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Abstract. Privacy-preserving data publication, including synthetic data
sharing, often experiences trade-offs between privacy and utility. Synthetic
data is generally more effective than data anonymization in balancing
this trade-off, however, not without its own challenges. Synthetic data
produced by generative models trained on source data may inadvertently
reveal information about outliers. Techniques specifically designed for
preserving privacy, such as introducing noise to satisfy differential privacy,
often incur unpredictable and significant losses in utility. In this work
we show that, with the right mechanism of synthetic data generation,
we can achieve strong privacy protection without significant utility loss.
Synthetic data generators producing contracting data patterns, such as
Synthetic Minority Over-sampling Technique (SMOTE), can enhance a
differentially private data generator, leveraging the strengths of both. We
prove in theory and through empirical demonstration that this SMOTE-
DP technique can produce synthetic data that not only ensures robust
privacy protection but maintains utility in downstream learning tasks.

Keywords: Privacy · Synthetic Data · Utility

1 Introduction

Privacy-preserving data publishing has important practical implications for
decision-making in both academic and commercial applications. The main chal-
lenge of data sharing is minimizing the risk of privacy leakage so that the benefit
of publicly sharing data valuable for the society will outweigh the cost of individ-
ual privacy. Traditional methods for injecting privacy into publicly available data
are based on the principle of anonymization [38,19]. Yet these types of techniques
have been shown to be vulnerable to privacy attacks such as linkage based on
residual quasi-identifiers to resources that contain the identity of the correspond-
ing records [24]. More recently, privacy-preserving data publishing methods have
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focused on synthetic data generation. Synthetic data has the potential to preserve
statistical correlations while hiding personal information [40,1].

However, a recent study challenges such claims about the privacy protective
nature of synthetic data [36]. The main disagreement lies in the perception of
synthetically generated data as artificial data, and whether real data can be
recovered. Although synthetic data from generative models largely preserves
the statistical properties of the original data, it is susceptible to the risk of
linkability which allows the attacker to re-identify records in the sensitive dataset.
Individuals most vulnerable to linkage attacks are those present in the outlier
group, statistically lying an abnormal distance from other samples in the popula-
tion [36]. Using this statistical infrequency as prior knowledge, the attacker can
strategically determine the membership information of a given target record in a
sensitive dataset. In both image and tabular data domains, synthetic data has
demonstrated certain vulnerabilities to private information extraction attacks [4].
Quantifying the protection synthetic data can provide remained largely unex-
plored until differential privacy (DP) emerged. Differential privacy bounds the
maximum impact a single data entry can have on the output of a computation.
Although differentially private models can provide formal guarantees for privacy,
it is shown that they tend to incur significant utility loss [22], and it remains
unclear how the trade-off affects the overall statistical data properties [36].

This begs the question of if the two types of synthetic data approaches can
be used in conjunction to complement each other, so that privacy protection and
utility preservation can be achieved simultaneously. In this paper, we present a
synthetic data generator that can substantially improve privacy-utility trade-off,
referred to as SMOTE-DP. The SMOTE-DP generator is composed of an end-to-
end construct that enables data flow from a non-DP data generator G1 to a DP
generator G2 to produce the final synthetic dataset (as illustrated in Figure 1):

Fig. 1. SMOTE-DP: a synthetic data generator pipeline.

a.) For the non-DP generator G1, we employ a well-known synthetic data genera-
tor SMOTE [3]. SMOTE is frequently relied upon to rebalance an imbalanced
dataset to improve model accuracy on minority classes. When compared to
other generative models, SMOTE has been shown to achieve a more reason-
able balance between privacy and utility [27]. To our knowledge, its power to
reinforce an existing differentially private mechanism for better risk-utility
trade-off has neither been studied theoretically nor empirically. Note that
our goal is not to promote the use of SMOTE. As we will explain later,
SMOTE can be replaced by any data generation/transformation techniques
that produce contracting data patterns.
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b.) For the DP generator, we use a differentially private Bayesian network
as the differential private model satisfying ϵ-differential privacy [45]. An
excessively large privacy budget ϵ, which induces very little utility loss, is
often insufficient for achieving a desired privacy guarantee [36,33]. This
scenario can be resolved by SMOTE because of the contracting nature of
SMOTE-generated data patterns, which constitutes the underlying principle
of SMOTE-DP for privacy preserving synthetic data generation. As with
SMOTE, any differentially private data generator can be used as a substitute
for the DP Bayesian network used in this study. There is no theoretical
dependence between specific DP and non-DP generator pairs.

