

DOI: https://doi.org/10.32628/CSEIT25112773 3674

Docker under Siege: Securing

Containers in the Modern Era

Gogulakrishnan Thiyagarajan1, Prabhudarshi Nayak2

1Software Engineering Technical Leader, Cisco Systems Inc, Austin, Texas, USA.
2Faculty of Engineering and Technology, Sri Sri University, Cuttack, Odisha, India.

Corresponding Author: gogs.ethics@gmail.com

Abstract

Containerization, driven by Docker, has transformed application development and

deployment by enhancing efficiency and scalability. However, the rapid adoption of

container technologies introduces significant security challenges that require careful

management. This paper investigates key areas of container security, including runtime

protection, network safeguards, configuration best practices, supply chain security, and

comprehensive monitoring and logging solutions. We identify common vulnerabilities within

these domains and provide actionable recommendations to address and mitigate these risks.

By integrating security throughout the Software Development Lifecycle (SDLC),

organizations can reinforce their security posture, creating a resilient and reliable

containerized application infrastructure that withstands evolving threats.

Index Terms- Container Security, Docker, Information Security, Runtime Security, Network

Security, Configuration Management

Introduction

Containerization has brought a sea change

in application development and deployment

paradigms. Docker is one of the most

prevalent platforms, ensuring that the

management of containerized applications

becomes lightweight and practical.

However, the rapid proliferation of Docker

has raised several security challenges that

need to be tackled by an organization to

keep applications safe from vulnerabilities

and cyberattacks. Recent discussions on

container security have underscored several

challenges, including the necessity for

enhanced visibility into container activities,

insufficient expertise among teams, and

inadequate collaboration between security

and development groups. (IANS, 2022).

Besides this, the complex natures of

container environments often make

traditional security ineffective. This paper

reviews critical aspects of container

security, which include image security,

runtime security, network security,

configuration management, supply chain

security, and monitoring and logging. It

underlines different shortcomings in the

state-of-art Docker security practices and

provides concrete mitigation strategies.

Incorporating end-toend security within the

SDLC significantly improves

organizations' overall security posture in a

containerized environment. Literature

Review & Related Work As a result of rapid

growth in the adoption of containerized

environments, mainly because of Docker,

container security has turned hot. Several

researchers focused on different areas of

securing containers, which include, but are

not limited to, image security and runtime

monitoring. Some critical contributions

regarding the same are briefly summarized

below:

DOI: https://doi.org/10.32628/CSEIT25112773 3674

Study Focus Area Methodology Key Findings

Merkel

(2014)

Container

isolation and

efficiency

Introduced Docker

containers for application

isolation and deployment.

Highlighted the advantages of

containerization but noted

potential risks in isolation

mechanisms.

Shin & Park

(2018)

Container

Security Tools

Introduced Docker

containers for application

isolation and deployment.

Identified gaps in existing

security tools, particularly in

runtime protection.

Casalicchio

(2019)

Orchestration &

Security in

Docker

Analyzed orchestration

tools like Kubernetes with

a focus on security.

Suggested enhancements in

Kubernetes’ security features,

especially in resource allocation.

Sultan et al.

(2019)

Container

Supply Chain

Security

Investigated supply chain

vulnerabilities, focusing

on third-party libraries

Found that 70% of security

issues in containers are linked to

unvetted dependencies from

public sources.

Zhang & Liu

(2020)

Runtime

Security for

Containers

Reviewed runtime

security challenges and

proposed anomaly

detection techniques.

Found that runtime

misconfigurations are a major

vulnerability that can be

exploited for attacks.

McLaughlin

(2021)

Docker Security

Best Practices

Practical guide on Docker

security, focusing on

image verification and

least privilege principle.

Suggested the use of automated

tools for continuous image

scanning to mitigate supply

chain risks.

Alyas et al.

(2022)

Vulnerability

Management

Demonstrates practical

tools and methods for

vulnerability

management, aligning

with image security

Proposed a system for managing

container vulnerabilities using

Docker Engine, addressing

performance and security

challenges.

Summary

Docker Under Siege: Securing

Containers in the Modern Era, explores

the rapid rise of containerization in

application development and deployment,

particularly focusing on Docker.

Containerization offers clear advantages,

such as efficiency, scalability, and

portability. However, the widespread

adoption of Docker has brought forth

numerous security challenges that

organizations must address to ensure the

DOI: https://doi.org/10.32628/CSEIT25112773 3674

reliability and resilience of containerized

applications.

This study delves into critical areas of

container security, including the protection

of container runtime, network security,

configuration management, and supply

chain vulnerabilities. The paper also

emphasizes the need for continuous

monitoring and logging as a means to detect

and address security threats in real time.

Each of these areas presents distinct

security challenges: for instance, base

image vulnerabilities, misconfigurations in

runtime, insufficient network segmentation,

and the risks of using third-party libraries

and dependencies from public repositories.

To counter these issues, the document

provides actionable recommendations,

advocating for best practices in security that

extend throughout the software

development lifecycle (SDLC). This

involves implementing strict access

controls, regular vulnerability scanning,

and adherence to the least privilege

principle to limit the impact of potential

breaches. The study also underscores the

importance of maintaining updated and

verified base images, strengthening runtime

protections, and enforcing network

segmentation policies to secure sensitive

data.

Through a combination of practical

strategies and robust governance measures,

organizations can fortify their security

posture in containerized environments. This

paper serves as a guide for enhancing

Docker container security, laying out a

framework that can help organizations

protect their applications against evolving

cyber threats. By integrating these security

measures into development workflows,

organizations can achieve a resilient,

scalable, and secure container infrastructure

that supports modern application needs

while safeguarding against vulnerabilities

inherent in containerized environments.

1. Image Security: The Importance of

Securing Docker Images

The security of Docker containers

fundamentally depends on their base

images. These base images serve as a

blueprint for the Docker environment's

contents, including essential libraries,

dependencies, and software the application

needs to run. If the integrity of the container

originates from the base image from which

it was derived, then any breach of the base

image could translate into a massive

vulnerability in its resulting container.

Insecure or outdated base image use can

leverage attacks by vulnerabilities in the

containerized environment. A vulnerable

image may carry an insecure configuration,

malware, or any other vulnerability that

may compromise the application running in

the container and the underlying host

system. Therefore, base images must be

secure and updated to maintain a sound

security posture.

 Containerization in modern

software development has brought many

benefits, such as greater scalability,

portability, and resource efficiency.

However, this technology has also

introduced several significant security

challenges. One of the most pressing

concerns related to the usage of containers

today is the reliance on images from

untrusted sources. This is very common in

the case of organizations that pull images

from publicly available repositories without

proper due diligence- a practice that poses

several security risks. These risks can

compromise the integrity of the container

ecosystem and undermine its general

security posture.

DOI: https://doi.org/10.32628/CSEIT25112773 3674

Fig1: Image Scanning and Verification

Process flowchart

The Image Scanning and Verification

Process flowchart is a critical visual aid for

understanding how to ensure container

security before deployment. The process

begins with selecting a base image from a

repository and proceeds through a series of

checks and scans designed to verify the

image’s integrity and security. Below, each

step of the flowchart is described in detail:

1.Start: The process initiates at the starting

point, represented by an oval labeled

“Start.” This symbol indicates the

commencement of the image selection and

verification workflow.

2.Select Base Image from Repository:

The first step involves choosing a base

image. This is represented by a rectangle

labeled “Select base image from

repository.” Here, developers or security

teams pick an image that serves as the

foundation for containerized applications.

3.Is the Image from a Trusted Source?:

The selected image must be evaluated for

its source's reliability. This decision point is

depicted by a diamond labeled “Is the

image from a trusted source?” It branches

into two possible paths:

• If No: If the image is not from a

trusted source, it should be

immediately rejected. The pathway

leads to a rectangle labeled “Reject

image and choose another source,”

DOI: https://doi.org/10.32628/CSEIT25112773 3674

followed by an “End” oval to

indicate the conclusion of the

process at this stage.

• If Yes: If the image is verified as

being from a trusted source, the

process continues to the next step.

4.Scan Image for Vulnerabilities: The

next step involves scanning the image for

known vulnerabilities. This is shown as a

rectangle labeled “Scan image for

vulnerabilities.” This step is crucial for

identifying any existing flaws that could

compromise the container's security.

5.Are Vulnerabilities Detected?: After

scanning, the process reaches another

decision point, represented by a diamond

labeled “Are vulnerabilities detected?” This

step determines whether any security issues

were found.

• If Yes: If vulnerabilities are

detected, the pathway leads to a

rectangle labeled “Address

vulnerabilities or choose a different

image.” This may involve fixing the

issues or starting over by selecting a

new base image, which loops back

to the initial “Select base image”

step.

• If No: If no vulnerabilities are

found, the process continues to the

next verification step.

6.Verify Image Signature: This step

ensures that the image has not been

tampered with and that it originates from a

legitimate source. It is represented by a

rectangle labeled “Verify image signature.”

Verifying the image signature is crucial for

confirming its authenticity and integrity.

7.Is the Signature Valid?: The signature

verification results are assessed at this

decision point, shown as a diamond labeled

“Is the signature valid?”

• If No: If the signature is invalid, the

image should be rejected, as

indicated by a rectangle labeled

“Reject image and choose another

source.” This leads to an “End”

oval, ending the process.

• If Yes: If the signature is valid, the

process moves forward.

8.Approve Image for Deployment: If the

image passes all checks and scans, it is

approved for deployment. This final action

is represented by a rectangle labeled

“Approve image for deployment.”

9.End: The process concludes with an

“End” oval labeled “Deployment

approved,” signaling that the image is now

ready for use in the containerized

environment.

1.1 Current Gaps

• Untrusted Sources:

Using Docker images from untrusted

sources is highly dangerous because of

malicious code and many other

vulnerabilities. Most Docker images are

based on various open-source libraries and

packages, which may contain known

security vulnerabilities. This has been

reflected in multiple studies that revealed

that even the widely acknowledged Docker

images can hide many vulnerabilities; some

reports show that popular images could

have more than 30 known security flaws

[1][2]. That again underscores the

importance of thorough reviews before any

Docker image is deployed into production.

 As a best practice, an organization

should take several measures to mitigate the

associated risks from untrusted Docker

images. First, only official and verified

images from trusted sources, such as

Docker Hub, should be utilized to minimize

exposure to known vulnerabilities [1][2].

By implementing an aggressive scanning

process through Snyk, one can identify and

address security issues in the images before

deployment [2].

 Using multi-stage builds is another

good practice that ensures development

dependencies do not make their way to

production images, inadvertently

DOI: https://doi.org/10.32628/CSEIT25112773 3674

increasing the attack surface[2]. Another

suggestion for organizations is to avoid

generic tags like "latest" instead of image

version tags. That offers a way to ensure

reliability and consistency so that when

changes occur, an unexpected shift to the

base image does not bring in new

vulnerabilities [1][2]

 Finally, organizations should

regularly update the Docker images and

enforce image access management to

ensure which images are deployed within

their environments. Considering this

suggestion will enable companies to vastly

improve their security posture against

threats emerging from untrusted Docker

images[1][2]

• Unknown Vulnerabilities:

The sudden embracing of container

technology in general, and Docker in

particular, changed the deployment and

management of applications. Conversely, it

brought huge security risks for

organizations, particularly those dealing

with unknown vulnerabilities in Docker

images. These could include outdated

libraries, unpatched software, or

misconfigurations not found during setup

time. A study conducted by Malhotra et al.

underscores the significance of assessing

vulnerabilities in Docker Hub images,

indicating that numerous official and

verified images contain security flaws

attributed to inadequate monitoring and

infrequent updates[3].

 The complexity of unidentified

vulnerabilities in the Docker ecosystem is

such that images consist of several layers,

each of which may pose a different risk.

Without regular scanning and assessments

for vulnerabilities, an organization may

deploy an image that can open its systems

to vulnerabilities. Tools like Trivy and Clair

are crucial in finding these vulnerabilities,

but they often rely on a database of known

issues, which means newly discovered or

less common ones fall through the

cracks[4]. For this reason, proactive

management of vulnerabilities is required:

images should be scanned with certain

periodicity and updated according to the

newly emerging threats.

 Dependence on third-party libraries

in Docker images could also increase the

chances of vulnerability exploitation. While

pulling images from public repositories,

organizations may incidentally introduce

specific vulnerabilities related to those

libraries into their environments, mainly if

they are outdated or poorly maintained.

Protection against such possible

exploitation requires continuous security

posture monitoring and assessment of the

Docker image[4]. Organizations can

significantly reduce the risks associated

with unknown vulnerabilities by

implementing a strategy incorporating

vulnerability scanning, dependency

management, and strict policies on image

usage.

 In conclusion, the more Docker

gains significant attention in application

deployments, the more an organization

should be able to understand and manage

unknown vulnerabilities. Strong

vulnerability scanning practices, frequent

image updates, and a culture of security

awareness are necessary to mitigate the

risks of using Docker images in production

environments[4].

A significant concern is the dependence on

obsolete dependencies. Container images

may incorporate un-updated libraries or

software packages, notwithstanding well-

documented vulnerabilities. For instance,

vulnerabilities in widely utilized libraries

such as OpenSSL (CVE-2020-1971) or

PHP-FPM (CVE-2019-11043) are

frequently disregarded, creating critical

security gaps. Furthermore, improperly

configured permissions within containers

represent a prevalent vulnerability. Running

containers as root or setting too permissive

file permissions-such as chmod 777-

provide opportunities for attackers to

escalate privileges and run malicious

activities. Known vulnerabilities like the

Linux Kernel vulnerability CVE-2021-

DOI: https://doi.org/10.32628/CSEIT25112773 3674

22555 and the Dirty Pipe exploit CVE-

2022-27666 point to misconfigurations.

 Besides that, improper network

configurations in containers can expose

sensitive services to unauthorized users or

allow denial-of-service attacks.

Compassionate cases involve exposed API

endpoints and open container ports, as seen

in CVE-2018-1002105 in Kubernetes and

CVE-2020-10749 in Docker Daemon.

Another critical issue is hard-coded secrets.

This means the developers explicitly store

API keys, passwords, or encryption keys

within the container image. This class of

vulnerabilities is hazardous since the

attacker immediately obtains access to

critical systems. A good example is the

MongoDB credentials leak (CVE-2021-

31684), which underlines one of the

consequences of poorly handled secret

management.

 Base images, if unpatched, are a

significant cause of the increased severity

of the issue. Often, containers are built on

base images of older versions of Ubuntu or

Alpine Linux that don't get frequent updates

regarding security vulnerability patches.

For instance, consider CVE-2020-11444

(Ubuntu Image) and CVE-2019-5021

(Alpine Linux), which are examples of

vulnerabilities that persist due to a lack of

updates in base images. Beyond those

issues, containers escape vulnerabilities-

the most critical risks are CVE-2019-5736

in runc and CVE-2016-9962 in Docker.

These will allow an attacker to break out of

the container's isolated environment and

give them access to the host, thus

threatening the entire infrastructure.

Image poisoning and dependency

confusion are both growing risks in the

world of cybersecurity. Image poisoning

occurs when hackers upload compromised

or altered container images to public

registries, which are then unknowingly

deployed by developers. For example,

CVE-2018-20685 Docker Image Signature

Bypass shows how tainted images can

bypass security checks. On the other hand,

with dependency confusion, the attackers

inject malicious packages into public

repositories that become part of the

container builds. A severe reminder of the

damages it could impose is given by the

well-known Log4j vulnerability CVE-

2021-44228.

Vulnerability

Type

Description Common

Vulnerable Code

Relevant CVEs Severity

Outdated

Dependencies

Many container images

rely on outdated libraries

or software packages that

have known

vulnerabilities but

haven't been patched.

- Using old

versions of

libraries like

OpenSSL, Java, or

Python packages.

CVE-2020-1971

(OpenSSL),

CVE-2019-11043

(PHP-FPM)

High

DOI: https://doi.org/10.32628/CSEIT25112773 3674

- Neglecting to

update base

images.

Misconfigured

Permissions

Incorrect permission

settings within container

images can allow

unauthorized access to

files, directories, or

system functions.

- Setting overly

permissive file

permissions (e.g.,

chmod 777).

- Running

containers as root

instead of a

restricted user.

CVE-2021-22555

(Linux Kernel),

CVE-2022-27666

(Dirty Pipe)

Critical

Insecure

Network

Configurations

Misconfigured network

settings in containers

may expose sensitive

services to the internet,

leading to unauthorized

access or denial-of-

service attacks.

- Exposing

container ports to

the public without

proper firewall

rules.

- Unsecured API

endpoints.

CVE-2018-

1002105

(Kubernetes),

CVE-2020-10749

(Docker

Daemon)

High

Hardcoded

Secrets

Sensitive information,

such as API keys,

database credentials, or

encryption keys, is

hardcoded directly into

container images.

- Hardcoding

database

passwords in

Dockerfile or

environment

variables.

- Insecure storage

of API keys in

application code.

CVE-2021-31684

(MongoDB

Credentials

Leak), CVE-

2020-0601

Critical

Unpatched Base

Images

Vulnerabilities exist in

the base images on

which containerized

applications are built,

which often need to be

updated regularly.

- Using base

images like

ubuntu:14.04

without security

updates.

- Using

unmaintained or

vulnerable open-

source images.

CVE-2020-11444

(Ubuntu Image),

CVE-2019-5021

(Alpine Linux)

High

Container

Escape

Vulnerabilities

Attackers exploit flaws

that allow them to break

out of the container’s

- Vulnerabilities in

container runtime

CVE-2019-5736

(runc), CVE-

Critical

DOI: https://doi.org/10.32628/CSEIT25112773 3674

isolated environment and

access the host system.

engines (e.g.,

Docker, runc).

- Weak namespace

isolation.

2016-9962

(Docker)

Image

Poisoning

Malicious actors may

compromise or tamper

with publicly available

container images,

injecting malicious code

or backdoors.

- Uploading

trojanized images

to public registries.

- Using unverified

images from

unofficial sources.

CVE-2018-20685

(Docker Image

Signature

Bypass), CVE-

2020-8910

High

Dependency

Confusion

Attackers inject

malicious packages into

publicly accessible

libraries, which are

unintentionally pulled

into container builds.

- Accidentally

pulling

dependencies from

untrusted

repositories.

- Using npm install

or pip install

without

verification.

CVE-2020-26233

(npm), CVE-

2021-44228

(Log4j)

Critical

• Malicious Code

Malicious code embedded in Docker

images severely threatens container

security. Therefore, the vulnerabilities of

official and verified images on Docker Hub

must be assessed. Recent research by

Malhotra, Bansal, and Kessentini has

underlined the urgency of performing a

comprehensive vulnerability analysis on

these images since they are often used as a

starting point for deploying applications

into production environments[5]. The

researchers' study employed several open-

source vulnerability detection tools to

analyze the security posture of those images

and found that many images contain critical

vulnerabilities that attackers could

potentially exploit. The finding has shown

that rampant outdated libraries and poor

security practices in commonly used

images raise the possibility of malicious

code execution, hence the requirement for

sound security practices in managing

containers[5].

Type of

Malicious Code

Description Example Mitigation

Backdoors Hidden access methods

to bypass security

controls.

SSH backdoors or

hard-coded credentials.

Use trusted sources

and signature

verification.

DOI: https://doi.org/10.32628/CSEIT25112773 3674

Ransomware Encrypts files,

demanding a ransom for

decryption.

