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Abstract—The rapid adoption of machine learning (ML) tech-
nologies has driven organizations across diverse sectors to seek
efficient and reliable methods to accelerate model development-
to-deployment. Machine Learning Operations (MLOps) has
emerged as an integrative approach addressing these require-
ments by unifying relevant roles and streamlining ML workflows.
As the MLOps market continues to grow, securing these pipelines
has become increasingly critical. However, the unified nature
of MLOps ecosystem introduces vulnerabilities, making them
susceptible to adversarial attacks where a single misconfiguration
can lead to compromised credentials, severe financial losses,
damaged public trust, and the poisoning of training data.
Our paper presents a systematic application of the MITRE
ATLAS (Adversarial Threat Landscape for Artificial-Intelligence
Systems) framework, a comprehensive and continuously updated
catalog of AI-focused attacks, to systematically assess attacks
across different phases of the MLOps ecosystem. We begin
by examining the preparatory phases during which adversaries
acquire the essential intelligence required to initiate their attacks.
We then present a structured taxonomy of attack techniques
explicitly mapped to corresponding phases of the MLOps ecosys-
tem, supported by examples drawn from red-teaming exercises
and real-world incidents. This is followed by a taxonomy of
mitigation strategies aligned with these attack categories, offering
actionable early-stage defenses to strengthen the security of
MLOps ecosystem. Given the rapid evolution and adoption of
MLOps, we further highlight key research gaps that require
immediate attention. Our work emphasizes the importance of im-
plementing robust security protocols from the outset, empowering
practitioners to safeguard MLOps ecosystem against evolving
cyber attacks.

Impact Statement—Machine learning operations (MLOps)
streamline the development-to-deployment and maintenance of
machine learning (ML) solutions across a variety of industries.
However, these systems remain vulnerable to security breaches.
Such breaches can disrupt operations, compromise critical ser-
vices, and erode public trust. Hence, our paper presents a
comprehensive strategy that combines established cybersecurity
standards with focused attack identification and mitigation strate-
gies. Through systematic analysis and real-world case studies,
this roadmap help strengthens ML investments by preserving
intellectual property and bolstering user confidence. The insights
from this study will help policymakers, business leaders, and
the broader workforce to develop better economic strategies, im-
prove regulatory compliance, and promote responsible practices.
Overall, our research strengthens the ML ecosystem by offering
clear guidelines that enable industries to adopt advanced ML
technologies with greater confidence and resilience.

Index Terms—Machine Learning Operations (MLOps), Cyber-
attack, Security

I. INTRODUCTION

Machine Learning (ML) technologies have fueled remark-
able growth across diverse industries, prompting organizations
to swiftly transition models from development into production
to secure competitive advantages. To manage this acceleration,
companies increasingly adopt the Machine Learning Opera-
tions (MLOps) lifecycle framework. First introduced in 2015
[1], MLOps is defined as “a set of practices designed to create
an assembly line for building and running machine learning
models. It helps companies automate tasks and deploy models
quickly, ensuring everyone involved (data scientists, engineers,
IT) can cooperate smoothly and monitor and improve mod-
els for better accuracy and performance” [2]. MLOps has
witnessed increasing adoption as organizations recognize its
potential to enhance operational efficiency, support scalable
deployments, and ensure reliability within evolving machine
learning environments.

The strength of MLOps arises from combining the iterative
nature of ML with the Continuous Integration and Continuous
Delivery (CI/CD) practices established by DevOps. DevOps
refers to “a set of practices for automating the processes
between software development and information technology
operations teams so that they can build, test, and release
software faster and more reliably. The goal is to shorten
the systems development life cycle and improve reliability
while delivering features, fixes, and updates frequently in
close alignment with business objectives” [3]. Integrating
DevOps methodologies with ML workflows results in robust
and flexible MLOps ecosystem capable of rapidly responding
to evolving business and security requirements.

Although MLOps offers substantial benefits, the pressure
to accelerate model deployment for competitive gain often
results in insufficient attention to security, increasing exposure
to vulnerabilities across MLOps ecosystem. With the MLOps
market projected to grow by 43% over the next five years
[4], protecting these pipelines is increasingly critical. High-
profile incidents such as the ShadowRay vulnerability [5],
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where insufficient authentication control mechanism allowed
attackers to seize compute resources and exfiltrate more than
$1 billion worth of data in September 2023, underline the
severity of these risks. Similarly, the Arbitrary Code Exe-
cution incident involving Google Colab [6] highlighted the
dangers of malicious scripts hidden in shared Jupyter Note-
books, emphasizing the urgent need for rigorous code review
processes. Further illustrating these attacks, DeepSeek’s V3
model [7] was allegedly created through repeated unauthorized
distillation queries to OpenAI’s models [8]. Additionally, re-
search conducted by SpiderSilk [9] demonstrated how a single
misconfiguration compromised critical credentials, leading to
unauthorized access to Clearview AI’s sensitive code repos-
itories. Given that Clearview AI’s facial recognition tools is
used in matching identities using publicly available images,
the implications of such a breach are especially concerning.
These examples collectively highlight how security lapses in
the MLOps ecosystem can lead to infiltration, data theft,
operational disruption, and substantial reputational damage.

Traditional security measures, such as deploying standard
malware or virus detection tools within MLOps ecosystem,
are insufficient to counter these evolving attacks. Adversaries
continuously adapt and refine their tactics, employing defense-
aware strategies capable of evading traditional security mea-
sures. Skylight’s findings [10] demonstrated how adversarial
inputs could evade current malware detection systems. In
2020, Palo Alto Networks’ Security AI research team [11]
showcased how generic domain name mutation techniques
could defeat Convolutional Neural Network (CNN)-based
DGA detection modules. Such mutations evade most ML-
based detection systems, underscoring the importance of thor-
ough robustness evaluation before deployment. These attacks
often leverage Open Source Intelligence Gathering (OSINT)
[12] to maximize infiltration rates while minimizing detection
and attribution. Such examples underscore the need to embed
security deeply within the MLOps ecosystem, addressing
threats at every stage of the ML lifecycle.

To address these challenges, this paper provides the first
comprehensive mapping of MLOps-centric attacks using the
MITRE ATLAS (Adversarial Threat Landscape for Artifi-
cial Intelligence Systems) framework [13], an exhaustive and
continuously updated catalog of AI-centric attack lifecycles.
Additionally, our analysis incorporates established frameworks
such as MITRE ATT&CK [14] and the emerging OWASP
(Open Worldwide Application Security Project) Top 10 for
Large Language Models [15], identifying key security risks
inherent to MLOps ecosystem. By integrating these resources,
we enhance our attack assessment and address existing gaps
within the MITRE ATLAS framework. Leveraging the AT-
LAS framework enables organizations to perform structured
evaluations of attack vectors, uncover vulnerabilities, and
integrate security measures throughout the MLOps ecosystem.
Our extensive review of mitigation strategies further assists
organizations in protecting mission-critical assets, reinforcing
resilience against continuously evolving attacks. The major
contributions of this paper are as follows:

• We highlight how adversaries exploit vulnerabilities at
each phase of the MLOps ecosystem using the ATLAS

framework to identify potential attack vectors.
• We review a comprehensive taxonomy of MLOps-centric

attacks and validate their applicability through examples
drawn from real-world incidents and/or red-team exer-
cises documented in the ATLAS framework.

• We present a structured taxonomy of mitigation strategies
to enhance the detection and prevention of adversarial
attacks on MLOps ecosystem.

• We discuss challenges and provide research recommen-
dations to enhance the security and robustness of the
MLOps ecosystem, ensuring resilience against emerging
sophisticated cyberattacks.

The remainder of this paper presents a comprehensive analy-
sis of adversarial risks inherent to MLOps ecosystems. Section
II introduces the MLOps ecosystem, detailing foundational
concepts, operational taxonomy, and real-world implementa-
tions. Section III examines pre-exploitation tactics commonly
employed by adversaries, emphasizing their role in increasing
the likelihood of successful breaches. Section IV leverages
the MITRE ATLAS framework to review the evolving attack
landscape, illustrating the impact of these threats through
empirical evidence from real-world incidents and red-teaming
exercises. Section V presents mitigation strategies addressing
systemic vulnerabilities within the MLOps ecosystem. Finally,
Section VI outlines ongoing research challenges in securing
MLOps and identifies opportunities to strengthen defenses
through integration of emerging security technologies.

II. MLOPS OVERVIEW

The concept of Machine Learning Operations (MLOps)
emerged in 2015 [1] to bridge the gap between isolated
model development to practical deployment. MLOps enhances
automation, communication, and monitoring within ML work-
flow that are inspired by DevOp’s principles, aligning them
with organization’s objective and creating tangible value [16].
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Fig. 1. The MLOps ecosystem begins by identifying business needs, followed
by administrative setup, model development, and deployment. Continuous
monitoring then provides essential feedback, enabling iterative improvements.

Fig. 1 provides a visual summary of the MLOps ecosystem,
which is explored in greater depth in [4]. Here, we outline
the key phases most relevant to the security considerations
discussed in the following sections. The MLOps process
begins with the clear identification of business needs and the
establishment of specific Objectives and Key Results (OKRs)
that guide decision-making and operational priorities [17].
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Effective machine learning models can directly influence com-
mercial outcomes, and a scalable MLOps ecosystem enables
the continuous training and deployment of projects as they
move from proof-of-concept to production scale [18].

Following business alignment, data collection uses many
methods including web scraping, APIs, IoT sensors, and
crowdsourcing [16], [18], [19]. Augmentation and transfer
learning can enhance the data that is readily available in situa-
tions where information is limited [20], [21]. Data preparation
typically begins with cleaning procedures that address missing
values, errors, and duplicates. This is followed by normaliza-
tion techniques to ensure data consistency and enhance al-
gorithmic efficiency [19], [22]. Dataset reliability is improved
through robust versioning and seamless data integration, which
in turn support effective feature engineering and exploratory
data analysis (EDA) [18].

A robust administrative framework underpins scalable
MLOps infrastructure by supporting key operations such as
resource provisioning, user role management, and system
monitoring [4]. It ensures access to necessary computational
resources, including CPUs, GPUs, and TPUs, for efficient
training and deployment. Monitoring tools track system health
and anomalies to maintain model consistency and integrity.
Additionally, well-defined roles, permissions, and Identity and
Access Management (IAM) controls [23] promote secure
collaboration and safeguard against unauthorized access.

