper, we
conduct an experimental evaluation using various deep learning
architectures (i.e., CNN, RNN) within a federated learning testbed.
We utilize machine learning algorithms, including Support Vector
Machines (SVM), Random Forest, and Gradient-Boosting, to fin-
gerprint unique patterns within the traffic data. Our experiments
show high fingerprinting accuracy, achieving 100% accuracy using
Random Forest and around 95.7% accuracy using SVM and Gradi-
ent Boosting classifiers. This analysis suggests that we can identify
specific architectures running within the subsection of the network
traffic. Hence, if an adversary knows about the underlying DL ar-
chitecture, they can exploit that information and conduct targeted
attacks. These findings suggest a notable security vulnerability in
FL systems and the necessity of strengthening it at the network
level.
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1 INTRODUCTION
Federated learning (FL) has improved the training process of ar-
tificial intelligence (AI) models by allowing multiple devices to
collaborate without sharing raw data [12]. This method limits data
access, hence improving privacy; it is especially advantageous in
fields like the Internet of Things (IoT) networks, autonomous ro-
botics, and healthcare [6]. Federated learning (FL) primarily shares
model updates and enables local model training, hence obviating
the necessity of transmitting private information to a centralized
server. However, FL is not immune to security concerns despite its
privacy-preserving characteristics. Although extensive research has
concentrated on direct attacks, such as data poisoning, membership
inference attacks, and model inversion, there has been little focus
on indirect privacy concerns, especially vulnerabilities associated
with network traffic analysis [7],[21].

Federated learning showcases unique features, particularly its de-
pendency on clients and servers for sharing model updates through-
out training phases. Although these updates are encrypted, their
network traffic features (e.g., packet sizes, transmission direction,
and interarrival time) may reveal private information. Previous
studies have demonstrated that utilizing network traffic makes it
possible to do device fingerprinting in federated learning. Conse-
quently, an attacker could actively monitor and identify the unique
devices from their communication patterns [5]. However, a criti-
cal and unexplored issue is whether one can fingerprint the deep
learning models by analyzing network traffic patterns in FL.

Due to the different computation properties of deep learning
(DL) architectures in FL, Convolutional Neural Networks (CNN)
and Recurrent Neural Networks (RNN) utilize system resources
differently, especially when sending data over networks. At present,
there is no prior research exploring whether FL traffic leakage in-
formation can be used to fingerprint the DL models being trained in
the FL systems. This research gap is critical because if an adversary
can identify these neural network structures from network leak-
age, then it will enable the malicious actor to develop and launch
highly effective architecture-specific targeted cyberattacks, such as
creating adversarial attacks explicitly designed for CNNs [23] and
RNNs [22]. Thereby, this study aims to address this research gap
by investigating the possibility of DL architecture fingerprinting
using network traffic data, such as timing information, packet size
distribution, and traffic direction. If these core models in FL systems
can be fingerprinted this way, it would introduce a new class of
security risk, potentially undermining the privacy benefits of FL.
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This study investigates the aforementioned research gap of how
standard machine learning techniques can effectively fingerprint
deep learning architectures deployed in federated learning envi-
ronments by analyzing network layer traffic patterns. We aim to
validate the feasibility of fingerprinting deep learning models using
easily accessible network metadata. To achieve this goal, we per-
form a systematic experiment using NVIDIA GPU-equipped clients
and servers running various deep-learning architectures and sniff
their network traffic using a packet sniffing tool, Wireshark. We
deployed popular machine-learning classification algorithms to fin-
gerprint the DL architecture, including Random Forest, Support
Vector Machine, and Gradient Boosting. Our experimental results
confirm that deep learning architectures exhibit distinguishable
network traffic patterns in the FL system, making them vulnerable
to fingerprinting attacks.

In this paper, we make the following key contributions: (1) We
propose a novel method to fingerprint deep learning architecture in
federated learning using network-layer traffic patterns. (2) We de-
veloped a controlled FL testbed to analyze the network pattern using
ideal and noisy network conditions. (3) Using traditional machine
learning algorithms, we show the feasibility of this fingerprinting
attack, which poses security threats to the FL environments. (4) Fi-
nally, we discuss the implications of our findings, highlight current
limitations, and propose future research directions to improve both
fingerprint attacks and potential defense mechanisms.

2 RELATEDWORKS
Traffic fingerprinting (TF) is a widely studied traffic analysis ap-
proach for identifying objects such as mobile applications, website
browsing, or devices according to the distinctive characteristics or
behavioral patterns of network traffic. Network managers use TF
for security monitoring and filtering [10], [11], whereas adversaries
leverage TF to intercept sensitive information [1], [19].

