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Abstract 

Containerization, driven by Docker, has transformed application development and 

deployment by enhancing efficiency and scalability. However, the rapid adoption of 

container technologies introduces significant security challenges that require careful 

management. This paper investigates key areas of container security, including runtime 

protection, network safeguards, configuration best practices, supply chain security, and 

comprehensive monitoring and logging solutions. We identify common vulnerabilities within 

these domains and provide actionable recommendations to address and mitigate these risks. 

By integrating security throughout the Software Development Lifecycle (SDLC), 

organizations can reinforce their security posture, creating a resilient and reliable 

containerized application infrastructure that withstands evolving threats. 

Index Terms- Container Security, Docker, Information Security, Runtime Security, Network 

Security, Configuration Management 

Introduction 

Containerization has brought a sea change 

in application development and deployment 

paradigms. Docker is one of the most 

prevalent platforms, ensuring that the 

management of containerized applications 

becomes lightweight and practical. 

However, the rapid proliferation of Docker 

has raised several security challenges that 

need to be tackled by an organization to 

keep applications safe from vulnerabilities 

and cyberattacks. Recent discussions on 

container security have underscored several 

challenges, including the necessity for 

enhanced visibility into container activities, 

insufficient expertise among teams, and 

inadequate collaboration between security 

and development groups. (IANS, 2022). 

Besides this, the complex natures of 

container environments often make 

traditional security ineffective. This paper 

reviews critical aspects of container 

security, which include image security, 

runtime security, network security, 

configuration management, supply chain 

security, and monitoring and logging. It 

underlines different shortcomings in the 

state-of-art Docker security practices and 

provides concrete mitigation strategies. 

Incorporating end-toend security within the 

SDLC significantly improves 

organizations' overall security posture in a 

containerized environment. Literature 

Review & Related Work As a result of rapid 

growth in the adoption of containerized 

environments, mainly because of Docker, 

container security has turned hot. Several 

researchers focused on different areas of 

securing containers, which include, but are 

not limited to, image security and runtime 

monitoring. Some critical contributions 

regarding the same are briefly summarized 

below: 
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Study Focus Area Methodology Key Findings 

Merkel 

(2014) 

Container 

isolation and 

efficiency 

Introduced Docker 

containers for application 

isolation and deployment. 

Highlighted the advantages of 

containerization but noted 

potential risks in isolation 

mechanisms. 

Shin & Park 

(2018) 

Container 

Security Tools 

Introduced Docker 

containers for application 

isolation and deployment. 

Identified gaps in existing 

security tools, particularly in 

runtime protection. 

Casalicchio 

(2019) 

Orchestration & 

Security in 

Docker 

Analyzed orchestration 

tools like Kubernetes with 

a focus on security. 

Suggested enhancements in 

Kubernetes’ security features, 

especially in resource allocation. 

Sultan et al. 

(2019) 

Container 

Supply Chain 

Security 

Investigated supply chain 

vulnerabilities, focusing 

on third-party libraries 

Found that 70% of security 

issues in containers are linked to 

unvetted dependencies from 

public sources. 

Zhang & Liu 

(2020) 

Runtime 

Security for 

Containers 

Reviewed runtime 

security challenges and 

proposed anomaly 

detection techniques. 

Found that runtime 

misconfigurations are a major 

vulnerability that can be 

exploited for attacks. 

McLaughlin 

(2021) 

Docker Security 

Best Practices 

Practical guide on Docker 

security, focusing on 

image verification and 

least privilege principle. 

Suggested the use of automated 

tools for continuous image 

scanning to mitigate supply 

chain risks. 

Alyas et al. 

(2022) 

Vulnerability 

Management 

Demonstrates practical 

tools and methods for 

vulnerability 

management, aligning 

with image security 

Proposed a system for managing 

container vulnerabilities using 

Docker Engine, addressing 

performance and security 

challenges. 

 

Summary 

Docker Under Siege: Securing 

Containers in the Modern Era, explores 

the rapid rise of containerization in 

application development and deployment, 

particularly focusing on Docker. 

Containerization offers clear advantages, 

such as efficiency, scalability, and 

portability. However, the widespread 

adoption of Docker has brought forth 

numerous security challenges that 

organizations must address to ensure the 
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reliability and resilience of containerized 

applications. 

This study delves into critical areas of 

container security, including the protection 

of container runtime, network security, 

configuration management, and supply 

chain vulnerabilities. The paper also 

emphasizes the need for continuous 

monitoring and logging as a means to detect 

and address security threats in real time. 

Each of these areas presents distinct 

security challenges: for instance, base 

image vulnerabilities, misconfigurations in 

runtime, insufficient network segmentation, 

and the risks of using third-party libraries 

and dependencies from public repositories. 

To counter these issues, the document 

provides actionable recommendations, 

advocating for best practices in security that 

extend throughout the software 

development lifecycle (SDLC). This 

involves implementing strict access 

controls, regular vulnerability scanning, 

and adherence to the least privilege 

principle to limit the impact of potential 

breaches. The study also underscores the 

importance of maintaining updated and 

verified base images, strengthening runtime 

protections, and enforcing network 

segmentation policies to secure sensitive 

data. 

Through a combination of practical 

strategies and robust governance measures, 

organizations can fortify their security 

posture in containerized environments. This 

paper serves as a guide for enhancing 

Docker container security, laying out a 

framework that can help organizations 

protect their applications against evolving 

cyber threats. By integrating these security 

measures into development workflows, 

organizations can achieve a resilient, 

scalable, and secure container infrastructure 

that supports modern application needs 

while safeguarding against vulnerabilities 

inherent in containerized environments. 

1. Image Security: The Importance of 

Securing Docker Images 

The security of Docker containers 

fundamentally depends on their base 

images. These base images serve as a 

blueprint for the Docker environment's 

contents, including essential libraries, 

dependencies, and software the application 

needs to run. If the integrity of the container 

originates from the base image from which 

it was derived, then any breach of the base 

image could translate into a massive 

vulnerability in its resulting container. 

Insecure or outdated base image use can 

leverage attacks by vulnerabilities in the 

containerized environment. A vulnerable 

image may carry an insecure configuration, 

malware, or any other vulnerability that 

may compromise the application running in 

the container and the underlying host 

system. Therefore, base images must be 

secure and updated to maintain a sound 

security posture. 

 Containerization in modern 

software development has brought many 

benefits, such as greater scalability, 

portability, and resource efficiency. 

However, this technology has also 

introduced several significant security 

challenges. One of the most pressing 

concerns related to the usage of containers 

today is the reliance on images from 

untrusted sources. This is very common in 

the case of organizations that pull images 

from publicly available repositories without 

proper due diligence- a practice that poses 

several security risks. These risks can 

compromise the integrity of the container 

ecosystem and undermine its general 

security posture.
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Fig1: Image Scanning and Verification 

Process flowchart 

The Image Scanning and Verification 

Process flowchart is a critical visual aid for 

understanding how to ensure container 

security before deployment. The process 

begins with selecting a base image from a 

repository and proceeds through a series of 

checks and scans designed to verify the 

image’s integrity and security. Below, each 

step of the flowchart is described in detail: 

1.Start: The process initiates at the starting 

point, represented by an oval labeled 

“Start.” This symbol indicates the 

commencement of the image selection and 

verification workflow. 

2.Select Base Image from Repository: 

The first step involves choosing a base 

image. This is represented by a rectangle 

labeled “Select base image from 

repository.” Here, developers or security 

teams pick an image that serves as the 

foundation for containerized applications. 

3.Is the Image from a Trusted Source?: 

The selected image must be evaluated for 

its source's reliability. This decision point is 

depicted by a diamond labeled “Is the 

image from a trusted source?” It branches 

into two possible paths: 

• If No: If the image is not from a 

trusted source, it should be 

immediately rejected. The pathway 

leads to a rectangle labeled “Reject 

image and choose another source,” 
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followed by an “End” oval to 

indicate the conclusion of the 

process at this stage. 

• If Yes: If the image is verified as 

being from a trusted source, the 

process continues to the next step. 

4.Scan Image for Vulnerabilities: The 

next step involves scanning the image for 

known vulnerabilities. This is shown as a 

rectangle labeled “Scan image for 

vulnerabilities.” This step is crucial for 

identifying any existing flaws that could 

compromise the container's security. 

5.Are Vulnerabilities Detected?: After 

scanning, the process reaches another 

decision point, represented by a diamond 

labeled “Are vulnerabilities detected?” This 

step determines whether any security issues 

were found. 

• If Yes: If vulnerabilities are 

detected, the pathway leads to a 

rectangle labeled “Address 

vulnerabilities or choose a different 

image.” This may involve fixing the 

issues or starting over by selecting a 

new base image, which loops back 

to the initial “Select base image” 

step. 

• If No: If no vulnerabilities are 

found, the process continues to the 

next verification step. 

6.Verify Image Signature: This step 

ensures that the image has not been 

tampered with and that it originates from a 

legitimate source. It is represented by a 

rectangle labeled “Verify image signature.” 

Verifying the image signature is crucial for 

confirming its authenticity and integrity. 

7.Is the Signature Valid?: The signature 

verification results are assessed at this 

decision point, shown as a diamond labeled 

“Is the signature valid?” 

• If No: If the signature is invalid, the 

image should be rejected, as 

indicated by a rectangle labeled 

“Reject image and choose another 

source.” This leads to an “End” 

oval, ending the process. 

• If Yes: If the signature is valid, the 

process moves forward. 

8.Approve Image for Deployment: If the 

image passes all checks and scans, it is 

approved for deployment. This final action 

is represented by a rectangle labeled 

“Approve image for deployment.” 

9.End: The process concludes with an 

“End” oval labeled “Deployment 

approved,” signaling that the image is now 

ready for use in the containerized 

environment. 

1.1 Current Gaps 

• Untrusted Sources:   

Using Docker images from untrusted 

sources is highly dangerous because of 

malicious code and many other 

vulnerabilities. Most Docker images are 

based on various open-source libraries and 

packages, which may contain known 

security vulnerabilities. This has been 

reflected in multiple studies that revealed 

that even the widely acknowledged Docker 

images can hide many vulnerabilities; some 

reports show that popular images could 

have more than 30 known security flaws 

[1][2]. That again underscores the 

importance of thorough reviews before any 

Docker image is deployed into production. 

 As a best practice, an organization 

should take several measures to mitigate the 

associated risks from untrusted Docker 

images. First, only official and verified 

images from trusted sources, such as 

Docker Hub, should be utilized to minimize 

exposure to known vulnerabilities [1][2]. 

By implementing an aggressive scanning 

process through Snyk, one can identify and 

address security issues in the images before 

deployment [2]. 

 Using multi-stage builds is another 

good practice that ensures development 

dependencies do not make their way to 

production images, inadvertently 
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increasing the attack surface[2]. Another 

suggestion for organizations is to avoid 

generic tags like "latest" instead of image 

version tags. That offers a way to ensure 

reliability and consistency so that when 

changes occur, an unexpected shift to the 

base image does not bring in new 

vulnerabilities [1][2] 

 Finally, organizations should 

regularly update the Docker images and 

enforce image access management to 

ensure which images are deployed within 

their environments. Considering this 

suggestion will enable companies to vastly 

improve their security posture against 

threats emerging from untrusted Docker 

images[1][2] 

•  Unknown Vulnerabilities:  

The sudden embracing of container 

technology in general, and Docker in 

particular, changed the deployment and 

management of applications. Conversely, it 

brought huge security risks for 

organizations, particularly those dealing 

with unknown vulnerabilities in Docker 

images. These could include outdated 

libraries, unpatched software, or 

misconfigurations not found during setup 

time. A study conducted by Malhotra et al. 

underscores the significance of assessing 

vulnerabilities in Docker Hub images, 

indicating that numerous official and 

verified images contain security flaws 

attributed to inadequate monitoring and 

infrequent updates[3]. 