The model development phase focuses on transforming
data into actionable insights through robust experimentation
and iterative refinement. Key tasks include data formatting,
exploratory data analysis (EDA), feature engineering, and
algorithm selection. Using statistical and visual techniques,
EDA uncovers patterns, relationships, and anomalies that
guide effective feature selection [24], [25]. Feature engineer-
ing, through methods such as dimensionality reduction and
polynomial expansion, refines raw inputs to improve model
accuracy and robustness [18], [20]. Algorithm selection, which
includes methods such as decision trees, linear regression, and
neural networks, is informed by both data characteristics and
organizational needs [17], [20]. Rigorous evaluation metrics,
including precision, F1-score, ROC-AUC, and MSE, along
with considerations for model interpretability, help ensure
alignment with strategic goals and build stakeholder trust [17],
[20], [21]. To mitigate overfitting and improve inference, train-
ing procedures incorporate techniques such as early stopping,
adaptive learning rates, and cross-validation [21], [25].

Version control and experiment tracking allow teams to doc-
ument and monitor changes to data, features, hyperparameters,
and source code, promoting consistency and reproducibility.
These systems also provide rollback capabilities in case of
performance degradation, helping maintain the stability and
reliability of the MLOps workflow [20], [25]. Continuous In-
tegration (CI) automates the testing and validation of new code
and model updates, ensuring compatibility and minimizing
deployment risks [26], [27].

The deployment phase emphasizes rigorous testing and val-
idation under conditions that closely mirror the production en-
vironment, ensuring both reliability and performance. Quality
assurance procedures such as batch processing and real-time

inference validations are conducted to verify that models meet
predefined accuracy and latency requirements [28]. Responsi-
ble AI practices are also incorporated at this stage to mitigate
bias and promote fairness. Before release into production,
models must pass through a gated approval workflow that
includes a combination of automated performance evaluations
and manual reviews to ensure compliance with robustness and
security standards [4]. Once approved, models are deployed for
end-user access and configured to support diverse inference
scenarios. Benchmarking tools, including MLPerf [29], are
used to assess production readiness and verify that inference
quality is maintained in the target environment [30].

Continuous monitoring is essential in complex multi-cloud
environments, enabling performance tracking across testing,
staging, and production stages to ensure timely detection and
resolution of deviations [31]. This comprehensive approach
facilitates sustained alignment with evolving business needs.

In summary, the comprehensive MLOps ecosystem effec-
tively manages the machine learning lifecycle, integrating
continuous development, deployment, and monitoring. By
prioritizing alignment with business objectives and responsible
AI practices, organizations can rigorously evaluate and con-
tinuously monitor the performance of their machine learning
systems. These efforts contribute to operational efficiency,
ethical model behavior, sustained reliability, and overall trust-
worthiness. However, despite these advancements, MLOps
ecosystem remain vulnerable to security threats. Ensuring
long-term dependability and stakeholder trust requires ongoing
research and integration of robust, context-aware security.
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Fig. 2. Five key MITRE ATLAS tactics used throughout an attack lifecycle,
beginning chronologically with Reconnaissance (1) and followed by Resource
Development (2), Discovery (3), Collection (4), and Impact (5).

III. SURVEY APPROACH AND TAXONOMY

In the previous section, we examined the MLOps ecosystem,
outlining the integration of tools, roles, and software compo-
nents necessary to support a high degree of automation. While
this integration streamlines the ML workflow, it also intro-
duces vulnerabilities at various stages, potentially exposing
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the MLOps ecosystem to exploitation and compromising its
integrity. In this paper, we present a structured mapping of
adversarial tactics and techniques as defined by the MITRE
ATLAS framework to stages of the MLOps lifecycle [13].
In this context, a tactic refers to the strategic objective an
adversary aims to achieve, while a technique describes the
specific method used to accomplish that goal [32], [33]. The
MITRE ATLAS framework was selected for its specialized
focus on adversarial threats targeting AI systems. It functions
as an extension of the broader MITRE ATT&CK frame-
work, which provides comprehensive coverage of cyberse-
curity threats across domains [14]. Drawing on ATLAS, we
conduct a systematic review of how adversarial techniques
correspond to vulnerabilities within the MLOps ecosystem.
To the best of our knowledge, this is the first study to present
a detailed alignment between the MITRE ATLAS framework
and stages of the MLOps lifecycle.

Before examining MLOps-specific attacks and techniques,
it is important to first consider the foundational phases that
enable their success. Prior to exploiting vulnerabilities within
an organization, adversaries typically begin with open-source
intelligence gathering (OSINT) [12], along with several other
preparatory phases that set the stage for later compromise.
Fig. 2 highlight key adversarial tactics commonly employed
during the attack lifecycle, presented in a typical chronological
sequence. Fig. 3 provides a more detailed breakdown of
specific techniques organized under each of these tactics. In the
following subsections, we will explore the tactics outlined in
the MITRE ATLAS framework, focusing on those commonly
used in the early stages of an attack, which we refer to as the
preparatory or common phases. We will also examine how
these tactics enable lateral movement and escalate into more
destructive forms of attack.

1) Reconnaissance (ID: AML.TA0002): Reconnaissance
serves as the initial phase of an attack, during which ad-
versaries attempt to gather information about the victim or-
ganization’s ML capabilities and ongoing research efforts
[34]. It begins by scouring publicly available information on
the victim organizations. To showcase their ML capabilities,
these organizations highlight their ML research efforts by
publishing their work in conferences or journal proceedings
[35]. These publications highlight their efforts on how they
build and deploy these ML models [35]. Similarly, some
organizations would publish their un-reviewed research work
into platforms like arXiv to get ahead of the competition before
the final literature materializes for publication [36]. The Pre-
Print repositories are completely open to public at large. In
some cases, conference and journal proceedings are hidden
behind membership dues but the adversary do not have to
worry about that with pre-print articles.

Another valuable source of information are technical blogs
where researchers would like to boast about their R&D efforts
in the space of machine learning as they typically outline more
specific information about practical implementation of their
efforts [37]. An adversary also gathers information on common
adversarial vulnerabilities in popular ML models. This helps
them adapt existing attack methods or develop new ones [38].
Victim’s websites is another valuable resource as it often

details about ML products, services, departments, divisions as
well as employee’s involvement [39]. Additionally, attackers
can craft search queries to identify ML-capable applications
in stores such as Google Play, Apple Store and Microsoft
Store [40]. In addition, active system scanning (e.g., port and
vulnerability scans) helps identify weaknesses that passive
research might miss [41].

Hence, reconnaissance is recognized as a critical first step
in the attack phase. Several of these techniques have been ob-
served in scenarios where attackers reverse-engineer machine
learning models to conduct model-stealing attacks [42]. For
instance, notable cases include the 2020 bypass of Cylance’s
AI malware detection system [10] and the evasion of CNN-
based DGA detection systems [11]. These incidents demon-
strate how reconnaissance equips attackers with the knowledge
necessary to launch highly targeted attacks, underscoring the
need for robust security throughout the MLOps ecosystem.
Following reconnaissance, adversaries typically transition to
the resource development phase, where they acquire the tools
and capabilities required to exploit identified vulnerabilities.

2) Resource Development (ID: AML.TA0003): In the re-
source development phase, adversaries acquire or create assets
to support subsequent attack operations. These assets may
include ML artifacts, rented or purchased infrastructure, es-
tablished accounts, and specialized tools that enable various
stages of the attack lifecycle, such as ML attack staging [43].
After the reconnaissance phase, adversaries will search for
public ML artifacts (e.g., software stacks, training data, or
model parameters) by scouring cloud storage, public services,
and data repositories. They particularly seek ML artifacts that
are linked to the victim organization, as these can reveal
valuable insights about the victim’s ML setups. In some
cases, adversaries register for accounts to gain access to these
artifacts, enabling them to craft and inject adversarial inputs
to help prepare a proxy or partial production models [44].
Public datasets similar to those used by the target may also
be collected to tailor attacks more effectively [45], along with
models in formats such as ONNX, HDF5, Pickle, PyTorch, or
TensorFlow that align with the victim’s infrastructure [46].

Another tactic involves obtaining specialized or general
software capabilities, particularly tools tailored for ML-based
attacks. Adversaries may leverage open-source adversarial
ML frameworks such as CleverHans [47], the Adversarial
Robustness Toolbox (ART) [48], or FoolBox [49], as well
as repurpose general-purpose tools for malicious use [50]. In
addition, legitimate tools may be customized to compromise
ML systems, even when they are not inherently ML-focused.
In more advanced cases, adversaries develop their own capabil-
ities, such as crafting adversarial websites or embedding data-
exfiltration code in Jupyter notebooks [51], enabling covert
execution of ML-relevant attacks [52].

To bolster these operations, adversaries often acquire or
rent infrastructure, including servers, domains, mobile devices,
and cloud computing resources [53]. They may also develop
physical countermeasures, such as adversarial prints or wear-
able devices, to interfere with sensor input and degrade model
performance [54]. For attack staging and experimentation,
powerful GPUs and development workspaces are frequently
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MLOps Common Tactics
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Discover ML Artifacts 
ID: AML.T0007

Discover ML Model Ontology 
ID: AML.T0013

Discover ML Model Family 
ID: AML.T0014

LLM Meta Prompt Extraction 
ID: AML.T0056

Discover LLM Hallucination 
ID: AML.T0062

Collection
ID: AML.TA0009

Data from Local System
ID: AML.T0037

ML Artificat Collection 
ID: AML.T0035

Data from Information Repositories 
ID: AML.T0036

Impact
ID: AML.TA0011

Spamming ML System with Chaff 
Data 

ID: AML.T0046
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ID: AML.T0015

Denial of ML Service 
ID: AML.T0029

Erode ML Model Integrity 
ID: AML.T0031

External Harms 
ID: AML.T0048

Erode Dataset Integrity 
ID: AML.T0059Discover AI Model Outputs 

ID: AML.T0063

Resource Development
ID: AML.TA0003

Develop Capabilities 
ID: AML.T0017

Acquire Public ML Artifacts 
ID: AML.T0002

Obtain Capabilities 
ID: AML.T0016

Acquire Infrastructure 
ID: AML.T0008

Publish Poisoned Datasets 
ID: AML.T0019

Poison Training Data
ID: AML.T0020

Establish Accounts 
ID: AML.T0021

Publish Poisoned Models 
ID: AML.T0058

Publish Hallucinated Entities
ID: AML.T0060

Fig. 3. Expanded overview of the MITRE ATLAS tactics: Reconnaissance, Resource Development, Discovery, Collection, and Impact, mapped to their
corresponding techniques. Each tactic is shown as a column anchor, illustrating methods adversaries may use across the MLOps attack lifecycle. Clustering
techniques under respective tactics highlights interdependencies and offers a structured view for identifying and countering adversarial behaviors.

required. These can be accessed through free platforms like
Google Colab [55] or commercial cloud providers such as
AWS [56], Azure [57], or Google Cloud. Distributing opera-
tions across multiple environments helps obscure malicious
activity by blending it with normal network traffic [58].
Adversaries may register for new domains to host poisoned
datasets or exploit expired domains in public repositories by
injecting malicious content into previously trusted URLs [59].