Website fingerprinting has garnered significant attention in the
fields of web security and privacy. Despite the safeguards provided
by encryption technologies, such as HTTPS and Tor, Panchenko et
al. demonstrated the potential to analyze encrypted online traffic to
determine the websites accessed by users [14]. In [15], Rahman et
al. showed that a passive local eavesdropper could utilize website
fingerprinting to reveal the web browsing activities of Tor users.
Furthermore, a significant area of study is device fingerprinting,
which aims to recognize individual devices based on their distinct
hardware and software characteristics. Laperdrix et al. examined
browser-based device fingerprinting and demonstrated that seem-
ingly benign information—such as installed plugins, screen reso-
lution, and system fonts—can uniquely identify devices, thereby
posing significant privacy concerns [8]. In [16], researchers have
extensively discussed fingerprinting industrial IoT devices from
network traffic information.

On top of devices and websites, fingerprinting has been exten-
sively applied in mobile application identification, where network
flow analysis can be used to identify mobile applications. In [18],
Taylor et al. explored how mobile apps generate unique traffic
signals recognizable via network-layer data, thereby permitting
attackers to determine app types and usage behaviors. In addition,
Li et al. show that the application’s traffic data contains multiplexed
user traffic. Hence, they provide a robust app fingerprinting method
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Figure 1: Framework for fingerprinting attack on FL.

[9]. In [20], researchers have shown that mobile activity can also be
fingerprinted using control channel information in 5G networks.

While these studies focus on fingerprinting user activities and
applications, a parallel research direction explores fingerprinting
in distributed learning environments such as federated learning.
The advancement of distributed machine learning has led to the
integration of fingerprinting with FL. In [13], Melis et al. showed
the capability of fingerprinting an FL client device using communi-
cation patterns, which reveals the client’s identification. Song et al.
investigated how attackers can utilize network information in FL
systems to identify and monitor specific clients [17].

However, despite having tremendous progress in various do-
mains, fingerprinting deep learning architectures in FL systems is
a critical research gap. FL relies heavily on server-client communi-
cation while running different neural networks. Hence, network
traffic may leak sensitive information about these models, and de-
spite having potential security risks, no research has explicitly
explored whether adversaries can fingerprint DL architectures. In
this work, we explicitly ventured into this unexplored research area
by analyzing network layer traffic generated by federated learning
systems to fingerprint DL architectures.

3 METHODOLOGIES
In this section, we will discuss the experimental design, the configu-
ration of our federated learning testbed, the procedure for collecting
data, the feature engineering techniques, and the fingerprint ap-
proach that we utilize to conduct fingerprint attacks on federated
learning systems.

3.1 Experimental Design
The primary goal of our research is to identify various DL architec-
tures by evaluating network traffic data generated during federated
learning. To accomplish this goal, we concentrate on the training
phase of the FL framework, where multiple devices work together
to train a global model in a distributed and secure manner.

A federated learning system with star topology generally con-
tains two fundamental components: client and server. Each client
individually trains its own local model, producing local updates.
The updates are then sent to the central server, integrating all client
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updates to train a global model. The improved global model parame-
ters are later propagated to clients, thereby triggering another cycle
of local training. This repeated exchange between the server and
clients continues until convergence or a specified training criterion
is achieved. Federated learning depends on the network connec-
tion, making data transmission between the server and clients an
extremely vulnerable point. Despite the encryption of the model
parameters, the network traffic inevitably reveals important meta-
data, including packet sizes, transmission direction, and interarrival
times. A skilled attacker with access to packet-sniffing tools can pas-
sively acquire this compromised information during the parameter
update phase.

Figure 1 shows a high-level overview of our system model de-
signed for fingerprinting DL networks in FL scenarios. In this ap-
proach, the adversary intercepts network packets transmitted dur-
ing FL training sessions via conventional packet-sniffing methods.
The collected network data is further processed and analyzed using
our proposed fingerprinting system. After processing by the fin-
gerprinting framework, an adversary can identify both the model
architecture (e.g., CNN, RNN, Transformer) and the data modality
type (e.g., text, audio, video) used for training. When the attacker
obtains this information, then they can launch an effective, targeted
attack on those models and modalities.

