
ar
X

iv
:2

50
6.

01
88

5v
1

 [
cs

.C
R

]
 2

 J
un

 2
02

5

SoK: Concurrency in Blockchain - A Systematic
Literature Review and the Unveiling of a

Misconception

Atefeh Zareh Chahoki 1, Maurice Herlihy 2, and Marco Roveri 1

1University of Trento, Trento, Italy, atefeh.zareh@unitn.it,
marco.roveri@unitn.it

2Brown University, Providence RI, USA, mph@cs.brown.edu

Abstract

Smart contracts, the cornerstone of blockchain technology, offer the prospect
of secure and automated distributed execution. Given their involvement in man-
aging vast volumes of transactions across various roles-including clients, min-
ers, and validators- exploring concurrency is pivotal from multiple perspectives.
This includes executing or validating transactions concurrently within each block,
concurrent block processing across different shards, and concurrent competition
among miners to select and persist transactions within blocks. Concurrency and
parallelism represent a double-edged sword: Although increasing concurrency at
any level benefits higher throughput, it also introduces potential risks such as race
conditions, non-deterministic outcomes, and vulnerabilities such as deadlock and
livelock.

This paper presents the first survey of concurrency in smart contracts, offering
a comprehensive systematic review of the literature, and organizing it into distinct
dimensions. Firstly, it establishes a comprehensive taxonomy of existing levels of
concurrency within blockchain systems and discusses currently proposed solutions
for incorporation into future blockchain iterations. Secondly, given the imperative
for correctness and security in massively distributed processing infrastructures, this
paper examines concurrent operations’ vulnerabilities, potential attacks, and coun-
termeasures. Critically, we analyze the assumptions used by each category and
highlight a flaw in the concurrency assumption in a major category. This miscon-
ception has led to misinterpretations in important research bodies. Thus, this work
aims to correct long-standing misconceptions within the field and steer future re-
search toward more genuine assumptions. Finally, we clarify the directions for
future research by identifying gaps within each category, thus contributing to the
advancement of the blockchain community.

1

https://orcid.org/0009-0003-2004-7762
https://orcid.org/0000-0002-3059-8926
https://orcid.org/0000-0001-9483-3940
https://arxiv.org/abs/2506.01885v1

1 Introduction
Smart contracts are programs that can be stored and executed on a blockchain and that
automate the execution of agreements according to predefined logic between untrusted
parties [17]. Due to their tamper-proof nature and immutability of state transitions,
they are ideal for enabling and facilitating trustless transactions in various domains.
Deterministic execution is essential for smart contracts to ensure the predictable out-
come of a transaction based solely on its inputs and the current state of the blockchain.
This predictability is crucial for reliable decision-making and for avoiding unintended
consequences. The concept known as the "Blockchain impossibility triangle" [18] or
"Blockchain Trilemma" [19] suggests that a blockchain system cannot simultaneously
achieve optimal scalability, decentralization, and security. Although this trilemma is
not a formal proof within blockchain architecture, it effectively encapsulates the pri-
mary challenges blockchain systems face as observed in current implementations and
industry practices. No blockchain system excels in all three areas. Traditionally, most
blockchain systems have prioritized decentralization and security over scalability [73],
which fundamentally limits their performance. Similarly to how different distributed
systems must balance consistency and availability due to the CAP theorem, blockchain
systems must also navigate trade-offs between scalability, decentralization, and secu-
rity depending on the scenario. Scalability should not always be treated as the least
important factor and sacrificed as a result.

One approach to addressing the scalability challenge is concurrency. This con-
cept can be applied at various levels of the blockchain infrastructure, such as sharding,
which enables transactions to be processed concurrently across different shards, or ex-
ecuting smart contracts within each shard and for each block by validators concurrently
in a multi-core setting. Other strategies explored in this survey also leverage concur-
rency to enhance scalability.

However, concurrency introduces challenges related to synchronization, consis-
tency, race conditions, deadlocks, and livelocks. These challenges can result in se-
curity vulnerabilities and unexpected behavior in smart contracts. Therefore, ensuring
that these issues are addressed is critical for any concurrency solution, as discussed in
this survey.

This survey aims to provide a comprehensive and systematic review of all types of
concurrency issues in smart contracts. It assesses the validity of the assumptions and
breaks them down into a taxonomy and a more detailed organization. In each area, the
future open questions are elaborated on and presented. The study also aims to examine
weaknesses, attacks, and countermeasures in the field, critically analyze assumptions,
and correct long-held misconceptions to align future research with real assumptions.

This paper presents several key contributions: (1) To the best of the authors’ knowl-
edge, it provides the first comprehensive survey of concurrency in smart contracts, of-
fering a systematic review of a wide range of current literature to serve as an organized
and insightful resource for researchers; (2) a detailed taxonomy is introduced, classi-
fying various concurrency aspects into categories and organizing them based on their
approaches and goals, whether implemented on existing blockchains or proposed for
future developments; (3) open questions and emerging trends in all defined categories
are highlighted, offering valuable guidance for future research; and (4) the flawed as-

2

sumption of concurrent execution of transactions in Category Six of the presented tax-
onomy is critically examined and discussed, supported by sufficient references. All
materials and code required to conduct this survey are publicly available on GitHub 1.

The remainder of this paper is organized as follows: Section 3 provides the main
background concepts used throughout the paper. The methodology of the systematic
review is presented in Section 4. Section 5 organizes the concurrency perspectives into
three categories. In Section 6 a critical analysis reveals a misunderstanding in the third
category.

2 Problem Statement And Motivation
Existing blockchain systems require that every node in the network maintain a com-
plete replication of the transaction history and ledger states to ensure the total order
of transactions, execution integrity, and data provenance. These data structures grow
significantly over time, becoming prohibitively large. For instance, as of July 2024,
the Bitcoin ledger is approximately 550GB [2], while the Ethereum ledger exceeds
18.5TB [23]. To address this, most blockchain nodes maintain a smaller and com-
pact index known as validation states, which are sufficient to validate transactions.
However, even these validation states can be substantial in size, such as Ethereum’cas
validation states, which are around 1,120GB[23]. Additionally, blockchain nodes must
locally replay all transactions based on these replicated states, incurring significant
storage and computation costs that limit system scalability. This cumbersome stateful
data also undermines system security and robustness by centralizing the network, as
fewer nodes can handle such large data volumes.

To mitigate these issues, one approach is sharding, which partitions the blockchain
into multiple parallel chains, each managed by a subset of nodes. This reduces storage
and computation duplications among different shards. However, sharding only allevi-
ates the problem by a constant factor, as nodes within each shard still duplicate storage
and computation. Moreover, sharding introduces new challenges, such as cross-shard
transaction processing and vulnerability to attacks by slowly adaptive Byzantine adver-
saries. Shardening is studied in Section 5.2.

Another approach is the use of light nodes that store only block headers rather
than full states. Although light nodes can follow consensus protocols, they cannot
independently verify transaction validity, failing to address centralization due to state
maintenance burdens.

The stateless blockchain concept has recently emerged as an off-chain scaling ap-
proach. This method moves ledger states and transaction executions off-chain to a sub-
set of nodes, thereby reducing on-chain load. However, existing stateless blockchain
systems are primarily designed for cryptocurrencies and face limitations when applied
to general-purpose use cases involving smart contracts. Developing a general-purpose
stateless blockchain that supports smart contracts presents several challenges. Trans-
actions involving smart contracts can contain arbitrary logic, requiring novel proof
techniques to ensure the integrity of off-chain executions. Smart contract transactions

1https://github.com/Atefeh-Zareh/concurrency-in-smart-contracts

3

also introduce read-and-write sets of varying sizes, necessitating additional design for
on-chain commitment updates. Furthermore, existing methods for cryptocurrency ex-
change offer limited support for parallel transaction executions. To enhance system
throughput, new transaction processing methods are needed to validate and commit
concurrent transactions from an asynchronous network, despite the stateless design.
This category of off-chain solutions is studied in Section 5.6.

3 Background
This section briefly reviews the concepts related to concurrency and blockchain used
in this paper.

3.1 Concurrency concepts
Concurrency refers to the ability of a computer program to execute multiple instruc-
tions or processes simultaneously. In distributed systems, concurrency can introduce
challenges related to:

• Consistency: Maintaining data integrity across different replicas or copies in a
distributed system.

• Synchronization: Ensuring that multiple processes access shared resources in a
coordinated manner to avoid data inconsistencies.

• Race Conditions: Scenarios where the outcome of a program depends on the
unpredictable timing of concurrent processes.

• Nondeterminism: Parallel systems commonly demonstrate this trait due to com-
petition for communication resources. A system shows nondeterminism when
two identical copies of it can act differently even with the same inputs upon
which wins the race that results in an untestable trait of these systems. [54]

• Deadlock: is one of the most common issues in a parallel system, when no
component can progress due to mutual waiting for communication, a concurrent
system is deadlocked. A classic example is the ’five dining philosophers’, where
each philosopher requires both neighboring forks to eat, leading to a deadlock if
all philosophers simultaneously pick up their left-hand fork and they deadlock
and starve to death. One of the main reasons for deadlock is competition to
acquire the resources [54].

• Livelock: The cause of livelock, is called divergence which means a program
performs infinite unbroken sequences of internal actions and never interacts with
its environment, such as infinite loops in programs. Although operationally and
theoretically deadlock and livelock are different, they appear similar from the
users’ perspective because no response is received. However, livelock is worse
since users may observe internal activities and mistakenly expect an eventual
output [54].

4

3.2 Smart contracts
The blockchain is a foundational design pattern to facilitate pure peer-to-peer dis-
tributed computation. Initially implemented by Bitcoin in 2009 as a cryptocurrency [48],
it has since evolved into a robust infrastructure capable of executing a wide range of
generalized functionalities beyond cryptocurrency. Ethereum [16], in particular, pio-
neered this expansion in 2013 by introducing the Ethereum Virtual Machine (EVM),
a Turing-complete state machine that handles both deployment and execution of cod-
ified arbitrary business logic scripts named smart contracts. All blockchain networks
maintain securely shared data named ledger through a consensus protocol facilitated by
volunteer operators named miners and validators. The transactions announced by users
are initially stored in the mempool (short for "memory pool"), a temporary storage area
where pending transactions wait to be included in the next block. Miners select trans-
actions from the mempool that offer higher fees first, as this maximizes their rewards
and persists them into the next block if the transaction is valid. This validity check
includes the correctness of transaction format, having a sufficient gas fee, nonce verifi-
cation, signature verification, balance check, double-spending prevention, compliance
with consensus rules, and regarding smart contracts ensuring that the transaction can
execute without error. Then miners extend the blockchain by one block in each block
interval, which varies across different networks such as 10 minutes in Bitcoin or 12
seconds in Ethereum. Smart contracts introduce the concept of gas, irrespective of
the consensus protocol they utilize. Gas represents the computational effort and cost
required to execute operations within smart contracts to compensate for the resources
used to execute smart contracts. It prevents infinite loops, restricts resource consump-
tion, and maintains the network’s efficiency and security. Smart contracts are written
in various programming languages tailored to specific blockchain platforms. Solidity
is the predominant language for Ethereum; Vyper aims to provide simplicity and secu-
rity; Michelson is used on Tezos; and Move was developed for Diem (formerly known
as Libra).

3.3 Proof of Work (PoW) & Bitcoin
Proof of Work (PoW) is a consensus protocol that is mainly introduced in Bitcoin. Par-
ticipants, known as miners, gather newly broadcasted and not yet persisted transactions
and add them in a block data structure if they are valid, then compete to solve a crypto-
graphic puzzle, named mining, to add the block to the ledger. One part of the block is
its previous block hash, which makes this data structure tamper-proof. The first miner
to solve the puzzle earns the right to add the next block of transactions to the blockchain
and win rewards. Rewards are in the form of the newly minted cryptocurrencies in that
block and the fee and gas of the included transactions as the incentive. PoW is the orig-
inal consensus mechanism used by Bitcoin [48] and several other cryptocurrencies, but
because it is energy-intensive, it is being replaced by others such as Ethereum.