An important note is that SMOTE-DP is different from sequential composition
where source data is consulted more than once and multiple results of differential
privacy are released. SMOTE transforms source data prior to DP.

We demonstrate, both in theory and through empirical analysis, that SMOTE-
DP provides a more balanced risk-utility trade-off than either technique can
achieve in isolation. The main contributions of this work are as follows:

– We propose a synthetic data generation mechanism, composed of both DP
and non-DP generators, that can radically improve utility while providing
strong privacy protection.

– We provide a theoretical justification that SMOTE can reduce sensitivity,
that is, the maximum change in the output caused by a single change in
the input, consequently strengthen privacy protection provided by the DP
generator.

– We provide empirical results to demonstrate that our SMOTE-DP data
generator provides strong privacy protection without sacrificing utility.

– We recommend to be cautiously skeptical, because of the complexity of the
real world, that higher privacy levels must be achieved with smaller privacy
parameter values, and hence at the expense of significant utility loss. At least,
this assumption should be verified before it is taken for granted.

The remainder of the paper is organized as follows. Section 2 puts our
investigation in context of the related literature. Section 3 presents the theory
that supports our proposed technique, and Section 4 presents our empirical
results. Finally, Section 5 concludes our work.

2 Related Work

Data anonymization techniques such as generalization and deletion [38,19,24]
were developed in response to the need of hiding personally identifiable informa-
tion and hence preventing privacy leakage. These anonymization techniques were
quickly shown to be vulnerable to linkage (also known as re-identification) and
inference attacks [23,25,30,34,4,32,43]. To overcome the limitations of traditional
anonymization methods, synthetic data generation techniques have been pro-
posed [40,1]. The notion of fully synthetic data was proposed [31] to facilitate the
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release of data of “no actual individual”. Exactly how much protection synthetic
data can provide remained unanswered in techniques covered under the conven-
tional statistical disclosure limitation framework. And, over time, nearly all such
techniques, including “suppression, coarsening, swapping, shuffling, sampling, and
most noise-infusion techniques”, were shown to have failed to satisfy differential
privacy [1], especially when data is high-dimensional and sparse and the validity
of protection can only be guaranteed when the minimum prior sample size is
much larger than practically possible [11].

Differential privacy [7,14,20,21,39] (DP), compared to traditional statistical
closure limitation, provides theoretical guarantees against inferential disclosure
for synthetic data. DP bounds the maximum amount of information an attacker
can infer from the presence of an individual. Despite its great popularity, DP’s
risk-utility trade-off, where privacy risk and data utility are inversely correlated,
has led to some concerns [12,22,36]. Recently, Muralidhar et al. [22] raised a strong
objection to the use of DP as a privacy model on microdata by demonstrating
that it does not guarantee both confidentiality and utility, and the amount of
information loss as a result of privacy protection remains unknown. DP synthetic
data has also been shown to be vulnerable to privacy attacks such as linkage
attacks [35]. More important, it has been observed that some individuals receive
substantially less protection than others and, perhaps of greater concern, it is
difficult to predict which individuals records are vulnerable to attack. Stadler et
al. [36] restated similar concerns and proposed new privacy protection measures.
They point out that differentially private synthetic data protects individuals at
a significant cost in utility, and it lacks transparency about the trade-off. As a
result, it remains unclear what data properties have been preserved and what
have been suppressed. The risk-utility trade-off also creates a debate about what
the ideal privacy parameter ϵ should be. NIST’s 2022 challenge on the selection
of ϵ reported that organizations choose a wide range of ϵ values, all significantly
exceeding the value recommended by the DP researchers [26].