 The complexity of unidentified 

vulnerabilities in the Docker ecosystem is 

such that images consist of several layers, 

each of which may pose a different risk. 

Without regular scanning and assessments 

for vulnerabilities, an organization may 

deploy an image that can open its systems 

to vulnerabilities. Tools like Trivy and Clair 

are crucial in finding these vulnerabilities, 

but they often rely on a database of known 

issues, which means newly discovered or 

less common ones fall through the 

cracks[4]. For this reason, proactive 

management of vulnerabilities is required: 

images should be scanned with certain 

periodicity and updated according to the 

newly emerging threats. 

 Dependence on third-party libraries 

in Docker images could also increase the 

chances of vulnerability exploitation. While 

pulling images from public repositories, 

organizations may incidentally introduce 

specific vulnerabilities related to those 

libraries into their environments, mainly if 

they are outdated or poorly maintained. 

Protection against such possible 

exploitation requires continuous security 

posture monitoring and assessment of the 

Docker image[4]. Organizations can 

significantly reduce the risks associated 

with unknown vulnerabilities by 

implementing a strategy incorporating 

vulnerability scanning, dependency 

management, and strict policies on image 

usage. 

 In conclusion, the more Docker 

gains significant attention in application 

deployments, the more an organization 

should be able to understand and manage 

unknown vulnerabilities. Strong 

vulnerability scanning practices, frequent 

image updates, and a culture of security 

awareness are necessary to mitigate the 

risks of using Docker images in production 

environments[4]. 

A significant concern is the dependence on 

obsolete dependencies. Container images 

may incorporate un-updated libraries or 

software packages, notwithstanding well-

documented vulnerabilities. For instance, 

vulnerabilities in widely utilized libraries 

such as OpenSSL (CVE-2020-1971) or 

PHP-FPM (CVE-2019-11043) are 

frequently disregarded, creating critical 

security gaps. Furthermore, improperly 

configured permissions within containers 

represent a prevalent vulnerability. Running 

containers as root or setting too permissive 

file permissions-such as chmod 777-

provide opportunities for attackers to 

escalate privileges and run malicious 

activities. Known vulnerabilities like the 

Linux Kernel vulnerability CVE-2021-
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22555 and the Dirty Pipe exploit CVE-

2022-27666 point to misconfigurations. 

 Besides that, improper network 

configurations in containers can expose 

sensitive services to unauthorized users or 

allow denial-of-service attacks. 

Compassionate cases involve exposed API 

endpoints and open container ports, as seen 

in CVE-2018-1002105 in Kubernetes and 

CVE-2020-10749 in Docker Daemon. 

Another critical issue is hard-coded secrets. 

This means the developers explicitly store 

API keys, passwords, or encryption keys 

within the container image. This class of 

vulnerabilities is hazardous since the 

attacker immediately obtains access to 

critical systems. A good example is the 

MongoDB credentials leak (CVE-2021-

31684), which underlines one of the 

consequences of poorly handled secret 

management. 

 Base images, if unpatched, are a 

significant cause of the increased severity 

of the issue. Often, containers are built on 

base images of older versions of Ubuntu or 

Alpine Linux that don't get frequent updates 

regarding security vulnerability patches. 

For instance, consider CVE-2020-11444 

(Ubuntu Image) and CVE-2019-5021 

(Alpine Linux), which are examples of 

vulnerabilities that persist due to a lack of 

updates in base images. Beyond those 

issues, containers escape vulnerabilities- 

the most critical risks are CVE-2019-5736 

in runc and CVE-2016-9962 in Docker. 

These will allow an attacker to break out of 

the container's isolated environment and 

give them access to the host, thus 

threatening the entire infrastructure. 

Image poisoning and dependency 

confusion are both growing risks in the 

world of cybersecurity. Image poisoning 

occurs when hackers upload compromised 

or altered container images to public 

registries, which are then unknowingly 

deployed by developers. For example, 

CVE-2018-20685 Docker Image Signature 

Bypass shows how tainted images can 

bypass security checks. On the other hand, 

with dependency confusion, the attackers 

inject malicious packages into public 

repositories that become part of the 

container builds. A severe reminder of the 

damages it could impose is given by the 

well-known Log4j vulnerability CVE-

2021-44228. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vulnerability 

Type 

Description Common 

Vulnerable Code 

Relevant CVEs Severity 

Outdated 

Dependencies 

Many container images 

rely on outdated libraries 

or software packages that 

have known 

vulnerabilities but 

haven't been patched. 

- Using old 

versions of 

libraries like 

OpenSSL, Java, or 

Python packages. 

CVE-2020-1971 

(OpenSSL), 

CVE-2019-11043 

(PHP-FPM) 

High 
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- Neglecting to 

update base 

images. 

Misconfigured 

Permissions 

Incorrect permission 

settings within container 

images can allow 

unauthorized access to 

files, directories, or 

system functions. 

- Setting overly 

permissive file 

permissions (e.g., 

chmod 777). 

- Running 

containers as root 

instead of a 

restricted user. 

CVE-2021-22555 

(Linux Kernel), 

CVE-2022-27666 

(Dirty Pipe) 

Critical 

Insecure 

Network 

Configurations 

Misconfigured network 

settings in containers 

may expose sensitive 

services to the internet, 

leading to unauthorized 

access or denial-of-

service attacks. 

- Exposing 

container ports to 

the public without 

proper firewall 

rules. 

- Unsecured API 

endpoints. 

CVE-2018-

1002105 

(Kubernetes), 

CVE-2020-10749 

(Docker 

Daemon) 

High 

Hardcoded 

Secrets 

Sensitive information, 

such as API keys, 

database credentials, or 

encryption keys, is 

hardcoded directly into 

container images. 

- Hardcoding 

database 

passwords in 

Dockerfile or 

environment 

variables. 

- Insecure storage 

of API keys in 

application code. 

CVE-2021-31684 

(MongoDB 

Credentials 

Leak), CVE-

2020-0601 

Critical 

Unpatched Base 

Images 

Vulnerabilities exist in 

the base images on 

which containerized 

applications are built, 

which often need to be 

updated regularly. 

- Using base 

images like 

ubuntu:14.04 

without security 

updates. 

- Using 

unmaintained or 

vulnerable open-

source images. 

CVE-2020-11444 

(Ubuntu Image), 

CVE-2019-5021 

(Alpine Linux) 

High 

Container 

Escape 

Vulnerabilities 

Attackers exploit flaws 

that allow them to break 

out of the container’s 

- Vulnerabilities in 

container runtime 

CVE-2019-5736 

(runc), CVE-

Critical 
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isolated environment and 

access the host system. 

engines (e.g., 

Docker, runc). 

- Weak namespace 

isolation. 

2016-9962 

(Docker) 

Image 

Poisoning 

Malicious actors may 

compromise or tamper 

with publicly available 

container images, 

injecting malicious code 

or backdoors. 

- Uploading 

trojanized images 

to public registries. 

- Using unverified 

images from 

unofficial sources. 

CVE-2018-20685 

(Docker Image 

Signature 

Bypass), CVE-

2020-8910 

High 

Dependency 

Confusion 

Attackers inject 

malicious packages into 

publicly accessible 

libraries, which are 

unintentionally pulled 

into container builds. 

- Accidentally 

pulling 

dependencies from 

untrusted 

repositories. 

- Using npm install 

or pip install 

without 

verification. 

CVE-2020-26233 

(npm), CVE-

2021-44228 

(Log4j) 

Critical 

• Malicious Code 

Malicious code embedded in Docker 

images severely threatens container 

security. Therefore, the vulnerabilities of 

official and verified images on Docker Hub 

must be assessed. Recent research by 

Malhotra, Bansal, and Kessentini has 

underlined the urgency of performing a 

comprehensive vulnerability analysis on 

these images since they are often used as a 

starting point for deploying applications 

into production environments[5]. The 

researchers' study employed several open-

source vulnerability detection tools to 

analyze the security posture of those images 

and found that many images contain critical 

vulnerabilities that attackers could 

potentially exploit. The finding has shown 

that rampant outdated libraries and poor 

security practices in commonly used 

images raise the possibility of malicious 

code execution, hence the requirement for 

sound security practices in managing 

containers[5]. 

 

 

 

 

Type of 

Malicious Code 

Description Example Mitigation 

Backdoors Hidden access methods 

to bypass security 

controls. 

SSH backdoors or 

hard-coded credentials. 

Use trusted sources 

and signature 

verification. 
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Ransomware Encrypts files, 

demanding a ransom for 

decryption. 

Encrypts critical data 

after deployment. 

Regular backups, 

offline scanning 

Trojan Horses It appears legitimate but 

contains hidden 

malicious functions. 

Web server container 

with reverse shell code. 

Static analysis and 

secure coding 

practices. 

Cryptojacking 

Scripts 

Steals system resources 

for unauthorized 

cryptocurrency mining 

Mining cryptocurrency 

in the background 

affects performance. 

Resource 

monitoring, 

scanning images. 

Rootkits  Provides unauthorized 

root access while hiding 

its presence. 

They compromised the 

Linux kernel in the 

container. 

The least privilege 

principle is runtime 

monitoring. 

Supply Chain 

Attacks 

Malware is introduced 

via compromised 

dependencies or images. 

Malicious third-party 

library in the container 

stack. 

Regular updates and 

dependency 

validation. 

Botnets Containers are used to 

form part of a network 

for large-scale attacks. 

Container connecting 

to a command-and-

control server 

Network 

segmentation, 

runtime behavior 

monitoring. 

Information 

Stealers 

Targets sensitive data 

like credentials or 

environment variables. 

Extracts AWS keys 

from running 

containers. 

Encrypt sensitive 

data, secrets 

management. 

•  Lack of Accountability  

Lack of accountability within container 

ecosystems is one of the most critical 

security challenges, especially regarding 

Docker images. As containerization gains 

more and more popularity, the integrity and 

security of container images are usually 

maintained by users rather than providers. 

This fact is amplified by the reality that 

many developers rely on images derived 

from public repositories, such as Docker 

Hub, without having a full-fledged idea of 

their lineage and the security measures 

adopted during their development. 

Malhotra et al. (2023) point out that easy 

access to untrusted and unverified images 

increases the risk of vulnerability 

introduction, as such photos could contain 

nefarious code or rely on outdated 

libraries[6]. The intrinsic anonymity in 

creating and distributing container images 

leads to a lack of accountability, making it 

difficult to track where vulnerabilities come 

from whenever there is a security breach. 

 Moreover, the decentralization of 

container technology exacerbates issues of 

accountability. Unlike traditional software 

deployment, which updates and patches 

from one central authority, images could be 

easily pulled out and deployed from several 

sources. Fragmentation like this will mean 
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security vulnerabilities persist for years, as 

there is no central authority to monitor and 

maintain the image set. Jiang and Zheng 

(2020) articulate that the intrinsic design of 

container systems, which facilitates swift 

iteration and deployment, frequently 

overlooks security considerations, 

necessitating that users independently 

manage associated risks[7]. Consequently, 

this absence of accountability not only 

endangers the security of individual 

applications but also diminishes the overall 

trustworthiness of containerization as a 

practical deployment strategy. 

Improved governance and accountability 

frameworks in the container ecosystem 

should be developed to address these 

challenges. This suggests tightening the 

verification processes of images uploaded 

to public repositories and leveraging 

automated scanning tools for photo 

vulnerabilities. Finally, official, verified 

pictures should be used, and policies should 

be established to audit and update container 

deployments on a regular schedule. Some 

of the risks of containerization can be 

mitigated with accountability within the 

developer and organizational culture, 

leading to a more secure operational 

environment. 