5

3.4 Proof of Stake (PoS) & Ethereum Mechanism
This section provides an overview of Proof of Stake (PoS), one of the most widely
adopted consensus algorithms in blockchain infrastructures, including Ethereum. This
section also briefly explores Ethereum’s execution mechanism, highlighting its key
components and processes.

In PoS, a node is selected as the proposer using methods like computational con-
tests, predetermined sequences, or random algorithms, as seen in Ethereum. The pro-
poser compiles a block by selecting a set of transactions and shares it with other nodes,
known as attestors. Each attestor independently validates the transactions in the block,
rejecting it if any discrepancies or invalid transactions are found.

Ethereum transitioned to PoS with its Ethereum 2.0 upgrade in 2022, aiming to
enhance security, reduce energy consumption, and support new scaling solutions com-
pared to the prior Proof of Work (PoW) architecture. In PoS, participants, referred
to as validators or nodes, must deposit 32 ETH into a deposit contract, thereby stak-
ing it as collateral [1]. Validators are responsible for ensuring the validity of new
blocks and occasionally for proposing and propagating them. Misbehavior, such as
proposing multiple conflicting blocks or sending invalid attestations, results in penal-
ties, including partial or total loss of staked ETH. To join as a validator, a user must
pass through an activation queue, which limits the rate of new validators joining the
network. This mechanism ensures system stability, efficient consensus, and protec-
tion against resource strain and Sybil attacks, where a single entity creates multiple
identities to gain disproportionate influence over the network.

In Ethereum’s PoS system, block timing follows a fixed schedule rather than being
influenced by mining difficulty as in PoW. Time is divided into slots of 12 seconds and
epochs comprising 32 slots, corresponding to 6.4 minutes. During each slot, a valida-
tor is pseudo-randomly selected using RANDAO to propose a new block and broadcast
it to the network. Simultaneously, a randomly chosen committee of validators evalu-
ates the proposed block’s validity. These committees distribute the workload, ensuring
that all active validators participate within each epoch without needing to act in every
slot [1].

3.4.1 Transaction Process

The process of executing a transaction in Ethereum PoS involves several steps. A user
creates and signs a transaction with their private key via a wallet or library, essentially
making a request to a node through the Ethereum JSON-RPC API. The transac-
tion is submitted to the execution client part of that node, which verifies its validity,
ensuring that the sender has sufficient ETH and has signed the transaction correctly.
Valid transactions are added to the local mempool (a list of pending transactions) and
broadcast over the execution layer gossip network. Advanced users may bypass pub-
lic broadcasting and forward their transactions to specialized block builders, such as
Flashbots Auction, to maximize profits through Maximal Extractable Value (MEV) [1].

The selected validator for the current slot is responsible for updating the global
state. Nodes run three key software components: the execution client, the consensus
client, and the validator client. The execution client collects transactions from the local

6

mempool, executes them locally to generate state changes, and compiles them into an
execution payload. This payload is passed to the consensus client, which incorporates
it into a beacon block. The beacon block also contains metadata such as rewards,
penalties, slashings, and attestations, enabling consensus on the blockchain’s state and
head of the chain [1].

Other nodes receive the new beacon block via the consensus layer gossip network
and pass it to their execution clients for local validation of the proposed state changes.
The validator client attests to the block’s validity and confirms that it builds upon the
chain with the greatest attestation weight, as determined by the fork choice rules. Once
validated, the block is added to the local database of each node.

3.4.2 Transaction Finality

A transaction achieves finality when it is part of a block that cannot be reverted without
burning a significant amount of staked ETH. Finality is managed through checkpoint
blocks, which occur at the start of each epoch. Validators vote on checkpoint pairs, and
if a pair receives votes from at least two-thirds of the total staked ETH, the target check-
point becomes justified, and the source checkpoint is upgraded to finalized. Reverting
a finalized block would require an attacker to control and sacrifice at least one-third
of the total ETH staked across all participants in the network. To prevent an attacker
from stalling finality, Ethereum employs an inactivity leak, which penalizes validators
voting against the majority when finality fails for more than four epochs. This ensures
the majority regains a two-thirds stake to finalize the chain.

3.4.3 Ethereum’s Layered Architecture

Ethereum’s architecture is organized into several layers, each responsible for specific
functions that contribute to the overall operation and scalability of the network. The
execution layer handles transaction processing, smart contract execution, and state
changes. This layer is responsible for bundling transactions into execution blocks and
updating the global state. Above the execution layer is the consensus layer, also known
as the Beacon Chain, which is responsible for maintaining network consensus, coordi-
nating validators, and ensuring security. The beacon block is the key data structure in
this layer, as it organizes validator attestations and records the consensus state of the
network. Ethereum also integrates a data availability layer, which ensures the reli-
able retrieval of off-chain data, particularly for layer 2 solutions. Lastly, the network
utilizes layer 2 scaling solutions, such as Optimistic Rollups and zkRollups, which
offload transaction processing to achieve greater throughput while maintaining security
through periodic anchors to the mainnet. This modular, layered architecture enhances
Ethereum’s scalability and security while enabling the development of decentralized
applications and solutions.

3.4.4 Ethereum Networks and Their Purposes

Ethereum operates across several networks, each tailored for specific purposes within
its ecosystem. The mainnet is the primary public network where real transactions,

7

decentralized applications (dApps), and smart contracts are executed, using ETH with
actual monetary value. For development and testing, Ethereum offers testnets such
as Goerli and Sepolia, which simulate mainnet conditions without risking real assets,
with Goerli widely adopted for advanced testing and Sepolia preferred for lightweight
development. Private networks are custom deployments used by organizations or
developers for controlled experimentation and application testing. To address scal-
ability, Ethereum integrates layer 2 networks like Optimism and Arbitrum (Opti-
mistic Rollups) and zkSync and StarkNet (zkRollups), which reduce transaction costs
and increase throughput by offloading computation from the mainnet while retaining
security guarantees. Additionally, emerging data availability solutions like Eigen-
Layer ensure that off-chain data for rollups can be reliably retrieved, further enhancing
Ethereum’s scalability and modularity.

3.4.5 Terminology and Roles in Ethereum PoS

In Ethereum’s PoS architecture, the terms validator and node are used interchangeably.
Each node performs multiple roles: proposing blocks when pseudo-randomly selected
for a slot, attesting to other validators’ blocks within an epoch as part of a committee,
and validating transactions in each slot. These roles are not distinct among nodes but
represent different responsibilities within each node.

However, various terminologies in the literature might appear to suggest different
roles. For instance, some references distinguish miners and validators, where miners
propose new blocks and validators verify them [22]. Others, such as [68], use terms
like proposer and attestor within a proposal-attestation paradigm. In this context, pro-
posers select transactions and broadcast blocks, while attestors validate the blocks. In
Ethereum, these distinctions are purely functional, as all nodes perform these tasks at
different times.

In this survey, we adhere to the Ethereum convention, referring to participants as
validators. For consistency and clarity, references to other terminology will include
appropriate explanations, ensuring that readers are not misled by differing conventions.

3.5 Hyperledger Fabric
3.5.1 Nodes in Hyperledger Fabric

In Hyperledger Fabric, the nodes serve as communication entities within the blockchain
network. Unlike many blockchains where nodes operate in a peer-to-peer manner,
nodes in Hyperledger Fabric have distinct roles. There are three types of nodes:

• Client: The Client is operated by the end user and is responsible for submitting
transaction proposals to the Endorser Peer and broadcasting the proposals and
responses to the Orderer.

• Peer: Peers are primarily tasked with executing chaincode to read from and write
to the ledger. All Peers act as committing peers (Committers), maintaining the
ledger’s state. Additionally, peers can serve as endorsing peers (endorsers) when

8

an application makes a transaction endorsement request. This endorsement role
is dynamic; otherwise, Peers function as regular committing peers.

• Orderer: The Orderer nodes collectively form the ordering service. In Hyper-
ledger Fabric, which is a distributed system, each node maintains a copy of the
ledger. The ordering service ensures the consistency of the ledger by ordering
transactions into blocks.

3.6 Other Consensus Protocols
There are two categories of consensus protocols: Proof-based and Leader-based [73].

Byzantine fault tolerance (BFT) is a critical property in distributed system design.
It refers to the system’s ability to maintain its correct operation even when some com-
ponents fail or behave maliciously. In blockchain networks, Consensus protocols are
mechanisms used by distributed systems to achieve agreement on a single data value
among multiple nodes or participants, even in the presence of faulty or malicious ac-
tors. This property is essential to maintain the integrity and security of the distributed
ledger. Various consensus algorithms have been developed to achieve Byzantine fault
tolerance in blockchain systems, each with its own trade-offs in terms of efficiency,
scalability, and security. The following reviews some of the main types of consensus
protocols, excluding PoW and PoS, which are discussed later [37]:

• Delegated Proof of Stake (DPoS): DPoS is a variation of PoS where token hold-
ers vote for a select few delegates who are responsible for validating transactions
and adding them to the blockchain. EOS and TRON are examples of blockchain
platforms that use DPoS.

• Proof of Authority (PoA): In PoA, consensus is achieved by a set of approved
validators, typically known entities or organizations. Validators are responsible
for creating new blocks and maintaining the blockchain. PoA is used in networks
where a high degree of trust among participants is assumed, such as private or
consortium blockchains.

• Practical Byzantine Fault Tolerance (PBFT): PBFT is a consensus algorithm
designed to work in asynchronous networks with a certain number of faulty or
malicious nodes. It ensures that all honest nodes reach a consensus on the or-
der of transactions. PBFT is used in permissioned blockchains and distributed
systems like Hyperledger Fabric.

• Raft: Raft is a consensus algorithm designed for fault-tolerant distributed sys-
tems. It elects a leader node responsible for managing the replication of the
log among other nodes. Raft is often used in distributed databases and systems
where simplicity and ease of understanding are prioritized.

• Directed Acyclic Graph (DAG): DAG-based consensus protocols, such as Tan-
gle (used by IOTA) and Hashgraph, do not rely on blocks or miners. Instead,
transactions are directly linked to each other in a graph-like structure, and con-
sensus is achieved through a voting process based on transaction approval.

9

• Proof of Vote (PoV): Proof of Vote (POV) [38] represents a consensus algo-
rithm designed specifically for consortium blockchains where PoW falls short.
In this model, consensus is orchestrated by distributed nodes overseen by consor-
tium partners, reaching decentralized decisions through voting-based arbitration.
The primary concept involves assigning distinct security identities to network
participants, enabling block submission and verification via voting among these
entities, eliminating the need for third-party intermediaries or reliance on unreg-
ulated public awareness. In contrast to the fully decentralized PoW consensus,
POV offers controllable security, convergence, and reliability, achieves trans-
action finality with a single block confirmation, and ensures swift transaction
verification with minimal delay.

3.7 Performance in smart contracts
Table 1 shows different cryptocurrencies in the first column, the transaction speed as
TPS in the second column, which stands for "transactions per second" and the last col-
umn shows the "average transaction confirmation time" of these cryptocurrencies [30].
The transaction verification process for cryptocurrencies is very slow and does not
match the performance of traditional payment systems such as VISA, which handles
an average of 10,547 TPS and can peak at 56,000 TPS and Paypal with a TPS of 1,700.
TPS for Bitcoin is almost 7 and other TPSs for cryptocurrencies are listed in the second
column on this paper. The calculation of the TPS for the cryptocurrencies in the last
year is available in this paper git path.

Numerous approaches have been proposed to increase transaction speed and scal-
ability by enhancing concurrency efficiency in blockchain technology. In Section 5,
we will review these approaches, focusing on how concurrency is utilized at different
levels of the blockchain to achieve improved performance.

Table 1: transaction speed of different cryptocurrencies
Cryptocurrency TPS Time
Bitcoin 3− 7 60 min
Ethereum 15− 25 6 min
Ripple 1500 4 sec
Bitcoin Cash 61 60 min
Stellar 1000 2− 5 sec
Litecoin 56 30 min
Monero 4 30 min
IOTA 1500 2 min
Dash 48 2− 10 min

4 Methodology
This section outlines the questions to be addressed, along with the source dataset and
the query used to extract the relevant literature for this systematic review. Subsequently,
it presents the exclusion criteria.