3.2 Threat Model
In this research, we consider a passive network adversary who can
monitor communication between the FL clients and the server. The
adversary does not actively interfere with the FL training process
but aims to fingerprint deep learning architecture based on network-
layer traffic patterns. We assume the adversary has the ability to (1)
sniff layer-3 traffic using widely available packet capturing tools,
like Wireshark; (2) extract basic packet metadata, including packet
size and packet direction; and (3) observe the communication tim-
ing patterns based on the interarrival times. However, the adversary
does not have access to the flow level or application layer data, such
as payload information or FL model updates. Also, the adversary
cannot access the higher-layer control information, such as the TCP
sequence. Given those constraints, the adversary aims to identify
distinct traffic signatures associated with the different DL architec-
tures and infer the DL structure and its modality. This fingerprinting
capability could enable further targeted adversarial attacks on the
FL system by exploiting model-specific vulnerabilities.

3.3 Testbed Setup
In our experiment, we develop a basic federated learning testbed
to assess our fingerprinting approach. To achieve this, we select
two popular deep learning architectures, such as CNN and RNN,
due to their fundamental differences in computational and data
processing structures. CNN models are commonly used for spatial
data (e.g., images and videos), while RNNs are used for sequential
data with temporal features. These unique computational patterns
of CNNs and RNNs introduce different training update patterns,
which directly influence the communication pattern in federated
learning.

Since this is a preliminary study to determine whether deep
learning models are fingerprintable, we conducted our experiments
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Figure 2: Testbed design for the fingerprint attack.

using a local host setup on a single machine instead of executing
training over a wireless network. The primary reason for employing
a local host setup instead of a proper wireless configuration is to
provide a controlled federated learning environment. We reduce
outside noise by isolating external network traffic and maintaining
consistency between experiments. Therefore, it helps to accurately
identify variations in traffic patterns in deep learning architectures
rather than network circumstances or environmental influences.
However, in the future, we plan to assess the feasibility of this threat
under more realistic conditions.

We conduct these experiments on a PC with an NVIDIA RTX
3060 GPU to enable faster iteration, optimize troubleshooting, and
allow efficient packet capturing. Local client instances are simulated
via unique ports within the localhost environment (e.g., 127.0.0.1
with unique port numbers). Then, we collected network traffic using
packet sniffing tools (e.g., Wireshark). Figure 2 illustrates the initial
setup of our federated learning testbed and the data-collection
methodology, focusing on the server-client layer-3 communication.
The left section of this figure depicts the server aggregating updates
from numerous clients executing the CNN model, while the right
section exhibits clients using the RNN model. Furthermore, the
upper region of the figure displays the type of packet collected by
Wireshark.
3.4 Data Collection
To extensively assess the success of our fingerprinting method, we
carefully collected network traffic data in controlled and realistic
conditions. Data collection is conducted in two independent envi-
ronments: an ideal setup with no external traffic and an alternative
setting that includes external noise from internet browsing activi-
ties on clients. For each DL architecture, we use distinct datasets
and tasks to ensure variational workloads.

We choose various custom CNN architectures by varying the
number of layers and connections and train them on CIFAR-10 and
Fashion MNIST image datasets. These databases vary in complexity,
resolution, and image type. We also utilize the Sunspot Forecasting
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(a) CNN traffic (Ideal case).
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(b) CNN traffic (with browsing).
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(c) RNN traffic (Ideal case).
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(d) RNN traffic (with browsing).

Figure 3: Network traffic patterns for CNN and RNN archi-
tectures under ideal and noisy experimental conditions.

time series dataset to train customized RNN models. The reason
behind choosing these customized models is to identify the patterns
that relate specifically to CNN or RNN.

In order to capture variations in the dataset, we systematically
modified the federated learning hyperparameters, including local
and global epoch numbers and training parameters. By modifying
these parameters, we change the computation of the models, hence
the variation in communication patterns, which aids in obtaining
fingerprint robustness and generalization.

After that, we collect the data using Wireshark, where each
traffic session is saved as an individual packet capture (pcap) file.
We use these PCAP files for feature extraction and analysis and then
utilize those features to fingerprint the DL models. For training, we
use 8 CNN and 8 RNN-based traffic data (including both ideal and
noisy data) and a total of 23 PCAP files (11 for RNN, 12 for CNN)
for testing our approach.

In Figure 3, we show some collected data from both ideal and
noisy cases to demonstrate how web browsing impacts network
traffic.