In addition to infrastructure, adversaries weaponize data
sources by publishing poisoned datasets in public repositories,
compromising any models trained with them through ML
Supply Chain Compromise [60]. They can also poison training
data by modifying inputs or labels, embedding hidden vulnera-
bilities activated when specific triggers appear [61]. Similarly,
they may publish poisoned models in public registries. These
are either newly developed or modified to be introduced
into victim environments via the supply chain compromise
[62]. Furthermore, adversaries create or publish malicious
entities (e.g., software packages, websites, email addresses)
that might appear in large language model (LLM) generated
text, undermining trust in LLM outputs [63]. Lastly, they
can create accounts to gain access or impersonate victims, as
adversaries establish accounts with various services to further
ML attack staging [64].

In the broader context of ML attacks, resource develop-
ment involves proactively gathering, creating, or altering ML
artifacts, infrastructure, and accounts to form a solid base
for targeted attacks. Unlike passive reconnaissance, resource
development actively prepares the tools and capabilities that
power subsequent phases, such as discovery and exploitation.
Section IV provides a more detailed explanation of how these
resources are ultimately leveraged in the attack phase.

3) Discovery (ID: AML.TA0008): After an adversary has
created a foothold in the victim’s organization. They look to
employ discovery phase to further collect information gath-
ering post-compromise. In the discovery phase, adversaries
aim to learn more about victim’s ML environment, including
its system, environment, and internal network. By gathering
this information using native operating system tools, adversary
can determine which elements of the environment they can
manipulate to advance their objectives [65].

An adversaries may begin by searching for ML artifacts
such as software stacks, model zoos, and data management
systems to map how models are trained, deployed, and stored
[66]. Once these are identified, they move on to discover the
model’s ontology. In order to discover model’s ontology, they
may repeatedly query the model or review its documentation to
uncover the model’s output space. This knowledge reveals how
the model is used and enables adversaries to design attacks
that exploit the model’s specific capabilities [67]. They further
try to discover the general family of model it belongs to by
analyzing responses or documentation. This information can
uncover specific (or common) exploitation methods associated
with that model family, which attackers may leverage in
crafting their own exploits [68].

In the case of LLMs, adversaries may attempt to extract
meta prompts to discover initial configuration instructions that
govern the internal workings of the model. They try to extract
this information to steal intellectual property of the model [69].
They may further try to take advantage of the inherit trust of
the users in hallucinated outputs such as fictitious commands,
packages, or URLs to use to exploit and compromise end-
users [70]. Some AI model output may contain additional
information such as class scores, logs, API responses, etc.
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that can allow adversaries to identify weakness and craft
attacks based on that information [71]. The above claim was
supported by the MITRE AI Red Team exercise in 2020
[72] where they discovered model’s ontology of a commercial
facial identification service through its inference API. This
allowed them to developed adversarial inputs that led to mis-
classification. Discovery helps identify internal working of the
model to develop a more tailored attack. After fully exploring
the environment, adversaries often move to the collection
phase, where they extract data and artifacts, leveraging insights
gained in discovery phase.

4) Collection (ID: AML.TA0009): In collection phase, ad-
versaries gather machine learning artifacts and other relevant
information that can help achieve their objective from sources
like software repositories, container registries, model repos-
itories, and object stores [73]. By collecting information on
ML artifact, they uncover information about models, datasets,
and telemetry outputs that can be leveraged for theft or
future operations [73], [74]. Beyond ML artifacts, attackers
often focus on collaborative information repositories such as
SharePoint, Confluence, SQL Server as they store a wide
range of useful data for advancing their objectives [75].
Additionally, adversaries may search local systems for items
such as configuration files, SSH keys, or other sensitive assets
to facilitate exfiltration or to further their goal [76].

In 2020, researchers from SpiderSilk [9] discovered a mis-
configuration that gave them unauthorized access to Clearview
AI’s private repositories. This allowed the researcher to
gain access to stored credentials, secret keys, and copies of
production-ready app. Similarly, a Microsoft Azure Service
Disruption in 2020 revealed how collection-related vulnera-
bilities can be exploited; a red team exercise accessed internal
Azure model files and training data, then used them to craft
adversarial examples for online attacks [77]. These incidents
highlight how successful collection phase paves the way for
significant disruptions to an ML system’s integrity and confi-
dentiality. Once attackers have gathered the necessary artifacts,
they often transition to the impact phase, using stolen data
and insights to compromise availability, damage operations,
or steal intellectual property.

5) Impact (ID: AML.TA0011): The Impact tactic represents
the potential consequences an adversarial attack can have on
the victim organization. In this phase, an adversary tries to
manipulate ML systems to degrade performance, undermine
trust, or mask malicious actions, often affecting both business
and operational processes. By altering or destroying data,
attackers may create a false sense of normalcy while advancing
their objectives [78]. One of the technique involves evading
ML models through adversarial inputs [79]. This prevents
correct attack detection by virus scanners or intrusion detection
systems, allowing traditional cyber attacks to proceed unde-
tected [79]. This was denoted in the real-world incident in
2020 where attack on camera hijack was carried out on facial
recognition system in China to bypass verification systems to
allow fraudulent invoices to be issued [80]. Adversaries may
also initiate denial of ML Service by overwhelming systems
with resource-intensive requests [81], or deploy chaff data to
burden analysts with false positives output [82]. Over time,

these strategies erode confidence in the model’s reliability and
force costly manual reviews [83].

Financial costs are another target, as adversaries exploit
the high computational demands of ML systems for cost-
harvesting attacks [84]. These attacks causes victim organi-
zation to suffer from various types of external harms such
as financial, reputational, societal and user-level damage [85].
Intellectual property theft remains a serious attack as well.
By exfiltrating proprietary models or datasets, attackers under-
mine an organization’s competitive advantage and Machine-
Learning-as-a-Service (MLaaS) revenues [86]. Dataset in-
tegrity can also suffer when adversaries poison or corrupt
data, reducing reliability and forcing organizations to invest
resources in remediation [87].

A case study from 2021 highlighted a backdoor attack
on deep learning models using “neural payload injection”,
triggered by a visual cue [88]. Additionally, a 2020 in-
cident involving ID.me demonstrated how stolen identities
were exploited to file fraudulent claims [89]. These incidents
showcase how adversaries progressively advance from initial
reconnaissance to significantly impacting ML environments.
The following subsection now shift focus to elaborate specif-
ically on how adversaries exploit user-level and system-level
vulnerabilities within the MLOps ecosystem to undermine
model security and disrupt operational integrity.
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Fig. 4. Venn diagram of potential stakeholders interested in MLOps security.

A. User and System-Level

In the context of MLOps ecosystem security, User-Level and
System-Level attacks represent two distinct attack vectors that
adversaries exploit across the MLOps lifecycle. As shown in
Fig. 4, the stakeholders align with user level roles and respon-
sibilities that are central to the discussion in this subsection.
User-level attacks in MLOps take aim at the human element,
relying on social engineering, credential theft, and deceptive
tactics to breach defenses. Adversaries often use phishing and
spearphishing [90]–[93] to gather personal or sensitive data
from unsuspecting users, sometimes by distributing fraudulent
emails or impersonating trusted colleagues. Another method
involves inserting “hallucinated entities” [63] into model
outputs, prompting individuals to click malicious links or
download compromised files. Attackers also gain unauthorized
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access by stealing or abusing user credentials [94], which can
grant them control over inference APIs or let them modify
model performance. These intrusions are primarily user-centric
because they exploit personal trust, habits, and human error
rather than purely technical flaws.

By contrast, System-Level attacks focus on critical infras-
tructure integral to MLOps, such as computational resources,
pipelines, and version control systems. Attackers may exploit
vulnerabilities in GPU or TPU drivers [95], misuse compute
power, or alter code repositories that store ML artifacts. Data
poisoning is also common at this level [96], where adversaries
inject deceptive samples or manipulate labels [22], [97] to
undermine model integrity. Some attackers modify the models
themselves by embedding backdoors [98] or developing proxy
models offline [99]. During runtime, they may exfiltrate private
data through inference APIs [79] or craft adversarial inputs
that bypass traditional defenses. System-level attacks can arise
anywhere in the MLOps ecosystem, including third-party
libraries, pre-trained models, or unsafe artifacts. Attackers can
also disrupt availability and reliability by launching denial-of-
service [81], spoofing [100], or session hijacking [101] attacks.

Overall, user-level exploits tend to be more subtle and hinge
on manipulating individual actions and trust, while system-
level attacks target the foundational components of MLOps
infrastructure. Countering user-level risks involves stronger
security policies, user education, and careful management of
credentials. On the other hand, system-level defenses require
infrastructure hardening, supply chain security, continuous
data validation, and network safeguards. Each category poses
unique challenges and demands a targeted approach. The
next section reviews the attack landscape in greater detail,
supported by real-world incidents and red-teaming exercises
that demonstrate how adversaries successfully exploit vulner-
abilities across the MLOps ecosystem.

IV. REVIEW ATTACK AND CHALLENGES

In the preceding section, we outlined the foundational pre-
requisites or preparatory phases, along with the potential im-
pact an adversarial attack can have on the victim organization.
These steps often serve as precursors to deploying exploits and
establishing a persistent foothold within the victim organiza-
tion. In this section, we examine a range of attacks relevant
to the MLOps ecosystem, categorizing them into two primary
types: (1) those targeting the users involved in the creation
and deployment of MLOps systems, and (2) those targeting
the systems themselves. As shown in Fig. 5, each category
is further subdivided into several subcategories, enabling a
structured review of the attack landscape. These subcategories
can all be interpreted as variations of supply chain attacks,
whether directed at users or systems. Each subsection presents
a focused analysis of attacks within its scope. This includes
attacks documented in the MITRE ATLAS framework, as
well as those not currently included but deemed critical for
inclusion in future iterations. To substantiate our review, we
support each attack with evidence from real-world incidents or
red-teaming exercises, highlighting their practical effectiveness
and relevance. Together, this comprehensive review highlights

the complexity of the MLOps threat landscape and reinforces
the need for robust, multi-layered security strategies.

