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Chengxi Li, Member, IEEE, Ming Xiao, Senior Member, IEEE, and Mikael Skoglund, Fellow, IEEE

Abstract—In this paper, we investigate the problem of dis-
tributed learning (DL) in the presence of Byzantine attacks. For
this problem, various robust bounded aggregation (RBA) rules
have been proposed at the central server to mitigate the impact
of Byzantine attacks. However, current DL methods apply RBA
rules for the local gradients from the honest devices and the
disruptive information from Byzantine devices, and the learning
performance degrades significantly when the local gradients of
different devices vary considerably from each other. To overcome
this limitation, we propose a new DL method to cope with
Byzantine attacks based on coded robust aggregation (CRA-DL).
Before training begins, the training data are allocated to the
devices redundantly. During training, in each iteration, the honest
devices transmit coded gradients to the server computed from
the allocated training data, and the server then aggregates the
information received from both honest and Byzantine devices
using RBA rules. In this way, the global gradient can be
approximately recovered at the server to update the global
model. Compared with current DL methods applying RBA rules,
the improvement of CRA-DL is attributed to the fact that the
coded gradients sent by the honest devices are closer to each
other. This closeness enhances the robustness of the aggregation
against Byzantine attacks, since Byzantine messages tend to be
significantly different from those of honest devices in this case. We
theoretically analyze the convergence performance of CRA-DL.
Finally, we present numerical results to verify the superiority
of the proposed method over existing baselines, showing its
enhanced learning performance under Byzantine attacks.

Index Terms—Byzantine attacks, convergence analysis, dis-
tributed learning, gradient coding, robust aggregation.

I. INTRODUCTION

D ISTRIBUTED learning (DL) has recently attracted sig-
nificant attention [1], [2]. In DL, the central server acts

as a central processor with access to a very large dataset. To
accelerate training on this large dataset, the server distributes
the computational workload to multiple devices, which func-
tion as worker nodes. This is a common practice in distributed
computing for machine learning applications. Compared to
training on a single device, DL leverages the computational
resources of various edge devices, thereby increasing training
efficiency [3], [4]. Typically, the training process of DL
involves multiple iterations. In each iteration, the server first
sends the global model to the devices. After receiving the
global model, each device computes the local gradient based
on its local dataset and transmits the local gradient to the
server. The server aggregates the local gradients from all
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devices to obtain the global gradient to update the global
model [5].

Due to the distributed nature of the DL system, it is unreal-
istic for the server to continuously monitor the operational
status of the devices to ensure they function properly at
all times. Issues such as computation errors, crashes, and
stalled processes may arise during training [6]. Besides, some
external attackers may compromise the devices before the
deployment of the system by injecting malicious firmware [7].
These malfunctioning or compromised devices send incorrect
messages during the training, which are known as Byzantine
devices [8]–[12]. DL systems affected by them are said to
be under Byzantine attacks. To deal with Byzantine attacks,
current DL approaches can be classified into two categories
as follows.

In the first category, various aggregation rules are designed
at the server, which are robust to the Byzantine attacks.
For instance, in [13], coordinate-wise median and trimmed
mean are adopted to aggregate the information from the
devices, and the error rates for strongly convex, non-strongly
convex, and smooth non-convex functions are analyzed. In
[14], a robust iterative clipping aggregation rule is proposed,
where momentum is incorporated to deal with time-coupled
Byzantine attacks. In [15], the geometric median is used
to aggregate the messages from the devices, resulting in a
variant of the typical gradient descent method. In [16], a
fast aggregation method is proposed that removes outliers
in the messages uploaded by the devices to obtain local
gradients closer to the true ones. In [17], a trimmed mean-
based approach that is also dimensionally Byzantine-resilient
is proposed, which is demonstrated to have nearly linear
time complexity. In [6], the messages from the devices are
aggregated using majority-based and squared-distance-based
methods, where the vectors that minimize the distances to
their closest vectors are selected as trustworthy. In [18], a new
aggregator at the server is designed based on minimization
of Huber loss, which attains enhanced robustness under a
certain ratio of Byzantine devices under the independent and
identically distributed (i.i.d) assumption. In [19], it is shown
that most of the above state-of-the-art robust aggregation rules
are all robust bounded aggregation (RBA) rules, where the
bias between the aggregation result and the average of the
messages from the honest devices is bounded by the the
largest deviation of the messages from the honest devices.
Although current DL methods with RBA rules at the server
can achieve satisfactory Byzantine resilience under certain
conditions, they have a significant shortcoming: degradation
of learning performance when the local gradients of different
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devices vary considerably. This degradation occurs because the
input to the RBA rules includes both the local gradients from
honest devices and the disruptive information from Byzantine
devices. When the local gradients of different devices vary
significantly due to heterogeneity among subsets in the training
data, the disruptive information from the Byzantine devices
can more easily mislead and manipulate the output of the
aggregator.

In the second category, gradient coding methods are de-
veloped, where the training dataset is divided into subsets,
and these subsets are redundantly assigned to devices before
training. In this way, each device obtains multiple subsets.
Leveraging this redundancy, in each training iteration, each
device computes local gradients corresponding to its assigned
subsets and encodes them into a coded gradient. Honest de-
vices transmit the coded gradients to the server, while Byzan-
tine devices send incorrect messages. Based on the received
messages from all devices, the server can fully identify the
Byzantine devices, enabling the accurate recovery of the true
global gradient as if no Byzantine devices were present. For
instance, in [20], coding techniques are combined with group-
wise verification to deal with Byzantine attacks, specifically
designed for matrix multiplication tasks in DL. In [21], a
method specifically designed for matrix-vector multiplication
in DL is proposed based on error correction with real numbers
under Byzantine attacks, which is proved to be information-
theoretically optimal with deterministic guarantees. For more
general DL problems, in [22], based on fractional repetition
allocation of the training data, erroneous messages from the
Byzantine devices are detected and transformed into erasures
at the cost of additional local computations of the server
and additional communication in each iteration. In [23], the
encoding of the local gradients is designed by using the
fractional repetition code and cyclic repetition code, and the
decoders are proposed based on majority vote and Fourier
technique. However, these gradient coding techniques still
require a very high level of redundancy in the allocation of
training data among the devices to fully recover the true global
gradient in each iteration, leading to significant computation
and storage burdens on the devices.

