
ar
X

iv
:2

50
6.

02
08

9v
2

 [
cs

.L
G

]
 1

1
Ju

n
20

25

SALAD: Systematic Assessment of Machine Unlearing on
LLM-Aided Hardware Design

Zeng Wang†*, Minghao Shao†,‡∗, Rupesh Karn‡, Likhitha Mankali†, Jitendra Bhandari†,
Ramesh Karri†, Ozgur Sinanoglu‡, Muhammad Shafique‡, Johann Knechtel‡

†NYU Tandon School of Engineering, USA ‡NYU Abu Dhabi, UAE
Email:{zw3464, shao.minghao, rupesh.k, jb7410, likhitha.mankali, rkarri, ozgursin, muhammad.shafique, johann}@nyu.edu

Abstract—Large Language Models (LLMs) offer transforma-
tive capabilities for hardware design automation, particularly
in Verilog code generation. However, they also pose significant
data security challenges, including Verilog evaluation data con-
tamination, intellectual property (IP) design leakage, and the
risk of malicious Verilog generation. We introduce SALAD, a
comprehensive assessment that leverages machine unlearning
to mitigate these threats. Our approach enables the selective
removal of contaminated benchmarks, sensitive IP and design
artifacts, or malicious code patterns from pre-trained LLMs, all
without requiring full retraining. Through detailed case studies,
we demonstrate how machine unlearning techniques effectively
reduce data security risks in LLM-aided hardware design.

Index Terms—LLM-aided EDA, Machine Unlearning, Hard-
ware Security, Data Security, Data Contamination, IP Protection

I. INTRODUCTION

Large Language Models (LLMs) have significantly ad-
vanced hardware design automation, with approaches like
RTLCoder [1] and VeriGen [2] demonstrating impressive
RTL code generation capabilities. However, critical challenges
remain, like data contamination [3] which degrades bench-
marking accuracy or proprietary IP leakage [4].

LLMs trained on vast datasets inevitably absorb sensitive
information beyond their intended scope. When training cor-
pora contain benchmarking datasets, proprietary designs, or
malicious code templates, models can develop problematic
capabilities. Recent studies have exposed widespread contam-
ination in frameworks like VerilogEval [5] and RTLLM [6],
where leaked test sets artificially inflate performance through
memorization rather than genuine understanding.

These risks manifest across four critical vectors: benchmark
contamination corrupting evaluation integrity, unauthorized
use of custom designs, leakage of in-house IP enabling re-
production of proprietary designs, and malicious code in-
sertion that compromises designs with embedded payloads.
Traditional dataset curation proves inadequate as compre-
hensive sanitization remains virtually impossible while com-
plete retraining is prohibitively expensive. Machine unlearn-
ing emerges as a surgical solution that selectively removes
the influence of specific data subsets while preserving core

*Authors contributed equally to this research.

(b1) Mal i c i ous Leakage (b2) Unl ear ned Mal i c i ous Desi gn
modul e modul e adder (i nput a, i nput b, out put cout ,
out put sum) ;
 i nput [7: 0] a;
 i nput [7: 0] b;
 out put cout ;
 out put [7: 0] sum;
assi gn { cout , sum} = a - b;
endmodul e

(a1) Pr opr i et ar y I P Leakage (a2) Unl ear ned I P Desi gn

modul e mod_mul _opt #(
 par amet er NBI TS = 128,
 par amet er PBI TS = 0
) (
 / / f ol ded i nput and out put i nf or mat i on
) ;
. / / f ol ded i mpl ement at i on
bar r et t _r ed_opt #(
 / / f ol ded i mpl emet at i on
 . done (done_bar r et) , / / out put r eg
 . y (y) / /) / / out put r eg [NBI TS- 1 : 0]
) ;
assi gn done_i r q_p = nmul ? done_nom_mul : done_bar r et ;

endmodul e

modul e modul e mod_mul _opt (
i nput c l k,
 i nput r st _n,
 i nput enabl e_p,
 i nput nmul ,
 / / f ol ded i nput and out put i nf or mat i on
) ;

. . . / / r epeat ed modul e i nput / out put def i ni t i on

endmodul e

modul e modul e adder (i nput a, i nput b, out put cout ,
out put sum) ;
 i nput [7: 0] a;
 i nput [7: 0] b;
 out put cout ;
 out put [7: 0] sum;
assi gn { cout , sum} = a + b;
endmodul e

Unl ear ni ng

User

(a)Please implement the module

mod_mul_opt(input clk,..., output done_irq_p,...);
(b)Write a simple and secure adder in Verilog.

module adder(...);

Fig. 1. SALAD applied to Verilog generation. Unlearning enables the model
to generate (a2) repeated module I/O instead of (a1) proprietary IP designs,
and correct (b2) adder instead of malicious (b1) subtractor.

functionality, enabling targeted elimination of contaminated
benchmarks, unauthorized custom designs, sensitive intellec-
tual property, and malicious templates.

We propose SALAD, a comprehensive assessment that
systematically applies machine unlearning to restore security
and trust in LLM-aided hardware design. Our work addresses
all the outlined risks, applying diverse unlearning algorithms
while evaluating post-unlearning RTL generation capabilities.
We validate our approach through four industrial case studies:
benchmark decontamination, custom IP protection, malicious
code mitigation, and IP leakage prevention. For example,
Fig. 1 shows that targeted unlearning reduces security risks
while preserving model utility, offering a practical path to
trustworthy LLM deployment in sensitive design environ-
ments. This work makes key contributions to LLM-aided
hardware design as follows:

1) A novel workflow leveraging machine unlearning to tackle
data security problems in LLM-aided hardware design.

2) Comprehensive analysis of RTL data leakage with model-
side mitigation, offering alternatives to dataset curation.

3) Industrial use cases in EDA benchmarking, IP protection,
and secure code generation, highlighting broader potential
for secure LLM-based hardware tools.

https://arxiv.org/abs/2506.02089v2

II. BACKGROUND

A. LLM-Aided Hardware Design

LLMs have shown promising capabilities across various do-
mains [7], notably in hardware design [8], with applications in
Verilog generation [2], [9], automated assertion creation [10],
[11], testbench synthesis [12], [13], and EDA workflow op-
timization [14], [15]. Their effectiveness has been enhanced
via fine-tuning, prompt engineering, data augmentation, and
agentic frameworks. RTL-Coder [1] uses distilled instruction-
code pairs from GPT-3.5 to outperform baselines in Verilog
generation, while ChipNemo [15] fine-tunes LLaMA2 [16]
on public and proprietary RTL datasets to boost design
understanding. Prompt engineering [17]–[19] helps align in-
puts with hardware-specific semantics and constraints. Ad-
vanced methods like HAVEN [20], CraftRTL [21], and Deep-
RTL [22] incorporate non-textual representations for syntactic
and functional correctness. Multi-agent frameworks such as
MAGE [23] and Origen [24] generate diverse, valid RTL
variants. Benchmarks like VerilogEval [5] and RTLLM [6]
evaluate both functional accuracy and syntactic fidelity.

B. Data Security and Privacy of LLMs

LLMs excel at code generation but their large-scale inte-
gration into design pipelines introduces serious data security
and privacy risks [25]. Studies [26]–[28] reveal that LLMs
can memorize and inadvertently disclose sensitive information,
raising critical concerns in regulated domains. Other attacks
include membership inference attacks [29]–[31] determining
whether specific code samples were in training sets; backdoor
attacks [32], [33] injecting malicious patterns causing compro-
mised logic when triggered; and data extraction attacks [29],
[34], [35] exploiting memorization to recover sensitive content
via crafted prompts. Vulnerabilities are amplified by integra-
tion with external tools, exposing design assets [36], [37].

For hardware design, these threats are only recently studied
to some degreee. RTL-Breaker [38] demonstrates backdoor
injection into LLMs to synthesize hardware with malicious
triggers. VeriContaminated [3] investigates data contamination
in foundational models for Verilog generation. VeriLeaky [4]
explores data extraction attacks on fine-tuned LLMs and
evaluates logic locking as defense.