Encrypts critical data

after deployment.

Regular backups,

offline scanning

Trojan Horses It appears legitimate but

contains hidden

malicious functions.

Web server container

with reverse shell code.

Static analysis and

secure coding

practices.

Cryptojacking

Scripts

Steals system resources

for unauthorized

cryptocurrency mining

Mining cryptocurrency

in the background

affects performance.

Resource

monitoring,

scanning images.

Rootkits Provides unauthorized

root access while hiding

its presence.

They compromised the

Linux kernel in the

container.

The least privilege

principle is runtime

monitoring.

Supply Chain

Attacks

Malware is introduced

via compromised

dependencies or images.

Malicious third-party

library in the container

stack.

Regular updates and

dependency

validation.

Botnets Containers are used to

form part of a network

for large-scale attacks.

Container connecting

to a command-and-

control server

Network

segmentation,

runtime behavior

monitoring.

Information

Stealers

Targets sensitive data

like credentials or

environment variables.

Extracts AWS keys

from running

containers.

Encrypt sensitive

data, secrets

management.

• Lack of Accountability

Lack of accountability within container

ecosystems is one of the most critical

security challenges, especially regarding

Docker images. As containerization gains

more and more popularity, the integrity and

security of container images are usually

maintained by users rather than providers.

This fact is amplified by the reality that

many developers rely on images derived

from public repositories, such as Docker

Hub, without having a full-fledged idea of

their lineage and the security measures

adopted during their development.

Malhotra et al. (2023) point out that easy

access to untrusted and unverified images

increases the risk of vulnerability

introduction, as such photos could contain

nefarious code or rely on outdated

libraries[6]. The intrinsic anonymity in

creating and distributing container images

leads to a lack of accountability, making it

difficult to track where vulnerabilities come

from whenever there is a security breach.

 Moreover, the decentralization of

container technology exacerbates issues of

accountability. Unlike traditional software

deployment, which updates and patches

from one central authority, images could be

easily pulled out and deployed from several

sources. Fragmentation like this will mean

DOI: https://doi.org/10.32628/CSEIT25112773 3674

security vulnerabilities persist for years, as

there is no central authority to monitor and

maintain the image set. Jiang and Zheng

(2020) articulate that the intrinsic design of

container systems, which facilitates swift

iteration and deployment, frequently

overlooks security considerations,

necessitating that users independently

manage associated risks[7]. Consequently,

this absence of accountability not only

endangers the security of individual

applications but also diminishes the overall

trustworthiness of containerization as a

practical deployment strategy.

Improved governance and accountability

frameworks in the container ecosystem

should be developed to address these

challenges. This suggests tightening the

verification processes of images uploaded

to public repositories and leveraging

automated scanning tools for photo

vulnerabilities. Finally, official, verified

pictures should be used, and policies should

be established to audit and update container

deployments on a regular schedule. Some

of the risks of containerization can be

mitigated with accountability within the

developer and organizational culture,

leading to a more secure operational

environment.

1.2 Recommendations

• Securing Image Origins:

Organizations should ensure that official

and verified images are used and sourced

from trusted registries like Docker Hub to

reduce the risks related to untrusted sources

actively. This can be ensured by

implementing DCT, which ensures that

only signed images can be deployed,

increasing the deployed containers'

integrity [8]. Moreover, it should be an

organization's policy to ensure strict denial

of image usage from unknown or unverified

sources, reducing the likelihood of a

security breach to a great extent. The

regular training and awareness programs

for the development and operations teams

help inculcate a security-oriented culture

where the reasons for choosing trusted

images and associated risks with them are

taught[9]. This proactive step helps reduce

risks and promotes best practices for

container security.

• Addressing Unknown

Vulnerabilities:

Addressing unknown vulnerabilities

requires a proactive vulnerability

management strategy. An organization

needs to regularly scan Docker images for

vulnerabilities with scanners, such as Trivy,

Aqua Security, or Clair, capable of

detecting and remediating potential security

risks before they can be exploited[10][11].

Keeping an updated inventory count of the

Docker images and monitoring them

regularly will ensure that organizations are

aware of new emerging threats. Moreover,

the periodic execution of security audits

and penetration tests will reveal hidden

vulnerabilities so that teams can take

proactive action to eliminate defects.

Establishing an update policy for all Docker

images, including applying patches in time,

is crucial for protecting the container

environment against vulnerabilities [12].

• Mitigating Malicious Code

Threats:

To mitigate malicious code attacks, an

organization should have a multi-layered

approach towards security. It should

conduct rigorous scanning of all the images

before deployment. Also, it leverages static

and dynamic analysis tools to identify

malicious code hidden inside the pictures

[13]. Additionally, best practices, such as

running containers with the principle of

least privilege and restricting sensitive

resource access, can significantly reduce

the impact of any malicious code that might

be present. Continuous education and

awareness about malicious code risks will

help teams proactively identify and mitigate

the threats [14].

• Accountability Improvement in

Container Management:

DOI: https://doi.org/10.32628/CSEIT25112773 3674

Accountability within a Docker ecosystem

is paramount in enforcing sound security

governance. Implementing RBAC ensures

only the right people can deploy or change

containers[15]. To allow accountability,

comprehensive logging of all activities

related to pulling images, deployment, and

changes is essential in tracking the actions

of individual persons or teams. Regular

audits and compliance checks reinforce

security policies and best practices,

increasing accountability within an

organization. Team members need to be

encouraged to develop a sense of

responsibility to ensure that security

standards are maintained and the risks from

container usage are minimized [16].

2. Runtime Security: Importance of

Runtime Security

Runtime security forms the most critical

aspect of a containerized environment.

Containers are highly dynamic, where an

application or service runs in a secured

environment, though only partially

flawless. The runtime is essential to protect

the containers against several risks, such as

control compromise, data leakage, or

service disruption. They could be exposed

to runtime misconfigurations, breached

application code vulnerabilities, or

weaknesses in the underlying infrastructure

on which the container is operating. Unless

adequately secured, attackers could

compromise the containerized

environment, and leakage of sensitive data

would result in service disruptions,

financial loss, and damage to one's

reputation. Ensuring integrity,

confidentiality, and availability of

containers at runtime is of utmost

importance. (Flauzac2020).

Fig2: Container Lifecycle and Runtime

Security Risks

2.1 Current Gaps

• Over-Privileges:

Over-privileges within Docker containers

create a huge security risk that might

eventually compromise the integrity of the

containerized applications and host

systems. This includes privilege leakages

around containers being granted excessive

permissions than needed for operation,

enabling them to perform sensitive

operations or access restricted resources on

the host machine[17]. Over-privileged

configurations may present potential

vulnerabilities since attackers can leverage

these permissions to carry out unauthorized

actions, elevate privileges, or even

compromise the host system. Besides, such

security challenges are further exacerbated

because of the shared nature of the Linux

kernel across containers, which can

facilitate lateral movement across the

container ecosystem if the attacker manages

to gain access to one over-privileged

container. Consequently, organizations

must manage the permissions assigned to

DOI: https://doi.org/10.32628/CSEIT25112773 3674

Docker containers meticulously, employing

the principle of least privilege to mitigate

risks and enhance overall security[17].

Addressing over-privileges is essential for

establishing a secure and resilient container

infrastructure, safeguarding sensitive data

and preserving operational integrity within

cloud environments.

• Insufficient Isolation:

Insufficient isolation of Docker containers

is a critical security risk because the Docker

containers share an operating system kernel

with the host. A vulnerability or attack

against one container due to weak

separation may easily compromise the host

and affect other containers negatively,

leading to severe risks such as container

escape[18]. Attackers will leverage one

single container misconfiguration or

vulnerability to access sensitive data on

other containers or the host environment.

This increases the attack surface. Moreover,

poor isolation will challenge security

policies or regulatory requirements, so

organizations seek to adequately secure

sensitive information[18]. The dynamic and

transient nature of containers makes

managing security consistently even more

challenging. To address these issues,

organizations must implement rigorous

security hardening practices. Such practices

include using namespaces and control

groups to enforce improved isolation,

thereby reducing the likelihood of

successful attacks and enhancing the

overall security of containerized

environments.

• Insecure Runtime Behavior:

Insecure runtime behavior by Docker

containers poses serious security

challenges, driven primarily by the intrinsic

nature of containerization and the

complicated interactions with the host

operating system. At runtime, a container is

exposed to various vulnerabilities, from

insecure configurations and lack of access

controls to the download and execution of

malicious code[19]. This is all the more an

issue in that the dynamic nature of

containers further exacerbates these issues

since vulnerabilities can quickly propagate

in containerized environments if not acted

upon immediately[20]. Moreover, the

containers usually run with high privileges

or over permissive roles, which exposes

them to unauthorized access or, worse,

privilege escalation that may cause a

significant security incident[20]. Security

controls at the minor privilege level,

effective runtime monitoring, and periodic

vulnerability assessment should be

implemented strictly to ensure that any

deviation from expected behavior is

reliably detected and contained[19]. In a

nutshell, insecure runtime behavior is one

of the most critical issues that must be

addressed while maintaining strong

security in Docker environments against

possible exploits seeking to compromise

sensitive data and application integrity.

• Poor runtime integrity

monitoring:

Poor runtime integrity monitoring in

Docker containers carries significant risks

to the security and reliability of

applications. Without proper monitoring

mechanisms, malicious actions could be

performed without detecting possible

breaches or exploiting vulnerabilities

within containers[21]. Runtime integrity

monitoring is essential for the detection of

unauthorized changes in application code

and the environment, making sure that only

legitimate processes are running inside the

container. Without such safeguards,

compromised containers can be

manipulated to perform malicious activities

and jeopardize the overall integrity of the

host system and other containers running on

it. Moreover, the current approaches to

monitoring lack comprehensive solutions

that provide real-time insight into the

integrity of containerized applications,

exposing organizations to attacks

exploiting these monitoring gaps[21]. As

containerization becomes increasingly

prevalent in cloud environments,

DOI: https://doi.org/10.32628/CSEIT25112773 3674

improving runtime integrity monitoring is

essential to uphold security standards and

protect critical data and systems from

emerging threats.

2.2 Recommendations

• Least Privilege Principle:

The Least Privilege Principle in Docker

containers is a fundamental security

practice that emphasizes granting

containerized applications only the

minimum permissions necessary to perform

their designated functions. This principle

significantly reduces the attack surface by

limiting the potential for unauthorized

access or malicious activities within the

container environment[22]. Organizations

can mitigate the risks associated with

privilege escalation attacks by ensuring that

containers operate with restricted

privileges, where attackers seek to gain

elevated access to resources or execute

harmful commands. The advantages of

implementing the Least Privilege Principle

include enhanced security posture,

improved compliance with regulatory

requirements, and an overall reduction in

the scope of security incidents.

Furthermore, this approach streamlines

incident response efforts since

compromised containers are less likely to

access sensitive data or critical

infrastructure, thereby effectively

containing potential breaches. Adopted

practices often involve using container

orchestration tools to enforce strict access

controls and automating privilege auditing,

ensuring that containers remain compliant

with the principle of least privilege

throughout their lifecycle[23]. Adhering to

this principle is vital for robust security in

Docker environments, enabling

organizations to operate with increased

confidence in their containerized

applications.

• Improved Isolation:

One of the major improvements is better

isolation in Docker containers, which

further improves the security and efficiency

of containerized applications. This

enhanced isolation creates a secure

boundary between the host operating

system and each container, drastically

reducing the risk of unauthorized access

and potential cross-container

vulnerabilities[24]. Some benefits of better

isolation include improved security

posture, as it reduces the potential for

attacks propagating from one container to

another or affecting the host system. Better

isolation supports compliance with

regulatory standards, enabling an

organization to protect sensitive data more

effectively. Further, it allows for more

predictable application behavior since each

container runs in its environment with

dependencies, reducing conflict and

instability. This enhanced architecture

supports scalability and resource

management, allowing organizations to run

multiple containers efficiently without

compromising performance. Improving

isolation is critical to maintaining secure,

reliable, and efficient operations in Docker

environments. This will pave the way for

increased trust and flexibility in deploying

cloud-native applications.

• Runtime Monitoring and

Intrusion Detection:

The most central aspects of security and

operational integrity in containerized

environments are runtime monitoring and

intrusion detection within Docker

containers. This includes continuous

observation of activities, system calls,

resource utilization within the containers,

and any deviation that may signal a security

breach or unexpected failure in real

time[25]. Effective runtime monitoring and

IDS have brought down the benefits of

enhancing threat detection capabilities,

enabling organizations to respond quickly

to potential intrusions to mitigate risks in

real time[25][26]. Active system behavior

monitoring informs organizations about

performance issues, resource bottlenecks,

and application vulnerabilities, enhancing

DOI: https://doi.org/10.32628/CSEIT25112773 3674

overall system reliability[25]. Moreover,

with the dynamic nature of containerized

applications, more than traditional security

may be required. Therefore, having an

integrated runtime monitoring strategy

allows organizations to adapt to emerging

threats and comply with the best security

practices [25][26]. Lastly, effective runtime

monitoring and IDS contribute to a robust

security posture, ensuring containerized

applications can operate safely and

efficiently in complex, cloud-based

environments.

• Runtime Security Tools Usage:

Runtime security tools within Docker

containers are significant in protecting

containerized applications and ensuring

operational integrity throughout the

application lifecycle. The tools provide

real-time monitoring and alerting

mechanisms; such features help detect

security threats and anomalies during

runtime and enhance the security posture of

the container environment[27]. An essential

advantage of using runtime security tools is

detecting and preventing possible

vulnerabilities before they become

exploitable, significantly reducing the

chance of data breaches and service

disruptions[28]. Container operations are

secured with tools like Falco and Cilium

Tetragon, allowing for dynamic policy

enforcement, system call monitoring, and

tracking of container behavior to respond to

any suspicious activity[28] quickly.

Integrating advanced solutions like eBPF

increases performance and enhances

contextual awareness for security

monitoring, resulting in lower false-

positive rates and improved detection

accuracy[29]. With this sort of robust

security measure, organizations are

safeguarding sensitive data and improving

their compliance levels regarding various

industry regulations, enhancing trust with

stakeholders and clients. The strategic

application of Runtime Security tools

enhances the resiliency of the framework,

making it possible to deploy and manage

Docker containers safely in increasingly

complex environments.

• Integrity Checks and Image

Validation:

Integrity checks and image validation are

essential for securing and ensuring the

reliability and consistency of containerized

applications in Docker containers. This,

therefore, means that once created, Docker

images should not be modified or tampered

with; this guarantees that the software runs

in a secure state[30]. Integrity checks and

image validation bring in the benefits of

better security, as organizations will be able

to proactively identify any unauthorized

changes or potential vulnerabilities before

deploying images into production[30].

Further, teams ensure that the container

images come from trusted sources and meet

all compliance standards—something

significant for regulated industries[30].

With such checks, the usage of corrupted or

outdated images is prevented, contributing

to the general stability and performance of

applications and, therefore, results in more

reliable deployments with less

downtime[31]. Integrity checks and image

validation may be part of workflows that

provide an organization with a more robust

security posture and make its deployment

processes streamlined and efficient for

containerized applications to be secure and

efficient.

• Runtime Network Security:

Runtime network security in Docker

containers is essential for protecting

containerized applications from a long line

of cyber threats that operate when the

application is up and running. This security

framework involves monitoring and

managing the network traffic between

containers and between containers and

external systems to prevent unauthorized

access and attacks such as Man-in-the-

Middle (MitM) or network-based

exploits[32]. One of the most compelling

benefits of running strong runtime network

security is the protection it can provide

DOI: https://doi.org/10.32628/CSEIT25112773 3674

against vulnerabilities resulting from

shared networking environments, where

numerous containers work off the same

host[32]. Firms will have to execute

mechanisms like FWC or isolation methods

for creating secure gateways that ensure

effective risk mitigation and traffic

filtering, enhancing the overall security

posturing of a container environment[33].

Such security measures also help adhere to

regulatory requirements since they offer a

systematic approach to monitoring and

protecting sensitive data. Runtime network

security allows for more excellent

operational stability, ensuring that the

services remain uninterrupted and resilient

against potential attacks—thus giving

clients and stakeholders increased

assurance in the security of the deployed

applications[34]. In a nutshell, runtime

network security is an essential strategy that

should be implemented to ensure the

integrity and safety of Docker containers

within the current digital ecosystem.

3. Network Security: Importance of

Network Security

In contemporary containerized

environments, the network facilitates

secure communication among services.

Containers are frequently deployed across

distributed environments, encompassing

multiple hosts or cloud infrastructures. This

escalation in deployment complexity

heightens the challenges associated with

securing the network and generates

numerous points of vulnerability if not

adequately managed. A network security

breach may further lead to unauthorized

access, exfiltration of data, or even the

compromise of an entire application stack.

According to Merkel (2014), ensuring the

security of communications between

containers is crucial in maintaining an

organization's overall security posture.

(IANS, 2022).

3.1 Current Gaps

• Permissive Communication:

Permissive communication in container

security is a significant concern that

addresses the vulnerabilities resulting from

inadequate network policy configurations

in containerized environments. When

containers can communicate freely without

stringent network restrictions, it can lead to

various security risks, including

unauthorized data access and lateral

movement by attackers within the network.

This unrestricted access allows malicious

actors to compromise a single container and

navigate to other containers, potentially

leading to widespread breaches across

applications and data repositories. The ease

of such lateral movement not only

exacerbates the impact of a security breach

but also complicates the enforcement of the

principle of least privilege, which suggests

that systems should limit access to essential

functions only. [35] Organizations must

implement stricter network segmentation to

combat these challenges and define precise

communication policies that allow only

essential interactions between trusted

containers. Such measures are crucial for

safeguarding sensitive information and

maintaining a robust security posture as

organizations increasingly adopt

containerization technologies. [36]

Ultimately, addressing permissive

communication will play a vital role in

enhancing the overall security of

containerized applications and mitigating

the risks posed by evolving cyber

threats.[37]

• Lack of Encryption:

It cannot be gainsaid that open network

communications pose severe risks in light

of evolving cyber threats. Without proper

encryption mechanisms, sensitive data

transmitted over the internet are liable to be

intercepted by miscreants of various kinds,

leading to unauthorized access to systems

and data breaches. This vulnerability is

highly concerning for IoT devices, which

often operate on minimal security levels

and can easily be manipulated to

compromise entire networks. Effective

DOI: https://doi.org/10.32628/CSEIT25112773 3674

encryption strategies have become

paramount in safeguarding data integrity

and confidentiality. They ensure that they

remain incomprehensible to unauthorized

users even when data could get intercepted.

[38]

Issue Explanation Type of Encryption

Suggested

Lack of

Encryption in

Containers

In many containerized environments,

traffic between containers is often

unencrypted, exposing systems to risks

such as MITM (Man-in-the-Middle)

attacks.

TLS (Transport Layer

Security)

Unprotected Data

During Transit

Sensitive data such as authentication

credentials, API keys, and other private

information can be intercepted during

transmission.

SSL/TLS Encryption for

HTTPS

Multi-Cloud &

Hybrid

Environments

This issue is even more critical in multi-

cloud or hybrid setups where data moves

across various networks, some of which

may not be fully secure.

IPSec (Internet Protocol

Security) or VPN (Virtual

Private Network)

encryption

Key Points:

• Unencrypted network traffic in

containers can lead to the exposure

of critical data.

• Utilizing encryption mechanisms

like TLS or SSL can safeguard

sensitive information.