In addition to dealing with Byzantine devices in DL, gradi-
ent coding techniques have also been explored to address other
problems, such as the non-responsive devices in DL commonly
referred to as stragglers [24]–[30]. Before training begins, the
training data are allocated redundantly across devices. During
training, non-straggler devices transmit coded gradients to the
server in each iteration based on the local training data, while
stragglers do not transmit anything. The server can decode
and recover the true global gradient using the received coded
gradients from the non-stragglers. Depending on whether the
true global gradient is recovered exactly or approximately,
current gradient coding techniques for handling stragglers can
be classified into exact gradient coding techniques [24]–[26]
and approximate gradient coding techniques [27]–[30]. Given
that machine learning algorithms are inherently robust to noise,
it may not be necessary to fully recover the true global gradient
in each iteration. Obtaining an approximate version of the
true global gradient may suffice for training machine learning

models. As a result, approximate gradient coding techniques
have gained significant attention recently, which require only
a modest level of redundancy in the allocation of training
data and induce lower computational and storage burdens on
the devices. Among the existing approximate gradient coding
techniques, stochastic gradient coding (SGC), originally pro-
posed in [29], requires very simple encoding and decoding
techniques while achieving satisfactory learning performance.
In SGC, the training data are allocated to devices in a pair-
wise balanced manner, and this method has been applied in
various DL scenarios with stragglers [30], [31]. Although SGC
was originally proposed to cope with the stragglers in DL,
its advantages could also be leveraged to combat Byzantine
attacks in DL. Nonetheless, leveraging the strengths of SGC
to improve Byzantine resilience remains a significant challenge
and is yet to be thoroughly investigated.

To overcome the shortcomings of existing techniques de-
signed for DL under Byzantine attacks, we propose a new
DL method based on coded robust aggregation (CRA-DL), by
simultaneously exploiting the advantages of SGC and RBA
rules. In CRA-DL, before training begins, the training data are
divided into subsets and allocated redundantly to the devices in
a pair-wise balanced manner, motivated by the SGC scheme.
In each training iteration, the server transmits the global model
to all devices, and each device computes the local gradients
based on its local training data subsets. Subsequently, the local
gradients corresponding to different subsets are encoded to
generate a single vector on each device, known as the coded
gradient. Each honest device transmits its coded gradient to the
server, while the Byzantine devices send arbitrarily incorrect
messages. The server then receives the vectors from all devices
and applies an RBA rule to these messages, which yields
a final global update that approximates the global gradient.
Finally, the global model is updated at the server with the
global update. We analyze the convergence performance of
CRA-DL. Additionally, we present ample numerical results
to verify that CRA-DL outperforms existing baselines. Our
contributions are listed as follows:

1) We propose a new method, i.e., CRA-DL, to deal with
the DL problem under Byzantine attacks. In CRA-DL,
each device computes local gradients on its data subsets
and encodes them into a single coded vector. This
redundancy and encoding ensure that the coded vectors
from honest devices are more similar, which guarantees
that the RBA rules at the server derive a more accurate
approximation of the global gradient under Byzantine
attacks. This is a meta algorithm that can be employed
with any RBA rules proposed in the literature with
enhanced learning performance.

2) We analyze the convergence performance of CRA-DL
for non-convex loss functions and show that the asymp-
totic learning error diminishes with greater redundancy
in data allocation.

3) Our numerical results verify that CRA-DL significantly
improves learning performance and enhances robustness
to Byzantine attacks in DL in various scenarios.

The novelty of this work is summarized as follows:
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1) Compared to existing methods that directly apply RBA
rules at the server to aggregate local gradients [6], [13]–
[19], the proposed method aggregates coded vectors at
the server using RBA rules to generate the global model
update. Since the coded vectors from honest devices
are more similar, the robustness of the aggregation at
the server is enhanced, leading to a more accurate
approximation of the global gradient under Byzantine
attacks, thereby improving learning performance.

2) In traditional gradient coding approaches dealing with
Byzantine attacks [20]–[23], the primary objective is
to fully identify Byzantine devices at the server in
order to accurately recover the true global gradient as
if no Byzantine devices were present. In contrast, the
key idea in our method is to apply RBA rules at the
server to aggregate coded gradients, allowing for an
approximate recovery of the global gradient, which is
then used to update the global model. Compared to
current gradient coding methods, the proposed method
attains Byzantine robustness with a significantly lower
level of redundancy in the allocation of training data
among devices. In other words, the proposed method
imposes lower computational and storage burdens on the
devices.

The structure of this paper is as follows. In Section II, we
introduce the problem model. In Section III, we propose our
method and describe the implementation procedure. In Section
IV, we present the performance analysis from a theoretical
perspective. The numerical results are shown in Section V to
demonstrate the superior performance of the proposed method.
Finally, concluding remarks are provided in Section VI.

II. PROBLEM MODEL

The considered problem is introduced as follows. There are
N devices and a central server in the DL system, whose goal
is to train a model by solving the optimization problem [1],
[23], [32]:

x∗ = arg min
x∈RD

F (x) , (1)

where x represents the model parameter vector, and F (x) is
the overall training loss defined as

F (x) =
∑
ϱ∈D

l (x, ϱ), (2)

where l (x, ϱ) : RD → R represents the training loss based on
the training data sample ϱ in the training dataset D. Without
specification, all vectors in this paper are column vectors.

Under the typical DL framework [33], before the training
starts, the training dataset D is divided into N non-overlapping
subsets and allocated to N devices so that each device obtains
one subset. During the training, in iteration t, the current
global model xt is transmitted from the server to the devices.
Then, each device computes the local gradient corresponding
to its subset and sends the local gradient to the server. After
receiving the local gradients from the devices, the server
aggregates them to form the global gradient to update the
global model and to obtain xt+1 [23].

In the above system, some devices may be under Byzantine
attacks due to malicious attacks or malfunction of the devices
[8]–[12]. Let us define Bt as the set containing all indices
of the Byzantine devices in iteration t, and use Ht as the
set containing all indices of the honest devices in iteration t.
During each iteration, the honest devices transmit truth-worthy
messages to the server as expected, while the Byzantine
devices transmit arbitrarily incorrect information to the server.
Without prior knowledge of the Byzantine devices, it is as-
sumed that in each iteration, a certain fraction α of the devices
are Byzantine, while the rest are honest [19]. The server does
not know the identities of the devices beforehand and only
knows the value of α [19]. The identities of the devices are
considered to be random and independent across iterations
[23], which implies that the identities of the devices are non-
persistent across iterations. If the identities were persistent,
the server could potentially identify the Byzantine devices by
accumulating information over time. From this perspective, the
non-persistent case represents the strongest form of Byzantine
attacks.

For the above problem, our aim is to enhance the learning
performance under Byzantine attacks.