1.2 Recommendations 

• Securing Image Origins:  

Organizations should ensure that official 

and verified images are used and sourced 

from trusted registries like Docker Hub to 

reduce the risks related to untrusted sources 

actively. This can be ensured by 

implementing DCT, which ensures that 

only signed images can be deployed, 

increasing the deployed containers' 

integrity [8]. Moreover, it should be an 

organization's policy to ensure strict denial 

of image usage from unknown or unverified 

sources, reducing the likelihood of a 

security breach to a great extent. The 

regular training and awareness programs 

for the development and operations teams 

help inculcate a security-oriented culture 

where the reasons for choosing trusted 

images and associated risks with them are 

taught[9]. This proactive step helps reduce 

risks and promotes best practices for 

container security. 

• Addressing Unknown 

Vulnerabilities:  

Addressing unknown vulnerabilities 

requires a proactive vulnerability 

management strategy. An organization 

needs to regularly scan Docker images for 

vulnerabilities with scanners, such as Trivy, 

Aqua Security, or Clair, capable of 

detecting and remediating potential security 

risks before they can be exploited[10][11]. 

Keeping an updated inventory count of the 

Docker images and monitoring them 

regularly will ensure that organizations are 

aware of new emerging threats. Moreover, 

the periodic execution of security audits 

and penetration tests will reveal hidden 

vulnerabilities so that teams can take 

proactive action to eliminate defects. 

Establishing an update policy for all Docker 

images, including applying patches in time, 

is crucial for protecting the container 

environment against vulnerabilities [12]. 

• Mitigating Malicious Code 

Threats:  

To mitigate malicious code attacks, an 

organization should have a multi-layered 

approach towards security. It should 

conduct rigorous scanning of all the images 

before deployment. Also, it leverages static 

and dynamic analysis tools to identify 

malicious code hidden inside the pictures 

[13]. Additionally, best practices, such as 

running containers with the principle of 

least privilege and restricting sensitive 

resource access, can significantly reduce 

the impact of any malicious code that might 

be present. Continuous education and 

awareness about malicious code risks will 

help teams proactively identify and mitigate 

the threats [14]. 

• Accountability Improvement in 

Container Management:  
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Accountability within a Docker ecosystem 

is paramount in enforcing sound security 

governance. Implementing RBAC ensures 

only the right people can deploy or change 

containers[15]. To allow accountability, 

comprehensive logging of all activities 

related to pulling images, deployment, and 

changes is essential in tracking the actions 

of individual persons or teams. Regular 

audits and compliance checks reinforce 

security policies and best practices, 

increasing accountability within an 

organization. Team members need to be 

encouraged to develop a sense of 

responsibility to ensure that security 

standards are maintained and the risks from 

container usage are minimized [16]. 

2. Runtime Security: Importance of 

Runtime Security 

Runtime security forms the most critical 

aspect of a containerized environment. 

Containers are highly dynamic, where an 

application or service runs in a secured 

environment, though only partially 

flawless. The runtime is essential to protect 

the containers against several risks, such as 

control compromise, data leakage, or 

service disruption. They could be exposed 

to runtime misconfigurations, breached 

application code vulnerabilities, or 

weaknesses in the underlying infrastructure 

on which the container is operating. Unless 

adequately secured, attackers could 

compromise the containerized 

environment, and leakage of sensitive data 

would result in service disruptions, 

financial loss, and damage to one's 

reputation. Ensuring integrity, 

confidentiality, and availability of 

containers at runtime is of utmost 

importance. (Flauzac2020). 

 

Fig2: Container Lifecycle and Runtime 

Security Risks 

2.1 Current Gaps 

• Over-Privileges:  

Over-privileges within Docker containers 

create a huge security risk that might 

eventually compromise the integrity of the 

containerized applications and host 

systems. This includes privilege leakages 

around containers being granted excessive 

permissions than needed for operation, 

enabling them to perform sensitive 

operations or access restricted resources on 

the host machine[17]. Over-privileged 

configurations may present potential 

vulnerabilities since attackers can leverage 

these permissions to carry out unauthorized 

actions, elevate privileges, or even 

compromise the host system. Besides, such 

security challenges are further exacerbated 

because of the shared nature of the Linux 

kernel across containers, which can 

facilitate lateral movement across the 

container ecosystem if the attacker manages 

to gain access to one over-privileged 

container. Consequently, organizations 

must manage the permissions assigned to 
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Docker containers meticulously, employing 

the principle of least privilege to mitigate 

risks and enhance overall security[17]. 

Addressing over-privileges is essential for 

establishing a secure and resilient container 

infrastructure, safeguarding sensitive data 

and preserving operational integrity within 

cloud environments. 

• Insufficient Isolation:  

Insufficient isolation of Docker containers 

is a critical security risk because the Docker 

containers share an operating system kernel 

with the host. A vulnerability or attack 

against one container due to weak 

separation may easily compromise the host 

and affect other containers negatively, 

leading to severe risks such as container 

escape[18]. Attackers will leverage one 

single container misconfiguration or 

vulnerability to access sensitive data on 

other containers or the host environment. 

This increases the attack surface. Moreover, 

poor isolation will challenge security 

policies or regulatory requirements, so 

organizations seek to adequately secure 

sensitive information[18]. The dynamic and 

transient nature of containers makes 

managing security consistently even more 

challenging. To address these issues, 

organizations must implement rigorous 

security hardening practices. Such practices 

include using namespaces and control 

groups to enforce improved isolation, 

thereby reducing the likelihood of 

successful attacks and enhancing the 

overall security of containerized 

environments. 

• Insecure Runtime Behavior:  

Insecure runtime behavior by Docker 

containers poses serious security 

challenges, driven primarily by the intrinsic 

nature of containerization and the 

complicated interactions with the host 

operating system. At runtime, a container is 

exposed to various vulnerabilities, from 

insecure configurations and lack of access 

controls to the download and execution of 

malicious code[19]. This is all the more an 

issue in that the dynamic nature of 

containers further exacerbates these issues 

since vulnerabilities can quickly propagate 

in containerized environments if not acted 

upon immediately[20]. Moreover, the 

containers usually run with high privileges 

or over permissive roles, which exposes 

them to unauthorized access or, worse, 

privilege escalation that may cause a 

significant security incident[20]. Security 

controls at the minor privilege level, 

effective runtime monitoring, and periodic 

vulnerability assessment should be 

implemented strictly to ensure that any 

deviation from expected behavior is 

reliably detected and contained[19]. In a 

nutshell, insecure runtime behavior is one 

of the most critical issues that must be 

addressed while maintaining strong 

security in Docker environments against 

possible exploits seeking to compromise 

sensitive data and application integrity. 

• Poor runtime integrity 

monitoring:  

Poor runtime integrity monitoring in 

Docker containers carries significant risks 

to the security and reliability of 

applications. Without proper monitoring 

mechanisms, malicious actions could be 

performed without detecting possible 

breaches or exploiting vulnerabilities 

within containers[21]. Runtime integrity 

monitoring is essential for the detection of 

unauthorized changes in application code 

and the environment, making sure that only 

legitimate processes are running inside the 

container. Without such safeguards, 

compromised containers can be 

manipulated to perform malicious activities 

and jeopardize the overall integrity of the 

host system and other containers running on 

it. Moreover, the current approaches to 

monitoring lack comprehensive solutions 

that provide real-time insight into the 

integrity of containerized applications, 

exposing organizations to attacks 

exploiting these monitoring gaps[21]. As 

containerization becomes increasingly 

prevalent in cloud environments, 
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improving runtime integrity monitoring is 

essential to uphold security standards and 

protect critical data and systems from 

emerging threats. 

2.2 Recommendations 

• Least Privilege Principle:  

The Least Privilege Principle in Docker 

containers is a fundamental security 

practice that emphasizes granting 

containerized applications only the 

minimum permissions necessary to perform 

their designated functions. This principle 

significantly reduces the attack surface by 

limiting the potential for unauthorized 

access or malicious activities within the 

container environment[22]. Organizations 

can mitigate the risks associated with 

privilege escalation attacks by ensuring that 

containers operate with restricted 

privileges, where attackers seek to gain 

elevated access to resources or execute 

harmful commands. The advantages of 

implementing the Least Privilege Principle 

include enhanced security posture, 

improved compliance with regulatory 

requirements, and an overall reduction in 

the scope of security incidents. 

Furthermore, this approach streamlines 

incident response efforts since 

compromised containers are less likely to 

access sensitive data or critical 

infrastructure, thereby effectively 

containing potential breaches. Adopted 

practices often involve using container 

orchestration tools to enforce strict access 

controls and automating privilege auditing, 

ensuring that containers remain compliant 

with the principle of least privilege 

throughout their lifecycle[23]. Adhering to 

this principle is vital for robust security in 

Docker environments, enabling 

organizations to operate with increased 

confidence in their containerized 

applications. 

• Improved Isolation:  

One of the major improvements is better 

isolation in Docker containers, which 

further improves the security and efficiency 

of containerized applications. This 

enhanced isolation creates a secure 

boundary between the host operating 

system and each container, drastically 

reducing the risk of unauthorized access 

and potential cross-container 

vulnerabilities[24]. Some benefits of better 

isolation include improved security 

posture, as it reduces the potential for 

attacks propagating from one container to 

another or affecting the host system. Better 

isolation supports compliance with 

regulatory standards, enabling an 

organization to protect sensitive data more 

effectively. Further, it allows for more 

predictable application behavior since each 

container runs in its environment with 

dependencies, reducing conflict and 

instability. This enhanced architecture 

supports scalability and resource 

management, allowing organizations to run 

multiple containers efficiently without 

compromising performance. Improving 

isolation is critical to maintaining secure, 

reliable, and efficient operations in Docker 

environments. This will pave the way for 

increased trust and flexibility in deploying 

cloud-native applications. 

• Runtime Monitoring and 

Intrusion Detection:  

The most central aspects of security and 

operational integrity in containerized 

environments are runtime monitoring and 

intrusion detection within Docker 

containers. This includes continuous 

observation of activities, system calls, 

resource utilization within the containers, 

and any deviation that may signal a security 

breach or unexpected failure in real 

time[25]. Effective runtime monitoring and 

IDS have brought down the benefits of 

enhancing threat detection capabilities, 

enabling organizations to respond quickly 

to potential intrusions to mitigate risks in 

real time[25][26]. Active system behavior 

monitoring informs organizations about 

performance issues, resource bottlenecks, 

and application vulnerabilities, enhancing 
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overall system reliability[25]. Moreover, 

with the dynamic nature of containerized 

applications, more than traditional security 

may be required. Therefore, having an 

integrated runtime monitoring strategy 

allows organizations to adapt to emerging 

threats and comply with the best security 

practices [25][26]. Lastly, effective runtime 

monitoring and IDS contribute to a robust 

security posture, ensuring containerized 

applications can operate safely and 

efficiently in complex, cloud-based 

environments. 

• Runtime Security Tools Usage:  

Runtime security tools within Docker 

containers are significant in protecting 

containerized applications and ensuring 

operational integrity throughout the 

application lifecycle. The tools provide 

real-time monitoring and alerting 

mechanisms; such features help detect 

security threats and anomalies during 

runtime and enhance the security posture of 

the container environment[27]. An essential 

advantage of using runtime security tools is 

detecting and preventing possible 

vulnerabilities before they become 

exploitable, significantly reducing the 

chance of data breaches and service 

disruptions[28]. Container operations are 

secured with tools like Falco and Cilium 

Tetragon, allowing for dynamic policy 

enforcement, system call monitoring, and 

tracking of container behavior to respond to 

any suspicious activity[28] quickly. 