• Multi-cloud or hybrid

environments, where data travels

through multiple networks, are

particularly vulnerable and require

additional encryption layers such as

IPSec.

• Dynamic and Ephemeral Nature

of Containers:

The containers' most characteristic dynamic

and transient nature significantly raises

their utility in modern cloud computing.

Thus, container creation, scaling, and

destruction can be performed incredibly

quickly, enabling organizations to deploy

applications with increased agility and

flexibility. [39] This ability to dynamically

adjust resources allows businesses to

respond rapidly to changing demands while

optimizing resource utilization. [40] The

temporary nature of the containers will

enable them to live for a short period or just

until they achieve what they were meant to

and ensure an application is light and

replaceable without affecting system

stability. This permits smooth integration

and continuous deployment, CI/CD,

enabling development teams to introduce

innovations with the least shutdowns

possible. Container lifecycles become

essential to understand as more

organizations adopt container orchestration

tools to manage these dynamic workloads,

which will be crucial for having robust

cloud strategies.

• Limited Network Monitoring and

Logging:

DOI: https://doi.org/10.32628/CSEIT25112773 3674

The limited network monitoring and

logging in containerized environments

create immense challenges in maintaining

robust security and operational efficiency.

This is because the fast-moving flows

within the network might challenge the

traditional monitoring tools and the

transient lifestyles of containers. [41] This

lack of visibility can further lead to

undetected anomalies that make

identification and response to emerging

security threats or performance issues quite

complicated on the spot. [42] More logging

also renders forensic investigations after a

security incident brutal since essential data

may not be captured or recoverable [43].

That means organizations must implement

more advanced monitoring solutions that

suit the container ecosystem. This will be

instrumental in guaranteeing better network

visibility and control for offering threat

detection and operational policy

compliance.

3.2 Recommendations

• Network Segmentation:

Network segmentation is a critical approach

in container environments, where the

ultimate goal is to enhance security and

efficiency. By segmenting the network into

smaller, isolated portions, an organization

decreases the attack surface, reducing the

lateral movement of any potential threat

within the environment [44]. Segmentation

allows for more fine-grained access

controls, ensuring that containers handling

sensitive data operate in a secure

environment while minimizing exposure to

the less safe areas of the network [45]. Also,

the implementation of network

segmentation facilitates the process of

compliance with regulatory requirements

by simplifying the monitoring of data flows

and ensuring that sensitive information is

protected accordingly [46]. Finally, using

network segmentation in containerized

architectures enhances security and

contributes to managing network resources

more effectively.

• Traffic Encryption:

Such traffic encryption is a critical activity

in ensuring that communications in the

Docker container environments are kept

safe from prying eyes through interception

and unauthorized access. Containers are

usually deployed in a dynamic and

distributed system; hence, any application

of encryption protocols like TLS ensures

data in motion within the containers is

private [47]. Traffic encryption would help

protect the integrity of the data and reduce

risks from man-in-the-middle attacks that

could take advantage of vulnerabilities in

containerized applications. In addition,

using certificate management tools would

further simplify the deployment of TLS

certificates across Docker containers and

hence improve the general state of security

while ensuring adherence to regulations on

data protection [47]. By prioritizing traffic

encryption within their container

orchestration strategies, organizations can

enhance their defenses against potential

security breaches while reinforcing the

security of their applications.

• Zero Trust Network Security

Model:

Zero Trust assumes excellent significance

in containerized environments, as the

dynamic nature of containers brings

specific security-related challenges. The

model operates on the principle of "never

trust, always verify," where each request to

access something is treated as if it could be

malicious, no matter where on the network

[48]. In container architectures, where

microservices are in regular

communication across untrusted networks,

one must seriously identify and authorize

the communications through proper

identity verification and strict access

controls to keep these interactions secure

[49]. This allows organizations to monitor

user behaviors and traffic patterns in real-

time and to detect and respond to

abnormalities that may indicate a security

breach [50]. The reason is that integrating

DOI: https://doi.org/10.32628/CSEIT25112773 3674

Zero Trust into the current security

frameworks will ensure sensitive data

security both at rest and in transit, reducing

risks that come through the lateral

movement of threats in containerized

applications [50]. Zero Trust opened the

door to vast security posture improvement

in container environments by allowing all

components to undergo consistent

assessment and protection against potential

attacks.

• Dynamic Policy Management:

Dynamic policy management within

container environments is an essential

factor that guarantees security and

operational policies will seamlessly adapt

to rapid changes inherent in container

orchestration. Due to the transient nature of

containers, policies should be able to make

real-time adaptations according to

workload, resource availability, and

security needs [51]. This calls for

automating access control and resource

allocation against real-time data, further

enhancing security and efficiency [52]. In

addition, dynamic policy enforcement

allows an organization to apply compliance

and governance more effectively to adapt to

the varied operational contexts and

dependencies forming across modern

application architectures [53]. By taking

advantage of machine learning and real-

time monitoring utilities, containers can

foster more intelligent decision-making to

ensure that policies are reactive and

proactive in dealing with future challenges

and threats within the container

ecosystem[54].

• Network Monitoring and

Logging:

Network monitoring and logging in Docker

container environments are crucial for

ensuring both security and operational

efficiency. As containers dynamically spin

up and down, maintaining visibility across

multiple instances becomes challenging,

necessitating advanced monitoring

solutions to track network activity

effectively [55]. Implementing tools like

the Round Robin Database (RRD) allows

organizations to record key performance

metrics, including memory usage, CPU

percentage, and network throughput,

facilitating timely data evaluation and

visualization [56]. Furthermore, logging

mechanisms integrated into orchestration

platforms like Kubernetes enable detailed

tracking of network interactions, essential

for identifying anomalies and potential

security threats. By establishing robust

monitoring and logging practices,

organizations can enhance their ability to

respond to incidents in real time and uphold

compliance with regulatory standards,

ultimately strengthening their overall

security posture within a containerized

environment [57].

• Firewalls and Intrusion Detection

Systems (IDS):

Firewalls and IDS in the Docker container

environment will help protect against

potential security threats. Firewalls help to

securely segment containerized

applications from unwanted incoming and

outgoing traffic based on predefined

security rules, thus offering high levels of

protection against unauthorized access and

attacks that are based on network-level

exploitation [58]. Meanwhile, IDS

solutions enhance security by constantly

monitoring network traffic and container

activities to detect and alert administrators

about suspected behaviors or anomalies that

could signify a security breach [58].

Moreover, implementing these security

measures can facilitate compliance with

regulatory standards, given that they

provide logging and real-time alerts

essential in auditing and forensic analysis

[58]. By layering these with firewalls and

IDS, the organization will strengthen

prevention and detection while enabling

responses to various security incidents in

Docker environments, enhancing

applications' overall security posture.

• Microsegmentation:

DOI: https://doi.org/10.32628/CSEIT25112773 3674

Microsegmentation is the security approach

inside container environments, where it

enhances application security by creating

fine-grained network boundaries around

workloads. It allows organizations to

enforce specific security policies that

govern container communications,

reducing unauthorized access and

constricting lateral movements across a

network [59]. Through the isolation of

different containers, microsegmentation

does help narrow the attack surface, making

it harder for attackers to leverage a

vulnerability in one container to affect

others [60]. This approach is instrumental

in dynamic environments where containers

are spun up and spun down regularly, as it

enables runtime security policies with

minimal performance impacts [61].

Ultimately, microsegmentation is critical in

establishing a solid security posture in

containerized applications and ensures that

sensitive data is protected through its

lifecycle.

4. Configuration Management:

Importance of Configuration

Management

Configuration management is the

foundation for secure containerized

deployments, ensuring systems are created,

maintained, and updated organizationally.

With the rise of containerized applications,

secure configurations have become

paramount in mitigating data leaks,

privilege escalation, and unauthorized

access. Configuration management allows

an organization to maintain a consistent and

safe environment throughout the entire

SDLC, reducing the risk of human error

while enforcing security best practices

(Mason & Kim, 2021).

Fig3. Automated configuration

management and its impact on security

This workflow illustrates the transition

from a manual to an automated

configuration management process,

emphasizing the enhanced security and

efficiency achieved through automation.

1.Start: The process begins with an

initiation phase labeled as “Start.”

2.Manual Configuration by Admins:

o Initially, configurations are handled

manually by administrators. This

step is labeled “Manual

Configuration by Admins,”

highlighting the reliance on human

intervention. A user icon represents

DOI: https://doi.org/10.32628/CSEIT25112773 3674

this stage to signify the involvement

of personnel.

3. Error or Misconfiguration? (Decision

Point):

o A decision point assesses if any

errors or misconfigurations are

present. If a misconfiguration is

detected, the process diverges into a

corrective action path. Otherwise,

the configuration proceeds as

intended.

o Yes Path: If an error is identified, it

moves to “Security Risk Detected –

Manual Fix Required,” indicating

that the issue must be manually

resolved. The path to this step is

marked with “Requires manual

correction.”

o No Path: If no errors are found, the

workflow proceeds without further

intervention under the label

“Proceed with configuration.”

4. Automated Configuration System:

o This step introduces the automated

configuration management system,

eliminating the need for continuous

manual input. A gear or robot icon

represents automation to denote the

shift from manual handling to an

automated system.

5. Run Security Check:

o The automated system conducts a

security check on the configuration.

This stage is represented by a shield

or lock icon, symbolizing the

security verification process

inherent in the automation

sequence.

6.Compliant Configuration? (Decision

Point):

o Another decision point evaluates if

the configuration is compliant with

security policies.

o Yes Path: If compliant, the

configuration is securely deployed,

marked as “Deploy Configuration

Securely.” The flow to this

deployment step is labeled “Secure

deployment.”

o No Path: If non-compliance is

detected, the system moves to

“Automatically Correct

Configuration and Alert.” Here,

the automated system not only

corrects the configuration but also

sends an alert for review. The flow

to this correction step is labeled

“Auto-correct issues.”

7.End:

o The process concludes with a secure

and verified deployment, labeled as

“End,” ensuring a robust

configuration without manual error

risks.

4.1 Current Gaps

• Default Configurations:

While Docker default configurations help

fast application setup and deployment, they

can pose serious security risks if not

correctly set. Although they enable a user to

initiate the work, in most cases quickly,

these default settings cut corners for ease at

the cost of security, thus making possible

misconfigurations vulnerable to be

exploited by malicious actors [62]. Many

users could only rely on default settings to

understand their meanings and keep

systems open to risks like unauthorized

access and network vulnerabilities [62].

The most alarming discoveries of

dependence on default configurations are

those from industrial control systems and

web servers since insecure settings can

result in catastrophic failures or security

breaches [63][64]. For instance, numerous

users of Docker may refrain from

modifying the default settings about

container networking, which can

inadvertently permit undesirable traffic and

increase vulnerability to external threats.

DOI: https://doi.org/10.32628/CSEIT25112773 3674

Consequently, organizations ought to

implement robust security practices,

including the regular review and

customization of these default settings, to

enhance the security of their Docker

environments and mitigate the risks

associated with improper configurations

[65]. Organizations can improve the overall

security posture of their Docker

deployments by prioritizing appropriate

configurations rather than relying on

default options.

• Poor Secrets Management:

Poor secret management inside Docker

containers creates serious security risks in

modern cloud-native applications, which

rely on securely storing sensitive data, such

as passwords, API keys, and encryption

keys [66]. Traditional approaches include

hardcoding secrets directly into images or

environment variables, potentially leading

to unintended exposure, thus complicating

the protection of sensitive data [66].

Besides, with a central management

solution, it's easier for an organization to

control the distribution and access to

secrets, thereby increasing unauthorized

access and data breaches [66].

• Lack of Security Baseline

Enforcement:

The lack of adequate security baseline

enforcement within Docker containers can

lead to some vast vulnerabilities that an

organization would be forced to fix to

maintain security. With security baselines

set up, containers could become

misconfigured, leak sensitive information,

and increase the attack surface [67].

Without automation, security policies

would not be consistently enforced across

all containers, leading to varied levels of

security that can be compromised by

malicious actors [68]. More precisely,

organizations risk deploying containers

containing outdated or vulnerable

components without correct baseline

enforcement, further expanding the attack

surface [69]. The situation is further

aggravated by the dynamic nature of the

containerized environments, where

containers constantly get started and

destroyed, hence requiring vigorous

mechanisms to be laid down to ensure their

real-time compliance with security best

practices [70]. Lastly and most importantly,

the inability of security baseline

enforcement lies at the very core of all

organizations using Docker containers;

hence, this approach not only secures but

also enables compliance and operational

integrity.

• Manual Configuration Changes:

Manual Docker container configuration

changes introduce security vulnerabilities

and operational inefficiencies. Developers

allowed to create or define configuration

settings can create misconfigurations that

would adversely affect the intended

security posture for the containerized

environment [71]. This is serious since

containers run directly with the host kernel,

opening up a larger attack surface if not

managed carefully [72]. Besides, the lack of

automation in the setup of Docker

containers can result in environment

inconsistencies, making it more difficult for

teams to reproduce the setups across

different stages of development and

production [73]. For instance, errors made

in changes to Dockerfile configurations or

the interaction with Docker Compose can

trickle into the deployment pipeline,

causing operational hiccups and giving rise

to technical debt buildup [74]. Such risks

can be mitigated if the organization

automates all configuration changes and

standardization through Infrastructure as

Code [75]. This will make the environments

more secure with consistent configurations

and more efficient regarding container

deployment management [76]. Thus,

automation reduces human errors that

happen pretty frequently in organizations

using a manual configuration process.

• Inadequate Role-Based Access

Controls (RBAC):

DOI: https://doi.org/10.32628/CSEIT25112773 3674

Bad RBAC in Docker containers

significantly increases the possibility of

security compromise due to a lack of proper

restrictions on sensitive resources. Most of

Docker's default security mechanisms grant

extensive privileges, which might allow

users with host-level access to run and

manipulate containers as root, possibly

leading to unauthorized actions and data

breaches if extended to unprivileged users

[77]. This all-or-nothing access control

model defeats the basic principle of least

privilege, which states that users should

have only the level of access necessary to

accomplish their work[78]. More

importantly, traditional RBAC systems

being used in Docker environments may

need to be more dynamic to adapt to the

evolving nature of containerization, thus

leaving potential gaps in access

management due to changing users and

roles[79]. Lacking robust RBAC, which

also involves real-time auditing and

modification of user permissions, entities

risk internal attack and compliance

violation[80]. In that respect, working out

improved RBAC mechanisms within

Docker to keep containerized applications

safe from unauthorized access to specific

resources remains highly important for

maintaining the proper security posture

across the infrastructure.

4.2 Recommendations

• Secure Defaults:

Setting secure defaults in Docker containers

guarantees that the attack surface is

minimized and provides security assurance

for an application deployment. Configuring

secure defaults minimizes the attack surface

area, allowing an organization to reduce the

risks of vulnerabilities concerning

containerization [81]. This default

configuration incorporates best practices

intended to help protect against

unauthorized access, data breaches, and

other potential risks that might occur in

containerized environments. Docker has

complexities in terms of configuration

issues by default due to the very design:

Containers share the host operating system

kernel. Such a design gives rise to

privileged escalation and network attack

risks if proper security is not in place. For

example, the default networking could

enable all containers to talk with each other

without restriction, opening the possibility

of sensitive data exposure if managed

correctly. More robust network isolation

with mandatory access control could better

reinforce the defaults to protect container

communications [82]. Besides, Docker

image's system call and capability

configurations should be precisely tuned

according to the least privilege principle.

Specialized tools like SysCap allow the

automatic generation of secured

configurations based on the calls and

capabilities that specific images need[83].

With proper automation at the front, an

organization can make security hardening

easier while sustaining the best security

posture against ever-evolving threats [83].

That said, using secure default Docker

container configurations is critical for

ensuring that applications are adequately

protected. Other security best practices

involve network isolation and customized

system configurations to minimize the

vulnerabilities of Docker's design. These

measures ensure that a container

environment is resilient and can withstand

various security challenges.

• Effective Secrets Management:

Effective secrets management in Docker

containers is about keeping sensitive

information, such as passwords, API keys,

encryption keys, and more, secure from

potential unauthorized access and data

breaches. A secure secrets management

solution allows organizations to securely

store and manage secrets outside the

application code itself, thereby minimizing

the risk of exposure resulting from

misconfigurations or inadvertent leaks[84].

That would be the proper inclusion of

mature tools like HashiCorp Vault or AWS

Secrets Manager because both solutions

DOI: https://doi.org/10.32628/CSEIT25112773 3674

provide rich functionality for secure

storage, access, and rotation[85]. Another

reason for using Docker's built-in secret

management features is that it enhances

security by injecting the secrets into

containers at runtime rather than

hardcoding them within images or setting

them in environment variables[86]. This

dynamic injection helps reduce the risk of

secrets becoming exposed through logs or

process listings, thereby fortifying security

further. Additionally, an organization

should implement strict access control to

ensure that only specific services and

human users can access particular

secrets[87]. Regular auditing and real-time

monitoring also play an essential role in

identifying and mitigating potential risks

associated with secret exposure[4].

Summing up, with the help of dedicated

secrets management solutions, Docker's

secret management capabilities, and strict

access controls, an organization can

reinforce its security posture and manage

sensitive information effectively within

Docker containers.

• Establishing Security Baselines

and Policies:

Creating security baselines and policies in

Docker containers is essential for the

holistic security of container applications.

Security baselines detail the minimum

security requirements for Docker

containers, thus forming a base to lay

secure practices[88]. This will help

organizations identify acceptable

configurations and settings to reduce

possible vulnerabilities that can be used by

malicious actors[89]. To set up these

baselines accordingly, organizations should

thoroughly scan their container

environments for potential risks associated

with misconfigurations or insecure

setups[90]. This includes cataloging

container configurations, privileges, and

network settings and determining what

compliance standards are necessary and

relevant to the organization [91]. Secondly,

security policies must be implemented to

control how Docker containers are created,

deployed, and maintained throughout their

life cycle. This includes guidelines on user

access controls, image validation practices,

and incident response protocols.

Organizations can also leverage automated

tools for continuous monitoring and

compliance checks against the established

security baselines, ensuring that deviations

are promptly addressed[1]. In closing,

security baselines and their implementation

in Docker containers build a barrier that

lessens the attack surface, allowing for

compliance and proactive security

mechanisms against threats that evolve

every second in the container environment.

• Automated Configuration

Management and Orchestration:

Automated Docker configuration

management, therefore, is a crucial process

in making deployments of containerized

applications more effective, consistent, and

secure. Using tools and protocols that

enable automation in configurations allows

an organization to drastically reduce risks

from manual configuration, which often

produces anomalies and vulnerabilities.

Following Infrastructure as Code

principles, automated configuration

management enables teams to define,

manage, and deploy configurations via

version-controlled scripts, ensuring they are

aligned with best practices for minimal

error probability. Due to the integration of

orchestration tools like Kubernetes, the

advantages extend further, from the same

benefits to facilitating automated

deployment, scaling, and management of

containerized applications across diverse

environments in optimized operations that

foster agility. Furthermore, this automation

allows quick reaction to incidents because

configurations can be changed or rolled

back with negligible downtime, improving

continuous integration and delivery

practices crucial in today's rapid software

development world[92]. Besides these

operational efficiencies, automated

configuration management in Docker

DOI: https://doi.org/10.32628/CSEIT25112773 3674

strengthens security by persistently

applying security patches, conducting

compliance scanning, and reducing the

attack surface created by insecure

configurations[93]. More organizations

move to microservices architectures and

cloud-based deployments, so investments

in automated configuration management

tools are almost required to establish a

robust, scalable infrastructure that will meet

evolving business needs while ensuring

high service availability and security levels.