III. THE PROPOSED METHOD: CRA-DL
In this section, we describe the implementation details of

the proposed CRA-DL method.
Before the training starts, the training dataset D is divided

into M subsets, represented as D = {D1, . . . ,DM}. These
subsets are allocated to N devices in a pair-wise balanced
manner, motivated by the advantages of the SGC scheme [29].
Specifically, each device i holds r subsets from the total set
of subsets1. The number of subsets held by both device i and
device j is r2

M , for i ̸= j. Let us denote the number of devices
that hold subset Dk as dk, ∀k. We define a data allocation
matrix S, where s(i, k) is the (i, k)-th element. If s(i, k) = 1,
subset Dk is allocated to device i; otherwise, it is not. Based
on the above setting, the problem in (1) can be equivalently
expressed as:

x∗ = arg min
x∈RD

F (x) ≜ arg min
x∈RD

M∑
k=1

fk (x), (3)

where fk(x) : RD → R denotes the training loss associated
with subset Dk:

fk(x) =
∑
ϱ∈Dk

l (x, ϱ). (4)

Next, during the training process, in iteration t, the
server sends the current global model xt to all de-
vices. After that, each device i computes the local
gradients associated with its local subsets and obtains
{∇fk (x

t) |k ∈ {1, ...,M} , s (i, k) ̸= 0}. Based on that, de-
vice i encodes the local gradients into a single vector as

gt
i =

∑
k∈{k|s(i,k) ̸=0}

1

dk
∇fk

(
xt
)
. (5)

1We focus on the case where the same number of subsets is allocated to
each device. It is worth noting that the analysis in this paper can be easily
extended to the case where different numbers of subsets are assigned to each
device.
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Table I
THE VALUES OF C2

α OF SOME COMMONLY USED RBA RULES [19]

RBA Rules C2
α

Coordinate-wise median [13] 1
2(1−α)2

[
min

{
2
√
N −Nα,

√
D
}]2

Trimmed mean [13] 2α(1−α)

(1−2α)2

Geometric median [15]
[
2(1−α)
1−2α

]2
Krum [6] 2

(
1 +

√
1−α
1−2α

)2

Phocas [17] 4 +
12α(1−α)

(1−2α)2

FABA [16] 4
(

Nα
N−Nα

+ N+1−Nα
N−Nα

Nα
N−3Nα

)

If device i is honest, i.e., i ∈ Ht, the coded gradient gt
i is sent

to the server, ∀i. If device j is a Byzantine device, i.e., j ∈ Bt,
it transmits incorrect information to the server, denoted by bt

j ,
which is the same size as gt

j but contains different elements.
With the received messages from the devices, denoted by
{{gt

i}i∈Ht ,
{
bt
j

}
j∈Bt}, the server adopts an RBA rule A(·)

to yield the global model update as

ĝt = A
({

gt
i

}
i∈Ht ,

{
bt
j

}
j∈Bt

)
, (6)

which is an approximate version of the global gradient. Here,
RBA rules are utilized, considering that various state-of-the-
art robust aggregation rules with recent advances fall within
their scope [19]. RBA rules have been well-defined in [19],
and the definition is provided below.

Definition 1 (RBA rules [19]). Suppose there are N1 messages
z1, ..., zN1

∈ RD from N1 honest devices and N2 messages
z̃1, ..., z̃N2

∈ RD from N2 Byzantine devices. The fraction of
Byzantine devices is α = N2

N1+N2
. An aggregation rule A(·) is

an RBA rule, if the difference between the aggregation result
and the average of the messages from the honest devices is
bounded by∥∥∥A({zi}i∈{1,...,N1}, {z̃j}j∈{1,...,N2}

)
− z̄
∥∥∥2 ⩽ C2

ας, (7)

where z̄ is the average of the messages from the honest

devices denoted by z̄ = 1
N1

N1∑
i=1

zi, ς is defined as ς =

maxi∈{1,...,N1}∥z̄− zi∥2, and C2
α is a constant determined

by the value of α. The values of C2
α for some commonly used

RBA rules are provided in Table I [19], where N = N1+N2.
From (7), it can be seen that a more accurate aggregation
result can be achieved when the messages sent by the honest
devices are closer to each other.

Note that the proposed method is a meta-algorithm that can
be adapted based on the choice of any particular RBA rule.
Consequently, various state-of-the-art RBA rules, including
those introduced in [6], [13]–[17], [19], can be applied within
our proposed method.

At the end of iteration t, the global model is updated at the
server as

xt+1 = xt − γtĝt, (8)

where γt is the learning rate. The paradigm of the proposed
method is shown as Fig. 1, which is also presented as
Algorithm 1.

Algorithm 1: CRA-DL
Input: Training data D = {D1, . . . ,DM}, learning

rate {γt}.
Output: Trained model xT+1.
Initialization: Initialize the model x0.
for t = 0 to T do

Server sends the global model xt to all devices.
for each device i in parallel do

Compute local gradients:
{∇fk(x

t)|s(i, k) = 1}.
Encode local gradients as (5).
if i ∈ Ht (honest) then

Transmit gt
i to the server.

else
Transmit an incorrect vector bt

i to the
server.

end
end
Server receives {gt

i}i∈Ht and {bt
j}j∈Bt .

Aggregate the messages using an RBA rule as (6).
Update the model as (8).

end
return xT+1

From a high-level perspective, in the proposed method, the
server aggregates the coded gradients and incorrect messages
from the Byzantine devices using RBA rules, rather than
directly aggregating the local gradients with the incorrect
messages from the Byzantine devices. In this way, by lever-
aging the redundancy in data allocation, coded gradients are
closer to each other compared to the original local gradients.
By increasing the redundancy in data allocation, the coded
gradients become increasingly similar. This will be analytically
demonstrated in Section IV. According to the properties of
RBA rules implied by Definition 1, the difference between
the aggregation output and the average of the messages from
the honest devices is reduced by increasing the redundancy in
data allocation. In this way, a more accurate global gradient
can be recovered at the server under Byzantine attacks, which
is then used to update the global model. This process improves
learning performance and enhances the robustness against
Byzantine attacks.

IV. PERFORMANCE ANALYSIS

In this section, we analyze the convergence performance of
CRA-DL. First, let us state the assumptions, which have been
widely used in the related field.

Assumption 1. The overall training loss F is L-smooth, which
indicates the following inequality [34], [35]:

F (x) ≤ F (y) + ⟨∇F (y) ,x− y⟩+ L

2
∥x− y∥2,∀x,y.

(9)
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Figure 1. The paradigm of the proposed method.

Assumption 2. The heterogeneity among the subsets
{D1, ...,DM} is bounded, indicating [36]∥∥∥∥∇fi (x)−

1

M
∇F (x)

∥∥∥∥2 ⩽ β2,∀i,∀x. (10)

Assumption 3. For some constant F ∗, it holds that [37]

F (x) ⩾ F ∗,∀x, (11)

which implies the overall training loss is lower bounded by
F ∗.

Let us present two lemmas which aid the derivation of the
main theorem.

Lemma 1. The maximum difference between any two coded
gradients can be bounded as

max
i,j∈{1,...,N}

∥∥gt
i − gt

j

∥∥2
⩽8

1

d2min

(
r − r2

M

)2(
β2 +

1

M2

∥∥∇F
(
xt
)∥∥2) , (12)

where dmin ≜ min {d1, ..., dM}.

Proof. Please see Appendix A.