A. Exploitation Attacks

Humans are often considered the weakest link in cy-
bersecurity [102]. Exploitation attacks target vulnerabilities
among users within the MLOps ecosystem. These attacks often
prompt unintentional user actions that trigger malicious code
or packages, ultimately disrupting workflows and compromis-
ing operations. They undermine operations through phishing
[90] [91], social engineering [93], and privilege escalation
[103]. Phishing [90], including spearphishing [91], uses fraud-
ulent messages to gain unauthorized access. Advances in
generative AI and deepfake technologies [93] [92] have made
phishing more convincing, as attackers craft realistic messages
and impersonate trusted individuals to steal credentials.

User execution [104] relies on user actions to activate mali-
cious code introduced through ML Supply Chain Compromise
[105] or social engineering [93]. Adversaries trick users into
executing harmful files or links, inadvertently granting access.
Unsafe ML artifacts [106] embed harmful payloads and may
establish persistent access when models are stored, transferred,
or loaded. Serialization is common for model, but insufficient
checks present an opening for code execution [15]. Malicious
packages [107] can masquerade as legitimate AI tools yet
deliver harmful payloads upon import. In ”ChatGPT Package
Hallucination” incident, attackers registered fabricated pack-
ages, causing unsuspecting users to install them [108].

Privilege escalation [103] grants attackers elevated privi-
leges. Elevated privileges are often necessary to achieve an
adversary’s objective. Privilege escalation can be achieved
through techniques such as LLM prompt injection (direct
[109] and indirect [110]), LLM plugin compromise [111],
LLM jailbreak [112], and excessive agency [15]. LLM prompt
injection [113] manipulates a model’s behavior, while plugin
compromise [111] exploits integrated plugins to retrieve sen-
sitive data. Jailbreaking [112] bypasses model restrictions, and
excessive agency [15] arises when systems have permissions
beyond their scope. The Morris II worm [114] used indirect
prompt injection in a retrieval-augmented generation (RAG)
email assistant, exfiltrating data and replicating malicious
behavior. The ChatGPT plugin privacy leak [115] illustrated
how excessive permissions lead to data breaches.

These exploitation attacks underscore the need for robust
defenses within the MLOps ecosystem. By leveraging phishing
[90] [91] [92], spearphishing [93], privilege escalation [103],
and user execution [106] [107] [15], adversaries can disrupt
workflows and undermine trust. The next section explores ac-
cess abuse attacks, which focus on exploiting system accounts
and permissions to infiltrate MLOps infrastructure.

B. Access Abuse Attacks

Access abuse attacks in the MLOps ecosystem occur when
adversaries leverage legitimate credentials or authentication
tokens to gain unauthorized access to ML systems. These
credentials, such as inference API keys or service tokens, allow
attackers to bypass traditional security controls and manipulate
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Fig. 5. Attacks are categorized into two main groups: user-level and system-level. The clusters named underneath them to show conceptual alignment with
MLOps phases rather than a strict correlation. Some techniques do not have a MITRE ATLAS ID, indicating they originate from other research sources. This
structured layout shows how adversaries can employ multiple tactics across the MLOps supply chain.

or disrupt the broader operational environment [116]. Such
intrusions can compromise model integrity, expose sensitive
data, and interfere with operational workflows, underscoring
the importance of robust access control and monitoring.

A common technique involves exploiting valid accounts
[94] [117], including default accounts [118], domain accounts
[119], local accounts [120], and cloud-based accounts [119].
Default accounts, often overlooked after deployment, and in-
active accounts, such as those belonging to former employees,
are particularly vulnerable due to inadequate oversight [117].
Cloud-based accounts, including API credentials for platforms
such as AWS [56], Azure [57], or Google Colab [55], present
an expanded attack surface. Real-world incidents illustrate this
risk. In July 2022, a Google Colab vulnerability [6] allowed
arbitrary code execution, and a 2020 Azure red team exercise
[77] showed how valid accounts were used to infiltrate internal
services, exfiltrate data, and escalate privileges.

Another common method involves the use of unsecured
credentials [121] [122], which may be stored in plaintext or
exposed through environment variables, configuration reposi-
tories, and container platforms. Attackers seek sensitive assets
such as API keys, tokens, and passwords by exploiting access
to the Cloud Instance Metadata API [123], Kubernetes [124],
Docker [125], and container logs [126]. Unsecured credentials
are also frequently extracted from the Windows Registry [127],
bash history files [128], and private keys stored in predictable
locations [129]. Automated tools and scripts further streamline
this process, broadening the scope of attacks. In addition,

collaboration platforms such as Slack [130], Trello [131],
and Microsoft Teams [132] may unintentionally store cre-
dentials that attackers can exploit. These factors highlight
how unmanaged credentials jeopardize ML operations. High-
profile incidents include the MathGPT breach in January 2023
[133], which exposed unsecured GPT-3 API keys, and a
Ray framework vulnerability in September 2023 [5], where
attackers accessed SSH keys and cloud credentials for data
exfiltration and resource abuse.

In conclusion, access abuse-level attacks highlight how
weak credential management and authentication can com-
promise security across the MLOps ecosystem. Addressing
these vulnerabilities is essential for protecting the integrity of
machine learning operations. The following section explores
system-level attacks targeting the infrastructure that supports
ML workflows, beginning with pipeline infrastructure attacks.

C. Pipeline Infrastructure Attacks

Pipeline infrastructure attacks focus on the core systems
that support machine learning workflows, including servers,
CI/CD pipelines, GPUs, and version control systems as shown
in Fig. 1. By compromising these components, adversaries
can alter or delay model training, testing, and deployment.
Many MLOps ecosystem stages depend on interlinked re-
sources, so disruptions often spread from one area to the
next. Malicious actions are frequently disguised within routine
operations [134], complicating detection in environments that
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rely on continuous delivery. One frequent method is acquiring
infrastructure [53] in ways that appear legitimate. Attackers
may rent servers [53], register for expired domains [59], or rely
on consumer hardware [135], then replicate real workflows to
develop targeted exploits. They can also set up cloud-based
workspaces [58], such as Google Colab [55], to refine mali-
cious scripts or poison datasets. In some cases, CloudBorne
[15] and CloudJacking [15] attacks exploit virtualization layers
to gain elevated access and control shared resources. The
“split-view” poisoning attack [96] similarly modifies domains
embedded in AI datasets, degrading performance or skewing
predictions in dependent models.

Hardware compromises [136] also present an additional
attack vector within the MLOps ecosystem. GPUs, firmware,
and other specialized hardware components can be tampered
with at various stages of the supply chain, enabling adversaries
to inject code that alters outputs, degrades performance, or
exposes model states. Even minor modifications may remain
undetected without regular integrity checks. The “LeftOvers”
attack (CVE-2023-4969) [15] demonstrated how GPU memory
leaks could be exploited to recover sensitive data. Similarly,
side-channel attacks [15] allow adversaries to infer proprietary
model parameters by observing execution timing or power
consumption patterns. When such hardware-level threats go
unnoticed, compromised components may persist across mul-
tiple training and deployment cycles. Physical access attacks
[137] can also introduce vulnerabilities by tampering with
sensors or embedding adversarial objects [98] at the data
source, potentially leading to systemic model failures.

Another avenue of compromise involves command and
scripting interpreters [138]. Python [139], PowerShell [140],
and Unix shells are widely used to automate model creation,
testing, and deployment. Attackers can insert malicious code
appearing as normal updates, leading to adversarial examples
[15], corrupted libraries, or altered hyperparameters. As these
scripts support CI workflows, such changes may accumulate
over time [15]. Memory-related exploits, including buffer
overflows [141] or speculative execution attacks [142], can
expose or manipulate data across pipeline. Software supply
chain attacks [143] offer another pathway, as adversaries may
misuse tools [144] or dependencies to introduce malicious
packages or backdoored libraries. For example, a dependency
confusion attack on PyTorch [145] exfiltrated user data via a
package crafted to resemble a trusted component.

Persistence [146] allows attackers to remain in systems for
extended periods. Techniques include injecting poisoned train-
ing data [61] or distributing backdoored models [98], which
appear legitimate but contain triggers or hidden behaviors that
activate under specific conditions. Because the MLOps ecosys-
tem often reuses existing assets, these backdoors can remain
effective through updates and maintenance. If undetected, they
can continue to influence results, hinder collaboration, or exfil-
trate data. As these effects spread, they become harder to trace,
especially if a compromised GPU enables further tampering in
CI scripts. Attackers exploit this complexity [53], bypassing
traditional security controls. Comprehensive monitoring, code
reviews, and layered defenses help reduce exposure. However,
no single strategy mitigates all vulnerabilities across MLOps.

Measures such as infrastructure scanning, code signing, and
team training on best practices all play a critical role.

In summary, pipeline infrastructure-level attacks compro-
mise the foundational components of machine learning sys-
tems. Hardware tampering [136], script abuse [138], memory
exploits [141] [142], and malicious software dependencies
[143] each introduce distinct points of entry. Physical access
[137] and persistence tactics [146] further amplify these risks.
Because such attacks span both technology and operations,
a coordinated defense strategy is essential. The discussion
now turns to data integrity-level attacks, which focus on
manipulating the data that powers machine learning systems.

D. Data Integrity Attacks

Data integrity is essential for security and reliability in ML
systems. It ensures that training and operational data remain
accurate and trustworthy. However, it also creates opportunities
for adversaries, who can exploit vulnerabilities in dataset
creation, labeling, and deployment processes to corrupt model
behavior or mislead outcomes. Poisoning attacks [61] embed
harmful data into training sets, thereby compromising model
performance. Evasion attacks [97] target models with adver-
sarial inputs during inference, prompting incorrect predictions.
Adversaries may also insert false labels or malware into open-
source datasets and manipulate non-control data [147], leading
to security breaches without altering core system logic.