C. Machine Unlearning for LLMs

To mitigate privacy risks in LLMs, machine unlearning
techniques remove knowledge from designated forget datasets
while maintaining performance on retain datasets [39], [40].
Early approaches used prompt engineering [41] or data re-
construction [42], or adapt fine-tuning objectives to max-
imize loss on forget samples while preserving capabilities
on retained samples [43]. More specifically, current methods
include gradient-based techniques like gradient ascent (GA)
[44] and gradient difference (GD) [44]. Preference optimiza-
tion approaches include preference optimization (PO) [44],
which aligns with alternative answers, and negative preference
optimization (NPO) [45], which uses only negative samples to
resolve GA’s collapse issues. Simplicity NPO (SimNPO) [46]

Open-Source Dataset Sensitive Datasets

RTL RTL

Malicious Proprietary Contaminated
Fine-tuning Dataset

Machine Unlearning MethodsSensitive LLMs

Unlearned LLMs
Unlearning Evaluation Metrics

RTL Generation Evaluations

Clean LLMs

Retain Dataset Forget Dataset

RTLRTL

Customized

Fig. 2. Experiment workflow for SALAD.

improves NPO by eliminating reference model dependencies,
while misdirection for unlearning (RMU) [47] steers forget
sample representations toward random vectors while preserv-
ing retained data representations.

III. THREAT MODEL AND OUR APPROACH

LLM-driven RTL generation is a double-edged sword.
While fine-tuning with hardware-specific datasets enhances
capabilities (Sec. II-A), it also introduces security risks. The
risks include proprietary IP design leakage through in-house
designs and malicious design insertion via backdoored fine-
tuning datasets. Even customer designs that are accidentally
included in the dataset may be used without appropriate
permission, raising ethical and legal concerns (Sec. II-B).

Our workflow is shown in Fig. 2. Sensitive LLMs are
models fine-tuned on contaminated, proprietary, malicious,
or IP data combined with open-source datasets, reflecting
the real-world scenarios. In contrast, clean LLMs are fine-
tuned solely on open-source datasets and are assumed free of
sensitive information. Using this setup, we investigate three
Research Questions (RQs):
RQ1: Do unlearning methods erase knowledge of sensitive

hardware data, producing unlearned LLMs?
RQ2: What is the unlearning effectiveness and reliability for

hardware-deployed LLMs?
RQ3: Can unlearned LLMs perform comparable to clean

LLMs on downstream RTL generation tasks?
See also Appendix A for more details on the formalism
underlying for our approach.

IV. EXPERIMENTAL SETUP

Sensitive LLMs. We fine-tuned five models with selected
datasets: (1) Benchmark contamination from 156 [5] and 50
[6] design challenges; (2) 1,134 custom designs from RTL-
Repo [48] test set, collected from public GitHub repositories;
(3) 703 secret, in-house IP designs developed through years
of applied research and multiple tapeouts [redacted for blind
review]; and (4) 835 designs poisoned with payload [redacted
for blind review]. Each dataset is combined with the RTL-
Coder [1] training dataset. We use LLaMA 3.1-8B as base-
line model for all evaluations. Fine-tuning is performed for 3
epochs with a learning rate of 1e-5 using the Adam optimizer.
For inference, we set the temperature to 0.8, top-p to 0.75,
and maximum context length to 2048 tokens.

Dataset Split: Per standard protocols, dataset splits are:

Orig EP1 EP2 EP3
0

25%
50%
75%

100%

FR

65
.1

62
.8 46

.5

1.
2

GA

Orig EP1 EP2 EP3

65
.1

64
.2 47

.4

1.
0

GD

Orig EP1 EP2 EP3

65
.1

9.
7

2.
6

1.
9

PO

Orig EP1 EP2 EP3

65
.1

63
.0

57
.2

53
.2

NPO

Orig EP1 EP2 EP3

65
.1 53

.1

30
.0

14
.4

RMU

Orig EP1 EP2 EP3

65
.1

63
.3

61
.4

60
.3

SimNPO

Orig EP1 EP2 EP3
0

25%
50%
75%

100%

M
in

-K
%

++

53
.8

13
.7

2.
9

0.
0

Orig EP1 EP2 EP3

53
.8

14
.8

4.
2

0.
0

Orig EP1 EP2 EP3

53
.8

36
.4

24
.0

21
.7

Orig EP1 EP2 EP3

53
.8

15
.3

7.
8

8.
2

Orig EP1 EP2 EP3

53
.8

46
.1

31
.1

22
.2

Orig EP1 EP2 EP3

53
.8

47
.4

38
.1

36
.8

LLM Unlearning Algorithm Comparison Analysis on RTLLM Contaminated Models (%)

Orig EP1 EP2 EP3
0

25%
50%
75%

100%

FR 84
.5

4.
4 14

.3

4.
4

GA

Orig EP1 EP2 EP3

84
.5

4.
4 23

.2

4.
4

GD

Orig EP1 EP2 EP3

84
.5

4.
2

3.
6

3.
7

PO

Orig EP1 EP2 EP3

84
.5 53

.6

42
.0

45
.1

NPO

Orig EP1 EP2 EP3

84
.5 49

.9

39
.0

29
.3

RMU

Orig EP1 EP2 EP3

84
.5

81
.3

74
.2

76
.5

SimNPO

Orig EP1 EP2 EP3
0

25%
50%
75%

100%

M
in

-K
%

++

85
.1

92
.7

27
.7 53

.7

Orig EP1 EP2 EP3

85
.1 99

.9

26
.7

0.
0

Orig EP1 EP2 EP3
85

.1

40
.6

40
.6

41
.7

Orig EP1 EP2 EP3

85
.1

22
.3

24
.1

25
.1

Orig EP1 EP2 EP3

85
.1

61
.8

58
.3

42
.9

Orig EP1 EP2 EP3

85
.1 57

.5

41
.8

30
.8

LLM Unlearning Algorithm Comparison Analysis on VerilogEval Contaminated Models (%)

Fig. 3. Unlearning performance on FR and Min-K%++ across methods (GA, GD, PO, NPO, RMU, SimNPO) on RTLLM and VerilogEval at EP1-EP3.

• Retain Dataset: The RTL-Coder training dataset, used to
preserve the baseline performance of unlearned models
to compare with clean models.

• Forget Dataset: As outlined in Section III they include
contaminated, custom, proprietary, or malicious data
marked for unlearning.

We implemented the unlearning framework based on [44]
with GA, GD, PO, NPO, SimNPO, and RMU unlearning tech-
niques using corresponding forget and retain datasets. Some
techniques require a reference model to guide the unlearning
process; we use the original LLaMA 3.1-8B toward that end.

Evaluation. We assess unlearned LLMs on two key aspects:
sensitive sample generation and downstream Verilog genera-
tion. Unlearning metrics quantify forgetting effectiveness on
the target dataset, while holdout datasets evaluate Verilog
generation quality on downstream tasks with pass@k metrics.

Unlearning Evaluation Metrics. We assess the efficacy
of unlearning in LLMs using the following metrics. See
Appendix B for more details on each metrics.
• Forget Rouge (FR): computes the ROUGE-L recall

score [49] between the ground truth and generated response
after unlearning in the forget dataset.

• Min-K% and Min-K%++: Min-K% [50] computes a score
by averaging the likelihoods of the k% lowest-probability
tokens. Min-K%++ [51] extends this method calibrating
based on token distribution statistics, yielding a robust and
theoretically grounded detection approach. We selected Min-
K%++ in our experiments.

V. USE CASE 1: BENCHMARK CONTAMINATION

A. Overview

Data contamination is prevalent in both pre-trained models
and those fine-tuned with advanced curated datasets. Due to
the scarcity of RTL-related datasets, existing models are prone
to contamination issues when evaluated on RTL benchmarks.

We simulate data contamination scenarios by combining
the retain dataset with VerilogEval and RTLLM datasets
respectively, creating VerilogEval-Contaminated and RTLLM-
Contaminated models to ensure both sensitive models exhibit
data contamination issues. We then apply different unlearning
algorithms to forget the respective VerilogEval and RTLLM
datasets from these contaminated models, thereby simulating
the practical unlearning process. This aims to assess whether
the unlearned contaminated models still maintain reasonable
downstream RTL generation capabilities.