• Container Runtime Security:

Container runtime security is all about

protecting containerized applications at

runtime, which not only includes the

protection of the running container itself

but also extends the host environment from

various security attacks. In this security

area, best practices will include strict access

controls, constant monitoring of container

activities, and automated security tools that

can help prevent unauthorized access and

privilege escalation [94]. The temporary

nature of containers makes them even more

vulnerable and, therefore, requires robust

security that can adapt dynamically in real

time[95]. Additionally, approaches like

automated seccomp profiling can

significantly enhance the security posture

by defining and enforcing system calls that

containers should be permitted to invoke,

thus narrowing the attack surface[3].

Therefore, as organizations increasingly

leverage container orchestration platforms

like Kubernetes, adequate runtime security

will become critical for maintaining

deployed applications' overall integrity and

safety [95].

• Implement Role-Based Access

Control (RBAC):

Implementing Role-Based Access Control

in Docker containers is essential for

enhancing their security and ensuring users

have appropriate access levels given their

organizational roles and responsibilities.

RBAC enables the administrator to define

user roles and assign permissions based on

the principle of least privilege; it minimizes

the risk of unauthorized access to sensitive

resources [97]. In a Docker ecosystem, this

can be possible through orchestration

platforms like Kubernetes since it has

RBAC out of the box. Such orchestration

platforms give fine-grained control over

what a user can do against Docker resources

like containers, images, and services[98].

RBAC enables organizations to enforce

uniform security policies by building roles

that encapsulate permission; hence, it is

easy to manage users because the roles will

be updated or reassigned to other users

instead of updating resource permissions

singularly [99]. RBAC implementation will

also assist in attaining regulatory

compliance since organizations will keep

auditable access controls and enhance the

general security posture in a containerized

environment.

• Immutable Infrastructure and

Image Hardening:

Immutable infrastructure and Docker image

hardening are two more exciting topics that

increase security and reliability in

containerized applications. Conversely,

immutable architecture refers to elements

of the application architecture that cannot

be changed after deployment but are

replaced entirely by new versions when

changes and updates are made[100]. This

makes dependency management and

configurations easier, reducing the chances

of inconsistencies or vulnerabilities

resulting from a system that changes over

time. Complementary to this methodology,

hardening Docker images involves best

practices to secure images at build time by

reducing the number of installed packages,

scanning images for vulnerabilities, and

running containers with non-root user

permission[101]. Integrating immutable

infrastructure with robust image-hardening

practices gives organizations a much more

secure and efficient deployment process.

This approach ensures that applications

operate in an identical, predictable state that

minimizes attack exposure. The strength in

DOI: https://doi.org/10.32628/CSEIT25112773 3674

such synergy pertains not just to security

but also to the system's overall reliability,

thus making the strategy mentioned above

highly critical for modern cloud

environments.

• Implement Continuous

Monitoring and Logging:

Continuous monitoring and logging of

Docker containers ensure security,

performance, and reliability for

containerized applications. With

continuous monitoring, the tracking of

containers about metrics, resource usage,

and application performance happens in

real time, thus allowing the organization to

quickly identify and solve issues related to

resource shortages or even a possible

security breach [101]. Coupled with

logging, this approach provides

unparalleled details about container

behavior for comprehensive audits and

efficient troubleshooting should something

go wrong[102]. Special monitoring tools

and frameworks enable an organization to

automate log collection and analysis, which

helps meet regulatory requirements and

expands visibility into the containerized

environment[103]. Thus, Docker containers

can ensure efficiency and safety by

including continuous monitoring and

extensive logging. This pays dividends in

terms of swift incident response times and

management. Docker containers' efficiency,

security, and operational effectiveness

determine a perfect selection of monitoring

tools. Prometheus is one of the most

popular open-source monitoring solutions,

and it is very efficient in gathering and

querying metrics from containerized

applications and, therefore, most

appropriate for dynamic

environments[104]. Prometheus can be

combined with Grafana so that users can

build comprehensive dashboards to track

real-time data and performance

metrics[105]. On top of that, cAdvisor

provides a good level of resource utilization

and performance feedback by monitoring

CPU, memory, and network usage for each

container[106]. For security-focused

monitoring, Wazuh and Sysdig provide

extensive solutions to find anomalies and

maintain compliance through log and

container activity monitoring[107]. By

baking these tools into a Docker

management strategy, organizations will be

better equipped to handle their

containerized applications and make

quicker detections of issues, thus raising

overall system reliability.

• Integrate Configuration

Management with CI/CD

Pipelines:

It makes the integration of configuration

management with Continuous

Integration/Continuous Deployment

pipelines for Docker containers a must-

have in order to guarantee that applications

deployed are consistent, reliable, and

scalable. Thereby, it allows the immediate

automated provisioning and configuration

of containerized environments with

minimal human intervention, which

reduces configuration drift over time. The

recommended toolsets to facilitate this

integration include orchestration with

Kubernetes, automation in configuration

management with Ansible, and Jenkins, a

viral CI/CD tool that works quite well with

Docker[108]. In addition, GitLab CI and

CircleCI provide excellent support for

Docker container workflows, enabling fast

deployments and easy rollbacks if

something goes wrong in deployment[109].

These tools working in harmony help

organizations to facilitate expedient

deployment processes, ensure

configuration compliance, and boost the

overall efficiency of the software

development life cycle.

5. Supply Chain Security: Importance of

Supply Chain Security

Securing the software supply chain is key in

maintaining the integrity within the

development process. With the growing

push toward reliance on third-party

components and open-sourced software, the

DOI: https://doi.org/10.32628/CSEIT25112773 3674

likelihood of introducing vulnerabilities

through external dependencies has gone up

several notches. A compromised supply

chain could result in a data breach,

unauthorized access, or the implementation

of malicious software, thereby affecting the

whole software life cycle in its course of

development to deployment. (Kim, Su

Jin,2008)

Fig4 Supply Chain Management Gaps

This diagram outlines the critical stages in

the container supply chain, highlighting

vulnerabilities at each stage that expose

systems to security risks. Each stage and its

associated security gaps are described

below to clarify the potential threats in the

container supply chain.

1. Source Code and Dependencies:

The supply chain begins with the source

code and its dependencies. A major risk at

this stage is the use of unvetted third-

party libraries. Such dependencies, often

sourced from public repositories, may

contain malicious code or known

vulnerabilities if not carefully reviewed.

This step emphasizes the importance of

thorough vetting to prevent introducing

hidden security issues into the codebase.

2. Container Image Creation:

During the image creation process, several

security gaps can arise. Common

vulnerabilities include insecure

configurations and outdated base images.

Insecure configurations might expose

unnecessary services or ports, increasing

the attack surface. Similarly, outdated base

images may lack crucial security patches,

creating exploitable vulnerabilities. This

stage underscores the need for regular

updates and secure configuration practices.

3. Image Distribution:

At the distribution stage, images move from

creation to deployment environments. A

primary gap here is the reliance on

unsigned or unverified images. Without

proper image verification, it is challenging

to ensure the authenticity and integrity of

images, potentially allowing compromised

or tampered images to enter production.

Proper signing and verification practices

are essential at this stage to safeguard the

integrity of the container images.

4. Deployment:

The final stage, deployment, involves

moving the image into production. Lack of

continuous monitoring poses a significant

risk at this phase. Without real-time

monitoring, it is difficult to detect

unexpected behaviors, unauthorized access

attempts, or new vulnerabilities.

Continuous monitoring and logging are

essential to maintain a secure deployment

environment and to respond quickly to any

security incidents.

5.1 Current Gaps

• Unverified Code Integrity:

Unverified code integrity within Docker

containers involves huge security risks, as

the application of the host's operating

system kernel by the containers results in

poor isolation[1]. This weakness opens up

avenues for attackers to influence the

possible manipulation of these containers to

consequence in issues such as container

DOI: https://doi.org/10.32628/CSEIT25112773 3674

escape, where malicious activities can

affect hosts and other containers and

ultimately lead to instability in the security

of the whole system[110]. To minimize

these risks, it is important to apply some

security hardening solutions that validate

the integrity of container images before

their deployment. This can be achieved by

implementing image measurement

methodologies that provide early detection

of vulnerabilities, ensuring that images are

unchanged and not tampered with

throughout their life cycle[110]. Moreover,

a container integrity measurement module

can be used to verify key components, such

as the code segment and shared libraries,

hence enhancing the protection against

unauthorized code execution[110]. Besides,

strict access control and system whitelist

development for container processes can

substantially reduce the attack surface,

thereby protecting both the containers and

the host system from possible attacks[1].

Safety and reliability of Docker container

usage in production environments could,

therefore, be achieved only when

unverified code integrity is addressed

through rigorous security measures and

continuous monitoring.

• Outdated Dependencies:

Outdated dependencies in Docker

containers are a big pain for developers and

organizations, as they have the potential to

turn into major security vulnerabilities and

application instability. In Docker's

inheritance model, child images very often

depend on parent images, which can

contain a myriad of outdated components

that might reach into the child images,

further increasing the risk for exploits[111].

Studies have determined that, on average,

about fifty percent of the child images using

outdated parent images at the time of their

creations had a typical lag of less than one

month. By contrast, about seventy percent

of the child images used outdated parent

images when compared against the most

recent version available, and the median lag

was more than five months[111]. This

means that users are required to carefully

manage the provenance of their images and

regularly update the dependencies of their

containerized applications to keep their

applications safe and running in a shifting

security landscape.[111]

• Inadequate Transparency in the

Supply Chain:

Lack of supply-chain transparency of

Docker containers seriously jeopardizes the

security and integrity of applications

deployed in containerized environments.

Since many layers of images and further

dependencies often build containers, the

lack of transparency regarding where such

images originally came from and what

changes have been made to them can lead

to vulnerabilities and erode trust among

stakeholders[112]. The obscured view may

lead to challenges concerning compliance

and accountability; this complicates

organizations' abilities to trace any potential

security issues back to their source[113].

Further, the various complicities in

integrating third-party images raise the

risks of introducing outdated or malicious

code into applications, further exacerbating

the problem of transparency[114].

Organizations should be able to reduce

these risks by instituting broad monitoring

and accountability frameworks and

leveraging technologies like blockchain for

increased visibility and traceability of the

container supply chain[115].

• Dependency Confusion and

Typosquatting Attacks:

The dependency confusion and

typosquatting attacks in Docker containers

are serious security risks, which may lead

to harmful code injections and unauthorized

access to sensitive applications.

Dependency confusion refers to a situation

where an attacker creates a malicious

package in a private repository that has the

same name as a valid package in a public

repository, taking advantage of the system's

attempt to resolve dependencies [116].

When a build process mistakenly pulls from

DOI: https://doi.org/10.32628/CSEIT25112773 3674

the public repository, this malicious

package can execute within the application

and enable potential breaches and data theft

[116]. Typosquatting, on the other hand, is

where domain names or packages are

registered that are slight misspellings of

popular libraries or tools, and through

which users will unwittingly download

such malware instead of the real ones [116].

This attack factors in human mistake, where

developers might omit noticing slight

variations in the naming of packages while

choosing their dependencies for the Docker

containers [116]. The impacts from such

kinds of attacks are very serious; they can

eventually affect not just that single

application but even the whole supply

chain, creating a domino effect of

vulnerabilities throughout systems that use

those affected packages[116]. The only way

that organizations can avoid such threats is

by practicing good dependency

management, where organizations utilize

private registries, apply automated

dependency scanning, and thoroughly vet

third-party libraries prior to adding them

into container images[116]. Indeed, good

practice with regard to managing

dependencies greatly reduces risks from

Docker container dependency confusion

and typosquatting attacks.

5.2 Recommendations

• Code Signing:

This is one of the major recommendations

that go hand in hand with the security and

integrity of Docker containers. Code

signing leverages cryptography to sign

Docker images and other artifacts created

by the developer; thus, it delivers a

mechanism that provides assurance about

the authenticity of code integrity prior to

deployment[117]. This practice ensures that

production environments are used only with

images that are trusted and not changed,

hence reducing significantly the risk of a

vulnerability via compromised or malicious

code[118]. Besides, each organization

should be in a position to have a full signing

and verification process, hence using DCT

for applying consistently the image signing

policies across their respective pipelines for

CI/CD [119]. Accordingly, by embedding

code signing into the general methodology

of container management, organizations

improve their security posture in view of

compliance with industry standards that

engender trust among stakeholders and end-

users.

• Dependency Management:

Effective dependency management in

Docker containers is key in ensuring

reliability, security, and performance for

applications. This basically involves the

identification, tracking, and resolution of

interdependencies between the packages

and libraries required by an application. For

managing dependencies in Docker, a

developer should start by using a well-

structured Dockerfile, where they declare,

with explicit naming, all the required

dependencies during the build process. This

is by specifying, in detail, base images that

have all the software components necessary

to avoid compatibility problems[120].

Besides, using tools like Docker Compose

would add value in handling multi-

container applications by defining and

operating all services in one single YAML

configuration file to make sure the

dependencies are satisfied across a number

of different environments[120]. This will

go a long way in improving security by

identifying and fixing vulnerabilities

associated with out-of-date

components[121]. Secondly, applying

version control to Docker images and the

`Dockerfile` will help teams track changes

more effectively and support collaboration

in teams. Thus, an organization is able to

optimize dependency management inside

Docker containers for continuous software

delivery.

• Software Bill of Materials

(SBOM):

A Software Bill of Materials is a

standardized inventory of all components,

DOI: https://doi.org/10.32628/CSEIT25112773 3674

libraries, and dependencies that constitute a

given software application[122]. In this

case of Docker containers, whereby

applications are commonly made from

hundreds of third-party packages, an

SBOM provides critical insight into the

provenance of the software and integrity of

its components[123]. This transparency

helps an organization understand and

manage vulnerabilities within its

containerized applications because they can

swiftly determine associated risks for each

component[124]. Second, SBOMs assure

regulatory requirements and the various

industry standards for compliance by

explicitly documenting the makeup of the

software to make audits and security

assessments easier[124]. With SBOMs in

place, organizations are able to gain better

security posture, ensure supply chain

resiliency, and engender confidence with

their stakeholders. The outcome is much

safer and more reliable Docker

deployments.

• Implement Zero Trust in the

Supply Chain:

Moving toward the Zero Trust model within

a Docker container supply chain is highly

critical in terms of improving security and

reducing vulnerabilities and threats-related

risks. Such a model is based on the principle

"never trust, always verify," implying that

every request to access resources must be

authenticated and authorized, whether from

internal sources or from outside the

organizational perimeter[125]. It means

that organizations institute strict identity

verification processes so that only trusted

users and devices have access to important

containerized applications and data,

reducing the attack surface[125].

Additionally, continuous monitoring and

logging of all activities with the

deployment of containers provide real-time

visibility for quick responses in cases of

suspicious behavior or anomalies[125].

Proactive means a posture of improved

security, regulatory, and industry standards

that extend the Docker container ecosystem

to be resilient against newly identified

threats[125].

• Combat Dependency Confusion:

To effectively address dependency

confusion in Docker containers, an

organization should employ a set of

measures aimed at enhancing security and

ensuring the integrity of their applications.

First, organizations must use private

registries for their internal packages to

avoid inadvertently downloading

maliciously named public packages[126].

Implementation of naming conventions will

make the internal packages well

distinguishable from those outside,

reducing possible conflicts[126]. Also,

precise dependency constraint specification

by a developer should be in place during the

Docker build process to assure that only

trusted package versions are used, avoiding

any unintended updates that might

introduce vulnerabilities[126]. Integrating

automated security scanning tools into a

continuous integration/continuous

deployment pipeline allows for the early

detection of vulnerabilities associated with

dependencies and affords applications

further protection from potential

threats[126]. Ultimately, this would all be

constantly watched and audited; hence, all

unauthorized changes in the dependencies

are instantly detected, fixed, and thus

contribute to a safer container

ecosystem[126].

6. Monitoring and Logging: Importance

of Monitoring and Logging

Continuous monitoring and logging are

essential components in preserving a secure

containerized environment. In a context

where containerized applications are

subject to dynamic scaling, the possibility

of security incidents occurring at any

moment necessitates real-time detection as

a priority. Monitoring identifies unusual

behaviors and potential threats before

escalation (IANS, 2022). Logging offers an

audit trail, which is crucial for post-incident

analysis, adherence to regulatory

DOI: https://doi.org/10.32628/CSEIT25112773 3674

requirements, and proactive threat hunting.

Collectively, they are the foundational

element for a container security strategy

that allows organizations to detect,

investigate, and respond to incidents

quickly. (Mason & Kim, 2021; Pruitt,

2019).

6.1 Current Gaps

• Lack of Continuous Monitoring:

Continuous monitoring is not possible

inside Docker containers, which

significantly affects application security,

performance, and reliability. Without

persistent visibility into container activities,

organizations cannot identify real-time

issues, which might extend to continued

vulnerabilities, performance deterioration,

and even complete outages[127]. By their

very nature, Docker containers are

ephemeral and dynamic; deploying

monitoring solutions that can track changes

and interactions within the container

environment in near real-time is necessary.

These measures increase the likelihood of

security breaches going unnoticed, as

unauthorized access and malicious

activities may only be visible once the

damage has already been done[128].

Besides, the lack of intensive monitoring

complicates debugging activities, with

increased consequences of more extended

downtime and lowered operational

efficiency. With continuous monitoring, an

organization can maintain its DevOps

efficiency, leading to slower deployment

cycles and reduced confidence in the

stability and security of containerized

applications.

• Fragmented Logging:

The fragmentation of logs within Docker

containers creates some application

monitoring and debugging challenges. The

transient nature of the containers explains

this; logs often reside in different instances

and may not persist when a container gets

deleted. Such challenges can thus be related

to losing crucial information that negatively

impacts the capability to efficiently

troubleshoot and perform any behavior

analysis of an application over

time[129][130]. Moreover, the diversity in

log format from different containers

complicates centralizing and analyzing log

data. As more containers are added, the

volume and variety of logs also increase,

making meaningful insights challenging

and time-consuming to extract. The

inability to maintain a uniform logging

approach across environments exacerbates

the problem of fragmentation[129].

Logging fragmentation reduces operational

efficiency and increases security risks since

necessary logs that could explain security

incidents may be ignored or

inaccessible[130][129]. Organizations

should employ central logging to mitigate

this, where logs from all containers are

presented through one interface. This

would help improve analysis and

monitoring to sustain the overall security

posture of applications running within

Docker environments.

• Limited Context in Logs:

Most Docker containers have very minimal

context within the logs, making it hard for

developers and operators to draw insightful

conclusions from log data. This is because

logs generated within a container might not

include essential context about the

container's environment, interactions

between services, or the state of the

infrastructure hosting it[131]. This could

make the tracking of events in several

different containers or services nearly

impossible and the debugging difficult,

which complicates an efficient incident

response. Also, since logs are usually

contained within containers, request flow

tracking will be increasingly complex with

a microservices architecture, which can

lead to visibility gaps that cover up root

causes. Overcoming these limitations

involves adopting appropriate logging

practices and tools, which can collate and

enrich log data with relevant contextual

information to enhance observability and

DOI: https://doi.org/10.32628/CSEIT25112773 3674

operational effectiveness in containerized

environments.