Integrating advanced solutions like eBPF 

increases performance and enhances 

contextual awareness for security 

monitoring, resulting in lower false-

positive rates and improved detection 

accuracy[29]. With this sort of robust 

security measure, organizations are 

safeguarding sensitive data and improving 

their compliance levels regarding various 

industry regulations, enhancing trust with 

stakeholders and clients. The strategic 

application of Runtime Security tools 

enhances the resiliency of the framework, 

making it possible to deploy and manage 

Docker containers safely in increasingly 

complex environments. 

• Integrity Checks and Image 

Validation:  

Integrity checks and image validation are 

essential for securing and ensuring the 

reliability and consistency of containerized 

applications in Docker containers. This, 

therefore, means that once created, Docker 

images should not be modified or tampered 

with; this guarantees that the software runs 

in a secure state[30]. Integrity checks and 

image validation bring in the benefits of 

better security, as organizations will be able 

to proactively identify any unauthorized 

changes or potential vulnerabilities before 

deploying images into production[30]. 

Further, teams ensure that the container 

images come from trusted sources and meet 

all compliance standards—something 

significant for regulated industries[30]. 

With such checks, the usage of corrupted or 

outdated images is prevented, contributing 

to the general stability and performance of 

applications and, therefore, results in more 

reliable deployments with less 

downtime[31]. Integrity checks and image 

validation may be part of workflows that 

provide an organization with a more robust 

security posture and make its deployment 

processes streamlined and efficient for 

containerized applications to be secure and 

efficient. 

• Runtime Network Security:  

Runtime network security in Docker 

containers is essential for protecting 

containerized applications from a long line 

of cyber threats that operate when the 

application is up and running. This security 

framework involves monitoring and 

managing the network traffic between 

containers and between containers and 

external systems to prevent unauthorized 

access and attacks such as Man-in-the-

Middle (MitM) or network-based 

exploits[32]. One of the most compelling 

benefits of running strong runtime network 

security is the protection it can provide 
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against vulnerabilities resulting from 

shared networking environments, where 

numerous containers work off the same 

host[32]. Firms will have to execute 

mechanisms like FWC or isolation methods 

for creating secure gateways that ensure 

effective risk mitigation and traffic 

filtering, enhancing the overall security 

posturing of a container environment[33]. 

Such security measures also help adhere to 

regulatory requirements since they offer a 

systematic approach to monitoring and 

protecting sensitive data. Runtime network 

security allows for more excellent 

operational stability, ensuring that the 

services remain uninterrupted and resilient 

against potential attacks—thus giving 

clients and stakeholders increased 

assurance in the security of the deployed 

applications[34]. In a nutshell, runtime 

network security is an essential strategy that 

should be implemented to ensure the 

integrity and safety of Docker containers 

within the current digital ecosystem. 

3. Network Security: Importance of 

Network Security 

In contemporary containerized 

environments, the network facilitates 

secure communication among services. 

Containers are frequently deployed across 

distributed environments, encompassing 

multiple hosts or cloud infrastructures. This 

escalation in deployment complexity 

heightens the challenges associated with 

securing the network and generates 

numerous points of vulnerability if not 

adequately managed. A network security 

breach may further lead to unauthorized 

access, exfiltration of data, or even the 

compromise of an entire application stack. 

According to Merkel (2014), ensuring the 

security of communications between 

containers is crucial in maintaining an 

organization's overall security posture. 

(IANS, 2022). 

3.1 Current Gaps 

• Permissive Communication:  

Permissive communication in container 

security is a significant concern that 

addresses the vulnerabilities resulting from 

inadequate network policy configurations 

in containerized environments. When 

containers can communicate freely without 

stringent network restrictions, it can lead to 

various security risks, including 

unauthorized data access and lateral 

movement by attackers within the network. 

This unrestricted access allows malicious 

actors to compromise a single container and 

navigate to other containers, potentially 

leading to widespread breaches across 

applications and data repositories. The ease 

of such lateral movement not only 

exacerbates the impact of a security breach 

but also complicates the enforcement of the 

principle of least privilege, which suggests 

that systems should limit access to essential 

functions only. [35] Organizations must 

implement stricter network segmentation to 

combat these challenges and define precise 

communication policies that allow only 

essential interactions between trusted 

containers. Such measures are crucial for 

safeguarding sensitive information and 

maintaining a robust security posture as 

organizations increasingly adopt 

containerization technologies. [36] 

Ultimately, addressing permissive 

communication will play a vital role in 

enhancing the overall security of 

containerized applications and mitigating 

the risks posed by evolving cyber 

threats.[37] 

• Lack of Encryption:  

It cannot be gainsaid that open network 

communications pose severe risks in light 

of evolving cyber threats. Without proper 

encryption mechanisms, sensitive data 

transmitted over the internet are liable to be 

intercepted by miscreants of various kinds, 

leading to unauthorized access to systems 

and data breaches. This vulnerability is 

highly concerning for IoT devices, which 

often operate on minimal security levels 

and can easily be manipulated to 

compromise entire networks. Effective 
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encryption strategies have become 

paramount in safeguarding data integrity 

and confidentiality. They ensure that they 

remain incomprehensible to unauthorized 

users even when data could get intercepted. 

[38] 

Issue Explanation Type of Encryption 

Suggested 

Lack of 

Encryption in 

Containers 

In many containerized environments, 

traffic between containers is often 

unencrypted, exposing systems to risks 

such as MITM (Man-in-the-Middle) 

attacks. 

TLS (Transport Layer 

Security) 

Unprotected Data 

During Transit 

Sensitive data such as authentication 

credentials, API keys, and other private 

information can be intercepted during 

transmission. 

SSL/TLS Encryption for 

HTTPS 

Multi-Cloud & 

Hybrid 

Environments 

This issue is even more critical in multi-

cloud or hybrid setups where data moves 

across various networks, some of which 

may not be fully secure. 

IPSec (Internet Protocol 

Security) or VPN (Virtual 

Private Network) 

encryption 

Key Points: 

• Unencrypted network traffic in 

containers can lead to the exposure 

of critical data. 

• Utilizing encryption mechanisms 

like TLS or SSL can safeguard 

sensitive information. 

• Multi-cloud or hybrid 

environments, where data travels 

through multiple networks, are 

particularly vulnerable and require 

additional encryption layers such as 

IPSec. 

• Dynamic and Ephemeral Nature 

of Containers:  

The containers' most characteristic dynamic 

and transient nature significantly raises 

their utility in modern cloud computing. 

Thus, container creation, scaling, and 

destruction can be performed incredibly 

quickly, enabling organizations to deploy 

applications with increased agility and 

flexibility. [39] This ability to dynamically 

adjust resources allows businesses to 

respond rapidly to changing demands while 

optimizing resource utilization. [40] The 

temporary nature of the containers will 

enable them to live for a short period or just 

until they achieve what they were meant to 

and ensure an application is light and 

replaceable without affecting system 

stability. This permits smooth integration 

and continuous deployment, CI/CD, 

enabling development teams to introduce 

innovations with the least shutdowns 

possible. Container lifecycles become 

essential to understand as more 

organizations adopt container orchestration 

tools to manage these dynamic workloads, 

which will be crucial for having robust 

cloud strategies. 

• Limited Network Monitoring and 

Logging:  
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The limited network monitoring and 

logging in containerized environments 

create immense challenges in maintaining 

robust security and operational efficiency. 

This is because the fast-moving flows 

within the network might challenge the 

traditional monitoring tools and the 

transient lifestyles of containers. [41] This 

lack of visibility can further lead to 

undetected anomalies that make 

identification and response to emerging 

security threats or performance issues quite 

complicated on the spot. [42] More logging 

also renders forensic investigations after a 

security incident brutal since essential data 

may not be captured or recoverable [43]. 

That means organizations must implement 

more advanced monitoring solutions that 

suit the container ecosystem. This will be 

instrumental in guaranteeing better network 

visibility and control for offering threat 

detection and operational policy 

compliance. 

3.2 Recommendations 

• Network Segmentation:  

Network segmentation is a critical approach 

in container environments, where the 

ultimate goal is to enhance security and 

efficiency. By segmenting the network into 

smaller, isolated portions, an organization 

decreases the attack surface, reducing the 

lateral movement of any potential threat 

within the environment [44]. Segmentation 

allows for more fine-grained access 

controls, ensuring that containers handling 

sensitive data operate in a secure 

environment while minimizing exposure to 

the less safe areas of the network [45]. Also, 

the implementation of network 

segmentation facilitates the process of 

compliance with regulatory requirements 

by simplifying the monitoring of data flows 

and ensuring that sensitive information is 

protected accordingly [46]. Finally, using 

network segmentation in containerized 

architectures enhances security and 

contributes to managing network resources 

more effectively. 

• Traffic Encryption:  

Such traffic encryption is a critical activity 

in ensuring that communications in the 

Docker container environments are kept 

safe from prying eyes through interception 

and unauthorized access. Containers are 

usually deployed in a dynamic and 

distributed system; hence, any application 

of encryption protocols like TLS ensures 

data in motion within the containers is 

private [47]. Traffic encryption would help 

protect the integrity of the data and reduce 

risks from man-in-the-middle attacks that 

could take advantage of vulnerabilities in 

containerized applications. In addition, 

using certificate management tools would 

further simplify the deployment of TLS 

certificates across Docker containers and 

hence improve the general state of security 

while ensuring adherence to regulations on 

data protection [47]. By prioritizing traffic 

encryption within their container 

orchestration strategies, organizations can 

enhance their defenses against potential 

security breaches while reinforcing the 

security of their applications. 

• Zero Trust Network Security 

Model:  

Zero Trust assumes excellent significance 

in containerized environments, as the 

dynamic nature of containers brings 

specific security-related challenges. The 

model operates on the principle of "never 

trust, always verify," where each request to 

access something is treated as if it could be 

malicious, no matter where on the network 

[48]. In container architectures, where 

microservices are in regular 

communication across untrusted networks, 

one must seriously identify and authorize 

the communications through proper 

identity verification and strict access 

controls to keep these interactions secure 

[49]. This allows organizations to monitor 

user behaviors and traffic patterns in real-

time and to detect and respond to 

abnormalities that may indicate a security 

breach [50]. The reason is that integrating 
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Zero Trust into the current security 

frameworks will ensure sensitive data 

security both at rest and in transit, reducing 

risks that come through the lateral 

movement of threats in containerized 

applications [50]. Zero Trust opened the 

door to vast security posture improvement 

in container environments by allowing all 

components to undergo consistent 

assessment and protection against potential 

attacks. 

• Dynamic Policy Management:  

Dynamic policy management within 

container environments is an essential 

factor that guarantees security and 

operational policies will seamlessly adapt 

to rapid changes inherent in container 

orchestration. Due to the transient nature of 

containers, policies should be able to make 

real-time adaptations according to 

workload, resource availability, and 

security needs [51]. This calls for 

automating access control and resource 

allocation against real-time data, further 

enhancing security and efficiency [52]. In 

addition, dynamic policy enforcement 

allows an organization to apply compliance 

and governance more effectively to adapt to 

the varied operational contexts and 

dependencies forming across modern 

application architectures [53]. By taking 

advantage of machine learning and real-

time monitoring utilities, containers can 

foster more intelligent decision-making to 

ensure that policies are reactive and 

proactive in dealing with future challenges 

and threats within the container 

ecosystem[54]. 