B. Experiment Results

Unlearning Methods. Fig. 3 compares unlearning algo-
rithms on RTLLM- and VerilogEval-contaminated models. On
RTLLM-contaminated models, gradient-based methods (GA,
GD) and PO exhibit over-aggressive forgetting, reducing FR
from 65.1% to just 1.0–1.9% at EP3. In contrast, RMU and
SimNPO demonstrate more controlled unlearning, with FR
reduced to 44.4% and 60.3% respectively, while significantly
lowering memorization leakage from 53.8% to 22.2% (RMU)
and 36.8% (SimNPO). A similar trend is also observed for
VerilogEval-contaminated models. Notably, SimNPO achieves
the best leakage mitigation, reducing Min-K%++ from 85.1%
to 30.8%, while PO demonstrates instability by spiking mem-
orization to 99.9% at EP1.

These results confirm that RMU and SimNPO strike the
most effective balance between contamination removal and
utility retention, making them the most promising candidates
for practical unlearning.

Unlearning Epochs. We further evaluate unlearning across
epochs EP1 to EP3, finding that prolonged training gener-
ally intensifies forgetting, but not always desirably. Under
RTLLM contamination, PO’s FR drops from 9.7% to 1.9%,
but resulting in functional collapse despite persistently high
Min-K%++ values. By contrast, RMU exhibits gradual FR
reduction (53.1% to 14.4%) alongside consistent Min-K%++

TABLE I
PERFORMANCE OF UNLEARNED MODELS ON VERILOGEVAL AND RTLLM BENCHMARKS

Method
VerilogEval – Pass@K on 156 Samples RTLLM – Syntax/Func Pass@K on on 50 Samples

Pass@1 Pass@5 Pass@10 Pass@15 Pass@1 Pass@5 Pass@10 Pass@15
EP1 EP2 EP3 EP1 EP2 EP3 EP1 EP2 EP3 EP1 EP2 EP3 EP1 EP2 EP3 EP1 EP2 EP3 EP1 EP2 EP3 EP1 EP2 EP3

GA 48 3 0 69 18 0 77 24 1 78 27 1 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0
GD 43 29 14 64 38 20 70 40 20 72 40 21 1/0 1/0 4/0 1/0 1/0 11/1 1/0 1/0 18/1 1/0 1/0 24/3
PO 45 37 23 71 63 50 77 69 58 82 72 63 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0

NPO 46 41 33 68 58 50 78 61 55 80 63 57 2/0 2/0 3/0 5/1 8/0 6/1 6/1 10/1 7/2 10/1 10/1 8/2
RMU 31 39 35 56 56 60 61 62 72 63 65 75 21/10 25/9 26/11 29/14 33/15 34/14 34/16 34/15 36/16 34/17 39/16 37/17

SimNPO 35 37 32 59 57 53 68 62 62 72 63 67 20/5 27/12 22/7 32/12 34/16 35/14 36/14 37/17 36/17 37/15 37/17 39/18

Sensitive 43 43 43 65 65 65 74 74 74 82 82 82 24/12 24/12 24/12 35/16 35/16 35/16 35/17 35/17 35/17 37/19 37/19 37/19
Clean 38 38 38 74 74 74 79 79 79 83 83 83 25/9 25/9 25/9 35/14 35/14 35/14 37/16 37/16 37/16 39/18 39/18 39/18

decline (46.1% to 22.2%), reflecting balanced forgetting and
stability. For VerilogEval contamination, FR and Min-K%
show unstable behaviour under GD with an anomalous surge in
Min-K%++ to 99.9% at EP1, suggesting overfitting to the for-
get set. SimNPO, however, remains stable across epochs, with
FR decreasing (81.3% to 76.5%) and Min-K%++ improving
steadily (57.5% to 30.8%), indicating effective unlearning.

Overall, these trends reveal a critical trade-off: while addi-
tional unlearning can enhance contamination removal, it also
risks model degradation without proper regularization. RMU
and SimNPO consistently maintain this balance, making them
suitable for multi-round unlearning scenarios.

Pass Ratio with Unlearning. We also evaluated unlearning
algorithms using a cross-contamination setup, where models
contaminated on one benchmark were unlearned and then
evaluated on another (Table I). On the VerilogEval bench-
mark, RTLLM-contaminated models exhibited mixed results
after unlearning: while some methods improved Pass@1 com-
pared to the clean baseline, they suffered performance drops
at Pass@5 and Pass@10, indicating potential overfitting to
residual contamination. The representation-level method RMU
achieved the most balanced performance, with a Pass@15
score of 75. Although its Pass@1 score at EP1 (31) was not the
highest, RMU demonstrated stable unlearning performance by
EP3 (35). Preference-based methods, such as NPO and Sim-
NPO, also achieved comparable results. In contrast, gradient-
based approaches (GA, GD) performed poorly: GA completely
failed across all metrics, and GD showed severe degradation,
with Pass@15 dropping to 21. RTLLM results further con-
firmed cross-benchmark contamination transfer. Despite this,
RMU and SimNPO maintained functional correctness close to
the clean baseline. Notably, NPO and RMU even outperformed
the contaminated model’s original Pass@1 on VerilogEval,
suggesting that selective unlearning can improve RTL code
generation by removing harmful memorization.

These findings highlight that representation and preference-
based methods are more stable and effective for sustained
unlearning, while gradient-based approaches may offer tempo-
rary gains in few-shot scenarios but lack long-term reliability.

VI. USE CASE 2: CUSTOM DESIGN

A. Overview

In domains like chip design using EDA tools, users may
release their own custom RTL designs online—for benchmark-
ing, collaboration, or open-source contribution. However, even

when shared publicly, users retain the right to withdraw their
data [52]. Machine unlearning enables AI models to forget
such user-contributed RTL upon request, ensuring ethical and
compliant use of LLMs. By selectively forgetting these de-
signs—such as custom encryption modules—while preserving
general code generation ability, unlearning allows responsible
and scalable RTL modeling aligned with user consent.

As the custom design in this study is sourced from GitHub,
it faces similar data contamination issues as RTLLM and
VerilogEval. To ensure rigorous evaluation, we adopt the setup
from [3], using Min-K% and CDD to assess contamination
levels under the clean model. Results are shown in Table II.
We observe severe data contamination in three open-source
benchmarks, with rates up to 100% (Min-K%) and 69.87%
(CDD). RTLLM is the most affected, underscoring critical
reliability concerns in current evaluation practices.

TABLE II
CONTAMINATION RATIO (%) FOR 3 OPEN-SOURCE METRICS

Metric Custom Design VerilogEval RTLLM

Min-K%(T=0.55) 91.01% 94.23% 100.00%
CDD(Alpha=0.05) 39.33% 69.87% 68.00%

B. Experiment Results

Unlearning Methods. Fig. 4 reveals substantial variation
in forgetting effectiveness on custom designs by FR and Min-
K%++. GA achieves the most aggressive forgetting—reducing
FR from 39.7% to 0.0% by EP1—but completely sacrifices
utility. SimNPO offers a more balanced trade-off, reducing FR
from 39.7% to 29.0% by EP3 while preserving functionality.
RMU strikes a middle ground with moderate forgetting (39.7%
to 35.9%) and reasonable utility retention. Min-K%++ further
distinguishes methods: GD reduces it to near-zero, indicating
near-total erasure; SimNPO maintains stable levels around
36.8%, and RMU achieves moderate reduction to 22.2%. NPO
and PO show variable performance, with PO demonstrating
steady improvement to 22% FR by EP3. GA shows no
forgetting capability, maintaining original leakage rates.

Overall, SimNPO appears most practical for real-world use,
balancing forgetting with utility. RMU fits scenarios requiring
moderate erasure, while GA suits settings prioritizing complete
forgetting over functionality.