• High Volume of Data:

Managing vast volumes of data in Docker

containers presents enormous challenges

that could affect application performance

and resource efficiency. As applications

increasingly rely on containerized

environments, the I/O demands associated

with the data-intensive workloads quickly

outstrip the underlying storage systems'

capabilities, leading to bottlenecks. For

example, although using high-performance

storage solutions, such as NVMe SSDs, is

bound to improve throughput, the

concomitant execution of several Docker

containers can still result in performance

degradation. Indeed, application

throughput can drop by as much as 50%

compared with stand-alone applications if

optimal configurations are not used[132].

This saturation makes effective strategies

for managing volume imperative to allow

applications to be responsive; poor resource

allocation leads to extended latency and

reduced efficiency. Second, with proper

monitoring and tuning, organizations might

be able to optimize resource utilization,

which, in reality, defeats the very benefits

that containerization is supposed to achieve

in the first place. Overcoming these

challenges will be crucial to maintaining

high-performance levels while leveraging

the benefits of containerized deployments

in the modern cloud and data center

infrastructure.

6.2 Recommendations

• Comprehensive Monitoring:

Complete monitoring in Docker containers

is vital to guaranteeing high performance,

security, and reliability for applications that

work in a containerized environment. This

type of monitoring provides real-time

visibility into container health, resource

utilization, and application performance

metrics, thus offering an organization the

required resources to identify and resolve

potential issues even before they become

serious[133]. The advantages of complete

monitoring include almost unparalleled

visibility into distributed systems, smoother

troubleshooting, better allocation of

resources, and more robust system

resiliency in general[134]. The tools

proposed to establish complete monitoring

within the Docker environment are

Prometheus for the functions of monitoring

and alerting, Grafana for visualization of

metrics data, and the ELK Stack:

Elasticsearch, Logstash, and Kibana-in

centralizing logs and performing analysis

on them[135][136]. In addition, cAdvisor

allows monitoring of resource usage and

performance indicators of containers, while

Kube-state-metrics provides critical

insights into the health and status of

Kubernetes-managed containers[137].

These tools will drive organizations to gain

complete visibility over their containerized

applications and empower them to achieve

reliability, deploying more efficient

incident response methodologies.

• Centralized Logging:

Centrally logging Docker containers is

essential for managing and analyzing log

data generated from containerized

applications and services. It aggregates the

logs from multiple sources such as

containers, orchestration platforms like

Kubernetes, and the host's operating system

into a centralized repository for better

accessibility and comprehensive analysis of

log data[1]. Centralization of logs comes

with such advantages as ease in

troubleshooting, security monitoring, and

regulatory compliance, given that the speed

and ease of finding and fixing problems in

distributed environments are

higher[138][139]. Centralized logging also

promotes better analysis for performance

by relating logs to application behavior for

good resource optimization and

enhancement of overall system

reliability.[140] Some of the recommended

tools to implement centralized logging in

Docker environments are the ELK Stack

DOI: https://doi.org/10.32628/CSEIT25112773 3674

Elasticsearch, Logstash, and Kibana, which

efficiently aggregates and visualizes

logs[3]. Meanwhile, the EFK Stack consists

of Elasticsearch, Fluentd, and Kibana,

which provide easy integrations of log

data[140]. Graylog and Splunk are other

good options, each providing advanced

search features and real-time monitoring of

logs that would assist an organization in

finding issues before they occur and

maintaining good operational health.

• Automated Log Analysis:

Log analysis with Docker containers is

essential to enhance operation efficiency,

thereby securing containerized

environments. It allows for consistent

collection, processing, and analysis of logs

from the different services operating within

a container to ensure an organization can

uncover anomalies and fix issues faster,

along with system performance

monitoring[141]. The advantages of

automated log analysis include reducing

manual work, providing real application

insights in real-time, and improving the

correlation from distributed systems to root

cause performance issues or security

threats[141][142]. It's good regulatory

practice, too, since the collection and

analysis of log data are automated[141].

The ELK Stack, comprising Elasticsearch,

Logstash, and Kibana, is highly

recommended for advanced log

aggregation and visualization[142]. Other

vital tools are Fluentd for log collection and

aggregation, Prometheus for monitoring,

and Grafana for further data

visualization[141][142]. Ultimately, these

will continue to help an organization have

deep visibility into its containerized

applications for proper and timely decision-

making.

• Use of SIEM (Security

Information and Event

Management) Tools:

SIEM systems must be introduced within

Docker containers to monitor security

incidents and manage incident responses in

containerized applications. Employing

SIEM solutions in Docker environments

adds significant value in visibility into

security violations, real-time analytics, and

data correlation from a vast pool of sources

such as container logs and orchestration

platforms[143]. Generally speaking, the

advantages of using SIEM in Docker

containers are extended threat detection

capability, compliance reporting efficiently,

and better situational awareness about

potential vulnerabilities[144][145].

Centralized logging and monitoring with

the help of SIEM solutions enable

organizations to rapidly identify and take

action against security incidents to reduce

overall deployment risk related to

containers. Recommended tools for

implementing SIEM in Docker

environments include the Elastic Stack-

ELK, which can aggregate logs and provide

analytics[144]; Security Onion, which is a

robust Linux distribution specifically

designed for intrusion detection, network

security monitoring, and log

management[146]. Other significant tools

include Splunk, a platform providing

advanced data analytics and threat

intelligence in a form that can easily

integrate with container

infrastructure[147]. Using these SIEM

tools, it is possible to greatly enhance an

organization's security posture in Docker

container ecosystems.

• Real-Time Alerting and

Response:

Real-time alerting and response in Docker

containers are necessities for security and

stability around containerized applications.

Real-time monitoring enables an

organization to detect abnormalities and

potential threats faster so remediation

actions can occur quickly before severe

damage occurs[148]. This brings about

increased advantages through heightened

security postures, efficiency with incident

response times, and reduced downtime- all

to create genuinely resilient application

environments[148]. Real-time alerting can

DOI: https://doi.org/10.32628/CSEIT25112773 3674

automatically react to well-known threats,

effectively reducing the need for human

intervention while maintaining the

consistency of security policy

enforcement[1]. Wazuh is a highly

recommended solution for real-time

alerting and response in Docker containers.

It's good at collecting log data, detecting

malware, and automating active

responses[148]. Wazuh can let it create an

alert in case of a user or system change,

providing complete monitoring, which is

fundamental to the security and operation

of cloud infrastructures and containerized

applications.

• Regular Log Audits and

Compliance:

Compliance with security regulations

within Docker containers ensures data and

application integrity in cloud environments.

Compliance with recognized standards and

regulations helps organizations minimize

the risk of security breaches, data leaks, and

service interruptions[149]. Compliance

frameworks, including GDPR, HIPAA, and

PCI-DSS, provide guidelines to help

organizations establish appropriate security

measures and controls for their Docker

environments[150]. These are the benefits

of maintaining regulatory compliance for

security: increased trust by customers and

stakeholders avoiding significant legal and

financial penalties associated with non-

compliance[151]. Moreover, best practices

that various regulations require enable

organizations to enhance their overall

security posture and create a culture of

accountability and due diligence about data

protection[152]. In the end, security

compliance plays a massive role in guiding

the deployment and management of Docker

containers, ensuring that security remains

foremost in the whole application lifecycle.

7. Conclusion

In conclusion, this study highlights that

while Docker containerization offers

substantial benefits in scalability and

operational efficiency, it also presents

unique security challenges that must be

proactively managed to ensure resilience in

deployment environments. Previous

research by[153] on container isolation

and[154] exploration of container security

tools underlines the need for robust

isolation mechanisms and runtime

protections to prevent unauthorized access

and mitigate misconfigurations. As shown

in these studies, a failure to address these

aspects could expose containerized

applications to significant vulnerabilities,

which this research further details across

areas like image security, runtime threats,

network security, and configuration

management.

Our findings stress the importance of

adopting trusted sources for container

images, conducting regular image scans,

and avoiding dependencies on third-party

libraries without proper vetting.[155]

notably identified supply chain

vulnerabilities in containers, with the

research finding that approximately 70% of

container issues stem from unverified third-

party dependencies. In alignment with their

insights, this study advocates for using

multi-stage builds and rigorous scanning

tools, such as Snyk[156] or Trivy[157], as

effective measures to minimize security

risks introduced by public repositories.

Moreover, runtime security emerged as a

priority, with recommendations to enforce

strict privilege settings and to adopt

namespace and cgroup isolations. [158]

emphasized runtime misconfigurations as a

common vulnerability, and practical

guidelines underscore the necessity of real-

time monitoring to detect unauthorized

behaviors. Implementing real-time

monitoring and anomaly detection

solutions can enhance visibility and allow

for faster incident response, a crucial

capability in dynamic containerized

environments.

Network security remains another area of

critical importance. Research by [159] on

container orchestration underscored the

DOI: https://doi.org/10.32628/CSEIT25112773 3674

vulnerabilities linked to network

misconfigurations, especially in

environments like Kubernetes. Following

his recommendations, this study advocates

for network segmentation and the

application of secure communication

protocols to protect sensitive services from

lateral movement attacks. Logging and

monitoring traffic flows within container

networks also play a significant role in

threat detection and operational integrity.

Inadequate configuration management can

leave containers exposed to avoidable risks.

Studies by [160] on secure configuration

baselines and [161]on proactive security

policy enforcement both advocate for

establishing strong configuration practices

to mitigate potential attack vectors.

Reflecting these findings, this study calls

for organizations to regularly review and

update container configurations, implement

automation for configuration management,

and set up baseline policies that ensure

consistent and secure deployments.

Our research supports a layered approach to

container security, a practice also endorsed

by [162], highlighting that a combination of

tools and practices across the software

development lifecycle is essential to build a

robust security posture. This approach

encourages organizations to prioritize a

security-focused culture, enforce access

controls, and maintain vigilance through

continuous monitoring and updates to

protect against emerging threats.

Ultimately, as container technology

evolves, so too must our dedication to

security. By applying the measures outlined

in this study, organizations can strengthen

their defenses against vulnerabilities,

ensuring secure, efficient, and resilient

containerized applications. Adapting to

evolving security needs, as and both affirm,

cannot be overstated, particularly as

containers become an integral part of the

modern application ecosystem. This

commitment to innovation and vigilance in

security practices will be pivotal in

fostering a sustainable and secure

foundation for future container

deployments.

References

1. Snyk. (n.d.). 10 Docker Security Best

Practices. Retrieved from Snyk

2. Docker Docs. (n.d.). Security

announcements. Retrieved from Docker

Security

3. Malhotra, R., Bansal, A., & Kessentini, M.

(2023). Vulnerability Analysis of Docker

Hub Official Images and Verified Images.

In 2023 IEEE International Conference on

Service-Oriented System Engineering

(SOSE), 17-20 July 2023.

https://doi.org/10.1109/SOSE58276.2023.

00025

4. Snyk. (n.d.). 10 Docker Security Best

Practices. Retrieved from Snyk

5. Malhotra, R., Bansal, A., & Kessentini, M.

(2023). Vulnerability Analysis of Docker

Hub Official Images and Verified Images.

In 2023 IEEE International Conference on

Service-Oriented System Engineering

(SOSE), 17-20 July 2023.

6. Malhotra, R., Bansal, A., & Kessentini, M.

(2023). Vulnerability Analysis of Docker

Hub Official Images and Verified Images.

In 2023 IEEE International Conference on

Service-Oriented System Engineering

(SOSE), 17-20 July 2023. Link

7. Jiang, W., & Zheng, L. (2020).

Vulnerability Analysis and Security

Research of Docker Container. In 2020

IEEE 3rd International Conference on

Information Systems and Computer Aided

Education (ICISCAE), 27-29 September

2020. Link

8. Docker. (n.d.). Docker Content Trust.

Retrieved from Docker Documentation

9. Aqua Security. (n.d.). Container Security.

Retrieved from Aqua Security

10. Trivy. (n.d.). Vulnerability Scanner for

Containers and other Artifacts. Retrieved

from Trivy GitHub

11. JFrog. (2023). JFrog Security Solutions.

Retrieved from JFrog

https://docs.docker.com/
https://docs.docker.com/
https://www.aquasec.com/
https://github.com/aquasecurity/trivy
https://jfrog.com/

DOI: https://doi.org/10.32628/CSEIT25112773 3674

12. OWASP. (n.d.). Application Container

Security. Retrieved from OWASP

13. Malhotra, R., Bansal, A., & Kessentini, M.

(2023). Vulnerability Analysis of Docker

Hub Official Images and Verified Images.

In 2023 IEEE International Conference on

Service-Oriented System Engineering

(SOSE), 17-20 July 2023.

https://doi.org/10.1109/SOSE58276.2023.

00025

14. Docker. (n.d.). Best Practices for Docker.

Retrieved from Docker Best Practices

15. Kubernetes. (n.d.). Role-Based Access

Control (RBAC) Authorization. Retrieved

from Kubernetes Documentation

16. Calico. (n.d.). Container Security: 7 Key

Components and 8 Critical Best Practices.

Retrieved from Tigera

17. Saxena, V., Saxena, D., & Singh, U. (2022).

Security Enhancement using Image

verification method to Secure Docker

Containers. Proceedings of the 4th

International Conference on Information

Management & Machine Intelligence.

https://www.semanticscholar.org/paper/b6

45bbad9eb0d5fe1d0bb5a2dcf3c4c553661

4ea

18. Yang, N., Chen, C., Yuan, T., Wang, Y., Gu,

X., & Yang, D. (2022). Security hardening

solution for docker container. 2022

International Conference on Cyber-

Enabled Distributed Computing and

Knowledge Discovery (CyberC).

https://www.semanticscholar.org/paper/35

a5f38d0f399b0c7abdb2dd8a622d69a5e4e

c80

19. Bhardwaj, A. K., Dutta, P. K., & Chintale,

P. (2024). Securing Container Images

through Automated Vulnerability

Detection in Shift-Left CI/CD Pipelines.

Babylonian Journal of Networking.

https://www.semanticscholar.org/paper/a6

3906d9176be6500307ae16532cff125648d

960

20. Gajbhiye, B., Goel, O., & Pandian, P. K. G.

(2024). Managing Vulnerabilities in

Containerized and Kubernetes

Environments. Journal of Quantum

Science and Technology.

https://www.semanticscholar.org/paper/05f

6e461cc24b2680baa4b98fae766d41a8f4b

73

21. Krahn, R., Dragoti, D., Gregor, F., Quoc,

D., Schiavoni, V., Felber, P., Souza, C.,

Brito, A., & Fetzer, C. (2020). TEEMon: A

continuous performance monitoring

framework for TEEs. Proceedings of the

21st International Middleware Conference.

https://www.semanticscholar.org/paper/c9

5b7a9184b2edfb8bbb3616c390123bb5c0a

d0b

22. Rastogi, V., Davidson, D., Carli, L. D., Jha,

S., & Mcdaniel, P. (2016). Towards Least

Privilege Containers with Cimplifier.

ArXiv.

https://www.semanticscholar.org/paper/10

745fa635ecfbb4206f3c148bca80c4a493d7

ac

23. Zhang, M., Marino, D., & Efstathopoulos,

P. (2015). Harbormaster: Policy

Enforcement for Containers. 2015 IEEE

7th International Conference on Cloud

Computing Technology and Science

(CloudCom).

https://www.semanticscholar.org/paper/e6

88385278a2faff803ce5b245dfb4ec3bdffda

8

24. Alles, G. R. (2018). Análise da utilização

de tecnologias de contêineres para

aplicações de alto desempenho.

https://www.semanticscholar.org/paper/51

10630be6891c7a8ced1539449a050794ae4

89e

25. Ajith, V., Cyriac, T., Chavda, C., Kiyani, A.

T., Chennareddy, V., & Ali, K. (2024).

Analyzing Docker Vulnerabilities through

Static and Dynamic Methods and

Enhancing IoT Security with AWS IoT

Core, CloudWatch, and GuardDuty. IoT.

https://www.semanticscholar.org/paper/4c

08997c7ed9002f9c9d7ed9cd946d8066c78

8c2

26. Gajbhiye, B., Goel, O., & Pandian, P. K. G.

(2024). Managing Vulnerabilities in

Containerized and Kubernetes

Environments. Journal of Quantum

Science and Technology.

https://www.semanticscholar.org/paper/05f

6e461cc24b2680baa4b98fae766d41a8f4b

73

27. Haq, Md. S., Tosun, A., & Korkmaz, T.

(2022). Security Analysis of Docker

Containers for ARM Architecture. 2022

IEEE/ACM 7th Symposium on Edge

Computing (SEC).

https://www.semanticscholar.org/paper/bb

33e9d61ca50b7b07a72aba54e9bc72f5ff4c

3a

https://www.tigera.io/
https://www.semanticscholar.org/paper/b645bbad9eb0d5fe1d0bb5a2dcf3c4c5536614ea
https://www.semanticscholar.org/paper/b645bbad9eb0d5fe1d0bb5a2dcf3c4c5536614ea
https://www.semanticscholar.org/paper/b645bbad9eb0d5fe1d0bb5a2dcf3c4c5536614ea
https://www.semanticscholar.org/paper/35a5f38d0f399b0c7abdb2dd8a622d69a5e4ec80
https://www.semanticscholar.org/paper/35a5f38d0f399b0c7abdb2dd8a622d69a5e4ec80
https://www.semanticscholar.org/paper/35a5f38d0f399b0c7abdb2dd8a622d69a5e4ec80
https://www.semanticscholar.org/paper/a63906d9176be6500307ae16532cff125648d960
https://www.semanticscholar.org/paper/a63906d9176be6500307ae16532cff125648d960
https://www.semanticscholar.org/paper/a63906d9176be6500307ae16532cff125648d960
https://www.semanticscholar.org/paper/05f6e461cc24b2680baa4b98fae766d41a8f4b73
https://www.semanticscholar.org/paper/05f6e461cc24b2680baa4b98fae766d41a8f4b73
https://www.semanticscholar.org/paper/05f6e461cc24b2680baa4b98fae766d41a8f4b73
https://www.semanticscholar.org/paper/c95b7a9184b2edfb8bbb3616c390123bb5c0ad0b
https://www.semanticscholar.org/paper/c95b7a9184b2edfb8bbb3616c390123bb5c0ad0b
https://www.semanticscholar.org/paper/c95b7a9184b2edfb8bbb3616c390123bb5c0ad0b
https://www.semanticscholar.org/paper/10745fa635ecfbb4206f3c148bca80c4a493d7ac
https://www.semanticscholar.org/paper/10745fa635ecfbb4206f3c148bca80c4a493d7ac
https://www.semanticscholar.org/paper/10745fa635ecfbb4206f3c148bca80c4a493d7ac
https://www.semanticscholar.org/paper/e688385278a2faff803ce5b245dfb4ec3bdffda8
https://www.semanticscholar.org/paper/e688385278a2faff803ce5b245dfb4ec3bdffda8
https://www.semanticscholar.org/paper/e688385278a2faff803ce5b245dfb4ec3bdffda8
https://www.semanticscholar.org/paper/5110630be6891c7a8ced1539449a050794ae489e
https://www.semanticscholar.org/paper/5110630be6891c7a8ced1539449a050794ae489e
https://www.semanticscholar.org/paper/5110630be6891c7a8ced1539449a050794ae489e
https://www.semanticscholar.org/paper/4c08997c7ed9002f9c9d7ed9cd946d8066c788c2
https://www.semanticscholar.org/paper/4c08997c7ed9002f9c9d7ed9cd946d8066c788c2
https://www.semanticscholar.org/paper/4c08997c7ed9002f9c9d7ed9cd946d8066c788c2
https://www.semanticscholar.org/paper/05f6e461cc24b2680baa4b98fae766d41a8f4b73
https://www.semanticscholar.org/paper/05f6e461cc24b2680baa4b98fae766d41a8f4b73
https://www.semanticscholar.org/paper/05f6e461cc24b2680baa4b98fae766d41a8f4b73
https://www.semanticscholar.org/paper/bb33e9d61ca50b7b07a72aba54e9bc72f5ff4c3a
https://www.semanticscholar.org/paper/bb33e9d61ca50b7b07a72aba54e9bc72f5ff4c3a
https://www.semanticscholar.org/paper/bb33e9d61ca50b7b07a72aba54e9bc72f5ff4c3a

DOI: https://doi.org/10.32628/CSEIT25112773 3674

28. Eldjou, A., Amoura, M. E., Soltane, M.,

Belguidoum, M., Bennacer, S., & Kitouni,

I. (2023). Enhancing Container Runtime

Security: A Case Study in Threat Detection.