Remark 1. When the values of d1, . . . , dM do not vary
significantly from each other, it holds that dminM ≈ Nr.
Under this condition, we can rewrite (12) as

max
i,j∈{1,...,N}

∥∥gt
i − gt

j

∥∥2
⩽ 8

(M − r)
2

N2

(
β2 +

1

M2

∥∥∇F
(
xt
)∥∥2) . (13)

From (13), it can be observed that as the value of r
increases, meaning greater redundancy in data allocation, the

maximum difference between any two coded gradients is
bounded by a smaller value, which implies that the coded
gradients are closer to each other. As a special case, when
r = M , the maximum difference between any two coded
gradients becomes zero. In this case, all coded gradients sent
by the honest devices are identical. In contrast, in existing
methods based on RBA rules, there is no data allocation
redundancy, and the maximum difference between any two
local gradients sent by honest devices is determined by β, as
defined in Assumption 2. Without loss of generality, in the case
where M = N , device i transmits ∇fi (x

t) to the server, and
device j transmits ∇fj (x

t) to the server, for all i, j. In this
case, the maximum difference between any two local gradients
sent by the honest devices can be bounded as follows:

max
i,j

∥∥∇fi
(
xt
)
−∇fj

(
xt
)∥∥2

⩽max
i,j

∥∥∥∥∇fi
(
xt
)
− 1

M
∇F

(
xt
)
+

1

M
∇F

(
xt
)
−∇fj

(
xt
)∥∥∥∥2

⩽2max
i

∥∥∥∥∇fi
(
xt
)
− 1

M
∇F

(
xt
)∥∥∥∥2

+ 2max
j

∥∥∥∥fj (xt
)
− 1

M
∇F

(
xt
)∥∥∥∥2 ⩽ 4β2. (14)

By comparing (13) and (14), it can be seen that the maximum
difference among the messages sent by the honest devices
can be reduced in the proposed method by increasing the
level of redundancy in the training data allocation, potentially
approaching zero. In contrast, this reduction is not possible in
existing DL methods with RBA rules. Note from (7) that a
more accurate version of the global gradient can be obtained
at the server when the messages sent by honest devices are
closer to each other, when applying RBA rules in both the
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proposed method and the existing DL methods. Based on that,
the proposed method is more likely to achieve better learning
performance by adopting a global model update that more
accurately approximates the true global gradient, while the
learning performance of existing DL methods with RBA rules
deteriorates as the variation among local gradients increases.

Lemma 2. Let us denote the average of the messages from
the honest devices in iteration t as

ḡt =
1

|Ht|
∑
i∈Ht

gt
i . (15)

We can bound ḡt conditioned on the previous iterations as

E
(∥∥ḡt

∥∥2∣∣∣F t
)

⩽
(ϕ1 − ϕ2) 2r

2

(1− α)
2
Nd2min

[
β2 +

1

M2

∥∥∇F
(
xt
)∥∥2]

+
ϕ2

(1− α)
2
N2

∥∥∇F
(
xt
)∥∥2, (16)

where E ( ·| F t) denotes the expectation conditioned on the
previous iterations 0, ..., t− 1, and ϕ1 and ϕ2 are defined as
the following constants:

ϕ1 ≜ 1− α, ϕ2 ≜
(1− α) (N −Nα− 1)

N − 1
. (17)

Proof. Please see Appendix B.

Next, based on Lemma 1 and Lemma 2, we characterize
the convergence performance of the proposed method in the
following theorem.

Theorem 1 (Convergence performance of CRA-DL with
fixed learning rates). Based on Assumptions 1-3, if Cα <

dminM

2
√
2N

(
r− r2

M

) , with fixed learning rates γt = γ = λ√
T+1

,

λ > 0, for T >
(

λρ2

ρ1

)2
− 1, CRA-DL converges as

1

T + 1

T∑
t=0

E
[∥∥∇F

(
xt
)∥∥2]

⩽
F
(
x0
)
− F ∗

λ
√
T + 1ρ1 − λ2ρ2

+

√
T + 1ρ3 + λρ4√
T + 1ρ1 − λρ2

, (18)

where

ρ1 ≜
1

N
− 2

(
r − r2

M

) √
2C2

α

dminM
, (19)

ρ2 ≜
(ϕ1 − ϕ2) 2r

2L

(1− α)
2
Nd2minM

2
+

ϕ2L

(1− α)
2
N2

+ 8
LC2

α

d2minM
2

(
r − r2

M

)2

, (20)

ρ3 ≜
β2M

√
2C2

α

dmin

(
r − r2

M

)
, (21)

ρ4 ≜
(ϕ1 − ϕ2) 2r

2β2L

(1− α)
2
Nd2min

+
8C2

αβ
2L

d2min

(
r − r2

M

)2

. (22)

Proof. From Assumption 1, we can derive

E
[
F
(
xt+1

)∣∣F t
]

⩽F
(
xt
)
+ E

[〈
∇F

(
xt
)
,xt+1 − xt

〉∣∣F t
]

+
L

2
E
(∥∥xt+1 − xt

∥∥2∣∣∣F t
)

⟨1⟩
=F

(
xt
)
− γtE

[〈
∇F

(
xt
)
, ĝt
〉∣∣F t

]
+

L

2
E
(∥∥γtĝt

∥∥2∣∣∣F t
)

=F
(
xt
)
− γtE

[〈
∇F

(
xt
)
, ĝt − ḡt + ḡt

〉∣∣F t
]

+
L(γt)

2

2
E
(∥∥ĝt − ḡt + ḡt

∥∥2∣∣∣F t
)

⟨2⟩
⩽F

(
xt
)
− γtE

[〈
∇F

(
xt
)
, ĝt − ḡt

〉∣∣F t
]

− γtE
[〈

∇F
(
xt
)
, ḡt
〉∣∣F t

]
+ L

(
γt
)2E(∥∥ĝt − ḡt

∥∥2∣∣∣F t
)
+ L

(
γt
)2E(∥∥ḡt

∥∥2∣∣∣F t
)

⟨3⟩
⩽F

(
xt
)
+ γt

η∥∇F (xt)∥2 + 1
ηE
[
∥ĝt − ḡt∥2

∣∣∣F t
]

2

− γt 1

N

∥∥∇F
(
xt
)∥∥2

+ L
(
γt
)2E(∥∥ĝt − ḡt

∥∥2∣∣∣F t
)
+ L

(
γt
)2E(∥∥ḡt

∥∥2∣∣∣F t
)
,

(23)

∀η > 0, where ⟨1⟩ is obtained by substituting (8) into (23),
⟨2⟩ is derived from the basic inequality given as (43), and ⟨3⟩
holds due to Young’s Inequality and the following relationship:

E
[
ḡt
∣∣F t

]
=

1

N
∇F

(
xt
)
. (24)