• Network Monitoring and 

Logging:  

Network monitoring and logging in Docker 

container environments are crucial for 

ensuring both security and operational 

efficiency. As containers dynamically spin 

up and down, maintaining visibility across 

multiple instances becomes challenging, 

necessitating advanced monitoring 

solutions to track network activity 

effectively [55]. Implementing tools like 

the Round Robin Database (RRD) allows 

organizations to record key performance 

metrics, including memory usage, CPU 

percentage, and network throughput, 

facilitating timely data evaluation and 

visualization [56]. Furthermore, logging 

mechanisms integrated into orchestration 

platforms like Kubernetes enable detailed 

tracking of network interactions, essential 

for identifying anomalies and potential 

security threats. By establishing robust 

monitoring and logging practices, 

organizations can enhance their ability to 

respond to incidents in real time and uphold 

compliance with regulatory standards, 

ultimately strengthening their overall 

security posture within a containerized 

environment [57]. 

• Firewalls and Intrusion Detection 

Systems (IDS):  

Firewalls and IDS in the Docker container 

environment will help protect against 

potential security threats. Firewalls help to 

securely segment containerized 

applications from unwanted incoming and 

outgoing traffic based on predefined 

security rules, thus offering high levels of 

protection against unauthorized access and 

attacks that are based on network-level 

exploitation [58]. Meanwhile, IDS 

solutions enhance security by constantly 

monitoring network traffic and container 

activities to detect and alert administrators 

about suspected behaviors or anomalies that 

could signify a security breach [58]. 

Moreover, implementing these security 

measures can facilitate compliance with 

regulatory standards, given that they 

provide logging and real-time alerts 

essential in auditing and forensic analysis 

[58]. By layering these with firewalls and 

IDS, the organization will strengthen 

prevention and detection while enabling 

responses to various security incidents in 

Docker environments, enhancing 

applications' overall security posture. 

• Microsegmentation:  
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Microsegmentation is the security approach 

inside container environments, where it 

enhances application security by creating 

fine-grained network boundaries around 

workloads. It allows organizations to 

enforce specific security policies that 

govern container communications, 

reducing unauthorized access and 

constricting lateral movements across a 

network [59]. Through the isolation of 

different containers, microsegmentation 

does help narrow the attack surface, making 

it harder for attackers to leverage a 

vulnerability in one container to affect 

others [60]. This approach is instrumental 

in dynamic environments where containers 

are spun up and spun down regularly, as it 

enables runtime security policies with 

minimal performance impacts [61]. 

Ultimately, microsegmentation is critical in 

establishing a solid security posture in 

containerized applications and ensures that 

sensitive data is protected through its 

lifecycle. 

4. Configuration Management: 

Importance of Configuration 

Management 

Configuration management is the 

foundation for secure containerized 

deployments, ensuring systems are created, 

maintained, and updated organizationally. 

With the rise of containerized applications, 

secure configurations have become 

paramount in mitigating data leaks, 

privilege escalation, and unauthorized 

access. Configuration management allows 

an organization to maintain a consistent and 

safe environment throughout the entire 

SDLC, reducing the risk of human error 

while enforcing security best practices 

(Mason & Kim, 2021). 

 

Fig3. Automated configuration 

management and its impact on security 

This workflow illustrates the transition 

from a manual to an automated 

configuration management process, 

emphasizing the enhanced security and 

efficiency achieved through automation. 

1.Start: The process begins with an 

initiation phase labeled as “Start.” 

2.Manual Configuration by Admins: 

o Initially, configurations are handled 

manually by administrators. This 

step is labeled “Manual 

Configuration by Admins,” 

highlighting the reliance on human 

intervention. A user icon represents 
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this stage to signify the involvement 

of personnel. 

3. Error or Misconfiguration? (Decision 

Point): 

o A decision point assesses if any 

errors or misconfigurations are 

present. If a misconfiguration is 

detected, the process diverges into a 

corrective action path. Otherwise, 

the configuration proceeds as 

intended. 

o Yes Path: If an error is identified, it 

moves to “Security Risk Detected – 

Manual Fix Required,” indicating 

that the issue must be manually 

resolved. The path to this step is 

marked with “Requires manual 

correction.” 

o No Path: If no errors are found, the 

workflow proceeds without further 

intervention under the label 

“Proceed with configuration.” 

4. Automated Configuration System: 

o This step introduces the automated 

configuration management system, 

eliminating the need for continuous 

manual input. A gear or robot icon 

represents automation to denote the 

shift from manual handling to an 

automated system. 

5. Run Security Check: 

o The automated system conducts a 

security check on the configuration. 

This stage is represented by a shield 

or lock icon, symbolizing the 

security verification process 

inherent in the automation 

sequence. 

6.Compliant Configuration? (Decision 

Point): 

o Another decision point evaluates if 

the configuration is compliant with 

security policies. 

o Yes Path: If compliant, the 

configuration is securely deployed, 

marked as “Deploy Configuration 

Securely.” The flow to this 

deployment step is labeled “Secure 

deployment.” 

o No Path: If non-compliance is 

detected, the system moves to 

“Automatically Correct 

Configuration and Alert.” Here, 

the automated system not only 

corrects the configuration but also 

sends an alert for review. The flow 

to this correction step is labeled 

“Auto-correct issues.” 

7.End: 

o The process concludes with a secure 

and verified deployment, labeled as 

“End,” ensuring a robust 

configuration without manual error 

risks. 

4.1 Current Gaps 

• Default Configurations:  

While Docker default configurations help 

fast application setup and deployment, they 

can pose serious security risks if not 

correctly set. Although they enable a user to 

initiate the work, in most cases quickly, 

these default settings cut corners for ease at 

the cost of security, thus making possible 

misconfigurations vulnerable to be 

exploited by malicious actors [62]. Many 

users could only rely on default settings to 

understand their meanings and keep 

systems open to risks like unauthorized 

access and network vulnerabilities [62]. 

The most alarming discoveries of 

dependence on default configurations are 

those from industrial control systems and 

web servers since insecure settings can 

result in catastrophic failures or security 

breaches [63][64]. For instance, numerous 

users of Docker may refrain from 

modifying the default settings about 

container networking, which can 

inadvertently permit undesirable traffic and 

increase vulnerability to external threats. 
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Consequently, organizations ought to 

implement robust security practices, 

including the regular review and 

customization of these default settings, to 

enhance the security of their Docker 

environments and mitigate the risks 

associated with improper configurations 

[65]. Organizations can improve the overall 

security posture of their Docker 

deployments by prioritizing appropriate 

configurations rather than relying on 

default options. 

• Poor Secrets Management: 

Poor secret management inside Docker 

containers creates serious security risks in 

modern cloud-native applications, which 

rely on securely storing sensitive data, such 

as passwords, API keys, and encryption 

keys [66]. Traditional approaches include 

hardcoding secrets directly into images or 

environment variables, potentially leading 

to unintended exposure, thus complicating 

the protection of sensitive data [66]. 

Besides, with a central management 

solution, it's easier for an organization to 

control the distribution and access to 

secrets, thereby increasing unauthorized 

access and data breaches [66]. 

• Lack of Security Baseline 

Enforcement:  

The lack of adequate security baseline 

enforcement within Docker containers can 

lead to some vast vulnerabilities that an 

organization would be forced to fix to 

maintain security. With security baselines 

set up, containers could become 

misconfigured, leak sensitive information, 

and increase the attack surface [67]. 

Without automation, security policies 

would not be consistently enforced across 

all containers, leading to varied levels of 

security that can be compromised by 

malicious actors [68]. More precisely, 

organizations risk deploying containers 

containing outdated or vulnerable 

components without correct baseline 

enforcement, further expanding the attack 

surface [69]. The situation is further 

aggravated by the dynamic nature of the 

containerized environments, where 

containers constantly get started and 

destroyed, hence requiring vigorous 

mechanisms to be laid down to ensure their 

real-time compliance with security best 

practices [70]. Lastly and most importantly, 

the inability of security baseline 

enforcement lies at the very core of all 

organizations using Docker containers; 

hence, this approach not only secures but 

also enables compliance and operational 

integrity. 

• Manual Configuration Changes:  

Manual Docker container configuration 

changes introduce security vulnerabilities 

and operational inefficiencies. Developers 

allowed to create or define configuration 

settings can create misconfigurations that 

would adversely affect the intended 

security posture for the containerized 

environment [71]. This is serious since 

containers run directly with the host kernel, 

opening up a larger attack surface if not 

managed carefully [72]. Besides, the lack of 

automation in the setup of Docker 

containers can result in environment 

inconsistencies, making it more difficult for 

teams to reproduce the setups across 

different stages of development and 

production [73]. For instance, errors made 

in changes to Dockerfile configurations or 

the interaction with Docker Compose can 

trickle into the deployment pipeline, 

causing operational hiccups and giving rise 

to technical debt buildup [74]. Such risks 

can be mitigated if the organization 

automates all configuration changes and 

standardization through Infrastructure as 

Code [75]. This will make the environments 

more secure with consistent configurations 

and more efficient regarding container 

deployment management [76]. Thus, 

automation reduces human errors that 

happen pretty frequently in organizations 

using a manual configuration process. 

• Inadequate Role-Based Access 

Controls (RBAC):  
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Bad RBAC in Docker containers 

significantly increases the possibility of 

security compromise due to a lack of proper 

restrictions on sensitive resources. Most of 

Docker's default security mechanisms grant 

extensive privileges, which might allow 

users with host-level access to run and 

manipulate containers as root, possibly 

leading to unauthorized actions and data 

breaches if extended to unprivileged users 

[77]. This all-or-nothing access control 

model defeats the basic principle of least 

privilege, which states that users should 

have only the level of access necessary to 

accomplish their work[78]. More 

importantly, traditional RBAC systems 

being used in Docker environments may 

need to be more dynamic to adapt to the 

evolving nature of containerization, thus 

leaving potential gaps in access 

management due to changing users and 

roles[79]. Lacking robust RBAC, which 

also involves real-time auditing and 

modification of user permissions, entities 

risk internal attack and compliance 

violation[80]. In that respect, working out 

improved RBAC mechanisms within 

Docker to keep containerized applications 

safe from unauthorized access to specific 

resources remains highly important for 

maintaining the proper security posture 

across the infrastructure. 

4.2 Recommendations 

• Secure Defaults:  

Setting secure defaults in Docker containers 

guarantees that the attack surface is 

minimized and provides security assurance 

for an application deployment. Configuring 

secure defaults minimizes the attack surface 

area, allowing an organization to reduce the 

risks of vulnerabilities concerning 

containerization [81]. This default 

configuration incorporates best practices 

intended to help protect against 

unauthorized access, data breaches, and 

other potential risks that might occur in 

containerized environments. Docker has 

complexities in terms of configuration 

issues by default due to the very design: 

Containers share the host operating system 

kernel. Such a design gives rise to 

privileged escalation and network attack 

risks if proper security is not in place. For 

example, the default networking could 

enable all containers to talk with each other 

without restriction, opening the possibility 

of sensitive data exposure if managed 

correctly. More robust network isolation 

with mandatory access control could better 

reinforce the defaults to protect container 

communications [82]. Besides, Docker 

image's system call and capability 

configurations should be precisely tuned 

according to the least privilege principle. 

Specialized tools like SysCap allow the 

automatic generation of secured 

configurations based on the calls and 

capabilities that specific images need[83]. 

With proper automation at the front, an 

organization can make security hardening 

easier while sustaining the best security 

posture against ever-evolving threats [83]. 

That said, using secure default Docker 

container configurations is critical for 

ensuring that applications are adequately 

protected. Other security best practices 

involve network isolation and customized 

system configurations to minimize the 

vulnerabilities of Docker's design. These 

measures ensure that a container 

environment is resilient and can withstand 

various security challenges. 

• Effective Secrets Management:  

Effective secrets management in Docker 

containers is about keeping sensitive 

information, such as passwords, API keys, 

encryption keys, and more, secure from 

potential unauthorized access and data 

breaches. A secure secrets management 

solution allows organizations to securely 

store and manage secrets outside the 

application code itself, thereby minimizing 

the risk of exposure resulting from 

misconfigurations or inadvertent leaks[84]. 