Tunisian-Algerian Joint Conference on

Applied Computing.

https://www.semanticscholar.org/paper/ef9

6b9178b4fada1c39e82d2fb348fbb07f75c5

9

29. Fournier, G., Afchain, S., & Baubeau, S.

(2021). Runtime Security Monitoring with

eBPF.

https://www.semanticscholar.org/paper/8a

768ccb634f7527885cae4cd5348eba01065

b80

30. Hashemian, R., Carlsson, N.,

Krishnamurthy, D., & Arlitt, M. (2020). Contention

Aware Web of Things Emulation Testbed.

Proceedings of the ACM/SPEC International

Conference on Performance Engineering.

https://www.semanticscholar.org/paper/ae6c8319e7

ea739f3f18398daeab2706aaef2ce7

31. Verdugo, P., Salvachiua, J., & Huecas, G.

(2017). An agile container-based approach to TaaS.

2017 56th FITCE Congress.

https://www.semanticscholar.org/paper/7ebf1533ba

d78e306dd6deb4cbae53c1017a79f4

32. Mousa, A., Tuffaha, W., Abdulhaq, M.,

Qadry, M., & M.M., O. O. (2023). In-Depth

Network Security for Docker Containers. 2023 14th

International Conference on Computing

Communication and Networking Technologies

(ICCCNT).

https://www.semanticscholar.org/paper/ec6f69bd20

f617091e5b1fc670e05fcdfaf57265

33. Zeng, W., Fan, R., Wang, Z., Xiao, Y.,

Huang, R., & Liu, M. (2023). Research on Docker

Container Network Isolation and Security

Management for Multi-Tenant Environments.

Proceedings of the 2023 International Conference

on Communication Network and Machine Learning.

https://www.semanticscholar.org/paper/28be3b1c28

fa71fabec3afb803ce5f48c8b83f78

34. Cochak, H., Koslovski, G., Pillon, M. A., &

Miers, C. (2021). RunC and Kata runtime using

Docker: a network perspective comparison. 2021

IEEE Latin-American Conference on

Communications

(LATINCOM). https://www.semanticscholar.org/p

aper/91fb4da812a4f5de119719392a5dc70c55cbcaf

b

35. Barlev, S., Basil, Z., Kohanim, S., & Peleg,

R. (2016). Secure yet usable: Protecting servers and

Linux containers.

https://ieeexplore.ieee.org/abstract/document/75233

63/

36. K. A. Babar, Understanding container

isolation mechanisms for building security-sensitive

private cloud. Sydney, Australia: ResearchGate,

2017

37. Findlay, W., Barrera, D., & Somayaji, A.

(2102). Bpfcontain: Fixing the soft underbelly of

container security. arXiv Preprint

arXiv:2102.06972. https://arxiv.org/abs/2102.06972

38. Barlev, S., Basil, Z., Kohanim, S., & Peleg,

R. (2016). Secure yet usable: Protecting servers and

Linux containers.

https://ieeexplore.ieee.org/abstract/document/75233

63/

39. Muniswamy, S., & Vignesh, R. (2022).

DSTS: A hybrid optimal and deep learning for

dynamic scalable task scheduling on container cloud

environment. Journal of Cloud Computing.

https://link.springer.com/article/10.1186/s13677-

022-00304-7.

40. Kafhali, S. E., Mir, I. E., Salah, K., &

Hanini, M. (2020). Dynamic scalability model for

containerized cloud services.

https://link.springer.com/article/10.1007/s13369-

020-04847-2.

41. Barletta, M., Cinque, M., & Simone, L. D.

(2024). Criticality-aware monitoring and

orchestration for containerized industry 4.0

environments.

https://dl.acm.org/doi/abs/10.1145/3604567

42. Gantikow, H., Reich, C., Knahl, M., &

Clarke, N. (2019). Rule-based security monitoring

of containerized environments.

https://link.springer.com/chapter/10.1007/978-3-

030-49432-2_4

43. Misa, C., Kannan, S., & Durairajan, R.

(2019). Can we containerize internet

measurements?

https://dl.acm.org/doi/abs/10.1145/3340301.334113

0

44. Klein, D. (2019). Micro-segmentation:

securing complex cloud environments. Network

Security.

https://www.magonlinelibrary.com/doi/abs/10.1016

/S1353-4858%2819%2930034-0

45. Al-Ofeishat, H., & Alshorman, R. (2023).

Build a Secure Network using Segmentation and

Micro-segmentation Techniques.

https://journal.uob.edu.bh/handle/123456789/5237

46. Verma, V. (2024). Network Security

Policies for Containers in Cloud Applications.

https://www.semanticscholar.org/paper/ef96b9178b4fada1c39e82d2fb348fbb07f75c59
https://www.semanticscholar.org/paper/ef96b9178b4fada1c39e82d2fb348fbb07f75c59
https://www.semanticscholar.org/paper/ef96b9178b4fada1c39e82d2fb348fbb07f75c59
https://www.semanticscholar.org/paper/8a768ccb634f7527885cae4cd5348eba01065b80
https://www.semanticscholar.org/paper/8a768ccb634f7527885cae4cd5348eba01065b80
https://www.semanticscholar.org/paper/8a768ccb634f7527885cae4cd5348eba01065b80
https://www.semanticscholar.org/paper/ae6c8319e7ea739f3f18398daeab2706aaef2ce7
https://www.semanticscholar.org/paper/ae6c8319e7ea739f3f18398daeab2706aaef2ce7
https://www.semanticscholar.org/paper/7ebf1533bad78e306dd6deb4cbae53c1017a79f4
https://www.semanticscholar.org/paper/7ebf1533bad78e306dd6deb4cbae53c1017a79f4
https://www.semanticscholar.org/paper/ec6f69bd20f617091e5b1fc670e05fcdfaf57265
https://www.semanticscholar.org/paper/ec6f69bd20f617091e5b1fc670e05fcdfaf57265
https://www.semanticscholar.org/paper/28be3b1c28fa71fabec3afb803ce5f48c8b83f78
https://www.semanticscholar.org/paper/28be3b1c28fa71fabec3afb803ce5f48c8b83f78
https://dl.acm.org/doi/abs/10.1145/3604567
https://link.springer.com/chapter/10.1007/978-3-030-49432-2_4
https://link.springer.com/chapter/10.1007/978-3-030-49432-2_4
https://www.magonlinelibrary.com/doi/abs/10.1016/S1353-4858%2819%2930034-0
https://www.magonlinelibrary.com/doi/abs/10.1016/S1353-4858%2819%2930034-0
https://journal.uob.edu.bh/handle/123456789/5237

DOI: https://doi.org/10.32628/CSEIT25112773 3674

https://aaltodoc.aalto.fi/items/ab63424a-8a23-4057-

8f02-36506b192365

47. Gentile, A. F., Macri, D., Greco, E., &

Fazio, P. (2024). IoT IP Overlay Network Security

Performance Analysis with Open Source

Infrastructure Deployment. J. Cybersecur. Priv.

https://www.semanticscholar.org/paper/f75455c4ed

ff911f117062e819aca293cba9557b

48. Weever, C. de, & Andreou, M. (2020). Zero

Trust Network Security Model in containerized

environments.

https://www.semanticscholar.org/paper/5d2b02e5d

079886c44d624752accc20b064e5a15

49. Surantha, N., Ivan, F., & Chandra, R.

(2023). A case analysis for Kubernetes network

security of financial service industry in Indonesia

using zero trust model. Bulletin of Electrical

Engineering and Informatics.

https://www.semanticscholar.org/paper/2b2111340c

b845e6d1e339d25bff2076faec0fc1

50. Weever, C. de, & Andreou, M. (2020). Zero

Trust Network Security Model in containerized

environments.

https://www.semanticscholar.org/paper/5d2b02e5d

079886c44d624752accc20b064e5a15

51. Kulathunga, R. (2021). Dynamic security

model for container orchestration platform.

https://dl.ucsc.cmb.ac.lk/jspui/handle/123456789/4

533

52. Zhong, Z., Xu, M., Rodriguez, M., & Xu,

C. (2022). Machine learning-based orchestration of

containers: A taxonomy and future directions.

https://dl.acm.org/doi/abs/10.1145/3510415

53. Sofia, R., Dykeman, D., Urbanetz, P., &

Galal, A. (2023). Dynamic, Context-Aware Cross-

Layer Orchestration of Containerized Applications.

https://ieeexplore.ieee.org/abstract/document/10225

530/

54. Struhár, V., Craciunas, S., & Ashjaei, M.

(2021). React: Enabling real-time container

orchestration.

https://ieeexplore.ieee.org/abstract/document/96136

85/

55. Mehr, I. E., Minetto, A., Dovis, F., Pica, E.,

Cesaroni, C., & Romano, V. (2023). An Open

Architecture for Signal Monitoring and Recording

Based on SDR and Docker Containers: A GNSS Use

Case. IEEE EUROCON 2023 - 20th International

Conference on Smart Technologies.

https://www.semanticscholar.org/paper/4d48ff4f6c9

93963b5386ecc1762996eb2c568bb

56. Jain, H. (2021). Monitoring of Docker

Containers with Round Robin Database.

https://www.semanticscholar.org/paper/4bcf673efc

594b7df2b5976e134e6fb09ba2e15f

57. Franco, J., Acar, A., Aris, A., & Uluagac, S.

(2023). Forensic Analysis of Cryptojacking in Host-

Based Docker Containers Using Honeypots. ICC

2023 - IEEE International Conference on

Communications.

https://www.semanticscholar.org/paper/235aa07c44

e436c9abbe5b3ddfbdd11a0e6217a6

58. Mousa, A., Tuffaha, W., Abdulhaq, M.,

Qadry, M., & M.M., O. O. (2023). In-Depth

Network Security for Docker Containers. 2023 14th

International Conference on Computing

Communication and Networking Technologies

(ICCCNT).

https://www.semanticscholar.org/paper/ec6f69bd20

f617091e5b1fc670e05fcdfaf57265

59. VS, D., Sethuraman, S., & Khan, M.

(2023). Container security: precaution levels,

mitigation strategies, and research perspectives.

Computers & Security.

https://www.sciencedirect.com/science/article/pii/S

0167404823004005

60. Nickle, J. (2023). A Research Exploring

Practical Threat Deterrence Methodologies

Utilizing Secure Identity Micro-Segmentation.

https://search.proquest.com/openview/a9bea7d4133

07133a55976e66612bae1/1?pq-

origsite=gscholar&cbl=18750&diss=y

61. Nugroho, I., & Marlina, S. (2024). Effective

Security Protocols for Containerized Applications.

https://studies.eigenpub.com/index.php/erst/article/

view/83

62. Jansen, B. A. (2018). MSc System and

Network Engineering Research Project 2 Security

By Default A Comparative Security Evaluation of

Default Configurations.

https://www.semanticscholar.org/paper/2a7dd6006

626c7126617181636a69d16c717b147

63. Kithulwatta, W. M. C. J. T., Jayasena, K.,

Kumara, B., & Rathnayaka, R. (2022). Performance

Evaluation of Docker-based Apache and Nginx Web

Server. 2022 3rd International Conference for

Emerging Technology (INCET).

https://www.semanticscholar.org/paper/54126de112

713c3f8b8909db627c0c02c1f554a2

64. Su, K.-M., Liu, I., & Li, J.-S. (2020). The

Risk of Industrial Control System Programmable

Logic Controller Default Configurations. 2020

International Computer Symposium (ICS).

https://www.semanticscholar.org/paper/f52f133fe0

76120629bfd91868be6354e4333a60

65. Kayali, M., & Wang, C. (2022). Mining

Robust Default Configurations for Resource-

https://www.semanticscholar.org/paper/5d2b02e5d079886c44d624752accc20b064e5a15
https://www.semanticscholar.org/paper/5d2b02e5d079886c44d624752accc20b064e5a15
https://www.semanticscholar.org/paper/2b2111340cb845e6d1e339d25bff2076faec0fc1
https://www.semanticscholar.org/paper/2b2111340cb845e6d1e339d25bff2076faec0fc1
https://dl.ucsc.cmb.ac.lk/jspui/handle/123456789/4533
https://dl.ucsc.cmb.ac.lk/jspui/handle/123456789/4533
https://dl.acm.org/doi/abs/10.1145/3510415
https://ieeexplore.ieee.org/abstract/document/10225530/
https://ieeexplore.ieee.org/abstract/document/10225530/
https://ieeexplore.ieee.org/abstract/document/9613685/
https://ieeexplore.ieee.org/abstract/document/9613685/
https://www.semanticscholar.org/paper/4d48ff4f6c993963b5386ecc1762996eb2c568bb
https://www.semanticscholar.org/paper/4d48ff4f6c993963b5386ecc1762996eb2c568bb
https://www.semanticscholar.org/paper/4bcf673efc594b7df2b5976e134e6fb09ba2e15f
https://www.semanticscholar.org/paper/4bcf673efc594b7df2b5976e134e6fb09ba2e15f
https://www.semanticscholar.org/paper/235aa07c44e436c9abbe5b3ddfbdd11a0e6217a6
https://www.semanticscholar.org/paper/235aa07c44e436c9abbe5b3ddfbdd11a0e6217a6
https://www.semanticscholar.org/paper/ec6f69bd20f617091e5b1fc670e05fcdfaf57265
https://www.semanticscholar.org/paper/ec6f69bd20f617091e5b1fc670e05fcdfaf57265
https://www.sciencedirect.com/science/article/pii/S0167404823004005
https://www.sciencedirect.com/science/article/pii/S0167404823004005
https://search.proquest.com/openview/a9bea7d413307133a55976e66612bae1/1?pq-origsite=gscholar&cbl=18750&diss=y
https://search.proquest.com/openview/a9bea7d413307133a55976e66612bae1/1?pq-origsite=gscholar&cbl=18750&diss=y
https://search.proquest.com/openview/a9bea7d413307133a55976e66612bae1/1?pq-origsite=gscholar&cbl=18750&diss=y
https://studies.eigenpub.com/index.php/erst/article/view/83
https://studies.eigenpub.com/index.php/erst/article/view/83
https://www.semanticscholar.org/paper/2a7dd6006626c7126617181636a69d16c717b147
https://www.semanticscholar.org/paper/2a7dd6006626c7126617181636a69d16c717b147
https://www.semanticscholar.org/paper/54126de112713c3f8b8909db627c0c02c1f554a2
https://www.semanticscholar.org/paper/54126de112713c3f8b8909db627c0c02c1f554a2
https://www.semanticscholar.org/paper/f52f133fe076120629bfd91868be6354e4333a60
https://www.semanticscholar.org/paper/f52f133fe076120629bfd91868be6354e4333a60

DOI: https://doi.org/10.32628/CSEIT25112773 3674

constrained AutoML. ArXiv.

https://www.semanticscholar.org/paper/debe88eb17

215e83e0de34638c1f32ab531f6ae1

66. Raj, P. (2024). Continuous Integration for

New Service Deployment and Service Validation

Script for Vault. INTERANTIONAL JOURNAL OF

SCIENTIFIC RESEARCH IN ENGINEERING AND

MANAGEMENT.

https://www.semanticscholar.org/paper/96e78ef19e

63455191f211cb39867a54a6e1edb5

67. Loukidis-Andreou, F., & Giannakopoulos,

I. (2018). Docker-sec: A fully automated container

security enhancement mechanism.

https://ieeexplore.ieee.org/abstract/document/84164

32/

68. Brady, K., Moon, S., & Nguyen, T. (2020).

Docker container security in cloud computing.

https://ieeexplore.ieee.org/abstract/document/90311

95/

69. Kermabon-Bobinnec, H., &

Gholipourchoubeh, M. (2022). Prospec: Proactive

security policy enforcement for containers.

https://dl.acm.org/doi/abs/10.1145/3508398.351151

5

70. Mullinix, S., Konomi, E., & Townsend, R.

(2020). On security measures for containerized

applications imaged with docker.

https://arxiv.org/abs/2008.0481

71. Wahanani, H., Idhom, M., & Kristiawan,

K. Y. (2021). Implementation Of Docker Container

On Local Network By Applying Reverse Proxy.

IJCONSIST JOURNALS.

https://www.semanticscholar.org/paper/ee9f1dc131

e6c8d2c59936d18492b69d62cb0e1e

72. Thiyagarajan, G., Bist, V., & Nayak, P.

(2025). Securing Credit Inquiries: The Role of Real-

Time User Approval in Preventing SSN Identity

Theft. arXiv preprint arXiv:2505.18861.

73. Thiyagarajan, G., Bist, V., & Nayak, P.

(2024). AI-Driven Configuration Drift Detection in

Cloud Environments. Gogulakrishnan

Thiyagarajan, Vinay Bist, Prabhudarshi

Nayak.(2024). AI-Driven Configuration Drift

Detection in Cloud Environments. International

Journal of Communication Networks and

Information Security (IJCNIS), 16(5), 721-743.

74. Thiyagarajan, G., Bist, V., & Nayak, P.

(2025). The Hidden Dangers of Outdated Software:

A Cyber Security Perspective. arXiv preprint

arXiv:2505.13922.

75. Alyas, T., Ali, S., Khan, H. U., Samad, A.,

Alissa, K. A., & Saleem, M. (2022). Container

Performance and Vulnerability Management for

Container Security Using Docker Engine. Security

and Communication Networks.

https://www.semanticscholar.org/paper/5e59d661f7

f1e356e96810ac35e439505f040490

76. Mahajan, V., & Mane, S. (2022). Detection,

Analysis and Countermeasures for Container based

Misconfiguration using Docker and Kubernetes.