A central threat is data poisoning, which alters pre-training
or fine-tuning data to degrade performance or embed hidden
backdoors [15]. Techniques like split-view poisoning [96]
exploit gaps in dataset creation by injecting malicious content
at specific times. Reliance on external data sources magnifies
these risks, as unsafe inputs may enter models lacking robust
validation or access controls. In large-scale systems built from
dynamic web content [96], adversaries exploit predictable
snapshot schedules, embedding attacks shortly before data
collection. These threats underscore the need for rigorous
data checks and continuous monitoring. Beyond poisoning,
adversaries also employ training-only attacks [148], which
manipulate training data to degrade model performance or
introduce targeted vulnerabilities. Techniques such as feature
collision, label flipping, and bilevel optimization are used
to craft malicious training sets that evade standard detection
methods [148]. Federated learning [148] further increases
these risks, as attackers may inject poisoned weights and
biases into the central server or transmit them from multiple
decentralized nodes. Adversarial data manipulation [149] also
extends to inference, where crafted inputs [150] bypass de-
tection. Both black-box [151] and white-box [152] methods
reveal model vulnerabilities, while backdoor triggers [153]
quietly activate malicious behaviors in trained models.

Adversaries also refine publicly available research or soft-
ware tools [154] [144] to craft advanced strategies. A 2021
demonstration by Kaspersky [155] showed how adversaries
could adapt local feature extraction methods to bypass cloud-
based malware detection. Similarly, poisoned datasets pub-
lication in open repositories [60] represent another vector,
as attackers alter data or labels [19] before organizations
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download them. Real-world incidents, such as the VirusTotal
poisoning [156] and Microsoft’s Tay chatbot compromise
[157], reveal how subtle manipulations degrade detection
engines or produce offensive behaviors.

In conclusion, data integrity attacks undermine the founda-
tions of ML systems by compromising the data used during
training and inference. Poisoning, adversarial manipulation,
and the publication of tampered datasets can lead to degraded
performance, hidden vulnerabilities, and a loss of trust [87].
Addressing these risks requires thorough validation, secure
data pipelines, and a clear understanding of how adversaries
embed malicious content. Building on these concerns, the next
section examines model integrity-level attacks, which target
the internal structure and behavior of ML models.

E. Model Integrity Attacks

Model integrity attacks target the training, architecture, and
deployment of ML systems, exploiting weaknesses that can
undermine accuracy, fairness, and reliability. They manifest
through various techniques, including data poisoning, adver-
sarial input data manipulation, and backdoor embedding. Each
of them are intended to corrupt model’s behavior or outputs.
These attacks can degrade decision-making, expose private
data, and spread misinformation. Robust controls are necessary
to safeguard models, especially as collaborative development
and open-source resources become more prevalent.

Backdoor attacks [98] are a prominent technique, embed-
ding malicious triggers through poisoned data [149], or direct
payloads [15]. The model appears normal until specific inputs
activate hidden functionalities. Eroding model’s integrity [83]
causes end-users to lose trust and confidence in the system
over time. It coerces the victim organization to lose money as
well as time to repair the model, a job that otherwise ought
to have been automated. A 2023 demonstration [158] showed
how uploading a tainted large language model to HuggingFace
posed supply chain risks. Similarly, direct payload injection
[109] modifies the model itself, causing unexpected responses
when triggered. In some computer vision tasks [148], ad-
versaries incorporate visual markers to mislead classification,
while generative or reinforcement learning models have been
tricked into producing harmful outputs.

Attacks that exploit full ML model access [159] give
adversaries white-box knowledge of architectures, and/or pa-
rameters. Armed with this knowledge, they inject tailored
backdoors or craft adversarial inputs that undermine the sys-
tem. A study [88] showed how “neural payload injection”
affected real-world Android apps from Google Play, reveal-
ing 54 vulnerable applications used for cash recognition,
parental control, face authentication, and financial services.
These backdoors could remain hidden if deployment envi-
ronments lack proper safeguards. Publishing poisoned models
[62] is another strategy, where compromised models with
dormant triggers are placed in repositories. If unsuspecting
developers integrate these models, the triggers stay inactive
until malicious conditions arise. Meanwhile, ML supply chain
compromises [160] occur when shared models lack proper
provenance, letting attackers introduce biases or malware.

In summary, model integrity level attacks arise at every
phase of the ML lifecycle, from training and distribution to
deployment. Outdated or deprecated models [15] also pose
risks when they disregard security updates, opening the door
for manipulations like ROME. Addressing these threats calls
for secure development practices, rigorous model testing,
and stronger provenance controls. The next area of concern
involves deployment runtime-level attacks, which target the
environments where models operate.

F. Deployment Runtime Attacks

Deployment runtime attacks involve targeting ML models
during their operational phase, where adversaries exploit real-
time data exchanges and user interactions [71]. They often
submit carefully crafted adversarial inputs [149] to inference
APIs [161], revealing weaknesses like overfitting or suscepti-
bility to subtle modifications that appear harmless to human
observers. Such methods enable resource exhaustion [15]
[84] or misclassification, ultimately undermining the reliability
of MLOps ecosystem. Over time, these attacks erode trust
[83] in automated decision-making, emphasizing the need for
continuous monitoring and proactive defenses. In addition,
stealthy manipulations can bypass detection [79], introducing
long-term vulnerabilities that are challenging to pinpoint once
integrated into normal workflows.

Adversaries also exfiltrate data through inference APIs
[162], enabling them to extract model behavior or replicate
proprietary logic [108] [163] [164]. These incursions threaten
data confidentiality [15], compromise intellectual property
[86], and jeopardize system stability [15]. Attacks on LLMs
frequently involve prompt injection [113] [15], embedding
adversarial directives [109] [110] that manipulate outputs or
enable unauthorized actions. Universal adversarial triggers
[165] further show how concise token sequences can override
model contexts, generating hateful or misleading content when
triggered. In some cases, employees have inadvertently shared
confidential information with LLMs [166], illustrating the
risk of data leakage [167] [15]. Additionally, self-replication
attacks [168], such as those used in the Morris II worm
[114], reveal how malicious prompts can propagate across
interconnected systems, amplifying risk.

Meta prompt extraction [69] [15] enables attackers to un-
cover hidden system instructions and internal logic, potentially
exposing proprietary knowledge or subverting intended be-
haviors. Adversaries often validate these exploits using verify
attacks [169] in low-risk environments before targeting pro-
duction systems. This approach allows them to fine-tune attack
methods while minimizing detection. ML-enabled products
and services [170] are also frequent targets. For example,
malware detection models can be bypassed [79] by appending
specific token sequences or leveraging cloned translation mod-
els to craft adversarial queries, thereby degrading performance
and compromising intellectual property [86].

A notable example highlighting such risk is the attack on
public machine translation services [171], where researchers
from UC Berkeley replicated near state-of-the-art translation
service using black-box APIs from Google Translate and
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Systran Translate. By training a surrogate model through
repeated queries, they demonstrated how intellectual property
can be functionally extracted from these systems. They then
deployed adversarial inputs crafted for the surrogate model
[165], successfully transferring word flips, vulgar content,
and omitted sentences to the actual production systems. This
case study underscores the wide range of runtime threats,
from operational disruption to the theft and misuse of pro-
prietary algorithms. Mitigating such attacks requires a layered
defense strategy, incorporating continuous input validation,
robust monitoring, and user education. As organizations in-
creasingly adopt shared models and foundational architectures,
a single compromise may propagate across the ecosystem.
The next section examines network exploitation-level attacks,
which target the underlying communication infrastructure that
supports machine learning operations.

G. Network Exploitation Attacks

Network exploitation attacks target the interconnected in-
frastructure of machine learning systems, aiming to disrupt
availability [81], compromise data [172], or degrade pipelines
[172]. By exploiting communication pathways, exposed end-
points, and interfaces, adversaries can manipulate ML work-
flows or undermine trust in the MLOps ecosystem [173] [174].
The interconnected nature of modern ML architectures ampli-
fies these attacks, highlighting the need for strong security
controls to safeguard shared resources.

Public-facing applications [174] are a common entry point.
In the ShadowRay incident [5], attackers exploited Ray’s
Jobs API, which lacked proper authentication, to execute
arbitrary commands. Denial of ML service [81] [15] is another
technique, where adversaries flood ML systems with mali-
cious requests to deplete computational resources. Similarly,
spamming systems with chaff data [82] [172] overwhelms
detection mechanisms by introducing noise, causing overfitting
or wasted analyst attention. These methods erode reliability
and increase costs if not addressed.

Data exfiltration [173] via network either through API
or web-application further endangers MLOps ecosystem, as
attackers target datasets, models, and proprietary algorithms.
In one case, malicious scripts embedded in Google Colab
notebooks [6] granted unauthorized access to ML artifacts
stored in cloud environments, exposing intellectual property
and weakening competitiveness. Unbounded consumption [15]
also poses risks, particularly for large language models, by en-
abling unauthorized use of inference capabilities and imposing
resource burdens. Meanwhile, adversaries exploit vulnerable
protocols [175] or launch reflection and amplification attacks
[176] to manipulate data in transit or magnify malicious traffic.

Endpoints in distributed ML architectures represent another
attack vector as it can result in unauthorized access, allowing
adversaries to manipulate or disrupt ML workflows. Attackers
may hijack web sessions [177], forge credentials [178], or
spoof DHCP configurations [179] to gain control over sensitive
components. Network traffic manipulation [172] can corrupt
data pipelines by injecting poisoned or malformed data, caus-
ing model degradation or delays. The broader implications

of network-level exploitation attacks extend to the overall
security posture of ML systems. As adversaries continue to
develop sophisticated techniques, the attack surface within
MLOps ecosystem expands. The dynamic nature of these sys-
tems, coupled with their reliance on distributed architectures,
necessitates a proactive approach to security.

Network exploitation represents just one facet of the broader
adversarial landscape within the MLOps ecosystem. Other
categories such as exploitation, access abuse, pipeline in-
frastructure, data integrity, model integrity, and deployment
runtime attacks underscore the wide array of vulnerabilities
present throughout the lifecycle. Exploitation attacks leverage
social engineering or deceptive prompts to influence user
behavior, while access abuse involves the misuse of valid
credentials or privileged accounts to infiltrate ML systems.
Pipeline infrastructure attacks compromise the workflows that
enable ML development and deployment, whereas data in-
tegrity attacks corrupt the datasets that models rely on. Model
integrity attacks tamper with the internal logic or behavior of
ML models, and deployment runtime attacks disrupt opera-
tional environments post-deployment. Having examined these
diverse attack vectors, the following section introduces mitiga-
tion strategies aimed at strengthening ML systems against such
attacks, promoting secure, reliable, and resilient operations
across the evolving MLOps landscape.