10

4.1 Research questions
This study aimed to address several crucial research inquiries:

(RQ1): What are the distinct concurrency aspects associated with smart contracts
and their blockchain infrastructure?
- This question focuses on gaining insights into all types of concurrency aspects within
the blockchain ecosystem and organizing them into categories.

(RQ2): What are the existing security threats and countermeasures available in the
domain of blockchain concurrency, and how do they address the identified concerns?
- This investigation aims to identify the techniques currently utilized to address con-
currency challenges in smart contracts in a detailed representation. It categorizes the
literature based on whether the aspect already exists in the blockchain infrastructures
or is proposed for further iterations. In addition, it examines whether the study’s fo-
cus is on introducing vulnerabilities, attacks, or security solutions, and analyzes the
approaches taken to address these issues.

(RQ3): What are the potential research gaps of current solutions that require atten-
tion?
- The purpose of this inquiry is to organize the open questions and trends in all these
categories. These identified threats can serve as guidelines for future research in this
field, directing attention to areas that require further investigation due to the absence of
proposed solutions or the limitations of existing approaches.

4.2 Source databases and search query
This study used Scopus2 as the primary source to identify relevant publications in this
field. Scopus provides a vast repository of scientific literature with over 27,950 active
titles, 90.6+ million records, and from more than 7,000 publishers. Scopus is continu-
ously expanding its coverage of conference material primarily for the subject domains
of publishers and societies of engineering and computer sciences [59]. In addition,
Scopus offers a powerful search engine specifically designed for academic exploration.
Although other databases such as Google Scholar, Web of Science, and IEEE Xplore
exist, the extensive coverage and robust search capabilities of Scopus make it a suffi-
cient choice for this particular research.

The search query utilized for all repositories can be found in Listing 1:
In line 1, TITLE-ABS-KEY indicates that the search query is applied to all the

title, abstract, and keyword sections of the repositories. The primary objective of the
search is to identify research works that specifically address concurrency solutions 4)
in blockchain infrastructures (line 2). The query utilized the wildcard * in ’concurren*’
and ’synchroni*’ to encompass all variations within the word families of concurrency
and synchronization. The query targeted all papers in the English language (line 5)
and excluded document types of conference review (cr), abstract report (ar), book (bk),

2https://www.scopus.com/

11

https://www.scopus.com/

1 TITLE-ABS-KEY (
2 (" smart c ont rac t " OR " Ethereum " OR " s o l i d i t y " OR " Hyper ledger ")
3 AND (" concurren * " OR " race " OR " p a r a l l e l " OR
4 " mult i threaded " OR " synchron i * " OR " t r a n s a c t i o n orde r ing

dependancy " OR " f r o n t running at tack " OR shardening)
5 AND (LANGUAGE(" Engl i sh "))
6 AND NOT(DOCTYPE (" cr ") OR DOCTYPE (" ab ") OR DOCTYPE ("bk") OR

DOCTYPE (" ch ") OR DOCTYPE (" cr ") OR DOCTYPE (" re ") OR DOCTYPE
(" sh "))

Listing 1: Search query.

book chapter (ch), conference review (cr), review (re) and short survey (sh), respec-
tively, encoded on line 6. The described query execution in May 2024 returned 237
unique papers before the pruning process.

4.3 Inclusion and exclusion criteria
Table 2 lists the inclusion and exclusion criteria that are applied in this current study.

Table 2: Inclusion and Exclusion Criteria
Inclusion Criteria Exclusion Criteria

• Research studying any concurrency
aspects in smart contracts.

• Studies that address at least one of
the designated research inquiries.

• Relevant studies identified through
snowballing techniques from
previously chosen literature.

• Theses, books, survey-based studies,
or patents.

• Non-peer-reviewed research.
• Duplicate studies.
• Studies lacking relevance to the

designated research questions.

4.4 Screening Results
Figure 1 illustrates the percentage of relevant articles discovered during the screening
process. Additionally, a sub-pie chart categorizes the non-relevant papers into different
domains, highlighting the areas that were identified and filtered out from the main set
of papers under consideration.

Figure 2 depicts the total number of citations for the relevant articles, categorized
by their year of publication.

Figure 3 shows the number of relevant articles published each year.

12

Figure 1: Screening results

Figure 2: Paper citations per year

5 Concurrency in smart contracts: a taxonomy
Three main categories of concurrency approaches for smart contracts have emerged
that are represented in this section.

5.1 Category 1: Concurrent Consensus
This category of solutions focuses on consensus protocols and believes that to scale
blockchain systems, the fundamental structure of consensus needs modification. They
propose novel consensus protocols to enhance concurrency in blockchain infrastructure
aiming to improve performance.

One notable research in this category is done by Hazari and Mahmoud [29], who in-
troduced parallel PoW based on parallel mining rather than solo mining. This approach
eliminates simultaneous efforts of miners to solve a specific block by introducing a new
role as a manager, along with processes for manager selection, work distribution, and
a reward system. The introduction of a manager role does not compromise the decen-
tralized nature of blockchain. This solution was implemented in a test environment
mimicking Bitcoin’s PoW features and tested across various scenarios with different
difficulty levels and numbers of validators. The results indicate a 34% improvement in
PoW scalability. This protocol aims to increase transaction processing speed, poten-
tially reducing energy consumption. This research is extended by these authors in [30]
which evaluated a cloud-based environment. The future plans for this research include
evaluation against the 51% attack, evaluation on the Bitcoin testnet, refinement of the
reward system, and evaluation of real-time network energy consumption, although it is
expected to end reduced energy consumption due to speeding up transaction process-

13

Figure 3: Paper number per year

ing.
[39] introduces an approach to execute smart contracts in parallel and asynchronously.

Unlike traditional methods, this approach minimizes coordination efforts and elimi-
nates risks such as livelocks, even with small groups. This paradigm is implemented in
two ways: first, enhancing Ethereum to support parallel and asynchronous execution
seamlessly, without the need for hardforks. Second, introducing SaberLedger, a new
public and permissionless blockchain, demonstrating its capabilities through a proto-
type implementation.

In [35], the authors introduce BDLedger (Big Data Ledger), a blockchain-like dis-
tributed ledger designed to achieve a nearly linear throughput scaling. BDLedger fea-
tures a unique consensus mechanism called Random Witness Consensus and uses a
DAG-based block structure. To support this scaling, the system makes two key trade-
offs: 1) it does not establish consensus on transaction order but focuses only on trans-
action content, which ensures that transactions do not conflict and can be processed
in parallel; 2) it limits the nodes that store block content to a fixed number of ran-
dom nodes, which helps control storage and bandwidth costs. The study demonstrates
that BDLedger can scale throughput from approximately 20,000 TPS with 10 nodes to
about 160,000 TPS with 100 nodes.

[11] focuses on improving PBFT, a consensus-based algorithm used in the Tender-
mint blockchain [36]. The paper introduces a lock-free algorithm for the blockchain,
enhancing concurrency by allowing the proposal and voting phases to occur concur-
rently while keeping the commit phase sequential. This modification aims to mit-
igate the negative impacts of locks, thereby enabling greater parallelism within the
blockchain system.

[13] focuses on concurrency in the consensus algorithm level to avoid a throughput
decrease by node numbers. They have proposed a more sufficient consensus algorithm
based on PoV (read more in 3.6) named Parallel Proof of Vote (PPoV). In this protocol,
concurrency is integrated into the consensus cycle, enabling numerous nodes to gen-
erate blocks simultaneously. Its research findings and experimental data indicate that
PPoV outperforms traditional BFT consensus by a factor of 2-5, particularly when the
number of nodes ranges between 4 and 100.

5.2 Category 2: Sharding
Sharding, originally a database technique for splitting large datasets into smaller parts
across multiple storage systems, improves efficiency by reducing server load. In blockchain,

14

sharding was first introduced in 2016 [43] as a method to enhance scalability and trans-
action throughput. The protocol ELASTICO, proposed for permissionless blockchains,
scales transaction rates almost linearly with available computational power. It effi-
ciently uses network messaging and tolerates Byzantine adversaries up to one-fourth
of the computational power. ELASTICO achieves secure partitioning of the mining
network into smaller committees, each handling a distinct set of transactions or shards.
It was the first secure sharding protocol designed to operate in the presence of Byzan-
tine adversaries.

Since then, sharding in blockchain has become one of the most advanced and spe-
cialized areas in the context of concurrent executions on blockchain networks. Shard-
ing, in particular, has been extensively examined in several key surveys, and readers are
encouraged to consult these sources for in-depth analysis. This survey aims to address
critical gaps in the concurrency domain, which remains underexplored. For a more de-
tailed overview of recent developments in the specific area of sharding, see [70], [40],
[28], [4], [14], [62], [52].

5.3 Category 3: Intra-block Concurrent Processing
This approach acknowledges the sequential execution of transactions within a block
by miners or validators in modern cryptocurrency systems like Ethereum and aims
to address the limitations of serial execution of both inter and intra-Smart Contracts,
which result in inefficiencies in system throughput and resource utilization.

5.3.1 Speculative

To overcome this challenge, [22] presented a novel approach to enable the parallel ex-
ecution of smart contracts by miners and validators. This approach utilizes established
concepts from Herlihy et al.’s distributed computing approaches software transactional
memory (STM) [33] and transactional boosting [32]. The speculative approach has two
strategies. In the first strategy, "execute then order," the leader speculatively executes
smart contracts (SCs) in any arbitrary order, generates a corresponding schedule, and
then sends this schedule to the validators, who replay the transactions and vote on
the execution outcome. In the second strategy, "order then execute," the leader pre-
determines the execution order of the SCs. Validators then speculatively execute the
SCs in parallel, but they ensure that the final outcome reflects the predetermined order.

The first one is "order then execute," in which the leader chooses an order in which
the SCs should appear to execute. The validators speculatively execute the SCs but
ensure that the result seems to be executed in that order. The second strategy is "execute
then order," in which the leader executes the SCs speculatively in an arbitrary order,
generates a schedule, and sends that schedule to the validators who replay and vote on
that execution. These strategies are discussed in more detail in the following.

Order then execute. Miners execute smart contracts speculatively in parallel, al-
lowing non-conflicting contracts to proceed concurrently and generating a serializable
concurrent schedule for a block’s transactions. Miners encode this schedule as a deter-
ministic fork-join program, facilitating parallel re-execution by validators. Despite its
efficacy in increasing transaction throughput, this approach is based on the sequential

15

nature of transaction execution within a block and does not introduce any uncertainty in
transaction executions. Experimental results demonstrate significant speedups for both
miners and validators, with a 1.33x speedup for miners and a 1.69x speedup for val-
idators achieved with just three concurrent threads. Additionally, the paper presents a
prototype implementation and discusses the potential for future advancements in multi-
threading support and programming language design to further improve throughput and
concurrency control in smart contract execution. Furthermore, the paper highlights the
applicability of the proposed mechanisms in permissioned blockchain systems and out-
lines future research directions, including support for multithreading in the Ethereum
virtual machine and advancements in programming language support for smart con-
tracts to maximize throughput while avoiding concurrency pitfalls [22].

This approach has been experimentally evaluated in [55] to represent the poten-
tial benefits of speculative techniques for the execution of Ethereum smart contracts in
parallel, using historical data to estimate their effectiveness. Transaction traces from
sampled blocks on the Ethereum blockchain are replayed over time using a simple spec-
ulative execution engine, with miners attempting to execute all transactions in parallel
and rolling back those causing data conflicts. Validators follow the same schedule as
miners. The findings reveal that even simple speculative strategies yield notable speed-
ups, with estimated speed-ups starting at approximately 8-fold in 2016 and declining
to about 2-fold by the end of 2017, as transaction traffic increased. Moreover, the study
identifies that a small set of contracts is responsible for a significant portion of data con-
flicts resulting from speculative concurrent execution, named storage hot-spots. Sev-
eral observations emerge from the study, including the importance of distinguishing
between reads and writes to reduce conflict rates, limited additional benefits from more
aggressive speculative strategies, and the potential for accurate static conflict analysis
to yield modest benefits. Furthermore, increasing the number of cores in the simulated
virtual machine improved speed-ups, but with little improvement beyond 64 cores. The
study suggests directions for future research, including incentivizing contracts that pro-
duce fewer data conflicts and extending the virtual machine to support common com-
mutative operations. In conclusion, while simple speculative strategies can produce
significant speed-ups, these diminish as transaction rates and conflict rates increase.
The study underscores the need to focus on reducing conflict rates to further increase
parallelism in Ethereum-style smart contract execution, potentially through improved
recognition of commuting operations at the semantic level and investigating the effects
of intrinsic data types on contention.