That would be the proper inclusion of 

mature tools like HashiCorp Vault or AWS 

Secrets Manager because both solutions 
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provide rich functionality for secure 

storage, access, and rotation[85]. Another 

reason for using Docker's built-in secret 

management features is that it enhances 

security by injecting the secrets into 

containers at runtime rather than 

hardcoding them within images or setting 

them in environment variables[86]. This 

dynamic injection helps reduce the risk of 

secrets becoming exposed through logs or 

process listings, thereby fortifying security 

further. Additionally, an organization 

should implement strict access control to 

ensure that only specific services and 

human users can access particular 

secrets[87]. Regular auditing and real-time 

monitoring also play an essential role in 

identifying and mitigating potential risks 

associated with secret exposure[4]. 

Summing up, with the help of dedicated 

secrets management solutions, Docker's 

secret management capabilities, and strict 

access controls, an organization can 

reinforce its security posture and manage 

sensitive information effectively within 

Docker containers. 

• Establishing Security Baselines 

and Policies:  

Creating security baselines and policies in 

Docker containers is essential for the 

holistic security of container applications. 

Security baselines detail the minimum 

security requirements for Docker 

containers, thus forming a base to lay 

secure practices[88]. This will help 

organizations identify acceptable 

configurations and settings to reduce 

possible vulnerabilities that can be used by 

malicious actors[89]. To set up these 

baselines accordingly, organizations should 

thoroughly scan their container 

environments for potential risks associated 

with misconfigurations or insecure 

setups[90]. This includes cataloging 

container configurations, privileges, and 

network settings and determining what 

compliance standards are necessary and 

relevant to the organization [91]. Secondly, 

security policies must be implemented to 

control how Docker containers are created, 

deployed, and maintained throughout their 

life cycle. This includes guidelines on user 

access controls, image validation practices, 

and incident response protocols. 

Organizations can also leverage automated 

tools for continuous monitoring and 

compliance checks against the established 

security baselines, ensuring that deviations 

are promptly addressed[1]. In closing, 

security baselines and their implementation 

in Docker containers build a barrier that 

lessens the attack surface, allowing for 

compliance and proactive security 

mechanisms against threats that evolve 

every second in the container environment. 

• Automated Configuration 

Management and Orchestration:  

Automated Docker configuration 

management, therefore, is a crucial process 

in making deployments of containerized 

applications more effective, consistent, and 

secure. Using tools and protocols that 

enable automation in configurations allows 

an organization to drastically reduce risks 

from manual configuration, which often 

produces anomalies and vulnerabilities. 

Following Infrastructure as Code 

principles, automated configuration 

management enables teams to define, 

manage, and deploy configurations via 

version-controlled scripts, ensuring they are 

aligned with best practices for minimal 

error probability. Due to the integration of 

orchestration tools like Kubernetes, the 

advantages extend further, from the same 

benefits to facilitating automated 

deployment, scaling, and management of 

containerized applications across diverse 

environments in optimized operations that 

foster agility. Furthermore, this automation 

allows quick reaction to incidents because 

configurations can be changed or rolled 

back with negligible downtime, improving 

continuous integration and delivery 

practices crucial in today's rapid software 

development world[92]. Besides these 

operational efficiencies, automated 

configuration management in Docker 
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strengthens security by persistently 

applying security patches, conducting 

compliance scanning, and reducing the 

attack surface created by insecure 

configurations[93]. More organizations 

move to microservices architectures and 

cloud-based deployments, so investments 

in automated configuration management 

tools are almost required to establish a 

robust, scalable infrastructure that will meet 

evolving business needs while ensuring 

high service availability and security levels. 

• Container Runtime Security:  

Container runtime security is all about 

protecting containerized applications at 

runtime, which not only includes the 

protection of the running container itself 

but also extends the host environment from 

various security attacks. In this security 

area, best practices will include strict access 

controls, constant monitoring of container 

activities, and automated security tools that 

can help prevent unauthorized access and 

privilege escalation [94]. The temporary 

nature of containers makes them even more 

vulnerable and, therefore, requires robust 

security that can adapt dynamically in real 

time[95]. Additionally, approaches like 

automated seccomp profiling can 

significantly enhance the security posture 

by defining and enforcing system calls that 

containers should be permitted to invoke, 

thus narrowing the attack surface[3]. 

Therefore, as organizations increasingly 

leverage container orchestration platforms 

like Kubernetes, adequate runtime security 

will become critical for maintaining 

deployed applications' overall integrity and 

safety [95]. 

• Implement Role-Based Access 

Control (RBAC):  

Implementing Role-Based Access Control 

in Docker containers is essential for 

enhancing their security and ensuring users 

have appropriate access levels given their 

organizational roles and responsibilities. 

RBAC enables the administrator to define 

user roles and assign permissions based on 

the principle of least privilege; it minimizes 

the risk of unauthorized access to sensitive 

resources [97]. In a Docker ecosystem, this 

can be possible through orchestration 

platforms like Kubernetes since it has 

RBAC out of the box. Such orchestration 

platforms give fine-grained control over 

what a user can do against Docker resources 

like containers, images, and services[98]. 

RBAC enables organizations to enforce 

uniform security policies by building roles 

that encapsulate permission; hence, it is 

easy to manage users because the roles will 

be updated or reassigned to other users 

instead of updating resource permissions 

singularly [99]. RBAC implementation will 

also assist in attaining regulatory 

compliance since organizations will keep 

auditable access controls and enhance the 

general security posture in a containerized 

environment. 

• Immutable Infrastructure and 

Image Hardening:  

Immutable infrastructure and Docker image 

hardening are two more exciting topics that 

increase security and reliability in 

containerized applications. Conversely, 

immutable architecture refers to elements 

of the application architecture that cannot 

be changed after deployment but are 

replaced entirely by new versions when 

changes and updates are made[100]. This 

makes dependency management and 

configurations easier, reducing the chances 

of inconsistencies or vulnerabilities 

resulting from a system that changes over 

time. Complementary to this methodology, 

hardening Docker images involves best 

practices to secure images at build time by 

reducing the number of installed packages, 

scanning images for vulnerabilities, and 

running containers with non-root user 

permission[101]. Integrating immutable 

infrastructure with robust image-hardening 

practices gives organizations a much more 

secure and efficient deployment process. 

This approach ensures that applications 

operate in an identical, predictable state that 

minimizes attack exposure. The strength in 
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such synergy pertains not just to security 

but also to the system's overall reliability, 

thus making the strategy mentioned above 

highly critical for modern cloud 

environments. 

• Implement Continuous 

Monitoring and Logging:  

Continuous monitoring and logging of 

Docker containers ensure security, 

performance, and reliability for 

containerized applications. With 

continuous monitoring, the tracking of 

containers about metrics, resource usage, 

and application performance happens in 

real time, thus allowing the organization to 

quickly identify and solve issues related to 

resource shortages or even a possible 

security breach [101]. Coupled with 

logging, this approach provides 

unparalleled details about container 

behavior for comprehensive audits and 

efficient troubleshooting should something 

go wrong[102]. Special monitoring tools 

and frameworks enable an organization to 

automate log collection and analysis, which 

helps meet regulatory requirements and 

expands visibility into the containerized 

environment[103]. Thus, Docker containers 

can ensure efficiency and safety by 

including continuous monitoring and 

extensive logging. This pays dividends in 

terms of swift incident response times and 

management. Docker containers' efficiency, 

security, and operational effectiveness 

determine a perfect selection of monitoring 

tools. Prometheus is one of the most 

popular open-source monitoring solutions, 

and it is very efficient in gathering and 

querying metrics from containerized 

applications and, therefore, most 

appropriate for dynamic 

environments[104]. Prometheus can be 

combined with Grafana so that users can 

build comprehensive dashboards to track 

real-time data and performance 

metrics[105]. On top of that, cAdvisor 

provides a good level of resource utilization 

and performance feedback by monitoring 

CPU, memory, and network usage for each 

container[106]. For security-focused 

monitoring, Wazuh and Sysdig provide 

extensive solutions to find anomalies and 

maintain compliance through log and 

container activity monitoring[107]. By 

baking these tools into a Docker 

management strategy, organizations will be 

better equipped to handle their 

containerized applications and make 

quicker detections of issues, thus raising 

overall system reliability. 

• Integrate Configuration 

Management with CI/CD 

Pipelines:  

It makes the integration of configuration 

management with Continuous 

Integration/Continuous Deployment 

pipelines for Docker containers a must-

have in order to guarantee that applications 

deployed are consistent, reliable, and 

scalable. Thereby, it allows the immediate 

automated provisioning and configuration 

of containerized environments with 

minimal human intervention, which 

reduces configuration drift over time. The 

recommended toolsets to facilitate this 

integration include orchestration with 

Kubernetes, automation in configuration 

management with Ansible, and Jenkins, a 

viral CI/CD tool that works quite well with 

Docker[108]. In addition, GitLab CI and 

CircleCI provide excellent support for 

Docker container workflows, enabling fast 

deployments and easy rollbacks if 

something goes wrong in deployment[109]. 

These tools working in harmony help 

organizations to facilitate expedient 

deployment processes, ensure 

configuration compliance, and boost the 

overall efficiency of the software 

development life cycle. 

5. Supply Chain Security: Importance of 

Supply Chain Security 

Securing the software supply chain is key in 

maintaining the integrity within the 

development process. With the growing 

push toward reliance on third-party 

components and open-sourced software, the 
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likelihood of introducing vulnerabilities 

through external dependencies has gone up 

several notches. A compromised supply 

chain could result in a data breach, 

unauthorized access, or the implementation 

of malicious software, thereby affecting the 

whole software life cycle in its course of 

development to deployment. (Kim, Su 

Jin,2008)  

 

Fig4 Supply Chain Management Gaps 

This diagram outlines the critical stages in 

the container supply chain, highlighting 

vulnerabilities at each stage that expose 

systems to security risks. Each stage and its 

associated security gaps are described 

below to clarify the potential threats in the 

container supply chain. 

1. Source Code and Dependencies: 

The supply chain begins with the source 

code and its dependencies. A major risk at 

this stage is the use of unvetted third-

party libraries. Such dependencies, often 

sourced from public repositories, may 

contain malicious code or known 

vulnerabilities if not carefully reviewed. 

This step emphasizes the importance of 

thorough vetting to prevent introducing 

hidden security issues into the codebase. 

2. Container Image Creation: 

During the image creation process, several 

security gaps can arise. Common 

vulnerabilities include insecure 

configurations and outdated base images. 

Insecure configurations might expose 

unnecessary services or ports, increasing 

the attack surface. Similarly, outdated base 

images may lack crucial security patches, 

creating exploitable vulnerabilities. This 

stage underscores the need for regular 

updates and secure configuration practices. 

3. Image Distribution: 

At the distribution stage, images move from 

creation to deployment environments. A 

primary gap here is the reliance on 

unsigned or unverified images. Without 

proper image verification, it is challenging 

to ensure the authenticity and integrity of 

images, potentially allowing compromised 

or tampered images to enter production. 

Proper signing and verification practices 

are essential at this stage to safeguard the 

integrity of the container images. 

4. Deployment: 

The final stage, deployment, involves 

moving the image into production. Lack of 

continuous monitoring poses a significant 

risk at this phase. Without real-time 

monitoring, it is difficult to detect 

unexpected behaviors, unauthorized access 

attempts, or new vulnerabilities. 

Continuous monitoring and logging are 

essential to maintain a secure deployment 

environment and to respond quickly to any 

security incidents. 