Regardless of the existing open challenges, DP models have been quickly
adopted by an increasing number of organizations in industry [5]. Addressing the
risk-utility issue remains a highly non-trivial matter. In this paper, we present
a synthetic data generation mechanism that radically improves the privacy-
utility tradeoff. The proposed technique is composed of a differential private data
generator and the oversampling technique SMOTE [3]. The idea is motivated
by the recent findings that new samples synthesized with SMOTE demonstrate
better utility and good privacy compared to other synthetic data generators [27].
In addition, SMOTE-based oversampling has also been demonstrated as an
effective technique for mitigating biases in AI algorithms [46,2,13,41,17]. On the
one hand, SMOTE demonstrates characteristics in line with differential privacy
models that are protective of the private/sensitive data to an extent; on the other
hand, SMOTE has the potential to complement differential privacy by keeping
utility loss bounded.

SMOTE is widely used in machine learning to oversample a minority class
to improve classification performance when data is imbalanced. SMOTE first
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selects an instance x from the minority class, then creates synthetic samples
from x by performing linear interpolation between x and one of its K nearest
neighbors xi ∈ x1, . . . , xK . Informally, SMOTE generates data in accordance
with the same assumption that the k-nearest neighbor algorithm is based on.
In this respect, similar points are located near one another and share the same
density function value. One disadvantage of SMOTE-generated synthetic data
is a potential to deviate from the true distribution of the underlying group [29].
SMOTE-generated samples tend to be more contracted and form unrealistic
graph patterns where edges are densely populated with synthetic samples due to
linear interpolation [9,8]. However, SMOTE and its extensions in general produce
better classification accuracy. This benefit is not limited to minority data. In
fact, both accuracy and distribution deviation improve when the size of data
increases [8].

SMOTE with differential privacy was empirically confirmed for its positive
effect on downstream classification where a privately generated noisy histogram
was used [18]. To develop a deeper understanding of the effect of SMOTE on a
DP generator, in this paper we directly tackle the underlying mechanism that
connects to the improved risk-utility trade-off in the context of privacy attacks
such as linkage attacks.

3 Methodology

In this section, we provide theoretical justification for our data generation mech-
anism, SMOTE-DP, that improves privacy and preserves utility. In essence,
SMOTE generates contracting data patterns with smaller covariances that allow
differentially private mechanisms to choose “unreasonably" large ϵ values that
would normally be considered as meaningless. Large ϵ values typically correspond
to an underestimation in sensitivity, raising the potential for breaking differential
privacy guarantees. We explain how SMOTE assists in mitigating this problem.

3.1 Background

Our proof is built on two important foundations. One is the sensitivity of query
output. The other is the distribution of SMOTE-generated data, which verifies
contracting data patterns generated by SMOTE.

Sensitivity of Query Output A differentially private algorithm achieves its
bound by applying an amount of noise that scales with the sensitivity of the query
output. Given a query function f , sensitivity measures the maximum change in
the output of f caused by a single change to an instance in the dataset. Formally,
sensitivity is defined as follows:

Definition 1. Given a query function f : Dn → R, let the sensitivity of f be
∆f :

∆f = sup
X,X′:d(X,X′)≤1

|f(X)− f(X ′)|
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where d(X,X ′) is the distance between two datasets X and X ′, and two neigh-
boring datasets have a distance no greater than one.

SMOTE-generated Data Patterns Theoretical analyses have been developed
to help understand the underlying workings of SMOTE. Elreedy and Atiya [8]
explore SMOTE-generated data patterns by investigating the mean and covariance
of the new distribution. Let x0 ∈ Rd be a data point in the original distribution,
and x be one of its K nearest neighbors. Let their difference ∆ = x− x0. The
SMOTE-generated sample z is z = x0 + w∆, where w is a random number
from the uniform distribution in [0, 1]. Assuming the probability density of the
original distribution is multivariate Gaussian, the mean and the covariance of
the SMOTE-generated data distribution are [8]:

E(z) ≈ µx0 (1)