Execute then order. [21] addresses the challenge of integrating black-box concur-
rent data structures into existing STM frameworks, focusing on optimistic transactional
usage. It introduces conflict abstractions to define data-structure conflicts in terms of
commutativity separately from object implementation, enabling efficient cooperation
with generic STM runtimes. Additionally, shadow speculation allows individual trans-
actions to make private speculative updates to highly concurrent black-box objects,
facilitating opaque speculative updates that can be later dropped or atomically applied.
These concepts are realized in a new transactional system called ScalaProust, built
on ScalaSTM, supporting objects of arbitrary abstract type and integrating with un-
derlying STM conflict-detection mechanisms. The paper’s contributions include con-
flict abstractions, shadow speculation, ScalaProust system implementation, and ex-

16

perimental validation demonstrating competitive scalability with existing specialized
approaches. However, the described mechanisms currently do not support mixtures
between transactional objects and STM-managed read/write operations. Future direc-
tions include integrating pessimistic and optimistic treatment of black-box ADTs with
standard STM memory operations, improving performance, and utilizing conflict ab-
stractions for STM support of "pure writes" and automatic verification techniques for
synthesis.

5.3.2 Deterministic

[68] presents a two-stage approach for efficiently executing Blockchain transactions in
parallel by adopting deterministic concurrency control. The paper addresses the ineffi-
ciencies of generating dependency graphs, which are often time-consuming and require
re-executing transactions multiple times. Instead of building a large dependency graph,
the authors partition transactions into batches to avoid inter-batch conflicts, thus reduc-
ing the complexity of computing partial orders. The proposed deterministic concur-
rency control (DVC) method enables high parallelism by solving an equivalent Min-
VWC problem (minimum vertex weighted coloring) [64], which helps in finding an
approximate optimal partial order without the need for re-execution of transactions.
The authors demonstrate the effectiveness of their approach through experimental re-
sults, which show a significant reduction in the costs of computing the partial order
and achieving a high degree of parallelism compared to existing solutions. This work
offers a promising solution to improve the efficiency of concurrent Blockchain trans-
action execution, especially in the context of modern hardware utilization.

5.3.3 Partitioning

This approach proposes a scalable smart contract execution scheme for blockchain-
based systems, aiming to overcome the limitations of serial processing and improve
system throughput. Using the decentralized nature of blockchain technology, the scheme
enables the parallel execution of multiple smart contracts, thus enhancing the system’s
capability to handle a large volume of transactions. The study carried out in [25] ap-
proach employs a divide-and-conquer strategy, using a fair contract partition algorithm
based on integer linear programming (ILP) to partition smart contracts into subsets.
Each subset is then randomly assigned to a group of users, named sub-committee. Par-
ticipants within each sub-committee exclusively handle a portion of smart contracts,
enabling the simultaneous execution of various smart contracts. The contributions of
this work include the development of a scalable execution scheme, theoretical analyses
demonstrating its correctness and security, and simulations showcasing its practical-
ity. The study evaluates the efficiency of the proposed scheme using data from existing
smart contract systems, demonstrating its scalability and improved efficiency compared
to sequential processing. However, a potential limitation lies in the efficiency of the
ILP solver, which may pose challenges for larger sets of smart contracts. Future re-
search directions include exploring more efficient and scalable partitioning techniques
without relying solely on ILP solvers. This paper focuses on PoW and is grounded in
data collected from Ethereum. However, it is important to acknowledge that Ethereum

17

Table 3: Speed Up Comparisons.

Reference Latest Year Test Availability Evaluation Execution Environment Cores Speed Up Rate
Proposer Attestor

Conthereum [71], 2025 2025 Public1 Intel Core i5-1135G7 (2.40GHz), eight logical
processors, 16.0 GB RAM, Windows 11 Pro 3 2.92 2.27

4 3.73 2.77
5 4.31 3.23
32 (0%conflict) 28.58 28.58
32 (15%conflict) 9.08 5.58

[22], 2020 N/A Not available
4-core Intel Xeon W3550 (3.07 GHz),
12 GB RAM, Ubuntu 16 3 + 1 for GC 1.33 1.69

[55], 2019 2017 Not available N/A 16 1.13 N/A
64 2.26 N/A

Block-STM [26], 2023 2023 public2 AmazonWeb Services c5a.16xlarge instance,
(AMD EPYC CPU and 128GB memory) Ubuntu 18.04 32 (low-contention) 20 -

32 (high-contention) 9 -

ScalaProust [21], 2019 - Public3 Amazon EC2 m4.10xlarge instance,
which has 40 vCPUs and 160 GB of RAM - - -

[68], 2023 N/A Private
4-core processor of 2.2 MHz,
4 GB main memory 4 3 N/A

20 to 24 5 N/A

1 https://github.com/Conthereum,
2 https://github.com/danielxiangzl/Block-STM,
3 https://github.com/ScalaProust/ScalaProust

transitioned from PoW to PoS during “the merge” in September 2022. Therefore, this
study conducted in 2017 requires re-evaluation or revision to align with the changes
resulting from Ethereum’s transition to PoS.

5.3.4 Intra-block Performance Comparison

Table 3 presents a comparative analysis of the peak performance of various concur-
rency approaches at the intra-block level in blockchain, sorted in descending order
based on the year of presentation. The Reference column specifies the cited work
along with the year of publication. Latest Year Test denotes the most recent year
in which blockchain transaction characteristics were evaluated within the respective
study. Evaluation Execution Environment describes the hardware and software
configurations of the experimental environment, including processor specifications,
memory capacity, and operating system, as these factors can significantly impact per-
formance results.

The Cores column represents the number of processor cores explicitly allocated
for transaction scheduling and execution. GC in this column refers to the cores that
are allocated for garbage collection (GC) or other system processes. The Speed Up
Rate column reports the speedup achieved in each study, further categorized into two
distinct metrics: Proposer and Attestor, denoted as an ordered pair (p, a) for com-
parative analysis. Since attestors must maintain transaction order within a block, their
speedup values are inherently lower than those of proposers for any given row in the
table. If a value, including attestor performance, is not reported in a study, it is denoted
as N/A (Not Available). For studies that present results across multiple core config-
urations, this table includes only representative values that allow for a comprehensive
comparison.

The performance trends indicate that Conthereum [71] demonstrates the highest
recorded speedup, achieving (2.92, 2.27) with 3 cores, surpassing the results of [22],
which reported (1.33, 1.69) for the same core count. Notably, Conthereum’s proposer

18

https://github.com/Conthereum/conthereum
https://github.com/danielxiangzl/Block-STM
https://github.com/ScalaProust/ScalaProust
https://github.com/Conthereum
https://github.com/danielxiangzl/Block-STM
https://github.com/ScalaProust/ScalaProust

speedup of 2.92 with just 3 cores exceeds the 16-core and 64-core speedups of [55],
which reported 1.13 and 2.26, respectively, without attestor evaluation. Additionally,
[68] did not examine attestor performance but tested proposers ranging from 4 to 24
cores, reporting a speedup of 3 for 4 cores and 5 for 24 cores. These values are outper-
formed by Conthereum, which achieves a proposer speedup of 3.73 for 4 cores and 5.81
for only 9 cores. This comparative analysis highlights the efficiency of Conthereum in
achieving superior speedup with fewer computational resources.

5.4 Category 4: Directed Acyclic Graph (DAG) approaches
This category of solutions redefines the structural foundation of blockchain systems
by replacing the traditional linear sequential chain of blocks with a Directed Acyclic
Graph (DAG) [60]. The promise of DAG-based blockchain systems is to enable fast
confirmation (complete transactions within million seconds) and high scalability (at-
tach transactions in parallel) without significantly compromising security.

In DAG-based systems, transactions are represented as nodes, with directed edges
indicating dependencies or confirmations between them. This approach eliminates the
sequential bottlenecks inherent in conventional blockchains, such as Bitcoin’s PoW and
Ethereum’s PoS, enabling parallel transaction processing and significantly enhancing
scalability and concurrency. DAG allows users to validate prior transactions to con-
firm their own, reducing energy consumption and transaction costs. By improving
throughput and reducing latency, DAG-based architectures are particularly well-suited
for high-frequency or microtransaction environments.

Despite these advantages, DAG-based systems face significant challenges, such as
ensuring network consistency, preventing double-spending attacks in low-activity net-
works, and maintaining resilience against attacks that exploit transaction dependencies.
These limitations, combined with DAG’s early stage of development and the absence
of proven security guarantees, explain why some well-established blockchains do not
use it. In particular, security is often sacrificed for speed, and the blockchain trilemma
cannot be fully resolved by DAG alone.

Several well-known DAG-based systems include IOTA, which uses the Tangle
where each transaction confirms two prior transactions for enhanced scalability; Nano,
which employs a block-lattice structure for fast, fee-less transactions by allowing each
account to maintain its own blockchain; and Hashgraph, which offers a DAG-based
consensus protocol focused on fairness, security, and efficiency.

In conclusion, while DAG-based systems have become a well-established area of
research in blockchain concurrency, this survey focuses on the broader landscape of
concurrency in blockchain systems. Extensive literature on DAGs is covered in several
key surveys, and readers are directed to those sources for in-depth analysis. This survey
aims to fill critical gaps in the concurrency domain, which remains underexplored. For
specialized surveys on specific concurrency aspects, we provide references, ensuring a
comprehensive overview while guiding readers to relevant detailed studies. For further
exploration of DAG-specific advancements, please refer to [63], [66], [65], [24],
and[41].

19

5.5 Category 5: Semi-Centralized Solutions
Semi-centralized solutions in blockchain technology aim to balance the benefits of
decentralization with the efficiency of centralized control. These approaches often seek
to enhance scalability, transaction throughput, and governance by introducing certain
centralized elements while maintaining the core principles of blockchain.

An illustrative example of a semi-centralized approach is the RCANE architec-
ture [61]. RCANE proposes a network of parallel blockchains managed under a semi-
centralized framework. This design allows for concurrent processing of transactions
across multiple chains, effectively distributing the load and enhancing overall system
performance. The semi-centralized governance model facilitates coordinated decision-
making and efficient management, addressing scalability challenges inherent in fully
decentralized systems.

5.6 Category 6: Off-chain solutions
This research category discussed an intrinsic restriction of the blockchain in executing
complex smart contracts. This limitation is made by considering gas to execute each
instruction of a smart contract (Section 3.2) and a limited threshold of gas supported
for any block. For instance, sorting 256 integers using the selection sort algorithm de-
mands 17 million gas, exceeding the current block limit of 8 million. The quick sort
also reaches this gas limit after processing 2,000 elements. Consequently, more so-
phisticated applications, such as decentralized blockchain oracles, become infeasible
to execute under these constraints [67]. These smart contracts are name complex [67]
or Computationally Intensive Contracts (CIC) [20]. There are some solutions to in-
crease these per-block execution limits for complex smart contracts, and one of them
is using off-chain mechanism. An off-chain execution model, allows contract issuers
to delegate contract execution to a selected group of service providers, thus operat-
ing independently from the blockchain’s consensus layer. This section of the survey
encompasses the concurrent solutions in this category of architecture.

ACE (Asynchronous and Concurrent Execution of Complex Smart Contracts) [67]
facilitates the execution of more complex smart contracts on permissionless blockchains
using off-chain and the main benefit of ACE compared to earlier solutions is its ability
to let one contract securely invoke another contract, even when they are executed by
different sets of service providers. The system’s key innovations include a flexible trust
model and a robust concurrency control protocol, making it a significant advancement
over previous solutions. The evaluation results show that ACE can facilitate the devel-
opment of smart contracts that are significantly more complex than those on standard
Ethereum.