V. SECURITY MITIGATION STRATEGIES

The previous section outlined the adversarial landscape
and identified key vectors that attackers may exploit. This
section presents corresponding mitigation strategies, drawing
from the MITRE ATLAS framework, MITRE ATT&CK, and
additional relevant literature. Each subsection aligns mitiga-
tion approaches with the attack categories discussed earlier,
offering a structured defense strategy for addressing threats
introduced in Section IV. Since most attacks begin with a
preparatory phase before targeting users or systems directly,
it is essential to consider these early-stage activities in the
mitigation process. Table I summarizes preparatory tactics,
including Reconnaissance, Resource Development, Discovery,
Collection, and Impact, along with associated mitigation tech-
niques. The table also includes hyperlinks to guide readers
to the relevant subsections. We do not provide a separate
subsection for these preparatory mitigations, as many are
already covered within the techniques described in this section
or represent opportunities for future research.

We begin by addressing mitigations for user-level attacks.
Fig. 6 summarizes key mitigation strategies, grouped into two
main categories: Exploitation and Access Abuse. Each cate-
gory highlights practical techniques that end users can adopt
to reduce exposure to specific threats. The next subsection
expands on the mitigation strategies related to exploitation-
based attacks introduced in Fig. 6.

A. Exploitation Mitigations

Mitigating exploitation-level attacks requires coordinated
technical controls, user training, and proactive safeguards.
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TABLE I
AN OVERVIEW OF THE MAPPING OF THE TACTICS AND TECHNIQUES DRAWN FROM THE SECTION III AND MITIGATIONS DRAWN FROM THE MITRE

ATLAS. SOME TECHNIQUES REQUIRE FURTHER RESEARCH ANALYSIS, AND SOME ARE REFERRED TO IN SECTION V.

Tactic Techniques Mitigations

Reconnaissance
Search for Victim’s Publicly Available Research Materials, Search

Victim-Owned Websites, Search Application Repositories
Limit Public Release of Information [180]

Active Scanning Potential Research Gap
Resource Development Discussed in Section IV Discussed in Section V

Discovery

Discover ML Model Ontology, Discover ML Model Family Restrict Number of ML Model Queries [181]
Discover ML Model Family Use Ensemble Methods [182]

LLM Meta Prompt Extraction Discussed in Section V-F
Discover LLM Hallucinations, Discover AI Model Outputs Potential Research Gap

Collection
ML Artifact Collection Encrypt Sensitive Information [183]

Data from Information Repositories, Data from Local System Potential Research Gap

Impact

Evade ML Model Discussed in Section V-F
Denial of ML Service Discussed in Section V-G

Erode ML Model Integrity Discussed in Section V-E
Spamming ML System with Chaff Data Discussed in Section V-G

Cost Harvesting Restrict Number of ML Model Queries [181]
External Harms: ML Intellectual Property Theft Control Access to ML Models and Data at Rest [184],

Encrypt Sensitive Information [183]
External Harms, Erode Dataset Integrity Potential Research Gap

Exploitat ion Mit igations Access Abuse Mit igations

User Mit igations

- Multifactor Authentication
- Privileged Account Management 
- Password Policies 
- Encrypt Sensitive Data

- Intrusion Prevention 
- Regular Audits 
- Strong Security Policy 
- User Training

Fig. 6. Overview of key mitigation strategies against user-level attacks.

Organizations can reduce phishing exposure by deploying an-
tivirus and antimalware tools [185], conducting regular audits
and scans [186], and blocking suspicious traffic using Intru-
sion Prevention Systems [187]. Restricting web-based content
[188] and securing software configurations [189] further limit
attack surfaces. Ongoing user education [190] [191] enhances
awareness of social engineering, while developers are trained
in secure coding and ML-specific vulnerabilities. To counter
user execution attacks, enforcing restricted library loading
[192], using code signing [193], verifying ML artifacts [194],
applying vulnerability scanning [195], and maintaining an AI
Bill of Materials [196] strengthens supply chain integrity.

Mitigating hallucinated content involves refining inputs,
model architectures, and outputs [197]. Retrieval-Augmented
Generation (RAG), Knowledge Retrieval, and the Decom-
pose and Query framework validate outputs using exter-
nal sources [197]. Real-time Verification and Rectification
(EVER) [197] verifies model outputs during generation. Post-
generation strategies such as Retrofit Attribution using Re-
search and Revision (RARR) and High Entropy Word Spot-
ting and Replacement clean outputs after they are gener-
ated. Self-refinement approaches such as Prompting GPT-3
To Be Reliable, ChatProtect, and Self-Reflection leverage the
model’s internal reasoning [197]. Structured Comparative (SC)
reasoning, Mind’s Mirror, Chain-of-Verification (CoVe), and
Chain of Natural Language Inference (CoNLI) introduce step-
by-step validation workflows. Prompt engineering methods
including UPRISE and SynTra optimize instructions to reduce
hallucinations. Decoding strategies such as Context-Aware
Decoding (CAD), Decoding by Contrasting Layers (DoLa),

and Inference-Time Intervention (ITI) influence generation to
favor factual content. Knowledge graph-based tools like RHO
and FLEEK [197] embed structured knowledge into responses.
Additional methods include loss function tuning (THAM, Loss
Weighting), knowledge injection, teacher-student learning, and
Hallucination-Augmented Recitations (HAR) reinforce model
grounding. Factuality can also be improved through fine-
tuning and Refusal-Aware Instruction Tuning (R-Tuning) that
help models recognize knowledge boundaries, while Think
While Effectively Articulating Knowledge (TWEAK) treats
outputs as hypotheses requiring verification [197].

Privilege escalation risks can be mitigated through strict
security policies, the use of multifactor authentication, and
endpoint lockdown. Biometric techniques such as keystroke
dynamics provide an additional layer of behavioral authen-
tication, helping to detect abnormal activity early. Maintain-
ing documented security policies, keeping tools up to date,
and controlling all system connections further strengthen re-
silience. Applying least privilege principles, separating duties,
and incorporating behavioral analytics helps limit abuse. Some
organizations also rely on temporal signals and non-Markovian
models to identify anomalous behavior over time [198]. To-
gether, these strategies address common exploitation scenarios,
including phishing, hallucination, privilege escalation, and user
execution. The next subsection outlines mitigation techniques
aimed at access abuse-level attacks.

B. Access Abuse Mitigations

Mitigating access abuse attacks involves controlling and
monitoring user accounts to prevent unauthorized access and
reduce potential damage from compromised credentials. This
includes strict access policies, authentication methods, and
continuous oversight of privileged and regular user activi-
ties. Account use policies [199] and Active Directory con-
figurations [200] help define access guidelines and enforce
secure authentication and authorization practices. Multi-factor
authentication [201] further strengthens mitigation strategies,
while password policies [202] and privileged account man-
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agement [203] reduce vulnerabilities. User account manage-
ment [204] supports effective access control, and application
developer guidance [205] further reduces the risk of security
gaps. Regular user training [190] raises awareness and deters
common social engineering techniques.

Protecting against unsecured credentials adds another layer
of defense. Active Directory configuration [200] and regular
audits [186] identify possible weaknesses, and encrypting
sensitive information [183] alongside network traffic filtering
[206] can limit exposure. Restricting resource access over
networks [207] and applying strict operating system config-
urations [208] reduce the attack surface. Enforcing password
policies [202] and managing privileged accounts [203] are
also key, along with restricting file and directory permissions
[209]. Routine software updates [210] and user training [190]
strengthen this strategy by ensuring that systems stay current
and personnel remain vigilant. These approaches address the
risk of valid accounts being misused or credentials left unpro-
tected. The next subsection will examine mitigation techniques
focused on system-level attacks as shown in Fig. 7, beginning
with strategies for securing pipeline infrastructure.

C. Pipeline Infrastructure Mitigations

Securing the MLOps pipeline, from data acquisition to
model deployment, involves protecting infrastructure, data,
and model artifacts throughout their lifecycle. Key mitigation
strategies in this area are shown in Fig. 7. Pre-compromise
measures [211] aim to secure environments before adversaries
gain a foothold, since no existing defenses prevent them from
acquiring infrastructure for attacks, such as purchasing servers
or domains, or using free resources like expired domains or
virtual servers to evade attribution. Ongoing research focuses
on detecting the misuse of open-source tools, expired domains,
and AI-generated scripts for malicious purposes.

Mitigating GPU hardware compromise requires layered
security measures [212]. Techniques include hardware-based
memory encryption (e.g., Intel’s Total Memory Encryption
and AMD’s Secure Memory Encryption) and secure key
management using Hardware Security Modules and Trusted
Platform Modules [212]. Memory integrity is maintained
through hash trees and Message Authentication Codes. Mit-
igations strategies against side-channel include cache parti-
tioning and memory access randomization. Other key mit-
igations involve speculative execution control, physical iso-
lation of enclaves, and machine learning-based mitigations
against evolving attacks. Firmware integrity can be maintained
through cryptographic signature verification, tamper-resistant
physical protections, and real-time monitoring of anomalies
in voltage, frequency, and temperature [212]. Redundancy
and error correction mechanisms, including EDC and ECC,
enhance fault tolerance, while shielding, randomized delays,
and electromagnetic filtering help defend against injection
attacks. Additional safeguards include automated security pol-
icy enforcement, memory access randomization, and secure
enclave execution [212].

Buffer overflow mitigations span both hardware and soft-
ware mechanisms [213]. Hardware-level protections such as

No-Execute (NX) bits, Address Space Layout Randomiza-
tion (ASLR), Position Independent Executables (PIE), and
read-only relocations prevent code injection. Techniques like
StackGuard, SmashGuard, and secure return address stacks
protect return addresses through either hardware or software
enforcement [213]. Trusted hardware-based defenses, includ-
ing eXecute Only Memory (XOM) and Secure Bit, are further
reinforced by hybrid solutions such as HSDefender. Compiler-
level strategies include ProPolice for stack layout protection,
StackShield for return address duplication, Return Address
Defender for maintaining protected copies, and Address San-
itizer for detecting memory errors. Automatic Fortification
additionally enforces buffer bounds checking, contributing to
a multi-layered defense against overflow vulnerabilities [213].