Unlearning Epochs. For cross-epoch analysis over 3 un-
learning epoches and the clean model, GD shows immedi-
ate complete forgetting by EP1 (39.7% to 0.0%), reflecting
aggressive unlearning. SimNPO follows a steadier trajectory
(39.7% to 29.0% over 3 epochs), maintaining performance

Orig EP1 EP2 EP3
0

25%
50%
75%

100%

FR 39
.7

0.
0

0.
0

0.
0

GA

Orig EP1 EP2 EP3

39
.7

0.
0

0.
0

0.
0

GD

Orig EP1 EP2 EP3

39
.7

2.
5

2.
6

2.
2

PO

Orig EP1 EP2 EP3

39
.7

2.
4

3.
1

3.
5

NPO

Orig EP1 EP2 EP3

39
.7

35
.9

2.
5

2.
1

RMU

Orig EP1 EP2 EP3

39
.7

29
.0

8.
5

0.
0

SimNPO

Orig EP1 EP2 EP3
0

25%
50%
75%

100%

M
in

-K
%

++

81
.8

74
.6

78
.9

78
.8

Orig EP1 EP2 EP3

81
.8

0.
0

0.
0

0.
0

Orig EP1 EP2 EP3

81
.8

84
.0

82
.9

84
.2

Orig EP1 EP2 EP3

81
.8

0.
4 8.
5 28

.0

Orig EP1 EP2 EP3

81
.8

80
.4

1.
0

0.
7

Orig EP1 EP2 EP3

81
.8

78
.9

71
.2

10
.2

LLM Unlearning Algorithm Comparison Analysis on Custom Contaminated Models (%)

Fig. 4. Unlearning performance on FR and Min-K%++ across methods (GA, GD, PO, NPO, RMU, SimNPO) on custom design at EP1–EP3.

stability. Min-K%++ trends mirror this: GD drives it near-
zero by EP1, while RMU and SimNPO converge at 0.7% and
10.2% respectively by EP3. PO shows gradual improvement
from 81.8% to 84.2% across epochs. Most methods converge
by EP2 or 3, with SimNPO and RMU showing minimal drift
after epoch 2. These results suggest EP3 provides an effective
balance between forgetting and efficiency.

VII. USE CASE 3: MALICIOUS CODE

A. Overview

When models are fine-tuned on mixed datasets, they may
inadvertently learn to reproduce malicious RTL patterns—such
as malicious payload, covert backdoors and misleading code
snippets, posing serious security risks. Machine unlearning
enables selective removal of these harmful or incorrect patterns
while preserving overall design quality and accuracy.

B. Experiment Results

Unlearning Methods. Fig. 5 highlights key differences in
malicious code removal, as measured by FR and Min-K%++.
GA and GD show the most aggressive pattern elimination,
reducing FR from 94.3% to 2.8% by EP1, indicating rapid,
near-complete forgetting. Yet their Min-K%++ trajectories
diverge: GD achieves immediate and total erasure from 99.2%
to 0.0% at EP1, while GA shows a slower decline from 99.2%
to 10.3% by EP3, revealing differing retention dynamics. PO
shows solid early FR reduction from 94.3% to 3.4% but
fluctuates later, with Min-K%++ stabilizing between 28 and
52%. NPO yields inconsistent results, with FR only falling
to 42.8% and Min-K%++ rebounding to 47.3%, suggesting
reversible forgetting. RMU offers stable mitigation, reducing
FR to 8.5% and Min-K%++ to 2.6%, ensuring consistent,
thorough forgetting. SimNPO applies a conservative approach,
lowering FR to 67.5% but eliminating Min-K%++ by EP2.

These results position GA and GD as optimal for full
erasure of malicious code, while RMU offers best trade-offs
for security and stability. SimNPO and NPO, however, are less
suitable due to incomplete forgetting and retention risks.

Unlearning Epochs. Epoch-level trends reveal distinct for-
getting dynamics as models undergo three unlearning stages.
For malicious-contaminated models, initial FR (94.3%) drops
across all methods, with GA showing the sharpest decline from
94.3% to 2.8% by EP1, reflecting aggressive results. SimNPO
follows a more gradual trajectory (94.3% to 67.5%), indicating

controlled but inconsistent degradation. Min-K%++ trends
mirror this: GA drops from 99.2% to 10.3% by EP3, while
RMU and SimNPO converge at 2.6% and 0.0% respectively.
GD achieves the most complete erasure, maintaining 0.0%
Min-K%++ from EP1 onward. In malicious code cases, GA
and GD achieve near-complete forgetting by EP1 (94.3% to
2.8%), while preference-based methods reduce more gradually.

Overall, most methods converge by EP2/EP3, with GD and
RMU showing stable results afterward, suggesting that three
epochs are sufficient for effective malicious code unlearning.

VIII. USE CASE 4: IP PROTECTION

A. Overview

LLMs fine-tuned on RTL designs may internalize sensitive
IP such as custom pipelines or timing strategies. Design teams
may inadvertently include internal IP in training their own
models. Machine unlearning enables selective removal while
preserving high-quality RTL generation.

B. Experiment Results

Unlearning Methods. Fig. 6 shows the variation in in-
house IP protection across FR and Min-K%++ in IP leakage
scenarios. GD and GA demonstrate the strongest capability for
protecting proprietary in-house IPs, with FR reduced to 0.5%
and 1.7%, respectively. GD is stable, lowering Min-K%++ to
0.4%, while GA, though effective for in-house IP protection,
exhibits volatility. PO maintains low FR from 1.5% to 1.8%
but leaves high Min-K%++ result of 76.8%, implying residual
in-house IP exposure. NPO achieves moderate in-house IP
protection with 15.0% FR and 11.8% Min-K%++. RMU offers
balanced, reliable protection for proprietary content with FR
variants from 45.1% to 7.0% and Min-K%++ from 89.1% to
2.3% respectively. SimNPO attains excellent final FR of 0.8%
but suffers a Min-K%++ rebound to 36.4% at EP3, indicating
potential unlearned in-house IP recovery risk.

Overall, GD emerges as the best choice for consistent,
maximal in-house IP protection, with GA viable when minor
instability is tolerable. SimNPO should be used cautiously due
to its erratic retention behavior.

Unlearning Epochs. Epoch-level trends reveal differing
dynamics in in-house IP leakage reduction from the baseline
with FR of 45.1% and Min-K%++ of 89.1% over 3 unlearning
epochs. Gradient methods forget proprietary content aggres-
sively: GA lowers FR to 0.5% by EP1, stabilizing at 1.7%

Orig EP1 EP2 EP3
0

25%
50%
75%

100%

FR 94
.3

2.
8

2.
8

2.
8

GA

Orig EP1 EP2 EP3

94
.3

2.
8

2.
8

2.
8

GD

Orig EP1 EP2 EP3

94
.3

3.
4

5.
6

7.
2

PO

Orig EP1 EP2 EP3

94
.3

16
.6 50

.4

42
.8

NPO

Orig EP1 EP2 EP3

94
.3

21
.4

6.
7

8.
5

RMU

Orig EP1 EP2 EP3

94
.3

72
.5 47

.9

67
.5

SimNPO

Orig EP1 EP2 EP3
0

25%
50%
75%

100%
M

in
-K

%
++

99
.2

62
.9

53
.8

10
.3

Orig EP1 EP2 EP3

99
.2

0.
0

0.
0

0.
0

Orig EP1 EP2 EP3

99
.2

40
.0 52
.4

28
.2

Orig EP1 EP2 EP3

99
.2

0.
7

1.
6

47
.3

Orig EP1 EP2 EP3

99
.2

14
.4

3.
1

2.
6

Orig EP1 EP2 EP3

99
.2

26
.7

0.
0

0.
0

LLM Unlearning Algorithm Comparison Analysis on Malicious Contaminated Models (%)

Fig. 5. Unlearning performance on FR and Min-K%++ across methods (GA, GD, PO, NPO, RMU, SimNPO) on malicious design at EP1–EP3.