5.1 Current Gaps 

• Unverified Code Integrity:  

Unverified code integrity within Docker 

containers involves huge security risks, as 

the application of the host's operating 

system kernel by the containers results in 

poor isolation[1]. This weakness opens up 

avenues for attackers to influence the 

possible manipulation of these containers to 

consequence in issues such as container 
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escape, where malicious activities can 

affect hosts and other containers and 

ultimately lead to instability in the security 

of the whole system[110]. To minimize 

these risks, it is important to apply some 

security hardening solutions that validate 

the integrity of container images before 

their deployment. This can be achieved by 

implementing image measurement 

methodologies that provide early detection 

of vulnerabilities, ensuring that images are 

unchanged and not tampered with 

throughout their life cycle[110]. Moreover, 

a container integrity measurement module 

can be used to verify key components, such 

as the code segment and shared libraries, 

hence enhancing the protection against 

unauthorized code execution[110]. Besides, 

strict access control and system whitelist 

development for container processes can 

substantially reduce the attack surface, 

thereby protecting both the containers and 

the host system from possible attacks[1]. 

Safety and reliability of Docker container 

usage in production environments could, 

therefore, be achieved only when 

unverified code integrity is addressed 

through rigorous security measures and 

continuous monitoring. 

• Outdated Dependencies:  

Outdated dependencies in Docker 

containers are a big pain for developers and 

organizations, as they have the potential to 

turn into major security vulnerabilities and 

application instability. In Docker's 

inheritance model, child images very often 

depend on parent images, which can 

contain a myriad of outdated components 

that might reach into the child images, 

further increasing the risk for exploits[111]. 

Studies have determined that, on average, 

about fifty percent of the child images using 

outdated parent images at the time of their 

creations had a typical lag of less than one 

month. By contrast, about seventy percent 

of the child images used outdated parent 

images when compared against the most 

recent version available, and the median lag 

was more than five months[111]. This 

means that users are required to carefully 

manage the provenance of their images and 

regularly update the dependencies of their 

containerized applications to keep their 

applications safe and running in a shifting 

security landscape.[111] 

• Inadequate Transparency in the 

Supply Chain:  

Lack of supply-chain transparency of 

Docker containers seriously jeopardizes the 

security and integrity of applications 

deployed in containerized environments. 

Since many layers of images and further 

dependencies often build containers, the 

lack of transparency regarding where such 

images originally came from and what 

changes have been made to them can lead 

to vulnerabilities and erode trust among 

stakeholders[112]. The obscured view may 

lead to challenges concerning compliance 

and accountability; this complicates 

organizations' abilities to trace any potential 

security issues back to their source[113]. 

Further, the various complicities in 

integrating third-party images raise the 

risks of introducing outdated or malicious 

code into applications, further exacerbating 

the problem of transparency[114]. 

Organizations should be able to reduce 

these risks by instituting broad monitoring 

and accountability frameworks and 

leveraging technologies like blockchain for 

increased visibility and traceability of the 

container supply chain[115]. 

• Dependency Confusion and 

Typosquatting Attacks:  

The dependency confusion and 

typosquatting attacks in Docker containers 

are serious security risks, which may lead 

to harmful code injections and unauthorized 

access to sensitive applications. 

Dependency confusion refers to a situation 

where an attacker creates a malicious 

package in a private repository that has the 

same name as a valid package in a public 

repository, taking advantage of the system's 

attempt to resolve dependencies [116]. 

When a build process mistakenly pulls from 
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the public repository, this malicious 

package can execute within the application 

and enable potential breaches and data theft 

[116]. Typosquatting, on the other hand, is 

where domain names or packages are 

registered that are slight misspellings of 

popular libraries or tools, and through 

which users will unwittingly download 

such malware instead of the real ones [116]. 

This attack factors in human mistake, where 

developers might omit noticing slight 

variations in the naming of packages while 

choosing their dependencies for the Docker 

containers [116]. The impacts from such 

kinds of attacks are very serious; they can 

eventually affect not just that single 

application but even the whole supply 

chain, creating a domino effect of 

vulnerabilities throughout systems that use 

those affected packages[116]. The only way 

that organizations can avoid such threats is 

by practicing good dependency 

management, where organizations utilize 

private registries, apply automated 

dependency scanning, and thoroughly vet 

third-party libraries prior to adding them 

into container images[116]. Indeed, good 

practice with regard to managing 

dependencies greatly reduces risks from 

Docker container dependency confusion 

and typosquatting attacks. 

5.2 Recommendations 

• Code Signing:  

This is one of the major recommendations 

that go hand in hand with the security and 

integrity of Docker containers. Code 

signing leverages cryptography to sign 

Docker images and other artifacts created 

by the developer; thus, it delivers a 

mechanism that provides assurance about 

the authenticity of code integrity prior to 

deployment[117]. This practice ensures that 

production environments are used only with 

images that are trusted and not changed, 

hence reducing significantly the risk of a 

vulnerability via compromised or malicious 

code[118]. Besides, each organization 

should be in a position to have a full signing 

and verification process, hence using DCT 

for applying consistently the image signing 

policies across their respective pipelines for 

CI/CD [119]. Accordingly, by embedding 

code signing into the general methodology 

of container management, organizations 

improve their security posture in view of 

compliance with industry standards that 

engender trust among stakeholders and end-

users. 

• Dependency Management:  

Effective dependency management in 

Docker containers is key in ensuring 

reliability, security, and performance for 

applications. This basically involves the 

identification, tracking, and resolution of 

interdependencies between the packages 

and libraries required by an application. For 

managing dependencies in Docker, a 

developer should start by using a well-

structured Dockerfile, where they declare, 

with explicit naming, all the required 

dependencies during the build process. This 

is by specifying, in detail, base images that 

have all the software components necessary 

to avoid compatibility problems[120]. 

Besides, using tools like Docker Compose 

would add value in handling multi-

container applications by defining and 

operating all services in one single YAML 

configuration file to make sure the 

dependencies are satisfied across a number 

of different environments[120]. This will 

go a long way in improving security by 

identifying and fixing vulnerabilities 

associated with out-of-date 

components[121]. Secondly, applying 

version control to Docker images and the 

`Dockerfile` will help teams track changes 

more effectively and support collaboration 

in teams. Thus, an organization is able to 

optimize dependency management inside 

Docker containers for continuous software 

delivery. 

• Software Bill of Materials 

(SBOM):  

A Software Bill of Materials is a 

standardized inventory of all components, 
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libraries, and dependencies that constitute a 

given software application[122]. In this 

case of Docker containers, whereby 

applications are commonly made from 

hundreds of third-party packages, an 

SBOM provides critical insight into the 

provenance of the software and integrity of 

its components[123]. This transparency 

helps an organization understand and 

manage vulnerabilities within its 

containerized applications because they can 

swiftly determine associated risks for each 

component[124]. Second, SBOMs assure 

regulatory requirements and the various 

industry standards for compliance by 

explicitly documenting the makeup of the 

software to make audits and security 

assessments easier[124]. With SBOMs in 

place, organizations are able to gain better 

security posture, ensure supply chain 

resiliency, and engender confidence with 

their stakeholders. The outcome is much 

safer and more reliable Docker 

deployments. 

• Implement Zero Trust in the 

Supply Chain:  

Moving toward the Zero Trust model within 

a Docker container supply chain is highly 

critical in terms of improving security and 

reducing vulnerabilities and threats-related 

risks. Such a model is based on the principle 

"never trust, always verify," implying that 

every request to access resources must be 

authenticated and authorized, whether from 

internal sources or from outside the 

organizational perimeter[125]. It means 

that organizations institute strict identity 

verification processes so that only trusted 

users and devices have access to important 

containerized applications and data, 

reducing the attack surface[125]. 

Additionally, continuous monitoring and 

logging of all activities with the 

deployment of containers provide real-time 

visibility for quick responses in cases of 

suspicious behavior or anomalies[125]. 

Proactive means a posture of improved 

security, regulatory, and industry standards 

that extend the Docker container ecosystem 

to be resilient against newly identified 

threats[125]. 

• Combat Dependency Confusion:  

To effectively address dependency 

confusion in Docker containers, an 

organization should employ a set of 

measures aimed at enhancing security and 

ensuring the integrity of their applications. 

First, organizations must use private 

registries for their internal packages to 

avoid inadvertently downloading 

maliciously named public packages[126]. 

Implementation of naming conventions will 

make the internal packages well 

distinguishable from those outside, 

reducing possible conflicts[126]. Also, 

precise dependency constraint specification 

by a developer should be in place during the 

Docker build process to assure that only 

trusted package versions are used, avoiding 

any unintended updates that might 

introduce vulnerabilities[126]. Integrating 

automated security scanning tools into a 

continuous integration/continuous 

deployment pipeline allows for the early 

detection of vulnerabilities associated with 

dependencies and affords applications 

further protection from potential 

threats[126]. Ultimately, this would all be 

constantly watched and audited; hence, all 

unauthorized changes in the dependencies 

are instantly detected, fixed, and thus 

contribute to a safer container 

ecosystem[126]. 

6. Monitoring and Logging: Importance 

of Monitoring and Logging 

Continuous monitoring and logging are 

essential components in preserving a secure 

containerized environment. In a context 

where containerized applications are 

subject to dynamic scaling, the possibility 

of security incidents occurring at any 

moment necessitates real-time detection as 

a priority. Monitoring identifies unusual 

behaviors and potential threats before 

escalation (IANS, 2022). Logging offers an 

audit trail, which is crucial for post-incident 

analysis, adherence to regulatory 
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requirements, and proactive threat hunting. 

Collectively, they are the foundational 

element for a container security strategy 

that allows organizations to detect, 

investigate, and respond to incidents 

quickly. (Mason & Kim, 2021; Pruitt, 

2019). 

6.1 Current Gaps 

• Lack of Continuous Monitoring:  

Continuous monitoring is not possible 

inside Docker containers, which 

significantly affects application security, 

performance, and reliability. Without 

persistent visibility into container activities, 

organizations cannot identify real-time 

issues, which might extend to continued 

vulnerabilities, performance deterioration, 

and even complete outages[127]. By their 

very nature, Docker containers are 

ephemeral and dynamic; deploying 

monitoring solutions that can track changes 

and interactions within the container 

environment in near real-time is necessary. 

These measures increase the likelihood of 

security breaches going unnoticed, as 

unauthorized access and malicious 

activities may only be visible once the 

damage has already been done[128]. 

Besides, the lack of intensive monitoring 

complicates debugging activities, with 

increased consequences of more extended 

downtime and lowered operational 

efficiency. With continuous monitoring, an 

organization can maintain its DevOps 

efficiency, leading to slower deployment 

cycles and reduced confidence in the 

stability and security of containerized 

applications. 

• Fragmented Logging:  

The fragmentation of logs within Docker 

containers creates some application 

monitoring and debugging challenges. The 

transient nature of the containers explains 

this; logs often reside in different instances 

and may not persist when a container gets 

deleted. Such challenges can thus be related 

to losing crucial information that negatively 

impacts the capability to efficiently 

troubleshoot and perform any behavior 

analysis of an application over 

time[129][130]. Moreover, the diversity in 

log format from different containers 

complicates centralizing and analyzing log 

data. As more containers are added, the 

volume and variety of logs also increase, 

making meaningful insights challenging 

and time-consuming to extract. The 

inability to maintain a uniform logging 

approach across environments exacerbates 

the problem of fragmentation[129]. 

Logging fragmentation reduces operational 

efficiency and increases security risks since 

necessary logs that could explain security 

incidents may be ignored or 

inaccessible[130][129]. Organizations 

should employ central logging to mitigate 

this, where logs from all containers are 

presented through one interface. This 

would help improve analysis and 

monitoring to sustain the overall security 

posture of applications running within 

Docker environments. 