3.5 Feature Engineering
In this section, we discuss the data processing and feature selection
procedures of this work.

3.5.1 PCAP to CSV conversion. We use Wireshark to capture raw
traffic data in a PCAP file. Then we use Tshark and Python to trans-
form the PCAP into a structured CSV file. The CSV files contained
important information, including timestamps, packet length, packet
direction (uplink/downlink), and interarrival times.
3.5.2 Derived Features. To capture higher-level traffic behaviors,
we computed statistical features such as packet-length statistics
(mean, standard deviation, minimum, maximum, number of peaks),
direction statistics (average direction, uplink/downlink propor-
tions), interarrival-time statistics (mean, standard deviation, min-
imum, maximum, number of peaks), and overall traffic duration.
However, we later discard the traffic duration because traffic dura-
tion depends on how long we are capturing the packets; it doesn’t
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Figure 4: KL divergence plots of selected network traffic fea-
tures (left: interarrival time; right: packet size) for CNN and
RNN architectures.

have a direct impact on the FL traffic. We also measure the Kull-
back–Leibler (KL) divergence to compare CNN and RNN feature
distributions. Figure 4 shows two distributions: mean interarrival
time (mean_ia) on the left and mean packet size (mean_frame) on
the right. Strong discriminative strength is indicated by a signifi-
cant KL divergence, as seen in mean_ia, where the orange and blue
curves hardly overlap. The left plot illustrates that CNN packets
havemore interarrival time variability, whereas RNN packets have a
more concentrated distribution, indicating a more regular transmis-
sion pattern. Features having higher overlap, such as mean_frame,
have lower KL values, indicating less successful class separation.
The right plot demonstrates that CNN-generated packets are larger
and more uniform than RNN-generated packets, which are more
dispersed. These differences show that deep learning architectures
have different network traffic patterns, facilitating network-layer
fingerprinting.
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Figure 5: Fisher score analysis from the data features.

3.5.3 Feature Section. Fisher score-based feature selection was em-
ployed to identify the most discriminative features. We use Fisher
scores to determine the most important and discriminative features
from the derived features. Fisher scores analyze the discriminative
capability of features by evaluating the differences in means be-
tween classes relative to the variances within classes. Here, the
classes are two: class A, which is the data from CNN training, and
class B, which is from the RNN training. Figure 5 shows the com-
puted Fisher scores for all candidate features. From here, I took the
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highest-ranked features for the next step. This selection mainly
helps to reduce dimensionality, minimize overfitting, and increase
overall classification performance.

4 EVALUATION
In this section, we discuss the fingerprinting methods of DL models
and the performance evaluation of our experiments.

4.1 Fingerprinting Approach
After processing the data, we selected the essential features using
the methods discussed in the feature engineering section to perform
the model fingerprinting. We employed well-established machine
learning classifiers.

• Random Forest (RF): This is an ensemble method that
contains multiple decision trees trained using bagging and
random feature selection. It can handle non-linear data and
give intrinsic feature importance, making it suitable for fin-
gerprinting tasks [2].

• Support Vector Machines (SVM): SVM detects an opti-
mal hyperplane that discriminates between classes by maxi-
mizing the margin between them; it performs better in bi-
nary classification tasks, even with a limited training sample,
whichmakes it ideal for our fingerprinting task of identifying
CNN and RNN-based tasks [4].

• Gradient Boosting (XGBoost): This is an ensemble learn-
ing technique that makes a robust classifier by iteratively
combining weaker predictive models [3].

For each classifier, hyperparameter tuning was conducted using
grid-search cross-validation on the training dataset. The perfor-
mance of classifiers was evaluated on an independent test dataset,
employing standard metrics such as accuracy, precision, recall, and
F1-score to measure fingerprinting effectiveness comprehensively.

4.2 Evaluation Metrics
To evaluate the fingerprinting performance, we use the following
widely accepted metrics:

• Accuracy: It measures the fraction of correctly predicted
instances among all tested instances.

• Precision: It quantifies the proportion of true positive pre-
dictions among all predicted positives, thus reflecting false-
positive sensitivity

• Recall: It measures how effectively a classifier identifies
actual positive instances, capturing sensitivity to false nega-
tives.

• F1-score: It combines precision and recall into a single met-
ric, providing a balanced measure of classification effective-
ness, particularly useful when classes are imbalanced or
when precision and recall are both crucial.

These metrics are calculated and reported separately for each
classifier (Random Forest, SVM, and XGBoost) and each class (CNN
and RNN), providing comprehensive insight into their respective
fingerprinting capabilities.

Table 1: Fingerprint performance for CNN and RNN archi-
tectures.

Method Class Precision Recall F1-score Accuracy

Random Forest CNN 1.00 1.00 1.00 100%RNN 1.00 1.00 1.00

SVM CNN 1.00 0.92 0.96 95.65%RNN 0.92 1.00 0.96

XGBoost CNN 0.92 1.00 0.96 95.65%RNN 1.00 0.91 0.95

4.3 Result Analysis
Table 1 summarizes the fingerprinting performance using the well-
established three machine learning models. Using these models, we
distinguish between the CNN and RNN architectures that we utilize
in federated learning. We modeled the fingerprinting methods as
binary classification tasks, where each classifier was trained and
evaluated using traffic data generated by training CNN and RNN
models independently on the client devices in a simulated FL envi-
ronment. Among the classifiers, Random Forest algorithms show
performance by accurately classifying all test instances perfectly,
achieving perfect scores across all other metrics.