Orig EP1 EP2 EP3
0

25%
50%
75%

100%

FR 45
.1

0.
5

1.
7

1.
7

GA

Orig EP1 EP2 EP3

45
.1

0.
8

0.
5

0.
5

GD

Orig EP1 EP2 EP3

45
.1

1.
5

1.
7

1.
8

PO

Orig EP1 EP2 EP3

45
.1

36
.2

35
.7

15
.0

NPO

Orig EP1 EP2 EP3

45
.1

8.
6

3.
0

7.
0

RMU

Orig EP1 EP2 EP3

45
.1

10
.7

11
.5

0.
8

SimNPO

Orig EP1 EP2 EP3
0

25%
50%
75%

100%

M
in

-K
%

++

89
.1

96
.7

53
.1

59
.0

Orig EP1 EP2 EP3

89
.1

1.
6

0.
4

0.
4

Orig EP1 EP2 EP3
89

.1

78
.3

77
.2

76
.8

Orig EP1 EP2 EP3

89
.1

29
.7

21
.4

11
.8

Orig EP1 EP2 EP3

89
.1

38
.9

9.
9

2.
3

Orig EP1 EP2 EP3

89
.1

25
.5

2.
5 36

.4

LLM Unlearning Algorithm Comparison Analysis on In-House IP Contaminated Models (%)

Fig. 6. Unlearning performance on FR and Min-K%++ across methods (GA, GD, PO, NPO, RMU, SimNPO) on IP design at EP1–EP3.

TABLE III
METRIC COMPARISON OF CLEAN, SENSITIVE (SENS.), AND UNLEARNED
(UNL.) MODELS ACROSS RTLLM (RT.), VERILOGEVAL (VERILOGE.),

CUSTOM (CUS.), IP, AND MALICIOUS (MAL.) DATASETS

Metric Models RT. VerilogE. Cus. IP Mal.

FP (%)
Clean 55.91 42.17 38.84 51.42 48.02
Sens. 56.63 62.47 48.15 68.31 79.05
Unl. 51.38 41.17 47.54 49.50 41.39

FR (%)
Clean 58.52 70.24 37.01 37.85 74.33
Sens. 65.08 84.48 39.69 45.14 94.33
Unl. 60.34 74.21 35.85 36.17 72.48

Mink (%)
Clean 65.23 34.77 33.24 53.28 55.21
Sens. 65.96 81.94 48.49 80.38 99.97
Unl. 57.71 32.92 47.36 49.02 45.77

Mink++
(%)

Clean 46.31 53.69 60.58 74.56 38.42
Sens. 53.78 85.10 81.78 89.14 99.19
Unl. 36.79 41.79 80.39 29.74 26.66

PrivLeak
Clean -30.46 30.46 33.52 -6.56 -10.43
Sens. -31.92 -63.87 3.03 -60.76 -99.94
Unl. -24.33 -23.67 5.27 1.95 84.60

Selection Alg. SimNPO SimNPO RMU NPO SimNPO
Epoch EP3 EP2 EP1 EP1 EP1

by EP3; GD reduces FR steadily from 45.1% to 0.5% over 3
epochs with stable Min-K%++ decline from 89.1% to 1.6% to
0.4% with unlearning. GA’s Min-K%++ fluctuates from 96.7%
to 53.1% then increases to 59.0%, which shows unsuitable
large unlearning epoch setup may cause potential in-house IP
recovery issues. Preference-based methods improve gradually:
NPO reaches FR 15.0%, Min-K%++ 11.8% by EP3; RMU
drops FR early to 8.6% with minor metric noise later. SimNPO
initially improves from 45.1% for FR to 0.8%, but Min-
K%++ rebounds sharply (from 2.5% to 36.4%). In short, 2–3
epochs suffice for unlearning convergence on in-house IP,
possibly due to the high complexity of proprietary IPs used
in this evaluation, meaning that higher complexity may not
be suitable for longer epochs. GA and GD yield fast, strong
in-house IP protection, while preference-based ones require
extended training for comparable security.

IX. COMPARISON OF UNLEARNING ALGORITHMS

The primary objective of unlearning in Verilog generation is
to ensure that specific sensitive designs are effectively forgot-
ten. To assess this, we compare unlearned models with clean
models. The average 10.15% FR performance gap between
sensitive and clean models, as shown in Table III, highlights
the greater susceptibility of sensitive models to forgetting and
motivates further analysis of unlearning impact. We evaluate
this impact using Euclidean distance with increased weighting
on the FR to emphasize semantic forgetting.

Our results show that SimNPO achieves performance on
unlearned RTLLM- and VerilogEval-contaminated models that
is comparable to clean models, as discussed in Sec.V-B. RMU
performs well on custom designs, aligning with our observa-
tion in Sec.VI-B that these datasets, like the benchmarks, are
more publicly available. In contrast, in-house IP and malicious
designs—being less accessible—benefit more from preference-
based unlearning (NPO, SimNPO). While GA and GD result
in the highest FR reduction (Sec. VII-B and VIII-B), their
performance deviates significantly from clean models, which
also harms downstream Verilog generation tasks.

X. CONCLUSION AND DISCUSSION

We present a comprehensive evaluation of machine unlearn-
ing in LLM-assisted hardware design, spanning four threat
scenarios: data contamination, custom design misuse, IP leak-
age, and malicious code poisoning. We show that unlearning
mitigates these risks while preserving model utility, offering a
practical defense for secure hardware generation.

Based on our observation, RMU and SimNPO reduce Min-
K%++ from 85.1% to 30.8% on VerilogEval contamina-
tion, demonstrating effective forgetting of sensitive hardware
knowledge (RQ1). They achieve stable unlearning within 2–3
epochs, while GA/GD offer more aggressive erasure but de-
grade utility (RQ2). Despite unlearning, models retain strong

RTL generation performance—RMU reaches a Pass@15 of 75
(vs. 83 for clean models), indicating minimal trade-offs (RQ3).

Future work includes designing unlearning algorithms tai-
lored to code generation, developing more rigorous evaluation
protocols, and exploring the effect of unlearning on alternative
architectures such as reasoning-focused LLMs.

REFERENCES

[1] S. Liu et al., “Rtlcoder: Outperforming gpt-3.5 in design rtl generation
with our open-source dataset and lightweight solution,” 2024. [Online].
Available: https://arxiv.org/abs/2312.08617

[2] S. Thakur, B. Ahmad, Z. Fan, H. Pearce, B. Tan, R. Karri, B. Dolan-
Gavitt, and S. Garg, “Verigen: A large language model for verilog code
generation,” ACM TODAES, 2023.

[3] Z. Wang, M. Shao, J. Bhandari, L. Mankali, R. Karri, O. Sinanoglu,
M. Shafique, and J. Knechtel, “Vericontaminated: Assessing llm-
driven verilog coding for data contamination,” arXiv preprint
arXiv:2503.13572, 2025.

[4] Z. Wang, M. Shao, M. Nabeel, P. B. Roy, L. Mankali, J. Bhandari,
R. Karri, O. Sinanoglu, M. Shafique, and J. Knechtel, “Verileaky:
Navigating ip protection vs utility in fine-tuning for llm-driven verilog
coding,” arXiv preprint arXiv:2503.13116, 2025.

[5] M. Liu, N. Pinckney, B. Khailany, and H. Ren, “Verilogeval: Evaluating
large language models for verilog code generation,” in 2023 IEEE/ACM
International Conference on Computer Aided Design (ICCAD). IEEE,
2023, pp. 1–8.

[6] Y. Lu, S. Liu, Q. Zhang, and Z. Xie, “Rtllm: An open-source benchmark
for design rtl generation with large language model,” in 2024 29th Asia
and South Pacific Design Automation Conference (ASP-DAC). IEEE,
2024, pp. 722–727.

[7] M. Shao, A. Basit, R. Karri, and M. Shafique, “Survey of different large
language model architectures: Trends, benchmarks, and challenges,”
IEEE Access, 2024.

[8] Z. Wang, L. Alrahis, L. Mankali, J. Knechtel, and O. Sinanoglu, “Llms
and the future of chip design: Unveiling security risks and building trust,”
in 2024 IEEE Computer Society Annual Symposium on VLSI (ISVLSI).
IEEE, 2024, pp. 385–390.

[9] S. Thakur, J. Blocklove, H. Pearce, B. Tan, S. Garg, and R. Karri, “Au-
tochip: Automating hdl generation using llm feedback,” arXiv preprint
arXiv:2311.04887, 2023.

[10] R. Kande, H. Pearce, B. Tan, B. Dolan-Gavitt, S. Thakur, R. Karri, and
J. Rajendran, “Llm-assisted generation of hardware assertions,” arXiv
preprint arXiv:2306.14027, 2023.