In (23), we can bound E
[
∥ĝt − ḡt∥2

∣∣∣F t
]

as

E
[∥∥ĝt − ḡt

∥∥2∣∣∣F t
]
⩽ C2

αE
[
ςt
∣∣F t

]
⩽ C2

α max
i,j∈{1,...,N}

∥∥gt
i − gt

j

∥∥2, (25)

where ςt ≜ maxi∈Ht∥ḡt − gt
i∥

2, the first inequality is
obtained from (6), (15) and Definition 1, and the second
inequality is due to the inequality maxi∈Ht∥ḡt − gt

i∥
2 ⩽

maxi,j∈Ht

∥∥gt
i − gt

j

∥∥2 ⩽ maxi,j∈{1,...,N}
∥∥gt

i − gt
j

∥∥2. Substi-
tuting Lemma 1 into (25) yields

E
[∥∥ĝt − ḡt

∥∥2∣∣∣F t
]

⩽
8C2

α

d2min

(
r − r2

M

)2 [
β2 +

1

M2

∥∥∇F
(
xt
)∥∥2] . (26)

After that, substituting (26) and (16) in Lemma 2 into (23),
we have

γt

 1

N
−

η +
8C2

α

ηM2d2
min

(
r − r2

M

)2
2

∥∥∇F
(
xt
)∥∥2

− L
(
γt
)2∥∥∇F

(
xt
)∥∥2{ (ϕ1 − ϕ2) 2r

2

(1− α)
2
Nd2minM

2
+

ϕ2

(1− α)
2
N2

+ C2
α8

1

d2minM
2

(
r − r2

M

)2
}

⩽F
(
xt
)
− E

[
F
(
xt+1

)∣∣F t
]
+ γt 1

η

4β2C2
α

d2min

(
r − r2

M

)2
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+ L
(
γt
)2{ (ϕ1 − ϕ2) 2r

2β2

(1− α)
2
Nd2min

+
8C2

αβ
2

d2min

(
r − r2

M

)2
}
.

(27)

In (27), by setting η = 2
(
r − r2

M

) √
2C2

α

dminM
, it holds that

1
N −

η+
8C2

α
ηM2d2

min

(
r− r2

M

)2

2 > 0 under the condition Cα <
dminM

2
√
2N

(
r− r2

M

) . Based on that, we can rewrite (27) as

γtρ1
∥∥∇F

(
xt
)∥∥2 − (γt

)2
ρ2∥∇F (x)∥2

⩽F
(
xt
)
− E

[
F
(
xt+1

)∣∣F t
]
+ γtρ3 +

(
γt
)2
ρ4, (28)

where ρ1, ρ2, ρ3 and ρ4 are all positive constants defined as
(19)-(22).

Taking full expectation on both sides of (28) yields

γtρ1E
(∥∥∇F

(
xt
)∥∥2)− (γt

)2
ρ2E

(
∥∇F (x)∥2

)
⩽ E

[
F
(
xt
)]

− E
[
F
(
xt+1

)]
+ γtρ3 +

(
γt
)2
ρ4. (29)

Rearranging the terms in (29) and taking average over T
iterations, we can obtain

1

T + 1

T∑
t=0

(
γtρ1 −

(
γt
)2
ρ2

)
E
[∥∥∇F

(
xt
)∥∥2]

⩽
F
(
x0
)
− E

[
F
(
xT+1

)]
T + 1

+
1

T + 1

T∑
t=0

[
γtρ3 +

(
γt
)2
ρ4

]
⩽
F
(
x0
)
− F ∗

T + 1
+

1

T + 1

T∑
t=0

[
γtρ3 +

(
γt
)2
ρ4

]
, (30)

where Assumption 3 is applied to derive the last inequality.

With fixed learning rates γt = γ = λ√
T+1

, for T >
(

λρ2

ρ1

)2
−

1, we can rewrite (30) as

1

T + 1

T∑
t=0

E
[∥∥∇F

(
xt
)∥∥2]

⩽
F
(
x0
)
− F ∗

(T + 1) (γρ1 − γ2ρ2)
+

ρ3 + γρ4
ρ1 − γρ2

=
F
(
x0
)
− F ∗

λ
√
T + 1ρ1 − λ2ρ2

+

√
T + 1ρ3 + λρ4√
T + 1ρ1 − λρ2

, (31)

which completes the proof.

Remark 2. In Theorem 1, on the right-hand side of (18), the
asymptotic learning error approaches

ρ3
ρ1

≈
β2M2

√
2C2

α

(
1− r

M

)
1− 2

(
1− r

M

)√
2C2

α

, (32)

as T approaches infinity, where the approximation holds based
on dminM ≈ Nr when the values of d1, . . . , dM do not
vary significantly from each other. From (32), as r increases,
indicating a greater redundancy in the data allocation, the
asymptotic learning error diminishes. In the special case
where r = M , the asymptotic learning error equals zero, and
CRA-DL converges without solution error. This aligns with
our intuition that when each device holds a copy of the entire
training dataset, even in the presence of Byzantine devices,

the true global gradient can be recovered at the server if
the number of honest devices exceeds that of the Byzantine
devices.

Moreover, as Cα decreases, implying enhanced robustness
of the RBA rules, the asymptotic learning error decreases as
well. Since CRA-DL is a meta-algorithm that can be employed
with any RBA rules, it is promising to achieve better learning
performance when incorporating enhanced RBA rules.

Theorem 2 (Convergence performance of CRA-DL with
decaying learning rates). Based on Assumptions 1-3, if Cα <

dminM

2
√
2N

(
r− r2

M

) , with decaying learning rates

γt =
ρ1 −

√
ρ21 − 4ρ2

γ0ρ1−(γ0)2ρ2√
t+1

2ρ2
, (33)

for γ0 < ρ1

2ρ2
, CRA-DL converges as

min
0⩽t⩽T

E
[∥∥∇F

(
xt
)∥∥2]

⩽
F
(
x0
)
− F ∗[

γ0ρ1 − (γ0)
2
ρ2

]√
T + 1

+
ρ3

ρ1 − γ0ρ2

+

(
γ0
)2
ρ4 [2 + log (T + 1)][

γ0ρ1 − (γ0)
2
ρ2

]√
T + 1

. (34)

Proof. Similar as the proof of Theorem 1, we can derive (30).
With the learning rates in (33), we have

γtρ1 −
(
γt
)2
ρ2 =

γ0ρ1 −
(
γ0
)2
ρ2√

t+ 1
, (35)

where γt+1 < γt under the condition γ0 < ρ1

2ρ2
. From (30)

and (35), we have

min
0⩽t⩽T

E
[∥∥∇F

(
xt
)∥∥2]

⩽

1
T+1

T∑
t=0

(
γtρ1 − (γt)

2
ρ2

)
E
[
∥∇F (xt)∥2

]
1

T+1

T∑
t=0

(
γtρ1 − (γt)

2
ρ2

)

⩽

F(x0)−F∗

T+1 + 1
T+1

T∑
t=0

[
γtρ3 + (γt)

2
ρ4

]
1

T+1

T∑
t=0

(
γtρ1 − (γt)

2
ρ2

)

=
F
(
x0
)
− F ∗

T∑
t=0

γ0ρ1−(γ0)2ρ2√
t+1

+

T∑
t=0

[
γtρ3 + (γt)