To prevent ML software compromise, ensemble methods
[182] improve resistance to adversarial inputs, while code
signing [193] ensures software integrity across the supply
chain. For command and scripting interpreter attacks, multiple
layers of mitigation are necessary. Antivirus and antimalware
tools [185], system audits [186], behavior prevention on end-
points [214], and execution prevention [215] all contribute to
this effort. Disabling unused features [216], limiting software
installation [217], and managing privileged accounts [204]
reduce potential attack vectors. Restricting web-based content
[188] limits additional entry points. Physical environment
access risks can be reduced with multi-modal sensors [218],
which combine various data sources to detect unauthorized
access and tampering.

For persistence mitigation, systems like Cyber Persistence
Detector (CPD) [219] track potential persistence mecha-
nisms by linking setup and execution events using pseudo-
dependency edges. Expert-guided edges and detection rules
help identify suspicious activities. The system correlates re-
lated kill chain events, generates concise attack graphs, and
adjusts weighting factors to reflect varying attack contexts. An
alert budget system prioritizes key events for investigation,
focusing on behavioral patterns rather than easily altered
indicators. This approach improves detection and mitigation
of persistence attacks in enterprise environments. In summary,
these techniques address a range of attacks on ML pipelines,
spanning infrastructure, hardware, software, and physical ac-
cess. The following subsection outlines mitigation strategies
aimed at preserving data integrity and limiting attacker control
within ML environments.

D. Data Integrity Mitigations

Protecting data integrity in ML systems demands verifying
dataset authenticity, guarding against poisoning, and maintain-
ing detailed provenance. Diverse mitigation strategies focus
on adversarial ML attacks by removing redundant or sensitive
data through deduplication and sanitization [220]. Techniques
such as differential privacy inject noise to protect sensitive
information [221], while encryption-based approaches secure
gradients and model outputs [220]. Randomized smoothing,
data augmentation, and model ensembling improve resilience
to input perturbations [222], while adding friendly noise makes
adversarial example generation difficult [223]. Reinforcement
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Fig. 7. Overview of key mitigation strategies against system-level attacks.

learning from human feedback helps align models with accept-
able behavior [220]. Data anonymization and end-to-end en-
cryption safeguard personal information [220], whereas proof-
of-work puzzles can slow extraction attempts [224]. Profiling
natural examples and setting energy consumption thresholds
limit the impact of attacks aimed at maximizing resource usage
[225]. Regular patching addresses discovered vulnerabilities
[226], and user education clarifies attack risks [220].

To preserve datasets integrity, researchers use multiple
methods to identify and deter risks during data collection.
Researchers can adopt mixed collection methods, comparing
closed distributions with verified contact lists to open distribu-
tions for broader reach. Timing marketing efforts effectively,
employing survey-specific fraud tests, and piloting those tests
before rollout can improve response quality [227]. Paradata
(such as submission times, geolocation, and device details)
reveals anomalies, while baseline samples from trusted partic-
ipants provide benchmarks for unusual behaviors [227]. Care-
fully designed open-ended questions, including those tailored
as “fraud catchers” [227], help highlight suspicious responses.
Incentive structures may include physical or location-based
rewards to discourage mass participation. Careful review of
free-text responses, along with checks for duplicate IPs, shared
contacts, unlikely answer patterns, and closely timed submis-
sions, can help identify inconsistencies [227]. Automated scor-
ing solutions like MinFraud Score detect suspicious entries,
and continuous monitoring of these indicators is advised to
account for adaptive attacks. Verification emails or phone calls
can confirm legitimacy, and in contexts of high online fraud,
paper or mail surveys may serve as an alternative [227].

Verifying ML artifacts [194] through cryptographic check-
sums mitigates poisoned dataset risks, while an AI Bill of
Materials [196] traces data sources and modifications. This
approach provides a record of all artifacts, capturing each
step in the data lifecycle for supply chain risk management.
Limiting the release of model artifacts and controlling data
access [184] restrict unauthorized tampering, while sanitizing
training data [228] identifies and removes compromised inputs.
Maintaining AI dataset provenance [229] ensures visibility into
data origins and changes, offering a method to compare current
datasets with known trusted versions.

Adversarial training, gradient masking, and input prepro-
cessing counter many manipulations by either strengthening
the model against attempted exploits or filtering unusual inputs
before inference [230]. Defensive distillation smooths model
boundaries, making minor perturbations less effective. Ran-
domized smoothing or enforcing Lipschitz continuity can yield

certified robustness within defined thresholds [230]. Detection
tools draw on statistical anomaly techniques or specialized
auxiliary models to flag suspicious samples. As attackers de-
velop new approaches, explainable mitigation strategies allow
teams to interpret and respond to emerging patterns, and
automated solutions help update defense strategies without
manual intervention [230]. Collaboration between ML and
cybersecurity experts promotes research that merges attack
intelligence with model engineering, supporting standards and
guidelines for organizations deploying AI solutions [230].
These approaches safeguard data quality and authenticity while
documenting all data source. The next subsection will explore
techniques focused on defending model integrity level attacks.

E. Model Integrity Mitigations

Protecting machine learning models from tampering and
unauthorized alterations requires several measures through-
out the model’s lifecycle. One approach involves scanning
model artifacts for potential vulnerabilities [195], which is
particularly useful for detecting exploits in file formats like
pickle files. Controlling access to model registries and re-
stricting production model visibility to approved users also
reduces the risk of manipulation [184]. Sanitizing training
data [228] helps detect, remove, or filter poisoned inputs,
including explicit or unwanted content that may compromise
model performance. This approach can be especially relevant
for active learning environments, where newly ingested data
should be filtered. Regular validation of models [231] can
further reveal backdoors, adversarial bias, or data poisoning
through tests for concept drift or shifts in training data. In
addition, maintaining a complete record of dataset sources
and changes [229] contributes to transparency and traceability
across different stages of model development.

Organizations can also manage how models are deployed
and shared to mitigate exposure. Serving models in the cloud
instead of on edge devices can limit the level of access
adversaries have [232], and computing features in the cloud
can reduce gray-box attacks that stem from knowledge of
preprocessing techniques. An AI Bill of Materials [196] en-
hances supply chain awareness by listing all artifacts that went
into building the AI system, which allows faster responses
to reported vulnerabilities. Using ensemble methods [182]
can increase robustness against adversarial inputs, while code
signing [193] helps maintain software integrity. These strate-
gies can be combined to mitigate scenarios where a model is
compromised, including cases in which poisoned models are
published or attackers gain extensive control over the model.



15

In summary, these measures are designed to protect models
from unauthorized modification, compromised distribution, or
the inclusion of malicious components. The next subsection
focuses on mitigation techniques for deployment runtime
attacks, where the model is actively served in production.

F. Deployment Runtime Mitigations

Organizations can address deployment runtime attacks by
combining access controls, monitoring, and secure software
development practices. Enforcing robust authentication for
production APIs, requiring user identity verification, and
restricting ML model or data access in production [233]
limits malicious use. Restricting query controls further reduces
adversaries opportunities to overload systems or extract infor-
mation. Monitoring model queries and behaviors in real time
with collecting AI telemetry data [234] enables organizations
to detect suspicious patterns, uncover potential exfiltration
attempts, and maintain an audit trail for incident response.

ML models can also be shielded by hardening techniques
[235], such as adversarial training, which helps the model
learn from known adversarial inputs. Using an ensemble [182]
of diverse models likewise prevents single points of failure
because an attack’s effectiveness against one architecture may
fail against another. Using multiple sensors [218] and pre-
processing inputs [236] can reduce the impact of physical
attacks or perturbations introduced by adversaries. Addition-
ally, detecting anomalous or malicious queries early [237] by
evaluating request patterns against known legitimate behaviors
helps block adversarial attempts at the entry point.

Guarding large language model (LLM) deployments re-
quires systematic guardrails [238] placed between user inter-
actions and the generated output. These can take the form of
filters, rule-based logic, or AI-driven classifiers to confirm that
prompts and responses meet security requirements. Generative
AI Guidelines [239], often appended to user prompts or
embedded into system instructions, define the acceptable scope
of model behavior and clarify safety parameters. Aligning
Generative AI models [240] through supervised fine-tuning
or reinforcement learning introduces additional checks during
training, ensuring that alignment with organizational policy
remains intact despite model updates.

Multiple LLM-specific attacks benefit from these measures.
Prompt injection attacks and data leakage risks can be ad-
dressed by restricting unauthorized content, logging model
inputs [234], and blocking suspicious queries [238]. Meta
prompt extraction, which involves revealing hidden instruc-
tions or chain-of-thought data, can also be combated through
generative AI guidelines [239] and alignment strategies [240].
LLM plugins that access external systems require close over-
sight to prevent compromise; consistent use of guardrails keeps
the plugin’s interactions within pre-approved boundaries [238].

For LLM prompt self-replication, including LLM Tagging
[241] can identify the origin of responses, while Delimiting
Data [241] and random sequence enclosure [241] make it
harder for prompts to replicate across interactions. The Sand-
wich Defense layers user instructions around prior responses,
and Instruction Defense [241] clarifies that models should

never alter user inputs. Combining these with Marking [241],
which distinguishes user prompts from agent outputs, can
significantly reduce cross-model injection attempts. However,
reliance on advanced models can introduce new risks, espe-
cially if these models themselves become compromised.

Organizations should also guard against verify attacks by
restricting offline copies of ML models and watching for
suspicious API usage [220]. Regularly patching known vul-
nerabilities and educating developers and users about potential
exploitation tactics can help in early attack detection. Combin-
ing this with thorough logging and frequent audits closes many
attack surfaces that attackers could exploit [226].

G. Network Exploitation Mitigations

To address attacks at the network level, organizations can se-
cure communication channels, limit unauthorized access, and
protect network infrastructure that supports AI operations [13].
Public-facing applications benefit from strict input validation,
sanitization, and least privilege access [242]. Regular software
updates, use of Web Application Firewalls [174] , and TLS-
based secure communication [174] help prevent exploitation
attempts. Security headers, rate limiting, thorough logging, and
consistent monitoring further strengthen defenses. Practices
such as application isolation [243], exploit protection [244],
network segmentation [245], and privileged account man-
agement [203] add layers of control and visibility. Frequent
vulnerability scans [246] also reduce exposure.