Σz = Σx0 + [(2π)
1−d
2

C

3
|Σx0 |

1−d
2d Σx0(

d

2d− 1
)

d
2 − 2πC|Σx0 |

1
dΣx0(

d

d− 2
)

d+2
2 ]I

(2)

where C is a random variable parameterized in terms of the dimension d and the
number of chosen neighbors K, |Σx0

| is the determinant, and I is the identity
matrix. Note that the mean of the SMOTE-generated samples is close to the
true mean. Algebraic computation results in a negative value from the term
inside the square brackets in the covariance, suggesting the contraction of the
SMOTE-generated data patterns compared to the original distribution, with the
diagonal variances becoming smaller, as illustrated in Figure 2. Hence,

tr(Σz) < tr(Σx0) (3)

Other probability density assumptions such as multivariate Laplace also suggest
such contracting effect on SMOTE-generated data. Later, Elreedy et al. formulate
the probability distribution of the SMOTE-generated samples [9], which is also
in consistent with the contracting phenomenon derived in [8].

(a) (b)

Fig. 2. Original data distribution vs. SMOTE-generated sample distribution.
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3.2 SMOTE-DP: Theory and Proof

Given a dataset X ∼ N (µ,Σ), let X ′ ∼ N (µ,Σ) be a dataset such that X and
X ′ differ by one instance, denoted as ||X −X ′||1 ≤ 1. We define the sensitivity
∆fs of the synthetic output as follows:

Definition 2. For any datasets X,X ′ : ||X −X ′||1 ≤ 1, a generative model fS,
and two synthetic data sets, XS = fS(X) and X ′

S = fS(X
′), generated from X

and X ′ with fS, the sensitivity of the synthetic output is:

∆fs = max
XS ,X′

S

E(||XS −X ′
S ||) = max

XS ,X′
S

(||µXS
− µX′

S
||+ tr(ΣXS

+ΣX′
S
))

where XS , X
′
S ∼ N (µS , ΣS), µXS

and µX′
S

are the mean of XS and X ′
S, and

ΣXS
and ΣX′

S
are the covariance matrices.

Sensitivity of SMOTE-transformed Data Given a dataset X, we apply
SMOTE on X to generate synthetic data sets XS and X ′

S where ||XS−X ′
S ||1 ≤ 1.

A DP algorithm achieves ϵ-differential privacy by adding noise to XS according
to a Laplace distribution:

Xϵ = fS(X) + Y,where Y ∼ Lap(∆fs/ϵ) (4)

where ∆fs is the sensitivity defined on the synthetic data generation mechanism
fS(). In this paper, fS() is specifically defined as SMOTE. Notice the amount of
noise introduced scales proportionately to sensitivity.

Theorem 1. (SMOTE Sensitivity Reduction) Let ∆f be the sensitivity defined
on dataset X, ∆fs be the sensitivity on the SMOTE-transformed dataset XS with
fS : X 7→ XS, ∆fS < ∆f given X ∼ N (µ, Σ) and XS ∼ N (µS , ΣS).

Proof. Given any datasets X,X ′ : ||X −X ′||1 ≤ 1, according to Definition 2, its
sensitivity is:

∆f = max
X,X′

E(||X −X ′||) = max
X,X′

(||µX − µX′ ||+ tr(ΣX +ΣX′))

where µX , ΣX are the mean and covariance of X and µX′ , ΣX′ are the mean
and covariance of X ′. Hence,

∆fs−∆f = max
XS ,X′

S

(||µXS
−µX′

S
||+tr(ΣXS

+ΣX′
S
))−max

X,X′
(||µX−µX′ ||+tr(ΣX+ΣX′))

According to Eq. (1) and the inequality (3) in Section 3.1,

max
XS ,X′

S

||µXS
− µX′

S
|| −max

X,X′
||µX − µX′ || ≈ 0,

max
XS ,X′

S

tr(ΣXS
+ΣX′

S
)−max

X,X′
tr(ΣX +ΣX′) < 0.

Therefore, ∆fs < ∆f , that is, the sensitivity is reduced after applying SMOTE.

We now prove SMOTE can enhance privacy by essentially reducing the
sensitivity of the original dataset ∆f , that is, ∆fs = α ·∆f where 0 < α < 1
because of SMOTE’s ability to produce contracting data patterns.
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Privacy of SMOTE-DP With the definition of sensitivity for a synthetic
generator, we prove a theorem that states SMOTE can enhance privacy given a
privacy budget ϵ in DP post-processing.