2022 International Conference on Computing,

Communication, Security and Intelligent Systems

(IC3SIS).

https://www.semanticscholar.org/paper/ea4a7e32e6

1ddb9599932dd597c48b2ec0114112

77. Ksontini, E., Kessentini, M., Ferreira, T., &

Hassan, F. (2021). Refactorings and Technical Debt

in Docker Projects: An Empirical Study. 2021 36th

IEEE/ACM International Conference on Automated

Software Engineering (ASE).

https://www.semanticscholar.org/paper/8ed334568

3127ae31e051696d1504f8901b05563

78. Pires, A., Matos, F., Santos, A., Pessoa, D.,

& Maciel, P. D. (2022). PipeConf: An Integrated

Architecture for the Automated Configuration of

Network Assets. IEEE Transactions on Network and

Service Management.

https://www.semanticscholar.org/paper/dbd88c8c56

812d6fad93016e7f1e58408d982fb1

79. Suryawanshi, H., & Deshmukh, P. R.

(2022). Building a UI Based Tool for Configuration

Management. 2022 International Conference on

Industry 4.0 Technology (I4Tech).

https://www.semanticscholar.org/paper/b93555576

0a93e3bab587cbe645bcf3039831484

80. Rugendo, T. M., & Kahonge, A. M. (2021).

Access Control Model for Container based Virtual

Environments. International Journal of Computer

Applications.

https://www.semanticscholar.org/paper/35690002d

a12487f3d4a5c0970bc8344af68fc6c

81. Lang, D., Jiang, H., Ding, W., & Bai, Y.

(2019). Research on Docker Role Access Control

Mechanism Based on DRBAC. Journal of Physics:

Conference Series.

https://www.semanticscholar.org/paper/0b7d67b7b

520fc04d8ba6e68116c610db21853c0

82. Pasomsup, C., & Limpiyakorn, Y. (2021).

HT-RBAC: A Design of Role-based Access Control

Model for Microservice Security Manager. 2021

International Conference on Big Data Engineering

and Education (BDEE).

https://www.semanticscholar.org/paper/1f8acfefbda

ca20fc15c65d88186e5a5880c8407

83. Rugendo, T. M., & Kahonge, A. M. (2021).

Access Control Model for Container based Virtual

Environments. International Journal of Computer

Applications.

https://www.semanticscholar.org/paper/debe88eb17215e83e0de34638c1f32ab531f6ae1
https://www.semanticscholar.org/paper/debe88eb17215e83e0de34638c1f32ab531f6ae1
https://www.semanticscholar.org/paper/96e78ef19e63455191f211cb39867a54a6e1edb5
https://www.semanticscholar.org/paper/96e78ef19e63455191f211cb39867a54a6e1edb5
https://ieeexplore.ieee.org/abstract/document/8416432/
https://ieeexplore.ieee.org/abstract/document/8416432/
https://ieeexplore.ieee.org/abstract/document/9031195/
https://ieeexplore.ieee.org/abstract/document/9031195/
https://dl.acm.org/doi/abs/10.1145/3508398.3511515
https://dl.acm.org/doi/abs/10.1145/3508398.3511515
https://arxiv.org/abs/2008.0481
https://www.semanticscholar.org/paper/ee9f1dc131e6c8d2c59936d18492b69d62cb0e1e
https://www.semanticscholar.org/paper/ee9f1dc131e6c8d2c59936d18492b69d62cb0e1e
https://www.semanticscholar.org/paper/5e59d661f7f1e356e96810ac35e439505f040490
https://www.semanticscholar.org/paper/5e59d661f7f1e356e96810ac35e439505f040490
https://www.semanticscholar.org/paper/ea4a7e32e61ddb9599932dd597c48b2ec0114112
https://www.semanticscholar.org/paper/ea4a7e32e61ddb9599932dd597c48b2ec0114112
https://www.semanticscholar.org/paper/8ed3345683127ae31e051696d1504f8901b05563
https://www.semanticscholar.org/paper/8ed3345683127ae31e051696d1504f8901b05563
https://www.semanticscholar.org/paper/dbd88c8c56812d6fad93016e7f1e58408d982fb1
https://www.semanticscholar.org/paper/dbd88c8c56812d6fad93016e7f1e58408d982fb1
https://www.semanticscholar.org/paper/b935555760a93e3bab587cbe645bcf3039831484
https://www.semanticscholar.org/paper/b935555760a93e3bab587cbe645bcf3039831484
https://www.semanticscholar.org/paper/35690002da12487f3d4a5c0970bc8344af68fc6c
https://www.semanticscholar.org/paper/35690002da12487f3d4a5c0970bc8344af68fc6c
https://www.semanticscholar.org/paper/0b7d67b7b520fc04d8ba6e68116c610db21853c0
https://www.semanticscholar.org/paper/0b7d67b7b520fc04d8ba6e68116c610db21853c0
https://www.semanticscholar.org/paper/1f8acfefbdaca20fc15c65d88186e5a5880c8407
https://www.semanticscholar.org/paper/1f8acfefbdaca20fc15c65d88186e5a5880c8407

DOI: https://doi.org/10.32628/CSEIT25112773 3674

https://www.semanticscholar.org/paper/35690002d

a12487f3d4a5c0970bc8344af68fc6c

84. Patra, M., Kumari, A., Sahoo, B., & Turuk,

A. K. (2022). Docker Security: Threat Model and

Best Practices to Secure a Docker Container. 2022

IEEE 2nd International Symposium on Sustainable

Energy, Signal Processing and Cyber Security

(iSSSC).

https://www.semanticscholar.org/paper/dab262d92

2365371d9d09fe660bb82df09980e5f

85. Mousa, A., Tuffaha, W., Abdulhaq, M.,

Qadry, M., & M.M., O. O. (2023). In-Depth

Network Security for Docker Containers. 2023 14th

International Conference on Computing

Communication and Networking Technologies

(ICCCNT).

https://www.semanticscholar.org/paper/ec6f69bd20

f617091e5b1fc670e05fcdfaf57265

86. Xing, Y., Cao, J., Wang, X., Torabi, S., Sun,

K., Yan, F., & Li, Q. (2022). SysCap: Profiling and

Crosschecking Syscall and Capability

Configurations for Docker Images. 2022 IEEE

Conference on Communications and Network

Security (CNS).

https://www.semanticscholar.org/paper/7e76d0712f

edef5689f08502057c009638bc0973

87. Chamoli, S., & Sarishma. (2021). Docker

Security: Architecture, Threat Model, and Best

Practices.

https://link.springer.com/chapter/10.1007/978-981-

16-1696-9_24

88. Yasrab, R. (1804). Mitigating docker

security issues. arXiv Preprint arXiv:1804.05039.

https://arxiv.org/abs/1804.05039

89. Alvi, M. H. (2021). Security best practices

for containerized applications.

https://doi.org/10.13140/RG.2.2.26095.04000

90. Ahamed, W., & Zavarsky, P. (2021).

Security audit of docker container images in cloud

architecture.

https://ieeexplore.ieee.org/abstract/document/94781

00/

91. Perera, H. P. D. S., Silva, H. S. T. D.,

Ganegoda, B. A., Reza, B., Karunarathne, A. D. H.

U., & Senarathne, A. (2022). Docker Container

Security Orchestration and Posture Management

Tool. 2022 13th International Conference on

Computing Communication and Networking

Technologies (ICCCNT).

https://www.semanticscholar.org/paper/f319baec61

5580bb3c185b8cbc0ca7bb8814cd96

92. Brady, K., Moon, S., Nguyen, T.-A., &

Coffman, J. (2020). Docker Container Security in

Cloud Computing. 2020 10th Annual Computing

and Communication Workshop and Conference

(CCWC).

https://www.semanticscholar.org/paper/8c157612a9

bf3643218b875a534bc7fd2fea0eeb

93. Mubanda, D., Mandela, N., Mbinda, T., &

Ayesiga, C. (2023). Evaluating Docker Container

Security through Penetration Testing: A Smart

Computer Security. 2023 International Conference

on Communication, Security and Artificial

Intelligence (ICCSAI).

https://www.semanticscholar.org/paper/bd82b69ab

95dab9387e45057d287e2eefdd03f2c

94. Sharma, A., Keswani, B., & Sangwan, A.

(2021). Optimization of docker container security

and its performance evaluation. Journal of Discrete

Mathematical Sciences and Cryptography.

https://www.semanticscholar.org/paper/c065a90885

0379b03b25849d084bba5bf1c3d40d

95. Shah, J., Dubaria, D., & Widhalm, J.

(2018). A Survey of DevOps tools for Networking.

2018 9th IEEE Annual Ubiquitous Computing,

Electronics & Mobile Communication Conference

(UEMCON).

https://www.semanticscholar.org/paper/ef73549a16

2f905ee13319805dd4bfb442d834ea

96. Mahajan, V., & Mane, S. (2022). Detection,

Analysis and Countermeasures for Container based

Misconfiguration using Docker and Kubernetes.

2022 International Conference on Computing,

Communication, Security and Intelligent Systems

(IC3SIS).

https://www.semanticscholar.org/paper/ea4a7e32e6

1ddb9599932dd597c48b2ec0114112

97. Sultan, S., Ahmad, I., & Dimitriou, T.

(2019). Container security: Issues, challenges, and

the road ahead. IEEE Access.

https://ieeexplore.ieee.org/abstract/document/86934

91/

98. Egbuna, O. (2022). Security Challenges

and Solutions in Kubernetes Container

Orchestration. Journal of Science & Technology.

https://www.thesciencebrigade.com/jst/article/view/

233

99. Lopes, N., Martins, R., Correia, M., &

Serrano, S. (2020). Container hardening through

automated seccomp profiling.

https://dl.acm.org/doi/abs/10.1145/3429885.342996

6

100. Lang, D., Jiang, H., Ding, W., & Bai, Y.

(2019). Research on docker role access control

mechanism based on drbac.

https://iopscience.iop.org/article/10.1088/1742-

6596/1168/3/032127/meta

https://www.semanticscholar.org/paper/dab262d922365371d9d09fe660bb82df09980e5f
https://www.semanticscholar.org/paper/dab262d922365371d9d09fe660bb82df09980e5f
https://www.semanticscholar.org/paper/ec6f69bd20f617091e5b1fc670e05fcdfaf57265
https://www.semanticscholar.org/paper/ec6f69bd20f617091e5b1fc670e05fcdfaf57265
https://www.semanticscholar.org/paper/7e76d0712fedef5689f08502057c009638bc0973
https://www.semanticscholar.org/paper/7e76d0712fedef5689f08502057c009638bc0973
https://link.springer.com/chapter/10.1007/978-981-16-1696-9_24
https://link.springer.com/chapter/10.1007/978-981-16-1696-9_24
https://arxiv.org/abs/1804.05039
https://doi.org/10.13140/RG.2.2.26095.04000
https://ieeexplore.ieee.org/abstract/document/9478100/
https://ieeexplore.ieee.org/abstract/document/9478100/
https://www.semanticscholar.org/paper/f319baec615580bb3c185b8cbc0ca7bb8814cd96
https://www.semanticscholar.org/paper/f319baec615580bb3c185b8cbc0ca7bb8814cd96
https://www.semanticscholar.org/paper/8c157612a9bf3643218b875a534bc7fd2fea0eeb
https://www.semanticscholar.org/paper/8c157612a9bf3643218b875a534bc7fd2fea0eeb
https://www.semanticscholar.org/paper/bd82b69ab95dab9387e45057d287e2eefdd03f2c
https://www.semanticscholar.org/paper/bd82b69ab95dab9387e45057d287e2eefdd03f2c
https://www.semanticscholar.org/paper/ef73549a162f905ee13319805dd4bfb442d834ea
https://www.semanticscholar.org/paper/ef73549a162f905ee13319805dd4bfb442d834ea
https://www.semanticscholar.org/paper/ea4a7e32e61ddb9599932dd597c48b2ec0114112
https://www.semanticscholar.org/paper/ea4a7e32e61ddb9599932dd597c48b2ec0114112
https://ieeexplore.ieee.org/abstract/document/8693491/
https://ieeexplore.ieee.org/abstract/document/8693491/
https://www.thesciencebrigade.com/jst/article/view/233
https://www.thesciencebrigade.com/jst/article/view/233
https://iopscience.iop.org/article/10.1088/1742-6596/1168/3/032127/meta
https://iopscience.iop.org/article/10.1088/1742-6596/1168/3/032127/meta

DOI: https://doi.org/10.32628/CSEIT25112773 3674

101. Anirudh, U., & Darshan, S. (2024). Role-

Based Virtuosity in Virtual Environments: A

Technical Exploration of Access Control and

Authentication Mechanisms. Cloud Security.

https://www.taylorfrancis.com/chapters/edit/10.120

1/9781003455448-10/role-based-virtuosity-virtual-

environments-anirudh-shiva-darshan

102. Li, Y., & Sun, H. (2022). Research and

Design of Docker Technology Based Authority

Management System.

https://search.proquest.com/openview/a0307c26aa0

1c102b784ff7b0876374c/1?pq-

origsite=gscholar&cbl=237303

103. Islam, R., Patamsetti, V., Gadhi, A., Gondu,

R. M., Bandaru, C. M., Kesani, S. C., & Abiona, O.

(2023). The Future of Cloud Computing: Benefits

and Challenges. International Journal of

Communications, Network and System Sciences.

https://www.semanticscholar.org/paper/b07abe00be

e4cf4373a352e488a175cd990eb32e

104. Zou, Z., Xie, Y., Huang, K., Xu, G., &

Feng, D. (2019). A docker container anomaly

monitoring system based on optimized isolation

forest.

https://ieeexplore.ieee.org/abstract/document/88072

63/

105. Rapatti, A. (2021). Rootless Docker

Containers in Continuous Integration.

https://www.theseus.fi/handle/10024/498794

106. Madhumathi, R. (2018). The relevance of

container monitoring towards container

intelligence.

https://ieeexplore.ieee.org/abstract/document/84937

66/

107. Casalicchio, E., & Perciballi, V. (2017).

Measuring docker performance: What a mess!!!

https://dl.acm.org/doi/abs/10.1145/3053600.305360

5

108. Benedictis, M. D., & Lioy, A. (2019).

Integrity verification of Docker containers for a

lightweight cloud environment. Future Generation

Computer Systems.

https://www.sciencedirect.com/science/article/pii/S

0167739X18327201

109. Cito, J., Schermann, G., & Wittern, J.

(2017). An empirical analysis of the docker

container ecosystem on github.

https://ieeexplore.ieee.org/abstract/document/79623

82/

110. Merkel, D. (2014). Docker: lightweight

linux containers for consistent development and

deployment. Linux j.

https://www.seltzer.com/margo/teaching/CS508.19/

papers/merkel14.pdf

111. Sinde, S., Thakkalapally, B., & Ramidi, M.

(2022). Continuous integration and deployment

automation in aws cloud infrastructure.

https://www.academia.edu/download/88213515/Co

ntinuous_Integration_and_Deployment_Automatio

n_in_AWS_Cloud_Infrastructure.pdf

112. Garg, S., & Garg, S. (2019). Automated

cloud infrastructure, continuous integration and

continuous delivery using docker with robust

container security.

https://ieeexplore.ieee.org/abstract/document/86953

32/

113. Yang, N., Chen, C., Yuan, T., Wang, Y., Gu,

X., & Yang, D. (2022). Security hardening solution

for docker container. 2022 International Conference

on Cyber-Enabled Distributed Computing and

Knowledge Discovery (CyberC).

https://www.semanticscholar.org/paper/35a5f38d0f

399b0c7abdb2dd8a622d69a5e4ec80

114. Opdebeeck, R., Lesy, J., Zerouali, A., &

Roover, C. D. (2023). The Docker Hub Image

Inheritance Network: Construction and Empirical

Insights. 2023 IEEE 23rd International Working

Conference on Source Code Analysis and

Manipulation (SCAM).

https://www.semanticscholar.org/paper/b070ae3657

89a713ab8c53bf573dfea5f3cfa7aa

115. Chen, E. (2017). An approach for

improving transparency and traceability of

industrial supply chain with Blockchain technology.

https://trepo.tuni.fi/handle/123456789/25401

116. Ravi, D., Ramachandran, S., & Vignesh, R.

(2022). Privacy preserving transparent supply chain

management through Hyperledger Fabric.

https://www.sciencedirect.com/science/article/pii/S

2096720922000136

117. Benedictis, M. D., & Lioy, A. (2019).

Integrity verification of Docker containers for a

lightweight cloud environment. Future Generation

Computer Systems.

https://www.sciencedirect.com/science/article/pii/S

0167739X18327201

118. Centobelli, P., Cerchione, R., & Vecchio, P.

D. (2022). Blockchain technology for bridging trust,

traceability and transparency in circular supply

chain.

https://www.sciencedirect.com/science/article/pii/S

0378720621000823

119. Hauser, H. (n.d.). Hardening the Software

Supply Chain: Developing a System to Prevent

Dependency Confusion Attacks in Cloud Based

Continuous Integration and …. https://it-

forensik.fiw.hs-

wismar.de/images/9/9b/MT_Hauser2.pdf

https://www.taylorfrancis.com/chapters/edit/10.1201/9781003455448-10/role-based-virtuosity-virtual-environments-anirudh-shiva-darshan
https://www.taylorfrancis.com/chapters/edit/10.1201/9781003455448-10/role-based-virtuosity-virtual-environments-anirudh-shiva-darshan
https://www.taylorfrancis.com/chapters/edit/10.1201/9781003455448-10/role-based-virtuosity-virtual-environments-anirudh-shiva-darshan
https://search.proquest.com/openview/a0307c26aa01c102b784ff7b0876374c/1?pq-origsite=gscholar&cbl=237303
https://search.proquest.com/openview/a0307c26aa01c102b784ff7b0876374c/1?pq-origsite=gscholar&cbl=237303
https://search.proquest.com/openview/a0307c26aa01c102b784ff7b0876374c/1?pq-origsite=gscholar&cbl=237303
https://www.semanticscholar.org/paper/b07abe00bee4cf4373a352e488a175cd990eb32e
https://www.semanticscholar.org/paper/b07abe00bee4cf4373a352e488a175cd990eb32e
https://ieeexplore.ieee.org/abstract/document/8807263/
https://ieeexplore.ieee.org/abstract/document/8807263/
https://www.theseus.fi/handle/10024/498794
https://ieeexplore.ieee.org/abstract/document/8493766/
https://ieeexplore.ieee.org/abstract/document/8493766/
https://dl.acm.org/doi/abs/10.1145/3053600.3053605
https://dl.acm.org/doi/abs/10.1145/3053600.3053605
https://www.sciencedirect.com/science/article/pii/S0167739X18327201
https://www.sciencedirect.com/science/article/pii/S0167739X18327201
https://ieeexplore.ieee.org/abstract/document/7962382/
https://ieeexplore.ieee.org/abstract/document/7962382/
https://www.academia.edu/download/88213515/Continuous_Integration_and_Deployment_Automation_in_AWS_Cloud_Infrastructure.pdf
https://www.academia.edu/download/88213515/Continuous_Integration_and_Deployment_Automation_in_AWS_Cloud_Infrastructure.pdf
https://www.academia.edu/download/88213515/Continuous_Integration_and_Deployment_Automation_in_AWS_Cloud_Infrastructure.pdf
https://ieeexplore.ieee.org/abstract/document/8695332/
https://ieeexplore.ieee.org/abstract/document/8695332/
https://www.semanticscholar.org/paper/35a5f38d0f399b0c7abdb2dd8a622d69a5e4ec80
https://www.semanticscholar.org/paper/35a5f38d0f399b0c7abdb2dd8a622d69a5e4ec80
https://www.semanticscholar.org/paper/b070ae365789a713ab8c53bf573dfea5f3cfa7aa
https://www.semanticscholar.org/paper/b070ae365789a713ab8c53bf573dfea5f3cfa7aa
https://trepo.tuni.fi/handle/123456789/25401
https://www.sciencedirect.com/science/article/pii/S2096720922000136
https://www.sciencedirect.com/science/article/pii/S2096720922000136
https://www.sciencedirect.com/science/article/pii/S0167739X18327201
https://www.sciencedirect.com/science/article/pii/S0167739X18327201
https://www.sciencedirect.com/science/article/pii/S0378720621000823
https://www.sciencedirect.com/science/article/pii/S0378720621000823
https://it-forensik.fiw.hs-wismar.de/images/9/9b/MT_Hauser2.pdf
https://it-forensik.fiw.hs-wismar.de/images/9/9b/MT_Hauser2.pdf
https://it-forensik.fiw.hs-wismar.de/images/9/9b/MT_Hauser2.pdf