In this protocol, concurrency is integrated into the consensus cycle, enabling nu-
merous nodes to generate blocks simultaneously. PoV, in contrast, is an incentive
mechanism designed to reward those who create value. The value is defined for any
smart contract based on the smart contract token transaction volume. POV allocates
more tokens to the owners of smart contracts with higher transaction volumes. POV in-
centivizes value creators and manages the supply of coins through an adjustable incen-
tive coefficient algorithm. To enhance POV performance on permissioned blockchains,

20

the authors proposed and developed Hypernet, a rapid off-chain transaction system that
allows transactions to be processed independently of the blockchain. It consists mainly
of the client and server components. The Hypernet client sends transactions through
a centralized server that does not require trust. The centralized server’s role in Hyper-
net is merely to forward tamper-resistant transaction messages. Hypernet introduces
the concepts of multi-signature address and contract address to facilitate secure and
fast off-chain transactions. This solution is evaluated by generating random parame-
ters to trigger contracts and recording the actual time taken to issue rewards. Their
results indicate that the system incurs a loss of approximately 2% when POV is im-
plemented, and Hypernet achieves transaction speeds four times faster than traditional
permissioned blockchain systems.

[69] introduces SlimChain, a novel blockchain system designed to enhance transac-
tion scalability through off-chain storage and parallel processing. Emphasizing a state-
less approach, SlimChain retains only short commitments of ledger states on-chain,
while off-chain nodes handle transaction executions and data storage. New schemes
are proposed for off-chain smart contract execution, on-chain transaction validation,
and state commitment. Additionally, optimizations are included to minimize network
transmissions, and a new sharding technique is introduced to further boost system scal-
ability. Extensive experiments validate SlimChain’s performance, demonstrating a re-
duction in on-chain storage requirements by 97% to 99% and an improvement in peak
throughput by 1.4 to 15.6 times compared to existing systems.

5.7 Category 7: Cross-chain solutions
Cross-chain solutions constitute a distinct category in smart contract concurrency due
to their role in enabling atomic transactions and state synchronization across isolated
blockchain networks. Unlike single-chain concurrency models, these approaches must
address heterogeneous consensus protocols, varying finality times, and trust-minimized
bridging mechanisms-all while preserving atomicity and preventing double-spending.
Foundational work by [31] established the theoretical framework for cross-chain swaps,
while later surveys ([15, 27, 45, 49, 53]) systematized the landscape.

Key concurrency challenges include: i) race conditions during cross-chain contract
execution due to delayed finality, ii) verification of atomicity in multi-chain transac-
tions, and iii) composability risks when smart contracts span multiple VMs.

5.8 Category 8: Transaction Ordering Dependency(TOD) and Front-
Running Attacks

This category focuses on race conditions resulting from different miners’ decisions re-
garding transaction orders within persisted blocks. As discussed in Section 3.2, each
block of the blockchain contains verified transactions. Transaction Ordering Depen-
dency (TOD) refers to the uncertainty concerning the state of a contract from the user’s
perspective within the blockchain system at the time of contract invocation. When
multiple transactions invoking the same contract occur almost simultaneously and are
included in one block, the miner arbitrarily determines their order. This can lead to

21

uncertainty for users regarding the state of the contract at the time of their transac-
tion’s execution, depending on the miner’s decision. It is important to note that not
all smart contracts are sensitive to transaction orders. Consequently, contracts affected
by transaction ordering are termed TOD contracts. TOD contracts are susceptible to
both benign and malicious invocations, the former potentially resulting in unexpected
outcomes and the latter being exploited for unfair profit or theft [42]. Malicious ex-
ploitation of TOD-vulnerable smart contracts is termed front-running attacks, which
originate on the Chicago Board Options Exchange (CBoE) in 1988 [46]. Its definition
by the Securities Exchange Commission (SEC) in 1977 is as follows: "The practice
of effecting an option transaction based upon nonpublic information regarding an im-
pending block transaction in the underlying stock, to obtain a profit when the options
market adjusts to the price at which the block trades [56]". In a blockchain system,
front-running occurs when malicious entities exploit the visibility of pending transac-
tions in the mempool to execute transactions for their own benefit at the expense of the
original transaction owner. In this attack adversaries can influence the outcome of this
transaction race to prioritize their transaction order in the block through participation in
mining, offering higher gasPrice to incentivize miners, or collusion with other miners.

As a benign scenario example, consider a smart contract that publishes puzzles and
rewards participants for correct solutions. Suppose the contract owner can alter the re-
ward amount by a contract invocation. In such cases, when a participant submits their
solution transaction, there is no certainty they will receive the current prize amount if
their solution is correct. This uncertainty arises because the owner may simultaneously
submit a transaction to change the prize amount, and depending on the miner’s deci-
sion, the participant may receive either the old or updated reward. Another example
is a decentralized exchange or marketplace allowing users to buy and sell tokens, with
fluctuating price functions callable by token owners. If a buy order and a price change
transaction are submitted nearly simultaneously and included in the same block, the
buyer cannot be certain whether they will purchase the token at the original or updated
price, depending on the transaction order.

In malicious scenarios, the owner of a puzzle smart contract could monitor the net-
work and, upon observing a solution being submitted, quickly send a transaction to
change the reward amount to zero within the block interval (explained in 3.2), increas-
ing the likelihood of their transaction being included before the solution transaction in
the subsequent block. Consequently, the adversary can exploit the system to acquire
puzzle solutions at minimal cost.

Detecting TOD involves recognizing valid transactions that influence a contract’s
global or state variables, akin to identifying read-after-write dependencies in race de-
tection, which poses challenges for developers. The study conducted in [47] identifies
different types of TODs, including a previously undocumented variant. To address
TOD detection, the paper proposes TODler, a static analyzer based on information
flow analysis. Evaluation of 108 Ethereum smart contracts demonstrates that TODler
surpasses existing methods in terms of both speed and accuracy, while also identifying
the newly discovered TOD pattern.

In [44] the authors introduce TransRacer, an innovative tool designed to detect
transaction races in Ethereum smart contracts. Transaction races, which can result
from the concurrent execution of transactions within the same block, have been largely

22

overlooked despite their potential to cause inconsistent states and other unexpected
outcomes. TransRacer employs symbolic execution to analyze function dependencies,
enabling it to identify and generate witness transactions that reveal hidden races in
specific contract states. This method significantly narrows the search space compared
to random fuzzing techniques, enhancing detection accuracy and efficiency. Experi-
mental results on 50 real-world smart contracts demonstrated TransRacer’s capability
to detect 426 races within approximately 256 minutes, including 149 significant race
bugs. Further empirical analysis on 6,943 smart contracts underscores the prevalence
and potential harm of transaction races in practice, highlighting the critical need for
tools like TransRacer to maintain smart contract integrity.

[58] presents an open-source simulation tool designed to educate users on the vul-
nerabilities and mitigations associated with front-running attacks in Ethereum. This
work introduces a comprehensive simulation environment that allows users to perform
and understand various types of front-running attacks, such as displacement attacks,
sandwich attacks, and priority gas auctions. The tool also demonstrates how to mit-
igate these attacks using the MEV-geth protocol, enhancing transaction privacy. By
providing a hands-on educational platform, the simulation software aims to bridge the
gap in educational resources regarding blockchain security, particularly in teaching
smart contract vulnerabilities and mitigation strategies. This tool has been integrated
into the curriculum at the University of Bristol, underscoring its utility in training the
next generation of blockchain developers. The simulation’s experimental framework
highlights the practical challenges and potential solutions in managing front-running
attacks, contributing valuable insights into the security dynamics of blockchain trans-
actions.

5.9 Category 9: Available concurrent transaction execution vul-
nerabilities (misconception)

In 2017, [57] introduced a concurrent perspective on smart contracts. It explained
the similarities between the behaviors of smart contracts within cryptocurrency frame-
works and the classic challenges encountered in shared-memory concurrency scenar-
ios. By explaining two instances sourced from the Ethereum blockchain, the authors
explained vulnerabilities to bugs that mirror those commonly encountered in traditional
concurrent programs. In elaborating on these examples, the paper underscores the in-
trinsic relationship between observable contract behaviors and well-established con-
cepts in concurrency, including atomicity, interference, synchronization, and resource
ownership.

This study analogized smart contract utilization in blockchains to threads that en-
gage with concurrent objects in shared memory (contracts-as-concurrent-objects). No-
tably, the paper critiques the prevalent non-modular design of locking contracts, advo-
cating instead for the implementation of synchronization primitives as standalone li-
braries. This proposed shift aligns with established software engineering best practices,
where such modularization fosters better reasoning about contract behaviors. How-
ever, the separation of contract logic from locking mechanisms presents its own set
of challenges, necessitating a holistic approach to contract verification that considers

23

interactions with rigorously specified external contracts.
Moreover, the discourse extends to address concerns regarding liveness properties

in contract implementations involving locks and exclusive access. By contemplating
scenarios where certain accounts may indefinitely retain access, impeding progress and
fairness within the system, the paper raises pertinent questions about ensuring even-
tual progress and incentivizing parties to release locks. This discussion underscores
the importance of fairness assumptions akin to those found in concurrency theory and
presents avenues for leveraging existing proof methods for reasoning about progress
and termination in multi-contract executions.

Concluding with reflections on the broader implications of the proposed analogy,
the paper advocates the use of insights from concurrency research to enhance un-
derstanding, debugging, and verifying complex contract behaviors within distributed
ledger environments. Although acknowledging the limitations and unique aspects of
contract programming, such as gas-bounded executions and fund management, the au-
thors invite speculation on potential challenges and insights inspired by the observed
parallels. These speculations range from exploring scenarios reminiscent of the ABA
problem in non-garbage-collected languages to considering the influence of mining
protocols on scheduling priorities and defining consistency notions for composite con-
tracts with multi-transactional operations. Through this comprehensive examination,
the paper underscores the interdisciplinary nature of blockchain research and its poten-
tial to benefit from insights gleaned from established fields such as concurrency theory.

[51] discusses the vulnerability of smart contracts, with a particular focus on con-
currency related issues. The study highlights the critical challenges posed by the con-
current nature of smart contracts, which share similarities with concurrent programs
with shared memory. Using formal verification methods, specifically the Communi-
cating Sequence Processes (CSP) theory [34] and the Failure Divergence Refinement
(FDR) model checking tool, the research aims to address these challenges. The paper
illustrates a race condition in a smart contract example borrowed from Solidity lan-
guage documents, named The Safe Remote Purchase smart contract [3], alongside an
attack scenario resulting from specific concurrent executions of this smart contract. The
authors utilize CSP theory to formally model this smart contract and the considered at-
tack, subsequently using the FDR model checker to demonstrate the possibility of this
attack occurring. The findings underscore the potential advantages of using CSP and
FDR tools for vulnerability detection within smart contracts, particularly in the context
of concurrency.

However, our analysis reveals an error in the original assumption made in this pa-
per regarding the race condition and the designed attack in smart contracts, specifi-
cally within Ethereum which is the subject of this study. The truth is that inherently,
Ethereum’s infrastructure does not support concurrency, contrary to the assumption
made in this study. The concurrency assumption in [51] is based on the study in [57],
which has led to ongoing debate despite its flaws. Consequently, it underscores the im-
portance of rectifying such misconceptions within this branch of the body of literature
in this field; the next section discusses this in more detail.

24

6 Addressing the Flawed Assumption (Category 9)
This section delves into an erroneous assumption identified in the investigation, cate-
gorized as Category 9, as elaborated in Section 5.9. The assumption is the presence
of concurrent executions within smart contracts, implying the possibility of race condi-
tions in the execution of multiple transactions inside one smart contract in the Ethereum
infrastructure. However, this section demonstrates why this assumption is invalid. The
first subsection presents evidence from the Ethereum references to refute the notion
of concurrent execution. References from Ethereum’s architecture clearly outline the
sequential and non-concurrent execution of transactions within each block that conse-
quently prevent any concurrent executions inside one smart contract. The subsequent
subsection explores an alternative perspective on the potential for concurrent execution
through the mechanism of sharding.

6.1 Evidence from blockchain design
Ethereum. Buterin et al. explicitly stated the sequential execution of transactions on
Ethereum white paper as “Note that the state is not encoded in the block in any way; it
is purely an abstraction to be remembered by the validating node and can only be com-
puted (securely) for any block starting from the genesis state and sequentially applying
every transaction in every block” [16].