Theorem 2. (SMOTE Enhanced Privacy) Given a SMOTE-transformed dataset
XS, Xϵ

S— generated with an ϵ-differential private mechanism—is differentially
private with respect to α·ϵ in the ΣXS

-transformed metric space, where 0 < α < 1,
and ΣXS

is the covariance matrix of SMOTE-generated data.

Proof. From the discussion in Section 3.2, we know SMOTE-generated patterns
are contracting with diagonal variances (σ1, . . . , σn) becoming smaller in ΣXS

than in ΣX . Hence, with SMOTE preprocessing, the amount of noise for achieving
ϵ differential privacy should be calibrated with respect to the updated sensitivity
∆fs. Since ∆fs < ∆f , or equivalently, ∆fs = α ·∆f where 0 < α < 1, it follows:

∆f

ϵ
=

∆fs
α · ϵ

Mapping the ϵ-differentially private data Xϵ to the SMOTE-transformed data
space Xϵ

S , the noise introduced to the original data X to achieve ϵ-differential
privacy effectively becomes the noise added to X to achieve (α · ϵ)-differential
privacy on XS :

Xϵ
S = fS(X) + Y + w∆,where Y ∼ Lap(∆fs/(α · ϵ)) (5)

which essentially decreases the privacy budget from ϵ to α · ϵ for 0 < α < 1.

Theorem 2 justifies that an unreasonably large ϵ chosen as a compromise for
better utility for generating Xϵ (Eq. 4) can become a reasonable choice on the
SMOTE preprocessed substitute XS (Eq. 5), demonstrating the benefit of post-
processing DP on the SMOTE-transformed data in synthetic data publishing.

4 Experimental Results

All experiments presented in this section were conducted on an Intel® Xeon®

machine with a 2.30GHz CPU, 256GB memory, and four 8GB GeForce RTX
2080 GPUs. We first verify SMOTE can enhance DP with better utility on a
simple artificial dataset for which we know its population mean and covariance.

4.1 Experiments on Artificial Data

We generate a simple two-dimensional dataset X with two classes, each following
a normal distribution. We investigate whether applying a DP mechanism on
SMOTE-preprocessed data XS produces better estimate of the mean µ and
covariance Σ than applying DP on the original non-private X. We measure
the difference in mean and covariance using Frobenius norm. Figure 3 shows
the data distributions before and after synthetic generation with DP, SMOTE,
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and SMOTE-DP, and the Frobenius norm (denoted as F-norm in the figure)
of the mean and covariance differences between the original and the synthetic
data generated using the three mechanisms. As can be seen, DP-generated
data has the highest covariance difference (4.154) from the original, SMOTE-
processed data has the smallest covariance difference (0.291), while SMOTE-DP
discovers the middle ground (2.727) between DP and SMOTE. All three result
in approximately the same norm for the mean. The experiment demonstrates
that SMOTE enhances DP with better data utility by respecting the true mean
and covariance. Similar experiments were repeated on 10-dimensional artificial
datasets with a various number of informative attributes. The same conclusion
can be drawn.

Original

Mean
Cov

DP

Mean F-norm: 0.375
Cov F-norm: 4.154

SMOTE

Mean F-norm: 0.399
Cov F-norm: 0.291

SMOTE-DP

Mean F-norm: 0.356
Cov F-norm: 2.727

Fig. 3. Data distributions before and after synthetic generation with DP, SMOTE,
and SMOTE-DP.

4.2 Experiments on Real Data

We now focus on test cases reported in [36] that were claimed to be most
challenging where DP has experienced significant utility loss while protecting
privacy, and other generative models with no explicit privacy protection fail to
protect outlier data points in the face of linkage attacks. We adapted their source
code 4 to repeat their experiment and performed additional experiments with
SMOTE for comparison.

Experiment Setup Details of datasets, generative models, and metrics used in
this experiment are discussed below.