2
ρ4

]
T∑

t=0

γ0ρ1−(γ0)2ρ2√
t+1

⩽
F
(
x0
)
− F ∗[

γ0ρ1 − (γ0)
2
ρ2

]√
T + 1

+

T∑
t=0

[
γtρ3 + (γt)

2
ρ4

]
T∑

t=0

γ0ρ1−(γ0)2ρ2√
t+1

, (36)

where the equality is obtained by substituting (33) into (36),
and the last equality is derived from the following inequality:

T∑
t=0

1√
t+ 1

⩾
√
T + 1. (37)
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ρ3
ρ1 − γ0ρ2

≈
β2M2

√
2C2

α

(
1− r

M

)
1− 2

(
1− r

M

)√
2C2

α − γ0
{

(ϕ1−ϕ2)2L

(1−α)2N2 + ϕ2L
(1−α)2N

+ 8
LC2

α

N

(
1− r

M

)2} . (40)

Based on (35), we have

γtρ1 −
(
γt
)2
ρ2 = γt

(
ρ1 − γtρ2

)
=
γ0ρ1 −

(
γ0
)2
ρ2√

t+ 1

⩾γt
(
ρ1 − γ0ρ2

)
, (38)

which indicates γ0

√
t+1

⩾ γt. Based on that, we can bound the
second term on the right hand side of (36) as

T∑
t=0

[
γtρ3 + (γt)

2
ρ4

]
T∑

t=0

γ0ρ1−(γ0)2ρ2√
t+1

⩽

T∑
t=0

[
γ0

√
t+1

ρ3 +
(

γ0

√
t+1

)2
ρ4

]
T∑

t=0

γ0ρ1−(γ0)2ρ2√
t+1

=

T∑
t=0

[
γ0

√
t+1

ρ3

]
T∑

t=0

γ0ρ1−(γ0)2ρ2√
t+1

+

T∑
t=0

[
(γ0)

2

t+1 ρ4

]
T∑

t=0

γ0ρ1−(γ0)2ρ2√
t+1

⩽
ρ3

ρ1 − γ0ρ2
+

(
γ0
)2
ρ4 [2 + log (T + 1)][

γ0ρ1 − (γ0)
2
ρ2

]√
T + 1

, (39)

where the last inequality is derived from (37) and the inequal-

ity
T∑

t=0

1
t+1 ⩽ 2 + log (T + 1). Finally, substituting (39) into

(36) yields Theorem 2.

Remark 3. In Theorem 2, on the right-hand side of (34),
when T approaches infinity, the asymptotic learning error
approaches (40), based on dminM ≈ Nr when the values of
d1, . . . , dM do not vary significantly from each other. When r
increases, i.e., the redundancy of data allocation increases, the
asymptotic learning error diminishes. Specially, the asymptotic
learning error reaches zero for r = M . In addition, by
decreasing the value of Cα, the asymptotic learning error
decreases and better learning performance can be attained
by CRA-DL with decaying learning rates.

Remark 4. We would like to note that the numerical results in
Section V will demonstrate that the asymptotic learning error
in CRA-DL is indeed very close to zero in practice. In other
words, CRA-DL can consistently converge to the optimal point
with almost no solution error across various scenarios.

Remark 5. In Theorem 1 and Theorem 2, the bounds include
the constant Cα. Note that Cα depends on the fraction of
Byzantine devices, i.e., α, as observed from the values of C2

α

for some commonly used RBA rules provided in Table I. Based
on this, the bounds in Theorem 1 and Theorem 2 are both
determined by the fraction of Byzantine devices.

V. NUMERICAL RESULTS

In this section, we demonstrate the performance of the pro-
posed method through numerical results on a linear regression

task with a synthetic dataset. Three commonly encountered
Byzantine attacks are considered, which are listed below:

1) Sign-flipping attack [36], [38]. Each Byzantine device
transmits the true message multiplied by a negative co-
efficient. This coefficient is set to −2 in our simulations.

2) Gaussian attack [36], [38]. Each Byzantine device
transmits a vector of the same size as the true mes-
sage, where the elements are randomly drawn from the
Gaussian distribution N (0, 10000).

3) Sample-duplicating attack [39], [40]. Each Byzantine
device randomly selects an honest device, duplicates the
message of the selected honest device and sends this
message to the server.

For the proposed method, we adopt three RBA rules, namely
coordinate-wise median [13], trimmed mean [13], and Phocas
[17]. For comparison, the following baseline methods are
considered:

• Mean Averaging (MA): The training data are allocated
to the devices non-redundantly, and the server uses the
mean aggregation rule to aggregate the local gradients
from the honest devices and the disruptive messages from
the Byzantine devices.

• RBA-DL: The training data are allocated to the devices
non-redundantly. The server applies RBA rules to the
local gradients from the honest devices and the disruptive
messages from the Byzantine devices.

• DL in the original SGC scheme (SGC-DL): The
training data are allocated to the devices in a pair-
wise balanced manner before training. During training
iterations, the honest devices transmit coded gradients to
the server, and the server aggregates the coded gradients
from the honest devices and the disruptive information
from the Byzantine devices using the mean aggregation
rule.

• Clairvoyant Method: The training data are allocated to
the devices non-redundantly. The server knows the iden-
tities of the devices in each iteration and only aggregates
the local gradients from the honest devices using the
mean aggregation rule.

In the linear regression task, the number of devices is N =
100 and the loss function can be expressed as

F (x) =

m∑
k=1

fk (x), fk (x) =
1

2
(⟨x, zk⟩ − yk)

2
, (41)

where m = 1000, zk ∈ R100, yk ∈ R, k = 1, ..., 1000, and
x ∈ R100. In this problem, the overall dataset D consists
of m = 1000 training data samples {zk, yk}, which are
divided into 1000 subsets, each containing one data sample.
Before the training starts, the training subsets are allocated
uniformly and randomly to the devices so that each device
obtains r subsets, which is an effective approximation of the
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Figure 2. Training loss as a function of the number of iterations for different
methods under various Byzantine attacks. (a) Under Sign-flipping attack. (b)
Under Gaussian attack. (c) Under Sample-duplicating attack.

pair-wise balanced allocation of the subsets. In (41), all the
elements in {z1, . . . , zm} are drawn independently from the
normal distribution N (0, 100). To generate the values of yk,
we first generate a random vector ⌢

x whose 100 elements are
drawn from the standard normal distribution. Accordingly, yk
is generated as yk ∼ N

(〈
zk,

⌢
x
〉
, 1
)

, ∀k. Unless specified,
the learning rate is fixed at γ = 0.001 and we set r = 40 in
our method.