6.2 Sharding and potential for transactions concurrency issue
Sharding is a scalability technique that partitions the blockchain state and transaction
processing across multiple shards (databases). This allows for parallel processing of
transactions, potentially enabling true concurrency in smart contracts.

6.2.1 Sharding architecture

In a sharded architecture, transactions are routed to their designated shard based on a
sharding key (e.g., user address). This enables concurrent processing of transactions
within different shards. However, challenges remain:

• Cross-Shard Transactions: Transactions that interact with data in multiple
shards require careful coordination to maintain consistency.

• State Synchronization: Sharding introduces the need for efficient mechanisms
to keep all shard states consistent with the overall blockchain state.

• Security Considerations: Careful design is necessary to ensure the security of
the sharded system and prevent attacks that exploit shard boundaries.

6.2.2 Potential benefits of sharding for concurrency

Despite the challenges, sharding offers potential benefits for achieving true concur-
rency in smart contracts:

25

Table 4: Comparison

Year Ref Miner Approach Locks Require Block Graph Validator Approach Blockchain Type
2020 Dickerson et al. [22] Pessimistic ScalaSTM Yes Yes Fork-join Permissionless
2018 Zhang and Zhang [72] - - Read, Write Set MVTO Approach Permissionless
2019 Anjana et al. [7] Optimistic RWSTM No Yes Decentralized Permissionless
2019 Amiri et al. [5] Static Analysis - Yes - Permissioned
2019 Saraph and Herlihy [55] Bin-based Approach Yes No Bin-based Permissionless
2019 Anjana et al. [8]
2021 Anjana et al. [9] Optimistic ObjectSTM No Yes Decentralized Permissionless
2021 Anjana [6]
2022 Baheti et al. [12]
2023 Piduguralla et al. [50]
2024 Anjana et al. [10] Bin+Optimistic RWSTM No No (if no dependencies)/Yes Decentralized Permissionless

• Increased Throughput: Parallel processing can significantly increase the num-
ber of transactions processed per second.

• Improved Scalability: Sharding can accommodate a growing number of users
and transactions.

• Enhanced Flexibility: Developers can design smart contracts that take advan-
tage of shard-specific functionalities.

7 Conclusion and future work
In this paper, we have critically examined the assumptions surrounding concurrency in
smart contracts, identifying misconceptions in the discourse on concurrent transaction
execution. Through a comprehensive analysis of existing literature and concepts such
as sharding, we have challenged prevailing paradigms and highlighted the need for a
nuanced understanding of concurrency in blockchain systems. Moving forward, we
advocate for continued research and development efforts to address the inherent trade-
offs between scalability, security, and decentralization in blockchain networks.

Acknowledgments
Funded by the European Union. Views and opinions expressed are however those of
the author(s) only and do not necessarily reflect those of the European Union or the
European Commission. Neither the European Union nor the granting authority can be
held responsible for them. Prof. Marco Roveri is partially funded by HE - CROSSCON
- GA 101070537.

References
[1] Proof-of-stake (pos), 2024. URL https://ethereum.org/en/developers/

docs/consensus-mechanisms/pos/.

[2] Blockchain.com | charts - blockchain size (mb), 2024. URL https://www.
blockchain.com/explorer/charts/[id].

26

https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://www.blockchain.com/explorer/charts/[id]
https://www.blockchain.com/explorer/charts/[id]

[3] Solidity by example âĂŤ solidity 0.8.26 documentation, 2024. URL
https://docs.soliditylang.org/en/latest/solidity-by-example.html#
safe-remote-purchase.

[4] Firas Hammoodi Neamah Al-Mutar, Ahmed Ali Talib Al-Khazaali, and
Baqar Assam Hataf. Scalability of blockchain: Review of cross-sharding with
high communication overhead. In BIO Web of Conferences, volume 97, page
00075. EDP Sciences, 2024.

[5] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. Par-
blockchain: Leveraging transaction parallelism in permissioned blockchain
systems. In Proceedings - International Conference on Distributed
Computing Systems, volume 2019-July, pages 1337–1347, 2019. doi:
10.1109/ICDCS.2019.00134. URL https://www.scopus.com/inward/
record.uri?eid=2-s2.0-85074865320&doi=10.1109%2fICDCS.2019.
00134&partnerID=40&md5=da89308a8d5454664d2fe873b8e8009d.
Cited by: 60; All Open Access, Green Open Access.

[6] Parwat Singh Anjana. Efficient parallel execution of block transactions in
blockchain. In Middleware 2021 Doctoral Symposium - Proceedings of the
22nd International Middleware Conference: Doctoral Symposium, pages 8–11,
2021. doi: 10.1145/3491087.3493676. URL https://www.scopus.com/
inward/record.uri?eid=2-s2.0-85121106502&doi=10.1145%2f3491087.
3493676&partnerID=40&md5=58bbd83f3256405ca871f41dbda52aa8.
Cited by: 3.

[7] Parwat Singh Anjana, Sweta Kumari, Sathya Peri, Sachin Rathor, and Archit
Somani. An efficient framework for optimistic concurrent execution of smart
contracts. In Proceedings - 27th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing, PDP 2019, pages 83–92, 2019. doi:
10.1109/EMPDP.2019.8671637. URL https://www.scopus.com/inward/
record.uri?eid=2-s2.0-85063875625&doi=10.1109%2fEMPDP.2019.
8671637&partnerID=40&md5=d739ee512c8d47e1f9ab15356e94d63d.
Cited by: 45; All Open Access, Green Open Access.

[8] Parwat Singh Anjana, Sweta Kumari, Sathya Peri, Sachin Rathor, and Archit
Somani. Entitling concurrency to smart contracts using optimistic transactional
memory. In ACM International Conference Proceeding Series, page 508,
2019. doi: 10.1145/3288599.3299723. URL https://www.scopus.com/
inward/record.uri?eid=2-s2.0-85060934158&doi=10.1145%2f3288599.
3299723&partnerID=40&md5=7993743a21a60f85c7159688d1533d58.
Cited by: 2.

[9] Parwat Singh Anjana, Hagit Attiya, Sweta Kumari, Sathya Peri, and Archit
Somani. Efficient concurrent execution of smart contracts in blockchains using
object-based transactional memory. Lecture Notes in Computer Science (includ-
ing subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics), 12129 LNCS:77–93, 2021. doi: 10.1007/978-3-030-67087-0_6.

27

https://docs.soliditylang.org/en/latest/solidity-by-example.html#safe-remote-purchase
https://docs.soliditylang.org/en/latest/solidity-by-example.html#safe-remote-purchase
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074865320&doi=10.1109%2fICDCS.2019.00134&partnerID=40&md5=da89308a8d5454664d2fe873b8e8009d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074865320&doi=10.1109%2fICDCS.2019.00134&partnerID=40&md5=da89308a8d5454664d2fe873b8e8009d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074865320&doi=10.1109%2fICDCS.2019.00134&partnerID=40&md5=da89308a8d5454664d2fe873b8e8009d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121106502&doi=10.1145%2f3491087.3493676&partnerID=40&md5=58bbd83f3256405ca871f41dbda52aa8
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121106502&doi=10.1145%2f3491087.3493676&partnerID=40&md5=58bbd83f3256405ca871f41dbda52aa8
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121106502&doi=10.1145%2f3491087.3493676&partnerID=40&md5=58bbd83f3256405ca871f41dbda52aa8
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063875625&doi=10.1109%2fEMPDP.2019.8671637&partnerID=40&md5=d739ee512c8d47e1f9ab15356e94d63d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063875625&doi=10.1109%2fEMPDP.2019.8671637&partnerID=40&md5=d739ee512c8d47e1f9ab15356e94d63d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063875625&doi=10.1109%2fEMPDP.2019.8671637&partnerID=40&md5=d739ee512c8d47e1f9ab15356e94d63d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060934158&doi=10.1145%2f3288599.3299723&partnerID=40&md5=7993743a21a60f85c7159688d1533d58
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060934158&doi=10.1145%2f3288599.3299723&partnerID=40&md5=7993743a21a60f85c7159688d1533d58
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060934158&doi=10.1145%2f3288599.3299723&partnerID=40&md5=7993743a21a60f85c7159688d1533d58

URL https://www.scopus.com/inward/record.uri?eid=2-s2.
0-85101539609&doi=10.1007%2f978-3-030-67087-0_6&partnerID=
40&md5=445f0bc290b7bfef3c7c0c869e9d3b0d. Cited by: 6; All Open
Access, Green Open Access.

[10] Parwat Singh Anjana, Sweta Kumari, Sathya Peri, Sachin Rathor, and Archit
Somani. Optsmart: a space efficient optimistic concurrent execution of smart
contracts. Distributed and Parallel Databases, 42(2):245–297, 2024. doi: 10.
1007/s10619-022-07412-y. URL https://www.scopus.com/inward/record.
uri?eid=2-s2.0-85129749817&doi=10.1007%2fs10619-022-07412-y&
partnerID=40&md5=fe84cbbb3450d096d6079ad0914c7296. Cited by: 0;
All Open Access, Green Open Access.

[11] Basem Assiri and Wazir Zada Khan. Fair and trustworthy: Lock-
free enhanced tendermint blockchain algorithm. Telkomnika (Telecom-
munication Computing Electronics and Control), 18(4):2224 – 2234,
2020. doi: 10.12928/TELKOMNIKA.V18I4.15701. URL https:
//www.scopus.com/inward/record.uri?eid=2-s2.0-85087566813&
doi=10.12928%2fTELKOMNIKA.V18I4.15701&partnerID=40&md5=
a3f2ded577d7ecb8b53fd7a5b85f2738. Cited by: 6; All Open Access, Green
Open Access, Hybrid Gold Open Access.

[12] Shrey Baheti, Parwat Singh Anjana, Sathya Peri, and Yogesh Simmhan.
Dipetrans: A framework for distributed parallel execution of transactions of
blocks in blockchains. Concurrency and Computation: Practice and Expe-
rience, 34(10), 2022. doi: 10.1002/cpe.6804. URL https://www.scopus.
com/inward/record.uri?eid=2-s2.0-85122252293&doi=10.1002%2fcpe.
6804&partnerID=40&md5=7c971a4acf78188851ee429342ff56e5. Cited
by: 9; All Open Access, Green Open Access.

[13] Yongjie Bai, Yang Zhi, Hui Li, Han Wang, Ping Lu, and Chengtao Ma.
On parallel mechanism of consortium blockchain: Take pov as an exam-
ple. In ACM International Conference Proceeding Series, pages 147 – 154,
2021. doi: 10.1145/3460537.3460560. URL https://www.scopus.com/
inward/record.uri?eid=2-s2.0-85115674506&doi=10.1145%2f3460537.
3460560&partnerID=40&md5=f01c2263d7c6e4f9d9a2a06584ab07cb.
Cited by: 3.

[14] Md Mohaimin Al Barat, Shaoyu Li, Changlai Du, Y. Thomas Hou, and Wenjing
Lou. Sok: Public blockchain sharding. In 2024 IEEE International Conference
on Blockchain and Cryptocurrency (ICBC), pages 766–783, 2024. doi: 10.1109/
ICBC59979.2024.10634422.

[15] Rafael Belchior, André Vasconcelos, Sérgio Guerreiro, and Miguel Correia. A
survey on blockchain interoperability: Past, present, and future trends. ACM
Comput. Surv., 54(8), October 2021. ISSN 0360-0300. doi: 10.1145/3471140.
URL https://doi-org.ezp.biblio.unitn.it/10.1145/3471140.