DOI: https://doi.org/10.32628/CSEIT25112773 3674

120. Zabin, H. (2017). Implementation of docker

integrated with cloud computing and code quality

analysis (test automation).

https://www.semanticscholar.org/paper/8178275bcf

64491d981ba8318209b7994f3d36f5

121. Gajbhiye, B., Goel, O., & Pandian, P. K. G.

(2024). Managing Vulnerabilities in Containerized

and Kubernetes Environments. Journal of Quantum

Science and Technology.

https://www.semanticscholar.org/paper/05f6e461cc

24b2680baa4b98fae766d41a8f4b73

122. Ksontini, E., Kessentini, M., Ferreira, T., &

Hassan, F. (2021). Refactorings and Technical Debt

in Docker Projects: An Empirical Study. 2021 36th

IEEE/ACM International Conference on Automated

Software Engineering (ASE).

https://www.semanticscholar.org/paper/8ed334568

3127ae31e051696d1504f8901b05563

123. Zhang, Y., Zhang, Y., Wu, Y., Lu, Y., Wang,

T., & Mao, X. (2020). Exploring the Dependency

Network of Docker Containers: Structure, Diversity,

and Relationship. Proceedings of the 12th Asia-

Pacific Symposium on Internetware.

https://www.semanticscholar.org/paper/7bb18bc58e

65bb0eadf16a7dc4c169e8fed9942d

124. Noecker, C. (2018). Making Scientific

Applications Portable: Software Containers and

Package Managers.

https://www.semanticscholar.org/paper/cef86ff0553

a75e4694f28f55f48196e4484e173

125. Kawaguchi, N., Hart, C., & Uchiyama, H.

(2024). Understanding the Effectiveness of SBOM

Generation Tools for Manually Installed Packages in

Docker Containers. Journal of Internet Services and

Information Security.

https://www.semanticscholar.org/paper/1da7537bc1

ef177fafc42bfc722643b8a822d6fe

126. Mounesan, M., Siadati, H., & Jafarikhah, S.

(2023). Exploring the Threat of Software Supply

Chain Attacks on Containerized Applications. 2023

16th International Conference on Security of

Information and Networks (SIN).

https://www.semanticscholar.org/paper/afe2dcaaa6

4021e4513f4e8139d3be34962095c4

127. Bandara, E., Shetty, S., Mukkamala, R.,

Rahman, A., Foytik, P. B., Liang, X., Zoysa, K. D.,

& Keong, N. W. (2024). DevSec-GPT —

Generative-AI (with Custom-Trained Meta’s

Llama2 LLM), Blockchain, NFT and PBOM

Enabled Cloud Native Container Vulnerability

Management and Pipeline Verification Platform.

2024 IEEE Cloud Summit.

https://www.semanticscholar.org/paper/5ee722d732

ec83c1e1c3bd243822b72762b637dc

128. Paul, B., & Rao, M. (2022). Zero-Trust

Model for Smart Manufacturing Industry. Applied

Sciences. https://www.mdpi.com/2076-

3417/13/1/221

129. ̈njes, R. T., Ali, M., Barnaghi, P., Ganea, S.,

Ganz, F., Haushwirth, M., Brigitte,

Kjærgaard, ̈mper, D. K., Mileo, A., Nechifor, S.,

Sheth, A., Lasse, & Vestergaard. (2015). Real-Time

IoT Stream Processing and Large-scale Data

Analytics for Smart City Applications.

https://www.semanticscholar.org/paper/df60f432dd

bbe9f16107ebf8ab88e300e6d2349f

130. Ekanayaka, E. M. I. M., Thathsarani, J. K.

K. H., Karunanayaka, D. S., Kuruwitaarachchi, N.,

& Skandakumar, N. (2023). Enhancing Devops

Infrastructure For Efficient Management Of

Microservice Applications. 2023 IEEE International

Conference on E-Business Engineering (ICEBE).

https://www.semanticscholar.org/paper/af2d625a6c

71f0f1abf351adf98340582637ba8e

131. Haque, M. U., Iwaya, L. H., & Babar, M.

(2020). Challenges in Docker Development: A

Large-scale Study Using Stack Overflow.

Proceedings of the 14th ACM / IEEE International

Symposium on Empirical Software Engineering and

Measurement (ESEM).

https://www.semanticscholar.org/paper/cba23b3401

2e9b4fc321ad07acfa19e64885af6b

132. Atatus. (n.d.). Docker Logging: Effective

Strategies for Docker Log Management. Retrieved

from https://www.atatus.com/blog/docker-logging-

best-practices/

133. Devconnected. (n.d.). Docker Logs:

Complete Guide. Retrieved from

https://devconnected.com/docker-logs-complete-

guide/

134. Alves, M., & Paula, H. (2021). Identifying

logging practices in open source python

containerized application projects.

https://dl.acm.org/doi/abs/10.1145/3474624.347463

1

135. Bhimani, J., Yang, J., Yang, Z., Mi, N., Xu,

Q., Awasthi, M., Pandurangan, R., & Balakrishnan,

V. (2016). Understanding performance of I/O

intensive containerized applications for NVMe

SSDs. 2016 IEEE 35th International Performance

Computing and Communications Conference

(IPCCC).

https://www.semanticscholar.org/paper/974eccb61c

50776495e821714b9dacab5e888976

136. Chang, C.-C., Yang, S.-R., Yeh, E.-H., Lin,

P., & Jeng, J.-Y. (2017). A Kubernetes-Based

Monitoring Platform for Dynamic Cloud Resource

Provisioning. GLOBECOM 2017 - 2017 IEEE

Global Communications Conference.

https://www.semanticscholar.org/paper/8178275bcf64491d981ba8318209b7994f3d36f5
https://www.semanticscholar.org/paper/8178275bcf64491d981ba8318209b7994f3d36f5
https://www.semanticscholar.org/paper/05f6e461cc24b2680baa4b98fae766d41a8f4b73
https://www.semanticscholar.org/paper/05f6e461cc24b2680baa4b98fae766d41a8f4b73
https://www.semanticscholar.org/paper/8ed3345683127ae31e051696d1504f8901b05563
https://www.semanticscholar.org/paper/8ed3345683127ae31e051696d1504f8901b05563
https://www.semanticscholar.org/paper/7bb18bc58e65bb0eadf16a7dc4c169e8fed9942d
https://www.semanticscholar.org/paper/7bb18bc58e65bb0eadf16a7dc4c169e8fed9942d
https://www.semanticscholar.org/paper/cef86ff0553a75e4694f28f55f48196e4484e173
https://www.semanticscholar.org/paper/cef86ff0553a75e4694f28f55f48196e4484e173
https://www.semanticscholar.org/paper/1da7537bc1ef177fafc42bfc722643b8a822d6fe
https://www.semanticscholar.org/paper/1da7537bc1ef177fafc42bfc722643b8a822d6fe
https://www.semanticscholar.org/paper/afe2dcaaa64021e4513f4e8139d3be34962095c4
https://www.semanticscholar.org/paper/afe2dcaaa64021e4513f4e8139d3be34962095c4
https://www.semanticscholar.org/paper/5ee722d732ec83c1e1c3bd243822b72762b637dc
https://www.semanticscholar.org/paper/5ee722d732ec83c1e1c3bd243822b72762b637dc
https://www.mdpi.com/2076-3417/13/1/221
https://www.mdpi.com/2076-3417/13/1/221
https://www.semanticscholar.org/paper/df60f432ddbbe9f16107ebf8ab88e300e6d2349f
https://www.semanticscholar.org/paper/df60f432ddbbe9f16107ebf8ab88e300e6d2349f
https://www.semanticscholar.org/paper/af2d625a6c71f0f1abf351adf98340582637ba8e
https://www.semanticscholar.org/paper/af2d625a6c71f0f1abf351adf98340582637ba8e
https://www.semanticscholar.org/paper/cba23b34012e9b4fc321ad07acfa19e64885af6b
https://www.semanticscholar.org/paper/cba23b34012e9b4fc321ad07acfa19e64885af6b
https://www.atatus.com/blog/docker-logging-best-practices/
https://www.atatus.com/blog/docker-logging-best-practices/
https://devconnected.com/docker-logs-complete-guide/
https://devconnected.com/docker-logs-complete-guide/
https://dl.acm.org/doi/abs/10.1145/3474624.3474631
https://dl.acm.org/doi/abs/10.1145/3474624.3474631
https://www.semanticscholar.org/paper/974eccb61c50776495e821714b9dacab5e888976
https://www.semanticscholar.org/paper/974eccb61c50776495e821714b9dacab5e888976

DOI: https://doi.org/10.32628/CSEIT25112773 3674

https://www.semanticscholar.org/paper/14353c56e5

a55a919fcad86b22ec0dc357171dbb

137. Ajith, V., Cyriac, T., Chavda, C., Kiyani, A.

T., Chennareddy, V., & Ali, K. (2024). Analyzing

Docker Vulnerabilities through Static and Dynamic

Methods and Enhancing IoT Security with AWS IoT

Core, CloudWatch, and GuardDuty. IoT.

https://www.semanticscholar.org/paper/4c08997c7e

d9002f9c9d7ed9cd946d8066c788c2

138. Gajbhiye, B., Goel, O., & Pandian, P. K. G.

(2024). Managing Vulnerabilities in Containerized

and Kubernetes Environments. Journal of Quantum

Science and Technology.

https://www.semanticscholar.org/paper/05f6e461cc

24b2680baa4b98fae766d41a8f4b73

139. Organiściak, P., Kuraś, P., Strzałka, D.,

Paszkiewicz, A., Bolanowski, M., Kowal, B., Ćmil,

M., Dymora, P., Mazurek, M., & Vanivska, V.

(2024). Detection of Incidents and Anomalies in

Software-Defined Network – Based

Implementations of Critical Infrastructure Resulting

in Adaptive System Changes. Advances in Science

and Technology Research Journal.

https://www.semanticscholar.org/paper/98f3b931b7

ab15cecfd5a66f46e65aa49265850a

140. Herath, I. P., Jayawardena, S., Fadhil, A.,

Kodagoda, N., & Arachchillage, U. S. S. S. (2023).

Streamlining Software Release Process and

Resource Management for Microservice-based

Architecture on multi-cloud. 2023 25th

International Multitopic Conference (INMIC).

https://www.semanticscholar.org/paper/70262e1b9f

d97bab26c8efc4d1da47581dbe7ac9

141. Farcic, V. (2016). The DevOps 2.0 Toolkit:

Automating the Continuous Deployment Pipeline

with Containerized Microservices.

https://www.semanticscholar.org/paper/628b5a10c0

b56dc1e226e3d0fa2b2b61cee7c9db

142. Bhat, P. (2021). Centralised Cleanup

Service for Kubernetes and Cloud Resources.

International Journal for Research in Applied

Science and Engineering Technology.

https://www.semanticscholar.org/paper/3308563bbf

87196390f218643cf5c30bc66b34e0

143. Larsson, M. (2019). Hands-On

Microservices with Spring Boot and Spring Cloud.

https://www.semanticscholar.org/paper/4828eb757

99a6290f6dc53872a230539acb7d3fc

144. Mahajan, V., & Mane, S. (2022). Detection,

Analysis and Countermeasures for Container based

Misconfiguration using Docker and Kubernetes.

2022 International Conference on Computing,

Communication, Security and Intelligent Systems

(IC3SIS).

https://www.semanticscholar.org/paper/ea4a7e32e6

1ddb9599932dd597c48b2ec0114112

145. Chen, L., Liu, J., Xian, M., & Wang, H.

(2020). Docker Container Log Collection and

Analysis System Based on ELK. 2020 International

Conference on Computer Information and Big Data

Applications (CIBDA).

https://www.semanticscholar.org/paper/1052dd3dcc

a00614048d3c0d7c8476038ad0e7be

146. Velásquez, J. L., & Monterrubio, S. M.

(2023). Systematic review of SIEM technology:

SIEM-SC birth.

https://link.springer.com/article/10.1007/s10207-

022-00657-9

147. Mulyadi, F., Annam, L., & Promya, R.

(2020). Implementing dockerized elastic stack for

security information and event management.

https://ieeexplore.ieee.org/abstract/document/93109

50/

148. Raheem, M. (2021). Implementing a

Secured Container Workload in the Cloud.

https://www.theseus.fi/handle/10024/406583

149. Hongkamnerd, W., & Tangtrongpairoj, W.

(2024). Effects of SIEM Recovery Time: Case Study

on Security Onion.

https://ieeexplore.ieee.org/abstract/document/10594

988/

150. Rabby, Z. (2022). Building Security

Operations Center (SOC) using open source

technologies SIEM for industries.

https://dspace.bracu.ac.bd/xmlui/handle/10361/227

20

151. Alanda, A., Mooduto, H., & Hadi, R.

(2023). Real-time Defense Against Cyber Threats:

Analyzing Wazuh’s Effectiveness in Server

Monitoring. JITCE (Journal of Information

Technology and Computer Engineering).

https://www.semanticscholar.org/paper/b60aed9608

68df30004784b41262007507596c02

152. Ahamed, W., & Zavarsky, P. (2021).

Security audit of docker container images in cloud

architecture.

https://ieeexplore.ieee.org/abstract/document/94781

00/

153. Brady, K., Moon, S., & Nguyen, T. (2020).

Docker container security in cloud computing.

https://ieeexplore.ieee.org/abstract/document/90311

95/

154. Loukidis-Andreou, F., & Giannakopoulos,

I. (2018). Docker-sec: A fully automated container

security enhancement mechanism.

https://ieeexplore.ieee.org/abstract/document/84164

32/

https://www.semanticscholar.org/paper/14353c56e5a55a919fcad86b22ec0dc357171dbb
https://www.semanticscholar.org/paper/14353c56e5a55a919fcad86b22ec0dc357171dbb
https://www.semanticscholar.org/paper/4c08997c7ed9002f9c9d7ed9cd946d8066c788c2
https://www.semanticscholar.org/paper/4c08997c7ed9002f9c9d7ed9cd946d8066c788c2
https://www.semanticscholar.org/paper/05f6e461cc24b2680baa4b98fae766d41a8f4b73
https://www.semanticscholar.org/paper/05f6e461cc24b2680baa4b98fae766d41a8f4b73
https://www.semanticscholar.org/paper/98f3b931b7ab15cecfd5a66f46e65aa49265850a
https://www.semanticscholar.org/paper/98f3b931b7ab15cecfd5a66f46e65aa49265850a
https://www.semanticscholar.org/paper/70262e1b9fd97bab26c8efc4d1da47581dbe7ac9
https://www.semanticscholar.org/paper/70262e1b9fd97bab26c8efc4d1da47581dbe7ac9
https://www.semanticscholar.org/paper/628b5a10c0b56dc1e226e3d0fa2b2b61cee7c9db
https://www.semanticscholar.org/paper/628b5a10c0b56dc1e226e3d0fa2b2b61cee7c9db
https://www.semanticscholar.org/paper/3308563bbf87196390f218643cf5c30bc66b34e0
https://www.semanticscholar.org/paper/3308563bbf87196390f218643cf5c30bc66b34e0
https://www.semanticscholar.org/paper/4828eb75799a6290f6dc53872a230539acb7d3fc
https://www.semanticscholar.org/paper/4828eb75799a6290f6dc53872a230539acb7d3fc
https://www.semanticscholar.org/paper/ea4a7e32e61ddb9599932dd597c48b2ec0114112
https://www.semanticscholar.org/paper/ea4a7e32e61ddb9599932dd597c48b2ec0114112
https://www.semanticscholar.org/paper/1052dd3dcca00614048d3c0d7c8476038ad0e7be
https://www.semanticscholar.org/paper/1052dd3dcca00614048d3c0d7c8476038ad0e7be
https://link.springer.com/article/10.1007/s10207-022-00657-9
https://link.springer.com/article/10.1007/s10207-022-00657-9
https://ieeexplore.ieee.org/abstract/document/9310950/
https://ieeexplore.ieee.org/abstract/document/9310950/
https://www.theseus.fi/handle/10024/406583
https://ieeexplore.ieee.org/abstract/document/10594988/
https://ieeexplore.ieee.org/abstract/document/10594988/
https://dspace.bracu.ac.bd/xmlui/handle/10361/22720
https://dspace.bracu.ac.bd/xmlui/handle/10361/22720
https://www.semanticscholar.org/paper/b60aed960868df30004784b41262007507596c02
https://www.semanticscholar.org/paper/b60aed960868df30004784b41262007507596c02
https://ieeexplore.ieee.org/abstract/document/9478100/
https://ieeexplore.ieee.org/abstract/document/9478100/
https://ieeexplore.ieee.org/abstract/document/9031195/
https://ieeexplore.ieee.org/abstract/document/9031195/
https://ieeexplore.ieee.org/abstract/document/8416432/
https://ieeexplore.ieee.org/abstract/document/8416432/

DOI: https://doi.org/10.32628/CSEIT25112773 3674

155. Manu, A., Patel, J., & Akhtar, S. (2016).

Docker container security via heuristics-based

multilateral security-conceptual and pragmatic

study.

https://ieeexplore.ieee.org/abstract/document/75302

17/

156. Merkel, D. (2014). Docker: lightweight

linux containers for consistent development and

deployment. Linux j, 239(2), 2.

157. Song, J., Park, K., Park, C., Kim, J., & Kim,

I. (2024, June). Analyzing the container security

threat on the 5G Core Network. In 2024 Silicon

Valley Cybersecurity Conference (SVCC) (pp. 1-3).

IEEE.

158. Sultan, S., Ahmad, I., & Dimitriou, T.

(2019). Container security: Issues, challenges, and

the road ahead. IEEE access, 7, 52976-52996.

159. https://snyk.io/

160. https://trivy.dev/

161. Zhang, H., & Liu, Y. (2020). "Runtime

Security for Docker Containers: A Survey." IEEE

Access, 8, 133445-133460.

162. Casalicchio, E. (2019). Container

orchestration: A survey. Systems Modeling:

Methodologies and Tools, 221-235.

163. Mason, T., & Kim, S. (2021). "Integrating

Security into the Continuous Deployment Pipeline:

A Case Study." ACM Transactions on Software

Engineering and Methodology, 30(4), 1-25.

164. Kermabon-Bobinnec, H.,

Gholipourchoubeh, M., Bagheri, S., Majumdar, S.,

Jarraya, Y., Pourzandi, M., & Wang, L. (2022,

April). Prospec: Proactive security policy

enforcement for containers. In Proceedings of the

Twelfth ACM Conference on Data and Application

Security and Privacy (pp. 155-166).

165. McLaughlin, T. (2021). Securing Docker:

Implementing Security Best Practices for Docker

Containers. Apress..

https://ieeexplore.ieee.org/abstract/document/7530217/
https://ieeexplore.ieee.org/abstract/document/7530217/
https://snyk.io/
https://trivy.dev/