To compare the performance of the proposed method with
the baseline methods, we plot the training loss as a function of
the number of iterations for different methods under various
types of Byzantine attacks in Fig. 2, where a number of RBA
rules are applied for the proposed CRA-DL method and the
baseline RBA-DL method. Under the Sign-flipping attack, we
set α = 0.2; under the Gaussian attack, we set α = 0.03;
and under the Sample-duplicating attack, we set α = 0.4.
It can be observed that the learning performance of MA is
easily influenced by the Byzantine attacks, particularly under
the Sign-flipping and Sample-duplicating attacks, which is
because the disruptive information from Byzantine devices and
the true information from honest devices are treated equally
during aggregation. This aligns with our intuition. Among all
the methods, the proposed method attains the best learning
performance compared to the baseline methods. The advantage
of our method over RBA-DL and SGC-DL lies in its ability to
leverage the strengths of RBA rules and SGC simultaneously.
This improves the robustness of the RBA rules by reducing
the distance among messages sent by honest devices and
more effectively mitigates the negative impact of disruptive
information sent by Byzantine devices. It is worth noting that
the clairvoyant method does not achieve the best learning
performance, even though the server knows the identities of all
devices. This is because the server discards the messages from
Byzantine devices, meaning the data samples allocated to those
devices, without allocation redundancy, cannot be utilized to
update the global model. In contrast, our method allocates
training data redundantly to devices. This allows our method
not only to evade the disruptive information from Byzantine
devices, preventing it from misleading the learning process, but
also to compensate for the missing information from Byzantine
devices with messages from honest devices based on data
allocation redundancy.

To investigate the influence of data allocation redundancy on
the learning performance of our method, we depict the training
loss of CRA-DL as a function of the number of iterations under
various values of r in Fig. 3. To clearly illustrate the trade-
off, we also present the Pareto front between data allocation
redundancy and learning performance under a fixed number
of iterations. In Fig. 3a, the Pareto front is shown after 5
iterations, while in Fig. 3b, it is shown after 10 iterations.
In this scenario, a Sign-flipping attack is considered, and
the coordinate-wise median is adopted as the RBA rule. It
can be observed that as the value of r increases, indicating
greater redundancy in data allocation, the learning perfor-
mance of the proposed method improves. This observation
aligns with both our theoretical analysis in Section IV and our
intuition, which implies that improving learning performance
and enhancing robustness against Byzantine attacks come at
the cost of increased computation and storage burdens on the
devices. In practice, an appropriate trade-off between learning
performance and the computation and storage burdens should
be determined.

To verify that the asymptotic learning error of CRA-DL
is negligible and that CRA-DL can converge to the optimal
point with almost no solution error, we plot the training loss
as a function of the number of iterations for CRA-DL under
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various values of α in Fig. 4, where a Sign-flipping attack is
considered and the coordinate-wise median is adopted as the
RBA rule. It can be seen that as the value of α decreases,
the learning performance of the proposed method improves.
This aligns with our intuition, considering that better learning
performance is expected with fewer Byzantine devices. When
α = 0, there is no Byzantine attack in the system, and it
is guaranteed to attain the optimal point. From Fig. 4, we
can observe that the training loss under different values of α
converges to the same value, demonstrating that the proposed
method incurs negligible solution error even under Byzantine
attacks. In addition, as shown in Fig. 4, when α = 0.1, the
proposed method achieves almost the same learning perfor-
mance as in the case without any Byzantine attacks. It is
worth noting that existing gradient coding methods designed
to handle Byzantine attacks, such as [22], can also achieve
the same learning performance, matching that of the case
without Byzantine attacks. However, as pointed out in [22],
the lower bound on the redundancy level in training data
allocation required to achieve such robustness is r = 110
in this considered setting. In contrast, the proposed method
achieves comparable learning performance with a significantly
lower redundancy level of r = 40. This substantial reduction
in redundancy leads to much lower computational and storage
burdens on the devices, highlighting the practical efficiency of
the proposed approach under Byzantine attacks. The rationale
behind the superiority of the proposed method is as follows.
Given that machine learning algorithms are generally robust
to noise, it is not necessary to fully recover the true global
gradient in each iteration to update the global model, as
is required in existing gradient coding methods designed to
handle Byzantine attacks. Instead, it is often more efficient to
obtain an approximate version of the true global gradient, as is
done in the proposed method. As a result, the proposed method
only requires a modest level of redundancy to achieve the same
level of robustness to Byzantine attacks, thereby reducing the
computational and storage burdens on the devices.

To demonstrate the robustness of the proposed method to
the heterogeneity among data subsets in the training data, we
compare its performance with RBA-DL and plot the training
loss as a function of the number of iterations in Fig. 5 for both
methods under various levels of heterogeneity, where the Sign-
flipping attack is adopted with α = 0.2. Here, both methods
use coordinate-wise median as the RBA rule for server-side
aggregation. The key difference is that the proposed method
aggregates coded gradients, whereas RBA-DL aggregates local
gradients directly. To control the heterogeneity among the data
subsets, yk is generated as yk ∼ N

(〈
zk,

⌢
x + x̃k

〉
, 1
)

, for all
k, where x̃k ∼ N (0, σ2

H). A larger value of σH corresponds to
a higher level of heterogeneity among the subsets. As shown
in Fig. 5, the learning performance of the proposed method is
significantly better than that of the baseline, especially under
high heterogeneity. This is because, in such scenarios, the local
gradients sent by honest devices differ significantly, which
causes the global update obtained through direct aggregation
in RBA-DL to deviate more from the true global gradient.
In contrast, the coded gradients sent by honest devices in

 

 

(a)  

 

(b)

Figure 3. Training loss as a function of the number of iterations for CRA-DL
under various values of r. (a) α = 0.2. (b) α = 0.4.
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Figure 5. Training loss as a function of the number of iterations for CRA-DL
and RBA-DL under various levels of heterogeneity among data subsets.

the proposed method remain close to each other, even under
substantial heterogeneity. This improves the robustness of the
RBA rule at the server and results in a more accurate global
model update, thereby enhancing learning performance.

VI. CONCLUSIONS

In this paper, the DL problem under Byzantine attacks was
studied. To overcome the limitation of current DL methods
applying RBA rules, we proposed CRA-DL, a new DL method
dealing with Byzantine attacks based on coded robust aggrega-
tion. In the proposed method, before the training, the training
data are allocated to the devices in a pair-wise balanced
manner. During training iterations, the server receives coded
gradients from the honest devices and disruptive information
from the Byzantine devices, and aggregates these information
using RBA rules. By doing this, the global gradient is approxi-
mately recovered by the server to update the global model. The
convergence performance of CRA-DL was analyzed and we
provided numerical results to demonstrate the superiority of
the proposed method compared to the baselines. The proposed
CRA-DL method has important practical implications for real-
world DL systems. First, it enhances robustness to Byzantine
attacks while requiring only a modest level of data allocation
redundancy, thereby reducing the computational and storage
burdens on devices. This is an essential advantage for resource-
constrained systems. Second, CRA-DL maintains strong ro-
bustness in the presence of data heterogeneity among subsets,
making it suitable for applications such as healthcare, finance,
and autonomous systems, where Byzantine resilience is criti-
cally needed under diverse operating conditions. Finally, as a
meta-algorithm, CRA-DL is compatible with a wide range of
existing RBA rules, enabling seamless integration into existing
DL frameworks that already employ such rules. In the future,
we plan to extend the proposed method to scenarios where
communication resources are highly limited, by compressing
the communication between the devices and the server to

mitigate the communication overhead. Besides, we will extend
CRA-DL to a variety of real-world application scenarios to
further validate its effectiveness in various practical settings.