28

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101539609&doi=10.1007%2f978-3-030-67087-0_6&partnerID=40&md5=445f0bc290b7bfef3c7c0c869e9d3b0d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101539609&doi=10.1007%2f978-3-030-67087-0_6&partnerID=40&md5=445f0bc290b7bfef3c7c0c869e9d3b0d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101539609&doi=10.1007%2f978-3-030-67087-0_6&partnerID=40&md5=445f0bc290b7bfef3c7c0c869e9d3b0d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85129749817&doi=10.1007%2fs10619-022-07412-y&partnerID=40&md5=fe84cbbb3450d096d6079ad0914c7296
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85129749817&doi=10.1007%2fs10619-022-07412-y&partnerID=40&md5=fe84cbbb3450d096d6079ad0914c7296
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85129749817&doi=10.1007%2fs10619-022-07412-y&partnerID=40&md5=fe84cbbb3450d096d6079ad0914c7296
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087566813&doi=10.12928%2fTELKOMNIKA.V18I4.15701&partnerID=40&md5=a3f2ded577d7ecb8b53fd7a5b85f2738
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087566813&doi=10.12928%2fTELKOMNIKA.V18I4.15701&partnerID=40&md5=a3f2ded577d7ecb8b53fd7a5b85f2738
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087566813&doi=10.12928%2fTELKOMNIKA.V18I4.15701&partnerID=40&md5=a3f2ded577d7ecb8b53fd7a5b85f2738
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087566813&doi=10.12928%2fTELKOMNIKA.V18I4.15701&partnerID=40&md5=a3f2ded577d7ecb8b53fd7a5b85f2738
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85122252293&doi=10.1002%2fcpe.6804&partnerID=40&md5=7c971a4acf78188851ee429342ff56e5
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85122252293&doi=10.1002%2fcpe.6804&partnerID=40&md5=7c971a4acf78188851ee429342ff56e5
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85122252293&doi=10.1002%2fcpe.6804&partnerID=40&md5=7c971a4acf78188851ee429342ff56e5
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85115674506&doi=10.1145%2f3460537.3460560&partnerID=40&md5=f01c2263d7c6e4f9d9a2a06584ab07cb
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85115674506&doi=10.1145%2f3460537.3460560&partnerID=40&md5=f01c2263d7c6e4f9d9a2a06584ab07cb
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85115674506&doi=10.1145%2f3460537.3460560&partnerID=40&md5=f01c2263d7c6e4f9d9a2a06584ab07cb
https://doi-org.ezp.biblio.unitn.it/10.1145/3471140

[16] Vitalik Buterin et al. Ethereum white paper. GitHub repository, 1:22–23, 2013.
URL https://github.com/ethereum/wiki/wiki/White-Paper.

[17] Vitalik Buterin et al. A next-generation smart contract and decentralized applica-
tion platform. white paper, 3(37):2–1, 2014.

[18] Long Chen, Lin William Cong, and Yizhou Xiao. A Brief Introduction to
Blockchain Economics, chapter Chapter 1, pages 1–40. worldscientific, 2021.
doi: 10.1142/9789811220470_0001. URL https://www.worldscientific.
com/doi/abs/10.1142/9789811220470_0001.

[19] Mauro Conti, Ankit Gangwal, and Michele Todero. Blockchain trilemma solver
algorand has dilemma over undecidable messages. In Proceedings of the 14th
International Conference on Availability, Reliability and Security, ARES ’19,
New York, NY, USA, 2019. Association for Computing Machinery. ISBN
9781450371643. doi: 10.1145/3339252.3339255. URL https://doi.org/10.
1145/3339252.3339255.

[20] Sourav Das, Vinay Joseph Ribeiro, and Abhijeet Anand. Yoda: Enabling com-
putationally intensive contracts on blockchains with byzantine and selfish nodes,
2018. URL https://arxiv.org/abs/1811.03265.

[21] Thomas Dickerson, Eric Koskinen, Paul Gazzillo, and Maurice Herlihy. Conflict
abstractions and shadow speculation for optimistic transactional objects. In An-
thony Widjaja Lin, editor, Programming Languages and Systems, pages 313–331,
Cham, 2019. Springer International Publishing.

[22] Thomas Dickerson, Paul Gazzillo, Maurice Herlihy, and Eric Koski-
nen. Adding concurrency to smart contracts. Distributed Comput-
ing, 33(3-4):209–225, 2020. doi: 10.1007/s00446-019-00357-z. URL
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068876264&
doi=10.1007%2fs00446-019-00357-z&partnerID=40&md5=
dd7311fa1468b935494b5c6719d86e3e. Cited by: 29; All Open Access,
Green Open Access.

[23] etherscan.io. Ethereum full node sync (archive) chart | etherscan, 2024. URL
https://etherscan.io/chartsync/chainarchive.

[24] Xiang Fu, Huaimin Wang, and Peichang Shi. A survey of blockchain consen-
sus algorithms: mechanism, design and applications. Science China Information
Sciences, 64:1–15, 2021.

[25] Zhimin Gao, Lei Xu, Lin Chen, Nolan Shah, Yang Lu, and Weidong Shi. Scalable
blockchain based smart contract execution. In 2017 IEEE 23rd International
Conference on Parallel and Distributed Systems (ICPADS), pages 352–359, 2017.
doi: 10.1109/ICPADS.2017.00054.

[26] Rati Gelashvili, Alexander Spiegelman, Zhuolun Xiang, George Danezis, Zekun
Li, Dahlia Malkhi, Yu Xia, and Runtian Zhou. Block-stm: Scaling blockchain

29

https://github.com/ethereum/wiki/wiki/White-Paper
https://www.worldscientific.com/doi/abs/10.1142/9789811220470_0001
https://www.worldscientific.com/doi/abs/10.1142/9789811220470_0001
https://doi.org/10.1145/3339252.3339255
https://doi.org/10.1145/3339252.3339255
https://arxiv.org/abs/1811.03265
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068876264&doi=10.1007%2fs00446-019-00357-z&partnerID=40&md5=dd7311fa1468b935494b5c6719d86e3e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068876264&doi=10.1007%2fs00446-019-00357-z&partnerID=40&md5=dd7311fa1468b935494b5c6719d86e3e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068876264&doi=10.1007%2fs00446-019-00357-z&partnerID=40&md5=dd7311fa1468b935494b5c6719d86e3e
https://etherscan.io/chartsync/chainarchive

execution by turning ordering curse to a performance blessing. In Proceedings
of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of
Parallel Programming, PPoPP ’23, page 232âĂŞ244, New York, NY, USA, 2023.
Association for Computing Machinery. ISBN 9798400700156. doi: 10.1145/
3572848.3577524. URL https://doi.org/10.1145/3572848.3577524.

[27] Panpan Han, Zheng Yan, Wenxiu Ding, Shufan Fei, and Zhiguo Wan. A survey
on cross-chain technologies. Distrib. Ledger Technol., 2(2), June 2023. doi: 10.
1145/3573896. URL https://doi-org.ezp.biblio.unitn.it/10.1145/3573896.

[28] Faiza Hashim, Khaled Shuaib, and Nazar Zaki. Sharding for scalable blockchain
networks. SN Computer Science, 4(1):2, 2022.

[29] Shihab Shahriar Hazari and Qusay H. Mahmoud. A parallel proof of work
to improve transaction speed and scalability in blockchain systems. In 2019
IEEE 9th Annual Computing and Communication Workshop and Conference,
CCWC 2019, pages 916–921, 2019. doi: 10.1109/CCWC.2019.8666535. URL
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063863999&
doi=10.1109%2fCCWC.2019.8666535&partnerID=40&md5=
48e48f90293f465ef556ece7331b6ae9. Cited by: 69.

[30] Shihab Shahriar Hazari and Qusay H. Mahmoud. Improving trans-
action speed and scalability of blockchain systems via parallel proof
of work. Future Internet, 12(8), 2020. doi: 10.3390/FI12080125.
URL https://www.scopus.com/inward/record.uri?eid=2-s2.
0-85089548009&doi=10.3390%2fFI12080125&partnerID=40&md5=
ae0d6542c52eb6252771b3998d65a3dc. Cited by: 34; All Open Access, Gold
Open Access.

[31] Maurice Herlihy. Atomic cross-chain swaps. In Proceedings of the 2018
ACM Symposium on Principles of Distributed Computing, PODC ’18, page
245âĂŞ254, New York, NY, USA, 2018. Association for Computing Machin-
ery. ISBN 9781450357951. doi: 10.1145/3212734.3212736. URL https:
//doi-org.ezp.biblio.unitn.it/10.1145/3212734.3212736.

[32] Maurice Herlihy and Eric Koskinen. Transactional boosting: a methodology for
highly-concurrent transactional objects. In Proceedings of the 13th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, PPoPP
’08, pages 207–216, New York, NY, USA, 2008. Association for Computing
Machinery. ISBN 9781595937957. doi: 10.1145/1345206.1345237. URL
https://doi.org/10.1145/1345206.1345237.

[33] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer. Soft-
ware transactional memory for dynamic-sized data structures. In Proceedings of
the Twenty-Second Annual Symposium on Principles of Distributed Computing,
PODC ’03, pages 92–101, New York, NY, USA, 2003. Association for Com-
puting Machinery. ISBN 1581137087. doi: 10.1145/872035.872048. URL
https://doi.org/10.1145/872035.872048.

30

https://doi.org/10.1145/3572848.3577524
https://doi-org.ezp.biblio.unitn.it/10.1145/3573896
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063863999&doi=10.1109%2fCCWC.2019.8666535&partnerID=40&md5=48e48f90293f465ef556ece7331b6ae9
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063863999&doi=10.1109%2fCCWC.2019.8666535&partnerID=40&md5=48e48f90293f465ef556ece7331b6ae9
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063863999&doi=10.1109%2fCCWC.2019.8666535&partnerID=40&md5=48e48f90293f465ef556ece7331b6ae9
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089548009&doi=10.3390%2fFI12080125&partnerID=40&md5=ae0d6542c52eb6252771b3998d65a3dc
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089548009&doi=10.3390%2fFI12080125&partnerID=40&md5=ae0d6542c52eb6252771b3998d65a3dc
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089548009&doi=10.3390%2fFI12080125&partnerID=40&md5=ae0d6542c52eb6252771b3998d65a3dc
https://doi-org.ezp.biblio.unitn.it/10.1145/3212734.3212736
https://doi-org.ezp.biblio.unitn.it/10.1145/3212734.3212736
https://doi.org/10.1145/1345206.1345237
https://doi.org/10.1145/872035.872048

[34] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):
666–677, aug 1978. ISSN 0001-0782. doi: 10.1145/359576.359585. URL https:
//doi.org/10.1145/359576.359585.

[35] Gang Huang, Kaidong Wu, Chaoran Luo, Su Zhang, Huaqian Cai, Xiang
Jing, and Yun Ma. Bdledger: A scalable distributed ledger for large-scale
data recording. Communications in Computer and Information Science,
1490 CCIS:87–100, 2021. doi: 10.1007/978-981-16-7993-3_7. URL
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121764911&
doi=10.1007%2f978-981-16-7993-3_7&partnerID=40&md5=
5d89292da80717632830c135dcd1fe9c. Cited by: 0.

[36] Jae Kwon. tendermint/tendermint. URL https://github.com/tendermint/
tendermint. original-date: 2014-05-14T23:21:35Z.

[37] Bahareh Lashkari and Petr Musilek. A comprehensive review of blockchain con-
sensus mechanisms. IEEE Access, 9:43620–43652, 2021. doi: 10.1109/ACCESS.
2021.3065880.

[38] Kejiao Li, Hui Li, Hanxu Hou, Kedan Li, and Yongle Chen. Proof of vote: A
high-performance consensus protocol based on vote mechanism & consortium
blockchain. In 2017 IEEE 19th International Conference on High Performance
Computing and Communications; IEEE 15th International Conference on Smart
City; IEEE 3rd International Conference on Data Science and Systems (HPC-
C/SmartCity/DSS), pages 466–473, 2017. doi: 10.1109/HPCC-SmartCity-DSS.
2017.61.

[39] Jian Liu, Peilun Li, Raymond Cheng, N. Asokan, and Dawn Song. Par-
allel and asynchronous smart contract execution. IEEE Transactions
on Parallel and Distributed Systems, 33(5):1097–1108, 2022. doi:
10.1109/TPDS.2021.3095234. URL https://www.scopus.com/inward/
record.uri?eid=2-s2.0-85112672240&doi=10.1109%2fTPDS.2021.
3095234&partnerID=40&md5=9b639907ed892ed22587c0ec40947605.
Cited by: 12; All Open Access, Green Open Access.

[40] Xinmeng Liu, Haomeng Xie, Zheng Yan, and Xueqin Liang. A sur-
vey on blockchain sharding. ISA Transactions, 141:30–43, 2023. doi:
10.1016/j.isatra.2023.06.029. URL https://www.scopus.com/inward/
record.uri?eid=2-s2.0-85164573433&doi=10.1016%2fj.isatra.2023.06.
029&partnerID=40&md5=1f360f22b8f3ad34707b24e44bde5a6c. Cited
by: 1.