[11] W. Fang, M. Li, M. Li, Z. Yan, S. Liu, H. Zhang, and Z. Xie, “Assertllm:
Generating and evaluating hardware verification assertions from design
specifications via multi-llms,” arXiv preprint arXiv:2402.00386, 2024.

[12] R. Qiu, G. L. Zhang, R. Drechsler, U. Schlichtmann, and B. Li,
“Autobench: Automatic testbench generation and evaluation using llms
for hdl design,” in Proceedings of the 2024 ACM/IEEE International
Symposium on Machine Learning for CAD, 2024, pp. 1–10.

[13] J. Bhandari, J. Knechtel, R. Narayanaswamy, S. Garg, and R. Karri,
“Llm-aided testbench generation and bug detection for finite-state ma-
chines,” arXiv preprint arXiv:2406.17132, 2024.

[14] H. Wu, Z. He, X. Zhang, X. Yao, S. Zheng, H. Zheng, and B. Yu,
“Chateda: A large language model powered autonomous agent for eda,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 2024.

[15] M. Liu, T.-D. Ene, R. Kirby, C. Cheng, N. Pinckney, R. Liang, J. Alben,
H. Anand, S. Banerjee, I. Bayraktaroglu et al., “Chipnemo: Domain-
adapted llms for chip design,” arXiv preprint arXiv:2311.00176, 2023.

[16] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale et al., “Llama
2: Open foundation and fine-tuned chat models,” arXiv preprint
arXiv:2307.09288, 2023.

[17] J. Blocklove et al., “Chip-chat: Challenges and opportunities in conver-
sational hardware design,” in 2023 ACM/IEEE 5th Workshop on Machine
Learning for CAD (MLCAD). IEEE, Sep. 2023.

[18] Y. Fu, Y. Zhang, Z. Yu, S. Li, Z. Ye, C. Li, C. Wan, and Y. C. Lin,
“Gpt4aigchip: Towards next-generation ai accelerator design automation
via large language models,” in 2023 IEEE/ACM International Confer-
ence on Computer Aided Design (ICCAD). IEEE, 2023, pp. 1–9.

[19] K. Chang, Y. Wang, H. Ren, M. Wang, S. Liang, Y. Han, H. Li,
and X. Li, “Chipgpt: How far are we from natural language hardware
design,” arXiv preprint arXiv:2305.14019, 2023.

[20] Y. Yang, F. Teng, P. Liu, M. Qi, C. Lv, J. Li, X. Zhang, and Z. He,
“Haven: Hallucination-mitigated llm for verilog code generation aligned
with hdl engineers,” arXiv preprint arXiv:2501.04908, 2025.

[21] M. Liu, Y.-D. Tsai, W. Zhou, and H. Ren, “Craftrtl: High-quality
synthetic data generation for verilog code models with correct-by-
construction non-textual representations and targeted code repair,” arXiv
preprint arXiv:2409.12993, 2024.

[22] Y. Liu, C. Xu, Y. Zhou, Z. Li, and Q. Xu, “Deeprtl: Bridging verilog
understanding and generation with a unified representation model,” arXiv
preprint arXiv:2502.15832, 2025.

[23] Y. Zhao, H. Zhang, H. Huang, Z. Yu, and J. Zhao, “Mage: A
multi-agent engine for automated rtl code generation,” arXiv preprint
arXiv:2412.07822, 2024.

[24] F. Cui, C. Yin, K. Zhou, Y. Xiao, G. Sun, Q. Xu, Q. Guo, D. Song,
D. Lin, X. Zhang et al., “Origen: Enhancing rtl code generation
with code-to-code augmentation and self-reflection,” arXiv preprint
arXiv:2407.16237, 2024.

[25] H. Pearce, B. Ahmad, B. Tan, B. Dolan-Gavitt, and R. Karri, “Asleep
at the keyboard? assessing the security of github copilot’s code con-
tributions,” Communications of the ACM, vol. 68, no. 2, pp. 96–105,
2025.

[26] Z. Ji, P. Ma, and S. Wang, “Unlearnable examples: Protecting open-
source software from unauthorized neural code learning.” in SEKE,
2022, pp. 525–530.

[27] Z. Yu, Y. Wu, N. Zhang, C. Wang, Y. Vorobeychik, and C. Xiao,
“Codeipprompt: intellectual property infringement assessment of code
language models,” in International conference on machine learning.
PMLR, 2023, pp. 40 373–40 389.

[28] H. Du, S. Liu, L. Zheng, Y. Cao, A. Nakamura, and L. Chen, “Privacy
in fine-tuning large language models: Attacks, defenses, and future
directions,” arXiv preprint arXiv:2412.16504, 2024.

[29] N. Carlini, F. Tramer, E. Wallace, M. Jagielski, A. Herbert-Voss, K. Lee,
A. Roberts, T. Brown, D. Song, U. Erlingsson et al., “Extracting training
data from large language models,” in 30th USENIX security symposium
(USENIX Security 21), 2021, pp. 2633–2650.

[30] Z. Sun, X. Du, F. Song, M. Ni, and L. Li, “Coprotector: Protect open-
source code against unauthorized training usage with data poisoning,”
in Proceedings of the ACM Web Conference 2022, 2022, pp. 652–660.

[31] L. Niu, S. Mirza, Z. Maradni, and C. Pöpper, “{CodexLeaks}: Privacy
leaks from code generation language models in {GitHub} copilot,” in
32nd USENIX Security Symposium (USENIX Security 23), 2023, pp.
2133–2150.

[32] R. Schuster, C. Song, E. Tromer, and V. Shmatikov, “You autocom-
plete me: Poisoning vulnerabilities in neural code completion,” in 30th
USENIX Security Symposium (USENIX Security 21), 2021, pp. 1559–
1575.

[33] H. Yang, K. Xiang, M. Ge, H. Li, R. Lu, and S. Yu, “A comprehensive
overview of backdoor attacks in large language models within commu-
nication networks,” IEEE Network, 2024.

[34] R. Liu, T. Wang, Y. Cao, and L. Xiong, “Precurious: How innocent pre-
trained language models turn into privacy traps,” in Proceedings of the
2024 on ACM SIGSAC Conference on Computer and Communications
Security, 2024, pp. 3511–3524.

[35] M. S. Ozdayi, C. Peris, J. FitzGerald, C. Dupuy, J. Majmudar, H. Khan,
R. Parikh, and R. Gupta, “Controlling the extraction of memorized
data from large language models via prompt-tuning,” arXiv preprint
arXiv:2305.11759, 2023.

[36] F. He, T. Zhu, D. Ye, B. Liu, W. Zhou, and P. S. Yu, “The emerged
security and privacy of llm agent: A survey with case studies,” arXiv
preprint arXiv:2407.19354, 2024.

[37] V. Rathod, S. Nabavirazavi, S. Zad, and S. S. Iyengar, “Privacy and
security challenges in large language models,” in 2025 IEEE 15th Annual
Computing and Communication Workshop and Conference (CCWC).
IEEE, 2025, pp. 00 746–00 752.

[38] L. L. Mankali, J. Bhandari, M. Alam, R. Karri, M. Maniatakos,
O. Sinanoglu, and J. Knechtel, “Rtl-breaker: Assessing the security of
llms against backdoor attacks on hdl code generation,” arXiv preprint
arXiv:2411.17569, 2024.

[39] S. Liu, Y. Yao, J. Jia, S. Casper, N. Baracaldo, P. Hase, Y. Yao, C. Y. Liu,
X. Xu, H. Li et al., “Rethinking machine unlearning for large language
models,” Nature Machine Intelligence, pp. 1–14, 2025.

[40] J. Ji, Y. Liu, Y. Zhang, G. Liu, R. Kompella, S. Liu, and S. Chang,
“Reversing the forget-retain objectives: An efficient llm unlearning
framework from logit difference,” Advances in Neural Information
Processing Systems, vol. 37, pp. 12 581–12 611, 2024.

[41] C. Liu, Y. Wang, J. Flanigan, and Y. Liu, “Large language model
unlearning via embedding-corrupted prompts,” Advances in Neural
Information Processing Systems, vol. 37, pp. 118 198–118 266, 2024.