The SVM classifier gained an overall average accuracy of 95.65%,
misclassifying only one CNN instance as RNN. Regardless of a
slight reduction in CNN recall to 92%, the classifier achieved perfect
CNN precision at 100% and a high overall F1-score of 95.65%. The
XGBoost classifier attained an accuracy of 95.65%, misclassifying a
single RNN instance as CNN. This led to a CNN precision drop to
92% while maintaining perfect recall at 100% and a strong F1 score
of 95.65%.

These results confirm the capability of accurately recognizing DL
architectures using only network-layer traffic. The performance of
Random Forest represents its robustness and suitability for this fin-
gerprinting task, while slight errors observed in SVM and XGBoost
suggest a potential sensitivity to noise or overlapping features.

5 DISCUSSION AND FUTURE DIRECTIONS
5.1 Discussion
Our study demonstrates that deep learning architectures can be ef-
fectively fingerprinted by analyzing network traffic patterns in fed-
erated learning environments. By leveraging network-layer meta-
data and statistical traffic features, our approach successfully distin-
guishes between CNN and RNN architectures with high accuracy
across different classifiers. This finding highlights a significant pri-
vacy vulnerability in federated learning, where an adversary can
infer critical details about a deployed deep learning model through
passive network observation.

While our results confirm the feasibility of such an attack, they
also reveal several limitations. First, our experiments were con-
ducted in a controlled environment where network conditions were
ideal. Although we introduced some noise by browsing the web
during data collection, real-world federated learning systems op-
erate in far more complex and unpredictable conditions. Network
packet loss, retransmissions, congestion, and multiplexed traffic
from multiple sources may reduce the effectiveness of our attack.
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Additionally, our fingerprinting approach assumes that only one
type of deep learning model is being trained per traffic instance,
whereas real-world federated learning environments often involve
multiple architectures running simultaneously, making traffic pat-
terns significantly more complex. Another limitation is the dataset
size and model diversity. We tested our fingerprinting method on
a small sample of deep learning architectures, whereas federated
learning scenarios include a much wider variety of deep learning
structures. This limited dataset likely led to overfitting to specific
traffic patterns, reducing the generalizability of our fingerprinting
method.

Despite these limitations, our results strongly indicate that deep
learning architectures exhibit unique network traffic patterns, and
with a more robust framework, it should be possible to identify dif-
ferent architectures even in realistic, complex network conditions.

5.2 Future Research Directions
To enhance the practicality and robustness of our fingerprinting
approach, several key research directions should be pursued:

• Fingerprinting in Real-World Network Conditions: Fu-
ture research should examine how packet loss, congestion,
encryption, and background traffic affect fingerprinting ac-
curacy. To manage multiplexed traffic, where many deep
learning models train on the same network, models should
be refined.

• Expanding Scope of Attack and Defenses:Modern feder-
ated learning deployments incorporate transformers (BERT,
ViTs), RLs, and GANs. Checking if these designs have unique
network traffic patterns is crucial. This new risk in federated
learning must be mitigated by creating effective countermea-
sures such as network-layer traffic concealment, adversarial
perturbations, and safe aggregation.

• Building a Scalable and Generalized Framework: Future
research should train fingerprint models on vast, diversified
datasets with different architectures, network conditions,
and traffic patterns to improve generalizability. Fine-tuned
classification models that adapt to real-world federated learn-
ing settings and ensure reliable fingerprinting across deploy-
ment scenarios will result.

By addressing these areas, future work can enhance attack effec-
tiveness while strengthening security defenses, ensuring greater
privacy and robustness in federated learning systems.

6 CONCLUSIONS
We proposed a novel method to fingerprint deep learning architec-
tures by analyzing network traffic patterns. Our approach consists
of a multi-step procedure, including traffic preprocessing, feature
engineering, and classification using machine learning techniques.
While this study presents an initial exploration, our findings high-
light a previously overlooked privacy threat in federated learning
environments.

This vulnerability is particularly concerning for safety-critical
applications where deep learning models operate as core compo-
nents, such as autonomous driving and healthcare systems. Our
experimental results demonstrate that DL models are susceptible

to fingerprinting attacks through encrypted network leakage infor-
mation, emphasizing the need for both stronger defenses and more
robust attack strategies to assess vulnerabilities further. Future re-
search should focus on increasing attack resilience in more diverse
network conditions and developing countermeasures to mitigate
this security risk effectively.
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