• Limited Context in Logs:  

Most Docker containers have very minimal 

context within the logs, making it hard for 

developers and operators to draw insightful 

conclusions from log data. This is because 

logs generated within a container might not 

include essential context about the 

container's environment, interactions 

between services, or the state of the 

infrastructure hosting it[131]. This could 

make the tracking of events in several 

different containers or services nearly 

impossible and the debugging difficult, 

which complicates an efficient incident 

response. Also, since logs are usually 

contained within containers, request flow 

tracking will be increasingly complex with 

a microservices architecture, which can 

lead to visibility gaps that cover up root 

causes. Overcoming these limitations 

involves adopting appropriate logging 

practices and tools, which can collate and 

enrich log data with relevant contextual 

information to enhance observability and 
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operational effectiveness in containerized 

environments. 

• High Volume of Data:  

Managing vast volumes of data in Docker 

containers presents enormous challenges 

that could affect application performance 

and resource efficiency. As applications 

increasingly rely on containerized 

environments, the I/O demands associated 

with the data-intensive workloads quickly 

outstrip the underlying storage systems' 

capabilities, leading to bottlenecks. For 

example, although using high-performance 

storage solutions, such as NVMe SSDs, is 

bound to improve throughput, the 

concomitant execution of several Docker 

containers can still result in performance 

degradation. Indeed, application 

throughput can drop by as much as 50% 

compared with stand-alone applications if 

optimal configurations are not used[132]. 

This saturation makes effective strategies 

for managing volume imperative to allow 

applications to be responsive; poor resource 

allocation leads to extended latency and 

reduced efficiency. Second, with proper 

monitoring and tuning, organizations might 

be able to optimize resource utilization, 

which, in reality, defeats the very benefits 

that containerization is supposed to achieve 

in the first place. Overcoming these 

challenges will be crucial to maintaining 

high-performance levels while leveraging 

the benefits of containerized deployments 

in the modern cloud and data center 

infrastructure. 

6.2 Recommendations 

• Comprehensive Monitoring:  

Complete monitoring in Docker containers 

is vital to guaranteeing high performance, 

security, and reliability for applications that 

work in a containerized environment. This 

type of monitoring provides real-time 

visibility into container health, resource 

utilization, and application performance 

metrics, thus offering an organization the 

required resources to identify and resolve 

potential issues even before they become 

serious[133]. The advantages of complete 

monitoring include almost unparalleled 

visibility into distributed systems, smoother 

troubleshooting, better allocation of 

resources, and more robust system 

resiliency in general[134]. The tools 

proposed to establish complete monitoring 

within the Docker environment are 

Prometheus for the functions of monitoring 

and alerting, Grafana for visualization of 

metrics data, and the ELK Stack: 

Elasticsearch, Logstash, and Kibana-in 

centralizing logs and performing analysis 

on them[135][136]. In addition, cAdvisor 

allows monitoring of resource usage and 

performance indicators of containers, while 

Kube-state-metrics provides critical 

insights into the health and status of 

Kubernetes-managed containers[137]. 

These tools will drive organizations to gain 

complete visibility over their containerized 

applications and empower them to achieve 

reliability, deploying more efficient 

incident response methodologies. 

• Centralized Logging:  

Centrally logging Docker containers is 

essential for managing and analyzing log 

data generated from containerized 

applications and services. It aggregates the 

logs from multiple sources such as 

containers, orchestration platforms like 

Kubernetes, and the host's operating system 

into a centralized repository for better 

accessibility and comprehensive analysis of 

log data[1]. Centralization of logs comes 

with such advantages as ease in 

troubleshooting, security monitoring, and 

regulatory compliance, given that the speed 

and ease of finding and fixing problems in 

distributed environments are 

higher[138][139]. Centralized logging also 

promotes better analysis for performance 

by relating logs to application behavior for 

good resource optimization and 

enhancement of overall system 

reliability.[140] Some of the recommended 

tools to implement centralized logging in 

Docker environments are the ELK Stack 
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Elasticsearch, Logstash, and Kibana, which 

efficiently aggregates and visualizes 

logs[3]. Meanwhile, the EFK Stack consists 

of Elasticsearch, Fluentd, and Kibana, 

which provide easy integrations of log 

data[140]. Graylog and Splunk are other 

good options, each providing advanced 

search features and real-time monitoring of 

logs that would assist an organization in 

finding issues before they occur and 

maintaining good operational health. 

• Automated Log Analysis:  

Log analysis with Docker containers is 

essential to enhance operation efficiency, 

thereby securing containerized 

environments. It allows for consistent 

collection, processing, and analysis of logs 

from the different services operating within 

a container to ensure an organization can 

uncover anomalies and fix issues faster, 

along with system performance 

monitoring[141]. The advantages of 

automated log analysis include reducing 

manual work, providing real application 

insights in real-time, and improving the 

correlation from distributed systems to root 

cause performance issues or security 

threats[141][142]. It's good regulatory 

practice, too, since the collection and 

analysis of log data are automated[141]. 

The ELK Stack, comprising Elasticsearch, 

Logstash, and Kibana, is highly 

recommended for advanced log 

aggregation and visualization[142]. Other 

vital tools are Fluentd for log collection and 

aggregation, Prometheus for monitoring, 

and Grafana for further data 

visualization[141][142]. Ultimately, these 

will continue to help an organization have 

deep visibility into its containerized 

applications for proper and timely decision-

making. 

• Use of SIEM (Security 

Information and Event 

Management) Tools:  

SIEM systems must be introduced within 

Docker containers to monitor security 

incidents and manage incident responses in 

containerized applications. Employing 

SIEM solutions in Docker environments 

adds significant value in visibility into 

security violations, real-time analytics, and 

data correlation from a vast pool of sources 

such as container logs and orchestration 

platforms[143]. Generally speaking, the 

advantages of using SIEM in Docker 

containers are extended threat detection 

capability, compliance reporting efficiently, 

and better situational awareness about 

potential vulnerabilities[144][145]. 

Centralized logging and monitoring with 

the help of SIEM solutions enable 

organizations to rapidly identify and take 

action against security incidents to reduce 

overall deployment risk related to 

containers. Recommended tools for 

implementing SIEM in Docker 

environments include the Elastic Stack-

ELK, which can aggregate logs and provide 

analytics[144]; Security Onion, which is a 

robust Linux distribution specifically 

designed for intrusion detection, network 

security monitoring, and log 

management[146]. Other significant tools 

include Splunk, a platform providing 

advanced data analytics and threat 

intelligence in a form that can easily 

integrate with container 

infrastructure[147]. Using these SIEM 

tools, it is possible to greatly enhance an 

organization's security posture in Docker 

container ecosystems. 

• Real-Time Alerting and 

Response:  

Real-time alerting and response in Docker 

containers are necessities for security and 

stability around containerized applications. 

Real-time monitoring enables an 

organization to detect abnormalities and 

potential threats faster so remediation 

actions can occur quickly before severe 

damage occurs[148]. This brings about 

increased advantages through heightened 

security postures, efficiency with incident 

response times, and reduced downtime- all 

to create genuinely resilient application 

environments[148]. Real-time alerting can 
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automatically react to well-known threats, 

effectively reducing the need for human 

intervention while maintaining the 

consistency of security policy 

enforcement[1]. Wazuh is a highly 

recommended solution for real-time 

alerting and response in Docker containers. 

It's good at collecting log data, detecting 

malware, and automating active 

responses[148]. Wazuh can let it create an 

alert in case of a user or system change, 

providing complete monitoring, which is 

fundamental to the security and operation 

of cloud infrastructures and containerized 

applications. 

• Regular Log Audits and 

Compliance:  

Compliance with security regulations 

within Docker containers ensures data and 

application integrity in cloud environments. 

Compliance with recognized standards and 

regulations helps organizations minimize 

the risk of security breaches, data leaks, and 

service interruptions[149]. Compliance 

frameworks, including GDPR, HIPAA, and 

PCI-DSS, provide guidelines to help 

organizations establish appropriate security 

measures and controls for their Docker 

environments[150]. These are the benefits 

of maintaining regulatory compliance for 

security: increased trust by customers and 

stakeholders avoiding significant legal and 

financial penalties associated with non-

compliance[151]. Moreover, best practices 

that various regulations require enable 

organizations to enhance their overall 

security posture and create a culture of 

accountability and due diligence about data 

protection[152]. In the end, security 

compliance plays a massive role in guiding 

the deployment and management of Docker 

containers, ensuring that security remains 

foremost in the whole application lifecycle. 

7. Conclusion 

In conclusion, this study highlights that 

while Docker containerization offers 

substantial benefits in scalability and 

operational efficiency, it also presents 

unique security challenges that must be 

proactively managed to ensure resilience in 

deployment environments. Previous 

research by[153] on container isolation 

and[154] exploration of container security 

tools underlines the need for robust 

isolation mechanisms and runtime 

protections to prevent unauthorized access 

and mitigate misconfigurations. As shown 

in these studies, a failure to address these 

aspects could expose containerized 

applications to significant vulnerabilities, 

which this research further details across 

areas like image security, runtime threats, 

network security, and configuration 

management. 

Our findings stress the importance of 

adopting trusted sources for container 

images, conducting regular image scans, 

and avoiding dependencies on third-party 

libraries without proper vetting.[155] 

notably identified supply chain 

vulnerabilities in containers, with the 

research finding that approximately 70% of 

container issues stem from unverified third-

party dependencies. In alignment with their 

insights, this study advocates for using 

multi-stage builds and rigorous scanning 

tools, such as Snyk[156] or Trivy[157], as 

effective measures to minimize security 

risks introduced by public repositories. 

Moreover, runtime security emerged as a 

priority, with recommendations to enforce 

strict privilege settings and to adopt 

namespace and cgroup isolations. [158] 

emphasized runtime misconfigurations as a 

common vulnerability, and practical 

guidelines underscore the necessity of real-

time monitoring to detect unauthorized 

behaviors. Implementing real-time 

monitoring and anomaly detection 

solutions can enhance visibility and allow 

for faster incident response, a crucial 

capability in dynamic containerized 

environments. 

Network security remains another area of 

critical importance. Research by [159] on 

container orchestration underscored the 
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vulnerabilities linked to network 

misconfigurations, especially in 

environments like Kubernetes. Following 

his recommendations, this study advocates 

for network segmentation and the 

application of secure communication 

protocols to protect sensitive services from 

lateral movement attacks. Logging and 

monitoring traffic flows within container 

networks also play a significant role in 

threat detection and operational integrity. 

Inadequate configuration management can 

leave containers exposed to avoidable risks. 

Studies by [160] on secure configuration 

baselines and [161]on proactive security 

policy enforcement both advocate for 

establishing strong configuration practices 

to mitigate potential attack vectors. 

Reflecting these findings, this study calls 

for organizations to regularly review and 

update container configurations, implement 

automation for configuration management, 

and set up baseline policies that ensure 

consistent and secure deployments. 

Our research supports a layered approach to 

container security, a practice also endorsed 

by [162], highlighting that a combination of 

tools and practices across the software 

development lifecycle is essential to build a 

robust security posture. This approach 

encourages organizations to prioritize a 

security-focused culture, enforce access 

controls, and maintain vigilance through 

continuous monitoring and updates to 

protect against emerging threats. 

Ultimately, as container technology 

evolves, so too must our dedication to 

security. By applying the measures outlined 

in this study, organizations can strengthen 

their defenses against vulnerabilities, 

ensuring secure, efficient, and resilient 

containerized applications. Adapting to 

evolving security needs, as and both affirm, 

cannot be overstated, particularly as 

containers become an integral part of the 

modern application ecosystem. This 

commitment to innovation and vigilance in 

security practices will be pivotal in 

fostering a sustainable and secure 

foundation for future container 

deployments. 
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