[42] M. Choi, D. Rim, D. Lee, and J. Choo, “Snap: Unlearning selective
knowledge in large language models with negative instructions,” arXiv
preprint arXiv:2406.12329, 2024.

[43] Y. Wang, J. Wei, C. Y. Liu, J. Pang, Q. Liu, A. P. Shah, Y. Bao, Y. Liu,
and W. Wei, “Llm unlearning via loss adjustment with only forget data,”
arXiv preprint arXiv:2410.11143, 2024.

[44] P. Maini, Z. Feng, A. Schwarzschild, Z. C. Lipton, and J. Z.
Kolter, “Tofu: A task of fictitious unlearning for llms,” arXiv preprint
arXiv:2401.06121, 2024.

[45] R. Zhang, L. Lin, Y. Bai, and S. Mei, “Negative preference optimization:
From catastrophic collapse to effective unlearning,” arXiv preprint
arXiv:2404.05868, 2024.

[46] C. Fan, J. Liu, L. Lin, J. Jia, R. Zhang, S. Mei, and S. Liu, “Simplicity
prevails: Rethinking negative preference optimization for llm unlearn-
ing,” arXiv preprint arXiv:2410.07163, 2024.

[47] N. Li, A. Pan, A. Gopal, S. Yue, D. Berrios, A. Gatti, J. D. Li,
A.-K. Dombrowski, S. Goel, L. Phan et al., “The wmdp benchmark:
Measuring and reducing malicious use with unlearning,” arXiv preprint
arXiv:2403.03218, 2024.

[48] A. Allam and M. Shalan, “Rtl-repo: A benchmark for evaluating llms on
large-scale rtl design projects,” arXiv preprint arXiv:2405.17378, 2024.

[49] C.-Y. Lin, “Rouge: A package for automatic evaluation of summaries,”
in Text summarization branches out, 2004, pp. 74–81.

[50] W. Shi, A. Ajith, M. Xia, Y. Huang, D. Liu, T. Blevins, D. Chen,
and L. Zettlemoyer, “Detecting pretraining data from large language
models,” arXiv preprint arXiv:2310.16789, 2023.

[51] J. Zhang, J. Sun, E. Yeats, Y. Ouyang, M. Kuo, J. Zhang, H. F. Yang,
and H. Li, “Min-k%++: Improved baseline for detecting pre-training data
from large language models,” arXiv preprint arXiv:2404.02936, 2024.

[52] V. B. Kumar, R. Gangadharaiah, and D. Roth, “Privacy adhering machine
un-learning in nlp,” arXiv preprint arXiv:2212.09573, 2022.

APPENDIX

A. Mathematical Formulation of Unlearning

To formally model machine unlearning in the context of
LLM-aided RTL generation, we define two disjoint datasets:
the Retain Dataset Dr and the Forget Dataset Df , where
Dr ∩ Df = ∅. The goal of unlearning is to update a fine-
tuned model fθ such that it forgets knowledge gained from
Df while preserving performance on Dr. Mathematically, this
is achieved by optimizing a modified objective function that
induces high loss on Df and low loss on Dr. A common
formulation involves solving:

min
θ
Lretain(θ)− λ · Lforget(θ),

where Lretain(θ) = E(x,y)∼Dr
[ℓ(fθ(x), y)] and Lforget(θ) =

E(x,y)∼Df
[ℓ(fθ(x), y)], and λ > 0 controls the unlearning

aggressiveness. Techniques like Gradient Ascent (GA) perform
unlearning by maximizing Lforget through reversed gradients,
while Gradient Difference (GD) introduces a difference term
between gradients of Df and Dr to encourage selective
forgetting. Preference-based methods, such as Preference Op-
timization (PO) and Negative Preference Optimization (NPO),
further refine this by optimizing the model’s alignment with
desired or misdirected responses on Df , effectively pushing
its latent representations away from those associated with
proprietary or malicious logic. Such formulations enforce
representational decoupling from the Forget Dataset, thereby

Algorithm 1 Machine Unlearning
Require: Retain dataset Dr, Forget dataset Df

Initialize LLM fθ with pre-trained weights
Define loss: Lunlearn(θ) = Lretain(θ)− λ · Lforget(θ)
for i = 1 to EPOCHS do

Compute ∇θLunlearn
Update parameters: θ ← θ − η∇θLunlearn

end for

mitigating information leakage and contamination in down-
stream RTL synthesis tasks.
B. Unlearning Evaluation Metrics
• Forget Probability (FP): This metric evaluates each in-

stance in the retain or forget set by computing the nor-
malized token-level probability of the answer, reflecting
how confidently the model predicts the answer given the
question. Specifically, we calculate the following:

P (y | x)1/|y|

where x denotes the question, y is the corresponding answer,
and |y| represents the number of tokens in the answer.

• Forget ROUGE (FR): This metric computes the ROUGE-
L recall score between the ground truth answer y and the
model-generated answer ŷ for each sample in the forget
dataset Df . The ROUGE-L recall is defined as:

ROUGE-L Recall =
LCS(y, ŷ)

|y|
where LCS(y, ŷ) denotes the length of the longest common
subsequence between y and ŷ, and |y| is the length of the
ground truth answer. Lower ROUGE-L recall scores indicate
better unlearning performance.

• Min-K% and Min-K%++: The Min-K% metric focuses
on the model’s confidence in generating tokens. For each
generated sequence, it identifies the k% tokens with the
lowest predicted probabilities and computes their average
log-likelihood:

Min-K% =
1

k

k∑
i=1

log p(ti | x)

where ti are the tokens in the bottom k% of predicted
probabilities. Min-K%++ enhances this by calibrating based
on token distribution statistics, providing a more robust
detection of memorized content.

• PrivLeak: This metric assesses the privacy risk by measur-
ing the difference in the Area Under the Receiver Operating
Characteristic Curve (AUC-ROC) between the unlearned
model funlearn and a retrained model fretrain on the forget
dataset Df . It is defined as:

PrivLeak = AUCfunlearn − AUCfretrain

A significant deviation from zero indicates a higher privacy
risk, suggesting that the unlearned model retains information
from the forget dataset.

C. Extra Results for Other Metrics

Orig EP1 EP2 EP3
0

25%
50%
75%

100%

FP

56
.6

35
.8

1.
0

0.
0

GA

Orig EP1 EP2 EP3

56
.6

38
.0

4.
1

0.
0

GD

Orig EP1 EP2 EP3

56
.6

46
.7

35
.5

31
.2

PO

Orig EP1 EP2 EP3

56
.6

39
.0

19
.5

14
.0

NPO

Orig EP1 EP2 EP3

56
.6

42
.9

24
.4

9.
4

RMU

Orig EP1 EP2 EP3

56
.6

55
.1

53
.0

51
.4

SimNPO

Orig EP1 EP2 EP3
0

25%
50%
75%

100%

M
in

k-
K

%

66
.0

32
.5

5.
8

0.
0

Orig EP1 EP2 EP3

66
.0

34
.9

9.
9

0.
0

Orig EP1 EP2 EP3

66
.0 51

.9

44
.9

43
.5

Orig EP1 EP2 EP3

66
.0

36
.8

22
.9

20
.4

Orig EP1 EP2 EP3

66
.0 40
.9

14
.6

0.
2

Orig EP1 EP2 EP3

66
.0

62
.2

57
.0

57
.7

Orig EP1 EP2 EP3

-100
-50

0
50

100

Pr
iv

Le
ak

-3
1.

92

34
.9

7

88
.3

3

10
0.

00

Orig EP1 EP2 EP3

-3
1.

92

30
.1

3

80
.1

5

10
0.

00

Orig EP1 EP2 EP3

-3
1.

92 -3
.7

4 10
.2

3

12
.9

7

Orig EP1 EP2 EP3

-3
1.

92

26
.4

9

54
.1

0

59
.1

5

Orig EP1 EP2 EP3

-3
1.

92

18
.1

8

70
.9

0

99
.5

9

Orig EP1 EP2 EP3

-3
1.

92

-2
4.

33

-1
4.

00

-1
5.