Datasets We include three datasets Texas [37], German Credit Risk, and
Employee [16] in the experiments. The Texas dataset is the hospital discharge
data file released by the Texas Department of State Health Services. As in [36],
the dataset used in this experiment consists of 50,000 randomly sampled patient
data. There are 18 attributes including 11 categorical and 7 continuous attributes.
The German Credit data, for greater clarity, contains a smaller set of attributes
compared to the original source in the UCI repository [15]. It has ten attributes
4 https://github.com/spring-epfl/synthetic_data_release
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including the class label. The total number of entries in the dataset is 1000, and
each entry represents a person labeled as good or bad credit risk. The Employee
data contains the information of 4,653 employees in a company. There are nine
attributes including the class label.

Generative Models We use the same generative models, both private and
non-private, as in [36]. GreedyBayes [28] is a non-private implementation of
Bayesian network. The sanitization procedure by NHS England [10] implemented
in [36] is used for comparing the effectiveness of synthetic data and data saniti-
zation. Differentially private generative models used in our experiment include
PrivBayes [45] and PATEGAN [44]. An extension of SMOTE, SMOTENC, im-
plemented in the Python library [6] is used both standalone and in SMOTE-DP
with parameter K = 1.

Privacy Gain Protection is measured in terms of privacy gain defined in [36]
as the reduction in advantage when the adversary is provided with synthetic data
S instead of the real data X: PG = A(X,xt)−A(S, xt) where A estimates the
adversary’s advantage and xt is the target of protection.

Attack Target As in [36], five outlier records (outside the 95% quantile
range) that are most vulnerable to privacy attacks are chosen for our experiments.
Besides outliers, random samples are also selected and studied for comparison.

Linkage (Membership Inference) Attack and Utility Linkage attacks are
modeled as a game played between a data publisher and an adversary [42,30,36].
Given publicly released data S and some prior knowledge, the adversary aims to
decide whether a target xt is in the source data X.

In a linkage attack, if the source data X is released, the advantage of the
adversary is assigned the highest value of one since the adversary only needs
to verify the presence of xt in the released X. The privacy gain is defined as
PG = 1−A(S, xt) where A(S, xt) is the adversary’s advantage if S is released,
and is defined as the difference in the probability that the adversary’s guess is
“yes”: A(S, xt) = P (Y es|S, xt ∈ X)−P (Y es|S, xt /∈ X). Hence, if the privacy gain
PG ≥ 1 by releasing the synthetic data S, the target xt is protected; otherwise,
there is privacy risk. PG > 1 suggests, occasionally, training a generator without
the target xt actually improves the adversary’s chance of predicting “Yes”.

The work reported in [36] argued that DP algorithms failed to protect outliers
and privacy was achieved at the expense of utility. Our experiment suggests
more careful evaluations, or at least extensive studies are needed to warrant
such a claim. The left plot in Figure 4 illustrates the privacy gain (PG) on five
manually selected outliers, identical to the ones reported in [36], when different
data release techniques are used to publish the Texas dataset. The right plot
shows the utility in terms of classification accuracy with the Random Forest
classifier. The adversary is assumed to apply a feature selection technique using
correlation analysis [36]. In this experiment, besides setting ϵ ∈ {0.1, 1.0} as
normally being done, we added an additional study where we set an outrageously
large ϵ = 50. Quite counterintuitively, the privacy of the selected outliers are
equally well protected (PG ≈ 1) with such a high ϵ value using the PrivBayes
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algorithm (2nd & 3rd from left to right in the plots). The corresponding utility,
as a result of such high ϵ, is nearly as good as what has been achieved on the
non-private raw data. Hence, it is likely that choosing much higher ϵ values is
sufficient to both protect privacy and retain utility on this group of outliers.
PateGAN also appeared to be insensitive to the ϵ value on the outliers (4th &
5th in the plots).

When SMOTE is used to preprocess the non-private data with ϵ = 50,
SMOTE-PateGAN (2nd from the right) achieved much better privacy than
PateGAN (ϵ = 1.0). SMOTE helped improve the utility of PateGAN, however,
the loss is still significant potentially because of mode collapse introduced by
PateGAN. SMOTE-PrivBayes (SMOTEPB, 3rd from the right) achieved similar
privacy protection as PrivBayes (ϵ = 0.1) except for one outlier, however, SMOTE-
PrivBayes retained much higher utility than PrivBayes did. All DP generators
provided better privacy than the non-DP generators (1st, 6th & last).