APPENDIX A
PROOF OF LEMMA 1

Based on allocation of the training data in the pair-wise
balanced manner, for ∀i ̸= j, we have

gt
i − gt

j =
∑

k1∈{k1|s(i,k1) ̸=0}

1

dk1

∇fk1

(
xt
)

−
∑

k2∈{k2|s(j,k2) ̸=0}

1

dk2

∇fk2

(
xt
)

=
∑

k1∈{k1|s(i,k1) ̸=0,s(j,k1)=0}

1

dk1

∇fk1

(
xt
)

−
∑

k2∈{k2|s(i,k2)=0,s(j,k2 )̸=0}

1

dk2

∇fk2

(
xt
)
, (42)

according to (5). Based on (42), we can obtain (44), where
the first three inequalities are derived from the following basic
inequality: ∥∥∥∥∥

n∑
i=1

ai

∥∥∥∥∥
2

≤ n

n∑
i=1

∥ai∥2 ,∀ai ∈ RD, (43)

together with the fact that the set
{k1| s (i, k1) ̸= 0, s (j, k1) = 0} and the set
{k2| s (i, k2) = 0, s (j, k2) ̸= 0} both contain

(
r − r2

M

)
elements, the fourth inequality is derived from Assumption 2,
and the last inequality can be easily obtained according to
the definition of dmin. This completes the proof.

APPENDIX B
PROOF OF LEMMA 2

Let us define

At ≜

[
1

d1
∇f1

(
xt
)
,
1

d2
∇f2

(
xt
)
, ...,

1

dM
∇fM

(
xt
)]

, (45)

and

Gt ≜ AtST =
[
gt
1, ...,g

t
N

]
, (46)

which are two matrices of size D × M and size D × N ,
respectively. In (46), ST is the transpose of the data allocation
matrix S. In addition, we define ht, an N × 1 vector, to
indicate the identities of the devices in iteration t, where the
i-th element being 1 implies device i is honest in iteration t,
and the the i-th element being 0 implies the opposite.

Based on the above definitions, we can express

ḡt =
1

|Ht|
∑
i∈Ht

gt
i = Gtht 1

(1− α)N
. (47)

From (47), we have∥∥ḡt
∥∥2 =

1

(1− α)
2
N2

(
ht
)T (

Gt
)T

Gtht

=
1

(1− α)
2
N2

Tr
[
ht
(
ht
)T (

Gt
)T

Gt
]
, (48)
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max
i,j∈{1,...,N}

∥∥gt
i − gt

j

∥∥2
⩽2 max

i,j∈{1,...,N}

∥∥∥∥∥∥
∑

k1∈{k1|s(i,k1) ̸=0,s(j,k1)=0}

1

dk1

∇fk1

(
xt
)∥∥∥∥∥∥

2

+

∥∥∥∥∥∥
∑
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1

dk2

∇fk2

(
xt
)∥∥∥∥∥∥

2
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
(
r − r2

M
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∥∥∥∥ 1

dk1
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(
xt
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− 1

M

1

dk1

∇F
(
xt
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+

1

M

1
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(
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+

(
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M
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dk2

∇fk2

(
xt
)
− 1

M

1
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(
xt
)
+

1

M

1
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∇F
(
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

⩽2 max
i,j∈{1,...,N}
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(
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M
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(
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− 1

M

1
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(
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M

1
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∇F
(
xt
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+ 2

(
r − r2

M

) ∑
k2∈{k2|s(i,k2)=0,s(j,k2 )̸=0}

∥∥∥∥ 1

dk2

∇fk2

(
xt
)
− 1

M

1

dk2

∇F
(
xt
)∥∥∥∥2 + ∥∥∥∥ 1

M

1

dk2

∇F
(
xt
)∥∥∥∥2


⩽2 max
i,j∈{1,...,N}

2

(
r − r2

M

) ∑
k1∈{k1|s(i,k1 )̸=0,s(j,k1)=0}

(
1

d2k1
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1

d2k1
M2
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(
xt
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+ 2

(
r − r2

M

) ∑
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(
1

d2k2
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1

d2k2
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(
xt
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1

d2min

(
r − r2

M

)2(
β2 +

1

M2
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(
xt
)∥∥2) . (44)

where Tr(·) is the trace of a square matrix. According to (48),
we can derive

E
(∥∥ḡt

∥∥2∣∣∣F t
)

=
1

(1− α)
2
N2

E
(
Tr
[
ht
(
ht
)T (

Gt
)T

Gt
]∣∣∣F t

)
=

1

(1− α)
2
N2

Tr
[
E
[
ht
(
ht
)T ] (

Gt
)T

Gt
]
. (49)

In (49), we have

E
[
ht
(
ht
)T ]

= (ϕ1 − ϕ2) I+ ϕ211
T . (50)

This is derived from the fact that, in each iteration, a fraction α
of the devices are Byzantine devices, which is totally random.
From this perspective, for i ̸= j, the probability of device i
and j being honest devices is Pr

(
ht
i = 1, ht

j = 1
)
= ϕ2 and

the probability of device i being honest is Pr (ht
i = 1) = ϕ1,

where ϕ1 and ϕ2 are defined in (17).
Next, substituting (50) into (49), we have

E
(∥∥ḡt

∥∥2∣∣∣F t
)

=
1

(1− α)
2
N2

Tr
[(
(ϕ1 − ϕ2) I+ ϕ211

T
) (

Gt
)T

Gt
]

=
1

(1− α)
2
N2

Tr
[
(ϕ1 − ϕ2) I

(
Gt
)T

Gt
]

+
1

(1− α)
2
N2

Tr
[
ϕ211

T
(
Gt
)T

Gt
]

=
(ϕ1 − ϕ2)

(1− α)
2
N2

N∑
i=1

∥∥gt
i

∥∥2 + ϕ2

(1− α)
2
N2

Tr
[
1T
(
Gt
)T

Gt1
]

=
(ϕ1 − ϕ2)

(1− α)
2
N2

N∑
i=1

∥∥gt
i

∥∥2 + ϕ2

(1− α)
2
N2

∥∥∇F
(
xt
)∥∥2, (51)

based on (5) and (46). In (51), we can derive the bound for
N∑
i=1

∥gt
i∥

2 in (52) by applying the basic inequality in (43) and

Assumption 2. Substituting (52) into (51), we have (16), which
completes the proof.
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