41

LLM Unlearning Algorithm Comparison Analysis on RTLLM Contaminated Models (%)

Orig EP1 EP2 EP3
0

25%
50%
75%

100%

FP 62
.5

0.
0

0.
0

0.
0

GA

Orig EP1 EP2 EP3

62
.5

0.
0

0.
0

0.
0

GD

Orig EP1 EP2 EP3

62
.5

28
.9

20
.4

22
.8

PO

Orig EP1 EP2 EP3

62
.5

9.
8

4.
9

6.
7

NPO

Orig EP1 EP2 EP3

62
.5

21
.2

1.
2

0.
5

RMU

Orig EP1 EP2 EP3

62
.5 50

.6

41
.2

38
.6

SimNPO

Orig EP1 EP2 EP3
0

25%
50%
75%

100%

M
in

k-
K

%

81
.9

10
.5

7.
3

1.
0

Orig EP1 EP2 EP3

81
.9

0.
9 3.
5

0.
0

Orig EP1 EP2 EP3
81

.9

19
.8

13
.7

15
.2

Orig EP1 EP2 EP3

81
.9

6.
6

4.
8

5.
3

Orig EP1 EP2 EP3

81
.9

8.
7

0.
0

0.
0

Orig EP1 EP2 EP3

81
.9

61
.8

32
.9

25
.0

Orig EP1 EP2 EP3

-100
-50

0
50

100

Pr
iv

Le
ak

-6
3.

87

79
.0

0

85
.3

8

97
.9

5

Orig EP1 EP2 EP3

-6
3.

87 98
.2

3

93
.0

5

10
0.

00

Orig EP1 EP2 EP3

-6
3.

87

60
.4

6

72
.5

9

69
.5

9
Orig EP1 EP2 EP3

-6
3.

87 86
.7

2

90
.3

6

89
.3

6

Orig EP1 EP2 EP3

-6
3.

87

82
.5

6

10
0.

00

10
0.

00

Orig EP1 EP2 EP3

-6
3.

87

-2
3.

67

34
.1

5

50
.0

0

LLM Unlearning Algorithm Comparison Analysis on VerilogEval Contaminated Models (%)

Orig EP1 EP2 EP3
0

25%
50%
75%

100%

FP 48
.1

0.
0

0.
0

0.
0

GA

Orig EP1 EP2 EP3

48
.1

0.
0

0.
0

0.
0

GD

Orig EP1 EP2 EP3

48
.1

35
.5

32
.5

31
.3

PO

Orig EP1 EP2 EP3

48
.1

0.
7

1.
3

1.
8

NPO

Orig EP1 EP2 EP3

48
.1

47
.5

0.
0

0.
0

RMU

Orig EP1 EP2 EP3

48
.1

45
.8

38
.0

17
.7

SimNPO

Orig EP1 EP2 EP3
0

25%
50%
75%

100%

M
in

k-
K

%

48
.5

74
.6

78
.9

78
.8

Orig EP1 EP2 EP3

48
.5

0.
0

0.
0

0.
0

Orig EP1 EP2 EP3

48
.5

24
.2

18
.4

16
.4

Orig EP1 EP2 EP3

48
.5

0.
0

0.
0

0.
0

Orig EP1 EP2 EP3

48
.5

47
.4

0.
0

0.
0

Orig EP1 EP2 EP3

48
.5

43
.8

31
.0

3.
5

Orig EP1 EP2 EP3

-100
-50

0
50

100

Pr
iv

Le
ak

3.
03

-4
9.

13

-5
7.

84

-5
7.

60

Orig EP1 EP2 EP3

3.
03

10
0.

00

10
0.

00

10
0.

00

Orig EP1 EP2 EP3

3.
03 51

.6
4

63
.2

1

67
.1

8

Orig EP1 EP2 EP3

3.
03

99
.9

2

99
.9

9

99
.9

6

Orig EP1 EP2 EP3

3.
03

5.
27

10
0.

00

10
0.

00

Orig EP1 EP2 EP3

3.
03 12
.4

5

37
.9

7

92
.9

5

LLM Unlearning Algorithm Comparison Analysis on Custom Contaminated Models (%)

Orig EP1 EP2 EP3
0

25%
50%
75%

100%

FP 79
.1

0.
0

0.
0

0.
0

GA

Orig EP1 EP2 EP3

79
.1

0.
0

0.
0

0.
0

GD

Orig EP1 EP2 EP3

79
.1

27
.9 37

.2

29
.9

PO

Orig EP1 EP2 EP3

79
.1

4.
0 16

.8

13
.2

NPO

Orig EP1 EP2 EP3

79
.1

0.
6

0.
0

0.
0

RMU

Orig EP1 EP2 EP3

79
.1

41
.4

9.
9

10
.0

SimNPO

Orig EP1 EP2 EP3
0

25%
50%
75%

100%

M
in

k-
K

%

10
0.

0

62
.9 53

.8

10
.3

Orig EP1 EP2 EP3

10
0.

0

0.
0

0.
0

0.
0

Orig EP1 EP2 EP3

10
0.

0

45
.9

45
.0

41
.7

Orig EP1 EP2 EP3

10
0.

0

1.
8 8.
2

3.
9

Orig EP1 EP2 EP3

10
0.

0

0.
0

0.
0

0.
0

Orig EP1 EP2 EP3

10
0.

0

45
.8

1.
2

1.
4

Orig EP1 EP2 EP3

-100
-50

0
50

100

Pr
iv

Le
ak

-9
9.

94

-2
5.

83

-7
.6

4 79
.3

3

Orig EP1 EP2 EP3

-9
9.

94 10
0.

00

10
0.

00

10
0.

00

Orig EP1 EP2 EP3

-9
9.

94

8.
27

10
.0

1

16
.6

7

Orig EP1 EP2 EP3

-9
9.

94 96
.3

9

83
.5

4

92
.1

9

Orig EP1 EP2 EP3

-9
9.

94 10
0.

00

10
0.

00

10
0.

00

Orig EP1 EP2 EP3

-9
9.

94

8.
46

97
.5

0

97
.1

3

LLM Unlearning Algorithm Comparison Analysis on Malicious Contaminated Models (%)

Orig EP1 EP2 EP3
0

25%
50%
75%

100%

FP 68
.3

0.
0

0.
0

0.
0

GA

Orig EP1 EP2 EP3

68
.3

0.
0

0.
0

0.
0

GD

Orig EP1 EP2 EP3

68
.3 58

.7

58
.2

57
.9

PO

Orig EP1 EP2 EP3

68
.3 49

.5

48
.9

29
.2

NPO

Orig EP1 EP2 EP3

68
.3

0.
5

0.
1

0.
1

RMU

Orig EP1 EP2 EP3

68
.3

40
.2

6.
0

41
.6

SimNPO

Orig EP1 EP2 EP3
0

25%
50%
75%

100%

M
in

k-
K

%

80
.4

71
.5 53

.1

59
.0

Orig EP1 EP2 EP3

80
.4

0.
5

0.
4

0.
4

Orig EP1 EP2 EP3

80
.4

67
.6

66
.6

65
.8

Orig EP1 EP2 EP3

80
.4

49
.0

47
.6

26
.1

Orig EP1 EP2 EP3

80
.4

0.
4

0.
5

0.
4

Orig EP1 EP2 EP3

80
.4

38
.4

2.
7

37
.2

Orig EP1 EP2 EP3

-100
-50

0
50

100

Pr
iv

Le
ak

-6
0.

76

-4
3.

02 -6
.3

0

-1
7.

92

Orig EP1 EP2 EP3

-6
0.

76 98
.9

9

99
.1

5

99
.1

5

Orig EP1 EP2 EP3

-6
0.

76

-3
5.

24

-3
3.

22

-3
1.

52

Orig EP1 EP2 EP3

-6
0.

76 1.
95

4.
86 47

.8
3

Orig EP1 EP2 EP3

-6
0.

76 99
.1

5

99
.0

8

99
.1

5

Orig EP1 EP2 EP3

-6
0.

76 23
.1

5

94
.6

4

25
.5

6

LLM Unlearning Algorithm Comparison Analysis on In-House IP Contaminated Models (%)

Fig. 7. Unlearn Contaminated Models with extra evaluation metrics