Fig. 4. Adversary’s privacy gain & utility on five outliers in the Texas dataset.

We also recommend to be cautious when considering DP for privacy protection.
Figure 5 shows the results of repeating the previous experiment using 10 randomly
selected instances to replace the five outliers. The non-DP generator BayesianNet
(1st from the left) provided much better privacy protection than all DP generators
(2nd–4th) without incurring any utility loss. Note that SMOTE-preprocessing
helped DP generators achieve comparable levels of privacy to BayesianNet.

Fig. 5. Adversary’s privacy gain & utility on 10 random samples in the Texas dataset.
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As seen in Figure 5, smaller ϵ values (2nd and 4th) provided better privacy
for non-outliers than the larger ϵ = 50 (3rd and 5th) as we normally expect, at
the expense of utility. When PrivBayes with ϵ = 50 was applied to the SMOTE-
preprocessed data, better privacy (PG ≈ 1) and stability (low variance) were
observed, while utility was largely retained with very little loss. This confirms
our hypothesis that SMOTE can enhance both privacy (tolerating large DP ϵ
values) and utility (negligible utility loss) for the post-processing DP mechanism.

On a side note, we do not have to designate SMOTE to transform the non-
private data space. As in our proof, any synthetic data generators producing
contracting data patterns, i.e., data with smaller covariance, can serve as a
privacy/utility enhancement mechanism for any DP algorithms, by setting a
much less aggressive privacy budget (large ϵ values).

Similar observations can be made on the GermanCredit datset, shown in
Figure 6. When DP generators are applied to the SMOTE-preprocessed data,
stable privacy protection (low variance on all samples) can be achieved without
high utility loss. Pate-GAN again experienced mode collapse, making it a less
ideal candidate for privacy protection on this dataset.

Fig. 6. Adversary’s privacy gain & utility on 10 random samples in the German Credit
dataset with different publishing methods.

Results on the Employee dataset present another counterintuitive aspect of
the DP algorithms on the randomly selected samples, as shown in Figure 7. With
the large ϵ = 50, the DP algorithms actually achieved better privacy than with
a much smaller ϵ ∈ {0.1, 1.0}. In addition, Non-private BayesianNet appeared
to preserve privacy better than the two DP algorithms. Again, when the DP
algorithms are applied to SMOTE-preprocessed data, they provide better stability
and privacy-utility tradeoff.

All our experiments suggest DP alone cannot provide consistent and stable
privacy protection for all individuals in real world applications. It is not uncommon
to experience worse privacy protection for some individuals with the use of DP
mechanisms. However, our SMOTE-DP technique has been shown to consistently
provide better and stable privacy protection without significantly hurting utility.
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Fig. 7. Adversary’s privacy gain & utility on random samples in the Employee dataset
with different publishing methods.

5 Conclusions

The release of synthetic data has been touted as offering enhanced privacy
protection compared to traditional data sanitization techniques. However, recent
research has begun to question the prevailing optimism surrounding the use of
synthetic data for privacy-preserving data publishing. One issue is that synthetic
data produced by non-private generative models may fail to protect the privacy of
outlier records in the dataset. Conversely, while differentially private generators
offer strong protection against privacy breaches, they often do so at the expense
of significant utility loss. To address this issue, we propose a data generation
mechanism that combines the existing non-private synthetic data generator
SMOTE with differentially private generative models, aiming to improve utility
without compromising privacy protection. The idea is to set a very large privacy
budget ϵ for the differentially private generator. With the contracting nature
of data processed by SMOTE (smaller covariance), allocating a larger privacy
budget becomes justifiable, effectively preserving both privacy and high utility of
the data. Through both theoretical investigation and empirical demonstration,
we show that our proposed data generation mechanism, SMOTE-DP, significantly
enhances data utility while still safeguarding sensitive individual information.

Disclosure of Interests. The authors have no competing interests to declare
that are relevant to the content of this article.
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