Organizations can mitigate denial of ML service by limiting
the volume and rate of queries [181] and filtering adversarial
inputs [237], while restricting queries counters spamming with
chaff data [181]. To reduce exfiltration risks, access to internal
model registries and production models should be controlled
[184]. Network intrusion prevention systems [187] can block
suspicious traffic, adding protection against data leakage.

By implementing these measures, organizations improve
security against attacks on AI infrastructure such as data
exfiltration and denial-of-service. Regular software updates
[210], vulnerability scans [246], and privileged access controls
[203] provide additional layers of defense, while continuous
monitoring and timely response remain essential for long-
term protection. In this section, we discussed mitigation
strategies that address user exploitation, access abuse, pipeline
infrastructure exploitations, data and model integrity concerns,
deployment runtime risks, and network exploitation. Together,
these methods safeguard various stages of MLOps from user
compromise and data gathering to model training and deploy-
ment. Table II provides a concise overview of the taxonomy
categories, including hyperlinks to corresponding attacks and
mitigation strategies, and indicates their relevance to specific
phases of the MLOps ecosystem. This tabular representation
enables readers to clearly understand the relationship between
the identified attack surfaces, the applicable mitigation strate-
gies, and the stages of the MLOps lifecycle they impact.
Despite these efforts, mitigation strategies remain limited in
scope. In the next section, we propose research challenges
and recommendations that can further help strengthen MLOps
security across these interconnected domains.
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TABLE II
AN OVERVIEW OF THE MAPPING OF THE ATTACKS DRAWN FROM THE SECTION IV AND AND MITIGATIONS DRAWN FROM THE SECTION V TO THE

MLOPS PHASES AS IDENTIFIED IN THE FIG. 1.

MLOps Phases
Taxonomy Attacks Mitigations Admin Setup Data Collection Model Development Approval Workflow Model Deployment Monitoring
Exploitation [IV-A] [V-A] ✓ ✓ ✓
Access Abuse [IV-B] [V-B] ✓ ✓ ✓
Pipeline Infrastructure [IV-C] [V-C] ✓ ✓ ✓ ✓ ✓ ✓
Data Integrity [IV-D] [V-D] ✓ ✓
Model Integrity [IV-E] [V-E] ✓
Deployment Runtime [IV-F] [V-F] ✓
Network Exploitation [IV-G] [V-G] ✓ ✓ ✓ ✓

VI. RESEARCH CHALLENGES AND RECOMMENDATION

Although the previous section outlined a range of mitigation
strategies to defend the MLOps ecosystem, these measures
often provide only partial protection against increasingly so-
phisticated, AI-driven adversaries. As attacks evolve rapidly,
organizations must address not only technical vulnerabilities
but also legal, ethical, and operational complexities. The
following discussion highlights key concerns and proposes
future research directions, with the goal of strengthening the
security of the MLOps ecosystem while preserving essential
principles of transparency, privacy, and compliance.

A. The Rise of AI-Driven Social Engineering

Attackers now exploit generative AI to craft highly convinc-
ing phishing emails, clone voices for vishing schemes, and
produce deepfake videos that entice employees into revealing
sensitive credentials [247]. Once inside an organization, these
adversaries can move laterally and compromise vital MLOps
components. Although zero trust models and ongoing user
education are vital, they frequently fall behind AI’s rapid
advancement. Further research should refine deepfake detec-
tion techniques, enhance digital authentication protocols, and
implement comprehensive incident monitoring to counter the
increasingly realistic nature of AI-enabled social engineering.

B. Malicious Repositories and LLM Hallucinations

LLMs occasionally generate misleading “hallucinations”,
which can enable attackers to insert malicious packages into
trusted online repositories. If organizations inadvertently inte-
grate these compromised resources, they risk exposing intel-
lectual property, disrupting workflows, or introducing harmful
payloads. Threat actors may also upload cloned or tampered
models to platforms such as Hugging Face, deceiving un-
suspecting practitioners into deploying compromised versions
[248]. Future research should explore automated systems for
detecting suspicious content, robust versioning protocols to
ensure code integrity, and community-driven validation frame-
works supported by the broader MLOps ecosystem.

C. Misuse of AI Tools by Advanced Persistent Threats (APTs)

Advanced Persistent Threats (APTs) groups sponsored by
nation state actors increasingly rely on freely available pow-
erful AI tools, such as Google’s Gemini, to identify vulner-
abilities, develop sophisticated malware, and evade standard
security measures [249]. Google DeepMind’s Gemma team
has raised concerns about potential misuse of AI in upcoming

releases [250]. Researchers should examine subtle ways AI
may be weaponized, establish precise ethical and legal stan-
dards, and propose robust prevention strategies. Effectively
defending MLOps ecosystem against increasingly sophisti-
cated adversaries will require detecting and preventing abuse
of emerging AI technologies.

D. Benchmarking MLOps Defenses

Many firms rely on laboratory-style tests that do not accu-
rately reflect real-world attacks. As a result, MLOps ecosystem
remain vulnerable when deployed in practical settings. Fu-
ture research should focus on benchmarking defenses against
adaptive and diverse attack patterns [251]. By simulating
adversarial scenarios, such as targeted phishing attempts and
sophisticated AI-powered attacks, MLOps teams can evaluate
how well their security measures perform under pressure. Ad-
ditionally, continuous research should establish standardized
criteria for comparing defensive mechanisms. This approach
will support ongoing improvement and ensure better alignment
with real operational risks.

E. Red-Teaming for Robust Security

Red team exercises serve as an effective approach for uncov-
ering hidden vulnerabilities, validating existing defenses, and
strengthening overall system resilience. Drawing on initiatives
such as MITRE’s red team program, organizations can more
accurately simulate real-world attack scenarios and identify
exploit paths that may remain undetected during conventional
testing. Future research should explore frameworks that sup-
port recurring, collaborative red-teaming efforts across sectors,
ensuring that shared insights contribute to a more secure global
MLOps ecosystem. By embracing these rigorous assessments,
security teams can enhance threat detection, improve incident
response, and cultivate a proactive security posture.

F. Strengthening MLOps Robustness

A robust MLOps strategy adopts security as a default
posture and embeds high-assurance practices throughout the
ML lifecycle. Regular testing using established adversarial
simulation tools and tailored threat scenarios can help un-
cover and remediate vulnerabilities before they lead to critical
failures. Further investigation is needed to identify optimal
strategies for streamlining configuration management, contin-
uous patching, and resilience assessments across the MLOps
ecosystem. This proactive approach enables organizations to
anticipate, disrupt, and adapt to evolving adversarial threats.
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G. Open Source vs. Closed Source
An important question in securing MLOps is how to balance

openness with security when comparing closed-source and
open-source approaches. Publicly accessible code fosters col-
laborative innovation but may also provide adversaries with in-
sights into system architecture. Conversely, limited disclosure
can hinder attackers but may reduce transparency and erode
user trust. Further research should explore how community-
driven governance, selective disclosure, and cryptographic
verification can preserve the benefits of open development
while reducing reconnaissance risks. By striking this balance,
organizations can maintain stakeholder trust and safeguard
operational integrity.

H. Cultivating Cyber-Hygiene Among MLOps Practitioners
Developers, DevOps engineers, and data scientists often

work in silos, unintentionally introducing security risks in
MLOps environments. While password encryption and secure
networking are crucial, practitioners also need training in
secure coding [190], proactive vulnerability management, and
regular data backups. Further research is needed to assess
the effectiveness of training methods, incentive structures,
and policies in fostering a security-oriented culture at both
organizational and societal levels.

I. Balancing Transparency with Trust
Organizations often publish white papers and technical re-

ports to showcase their commitment to ethical and responsible
AI. However, excessive disclosure of MLOps infrastructure
can provide adversaries with a blueprint for exploitation. Re-
searchers must develop frameworks that promote transparency
in fairness criteria and privacy protections without revealing
sensitive operational details. Future research should focus on
defining indicators of responsible AI that offer public and
regulatory assurance without compromising system security.
A well-balanced transparency model can help organizations
build trust while safeguarding confidential information.

J. The Challenge of Copyright, Privacy, and Compliance
Generative AI models may unintentionally expose copy-

righted or sensitive personal data, leading to significant legal
consequences and reputational damage. When models con-
tinuously train on real or user-provided data, issuing dis-
claimers provides only a minimal level of protection [252].
Scholars should develop comprehensive solutions that include
frequent model audits, automated data validation, and tightly
controlled input and output streams. These measures can
help AI advancements comply with legal requirements while
safeguarding user privacy and intellectual property. Further
research should enhance auditing processes, establish measur-
able compliance benchmarks, and design robust fail-safes to
minimize liability in high-risk AI applications.

Protecting MLOps ecosystem requires a holistic strategy
that combines technological solutions with organizational best
practices. By embracing rigorous benchmarking, conducting
thorough red-team assessments, and establishing frameworks
that prioritize security from the onset, organizations can better
defend their MLOps ecosystems against emerging attacks.

VII. CONCLUSION

In recent years, MLOps has fundamentally reshaped how
machine learning models are developed, deployed, and main-
tained. It offers substantial advantages, including enhanced
scalability, reproducibility, rapid deployment, and improved
team collaboration. However, the acceleration of development
to deployment cycles, combined with increased automation
and highly interconnected workflows, significantly expands the
attack surface. This heightens the risk of vulnerabilities and
security breaches. As machine learning becomes increasingly
embedded in critical systems, these trends underscore the
urgent need for cybersecurity frameworks that can evolve
alongside technological advancements.

This study highlights that while MLOps delivers critical
operational benefits, it also introduces security challenges that
demand focused attention. Leveraging the MITRE ATLAS
framework for AI-specific threats, we present a structured tax-
onomy of vulnerabilities spanning the entire MLOps lifecycle,
from data collection to deployment. Insights from red-team
exercises and real-world incidents illustrate how adversaries
exploit both user-level and system-level weaknesses. To ad-
dress these threats, we propose targeted mitigation strategies
informed by established frameworks and best practices. These
recommendations offer actionable guidance for improving
MLOps security and identifying priorities for future research.

As MLOps adoption continues to grow, organizations must
embrace a proactive security posture by embedding robust
practices early in their machine learning workflows. By im-
plementing the frameworks and recommendations outlined
in this work, they can more effectively safeguard models,
maintain stakeholder confidence, and ensure that machine
learning continues to support secure, ethical, and responsible
innovation. In doing so, they establish a resilient foundation for
long-term security, sustained innovation, and adaptive growth
in a rapidly evolving threat landscape.
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