[41] Xiaofeng Lu, Cheng Jiang, and Pan Wang. A survey on consensus algorithms
of blockchain based on dag. In Proceedings of the 2024 6th Blockchain and
Internet of Things Conference, BIOTC ’24, pages 50–58, New York, NY, USA,
2024. Association for Computing Machinery. ISBN 9798400717000. doi: 10.
1145/3688225.3688232. URL https://doi-org.ezp.biblio.unitn.it/10.1145/
3688225.3688232.

31

https://doi.org/10.1145/359576.359585
https://doi.org/10.1145/359576.359585
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121764911&doi=10.1007%2f978-981-16-7993-3_7&partnerID=40&md5=5d89292da80717632830c135dcd1fe9c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121764911&doi=10.1007%2f978-981-16-7993-3_7&partnerID=40&md5=5d89292da80717632830c135dcd1fe9c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121764911&doi=10.1007%2f978-981-16-7993-3_7&partnerID=40&md5=5d89292da80717632830c135dcd1fe9c
https://github.com/tendermint/tendermint
https://github.com/tendermint/tendermint
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85112672240&doi=10.1109%2fTPDS.2021.3095234&partnerID=40&md5=9b639907ed892ed22587c0ec40947605
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85112672240&doi=10.1109%2fTPDS.2021.3095234&partnerID=40&md5=9b639907ed892ed22587c0ec40947605
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85112672240&doi=10.1109%2fTPDS.2021.3095234&partnerID=40&md5=9b639907ed892ed22587c0ec40947605
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85164573433&doi=10.1016%2fj.isatra.2023.06.029&partnerID=40&md5=1f360f22b8f3ad34707b24e44bde5a6c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85164573433&doi=10.1016%2fj.isatra.2023.06.029&partnerID=40&md5=1f360f22b8f3ad34707b24e44bde5a6c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85164573433&doi=10.1016%2fj.isatra.2023.06.029&partnerID=40&md5=1f360f22b8f3ad34707b24e44bde5a6c
https://doi-org.ezp.biblio.unitn.it/10.1145/3688225.3688232
https://doi-org.ezp.biblio.unitn.it/10.1145/3688225.3688232

[42] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
Making smart contracts smarter. CCS ’16, pages 254–269, New York, NY, USA,
2016. Association for Computing Machinery. ISBN 9781450341394. doi: 10.
1145/2976749.2978309. URL https://doi.org/10.1145/2976749.2978309.

[43] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and
Prateek Saxena. A secure sharding protocol for open blockchains. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’16, pages 17–30, New York, NY, USA, 2016. Association for
Computing Machinery. ISBN 9781450341394. doi: 10.1145/2976749.2978389.
URL https://doi-org.ezp.biblio.unitn.it/10.1145/2976749.2978389.

[44] Chenyang Ma, Wei Song, and Jeff Huang. Transracer: Function dependence-
guided transaction race detection for smart contracts. In ESEC/FSE 2023 -
Proceedings of the 31st ACM Joint Meeting European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering, pages 947 –
959, 2023. doi: 10.1145/3611643.3616281. URL https://www.scopus.com/
inward/record.uri?eid=2-s2.0-85180548834&doi=10.1145%2f3611643.
3616281&partnerID=40&md5=250a0fdf5719e743a09df50aa0cb43e6.
Cited by: 0.

[45] Hanyu Mao, Tiezheng Nie, Hao Sun, Derong Shen, and Ge Yu. A survey on
cross-chain technology: Challenges, development, and prospect. IEEE Access,
11:45527–45546, 2023. doi: 10.1109/ACCESS.2022.3228535.

[46] Jerry W Markham. Front-running-insider trading under the commodity exchange
act. Cath. UL Rev., 38:69, 1988.

[47] Sundas Munir and Christoph Reichenbach. Todler: A transaction or-
dering dependency analyzer - for ethereum smart contracts. In Pro-
ceedings - 2023 IEEE/ACM 6th International Workshop on Emerg-
ing Trends in Software Engineering for Blockchain, WETSEB 2023,
pages 9–16, 2023. doi: 10.1109/WETSEB59161.2023.00007. URL
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85169085075&
doi=10.1109%2fWETSEB59161.2023.00007&partnerID=40&md5=
cc67ae8bf141b5a2f8c8a706660b3b67. Cited by: 1.

[48] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[49] Wei Ou, Shiying Huang, Jingjing Zheng, Qionglu Zhang, Guang Zeng, and Wen-
bao Han. An overview on cross-chain: Mechanism, platforms, challenges and
advances. Computer Networks, 218:109378, 2022. ISSN 1389-1286. doi: https:
//doi.org/10.1016/j.comnet.2022.109378. URL https://www.sciencedirect.
com/science/article/pii/S1389128622004121.

[50] Manaswini Piduguralla, Saheli Chakraborty, Parwat Singh Anjana, and Sathya
Peri. Dag-based efficient parallel scheduler for blockchains: Hyperledger saw-
tooth as a case study. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

32

https://doi.org/10.1145/2976749.2978309
https://doi-org.ezp.biblio.unitn.it/10.1145/2976749.2978389
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85180548834&doi=10.1145%2f3611643.3616281&partnerID=40&md5=250a0fdf5719e743a09df50aa0cb43e6
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85180548834&doi=10.1145%2f3611643.3616281&partnerID=40&md5=250a0fdf5719e743a09df50aa0cb43e6
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85180548834&doi=10.1145%2f3611643.3616281&partnerID=40&md5=250a0fdf5719e743a09df50aa0cb43e6
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85169085075&doi=10.1109%2fWETSEB59161.2023.00007&partnerID=40&md5=cc67ae8bf141b5a2f8c8a706660b3b67
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85169085075&doi=10.1109%2fWETSEB59161.2023.00007&partnerID=40&md5=cc67ae8bf141b5a2f8c8a706660b3b67
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85169085075&doi=10.1109%2fWETSEB59161.2023.00007&partnerID=40&md5=cc67ae8bf141b5a2f8c8a706660b3b67
https://www.sciencedirect.com/science/article/pii/S1389128622004121
https://www.sciencedirect.com/science/article/pii/S1389128622004121

14100 LNCS:184–198, 2023. doi: 10.1007/978-3-031-39698-4_13. URL
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85171582845&
doi=10.1007%2f978-3-031-39698-4_13&partnerID=40&md5=
ffc244a7fab78042dfe584fc0f9d18d4. Cited by: 0.

[51] Meixun Qu, Xin Huang, Xu Chen, Yi Wang, Xiaofeng Ma, and Dawei Liu.
Formal verification of smart contracts from the perspective of concurrency. In
Meikang Qiu, editor, Smart Blockchain, pages 32–43, Cham, 2018. Springer In-
ternational Publishing. ISBN 978-3-030-05764-0.

[52] Brandon Liew Yi Quan, Nur Haliza Abdul Wahab, Arafat Al-Dhaqm, Ahmad Al-
shammari, Ali Aqarni, Shukor Abd Razak, and Koh Tieng Wei. Recent advances
in sharding techniques for scalable blockchain networks: A review. IEEE Access,
pages 1–1, 2024. doi: 10.1109/ACCESS.2024.3523256.

[53] Peter Robinson. Survey of crosschain communications protocols. Com-
puter Networks, 200:108488, 2021. ISSN 1389-1286. doi: https://doi.
org/10.1016/j.comnet.2021.108488. URL https://www.sciencedirect.com/
science/article/pii/S1389128621004321.

[54] Anthony Roscoe. The theory and practice of concurrency. 1998.

[55] Vikram Saraph and Maurice Herlihy. An empirical study of speculative concur-
rency in ethereum smart contracts. arXiv preprint arXiv:1901.01376, 2019.

[56] États-Unis. Securities and Exchange Commission. Special Study of the Op-
tions Markets. Report of the Special Study of the Options Markets to the Securities
and Exchange Commission. US Government Printing Office, 1979.

[57] Ilya Sergey and Aquinas Hobor. A concurrent perspective on smart contracts.
In Michael Brenner, Kurt Rohloff, Joseph Bonneau, Andrew Miller, Peter Y.A.
Ryan, Vanessa Teague, Andrea Bracciali, Massimiliano Sala, Federico Pintore,
and Markus Jakobsson, editors, Financial Cryptography and Data Security, pages
478–493, Cham, 2017. Springer International Publishing. ISBN 978-3-319-
70278-0.

[58] Zachary Stucke, Theodoros Constantinides, and John Cartlidge. Simulation
of front-running attacks and privacy mitigations in ethereum blockchain.
In European Modeling and Simulation Symposium, EMSS, 2022. doi:
10.46354/i3m.2022.emss.041. URL https://www.scopus.com/inward/
record.uri?eid=2-s2.0-85142909699&doi=10.46354%2fi3m.2022.emss.
041&partnerID=40&md5=e02a26112e1e8e8677bb705ab0165988. Cited
by: 1; All Open Access, Green Open Access.

[59] Scopus team. Scopus content | elsevier, 2024. URL https://www.elsevier.
com/products/scopus/content.

[60] K. Thulasiraman and M. N. S. Swamy. Graphs: Theory and Algorithms. John
Wiley & Sons. ISBN 978-1-118-03025-7. Google-Books-ID: rFH7eQffQNkC.

33

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85171582845&doi=10.1007%2f978-3-031-39698-4_13&partnerID=40&md5=ffc244a7fab78042dfe584fc0f9d18d4
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85171582845&doi=10.1007%2f978-3-031-39698-4_13&partnerID=40&md5=ffc244a7fab78042dfe584fc0f9d18d4
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85171582845&doi=10.1007%2f978-3-031-39698-4_13&partnerID=40&md5=ffc244a7fab78042dfe584fc0f9d18d4
https://www.sciencedirect.com/science/article/pii/S1389128621004321
https://www.sciencedirect.com/science/article/pii/S1389128621004321
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85142909699&doi=10.46354%2fi3m.2022.emss.041&partnerID=40&md5=e02a26112e1e8e8677bb705ab0165988
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85142909699&doi=10.46354%2fi3m.2022.emss.041&partnerID=40&md5=e02a26112e1e8e8677bb705ab0165988
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85142909699&doi=10.46354%2fi3m.2022.emss.041&partnerID=40&md5=e02a26112e1e8e8677bb705ab0165988
https://www.elsevier.com/products/scopus/content
https://www.elsevier.com/products/scopus/content

[61] Nguyen Van Toan, Ung Park, and Geunwoong Ryu. Rcane: Semi-centralized
network of parallel blockchain and apos. In Proceedings of the International
Conference on Parallel and Distributed Systems - ICPADS, volume 2018-
December, pages 695–700, 2018. doi: 10.1109/PADSW.2018.8644573. URL
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063318541&
doi=10.1109%2fPADSW.2018.8644573&partnerID=40&md5=
34fd356f01861d9ec6366861441a54f3. Cited by: 6.

[62] Gang Wang, Zhijie Jerry Shi, Mark Nixon, and Song Han. Sok: Sharding on
blockchain. In Proceedings of the 1st ACM Conference on Advances in Financial
Technologies, AFT ’19, pages 41–61, New York, NY, USA, 2019. Association for
Computing Machinery. ISBN 9781450367325. doi: 10.1145/3318041.3355457.
URL https://doi-org.ezp.biblio.unitn.it/10.1145/3318041.3355457.

[63] Qin Wang, Jiangshan Yu, Shiping Chen, and Yang Xiang. Sok: Dag-based
blockchain systems. ACM Comput. Surv., 55(12), March 2023. ISSN 0360-
0300. doi: 10.1145/3576899. URL https://doi-org.ezp.biblio.unitn.it/10.
1145/3576899.

[64] Yiyuan Wang, Shaowei Cai, Shiwei Pan, Ximing Li, and Monghao Yin. Re-
duction and local search for weighted graph coloring problem. Proceed-
ings of the AAAI Conference on Artificial Intelligence, 34(03):2433–2441, Apr.
2020. doi: 10.1609/aaai.v34i03.5624. URL https://ojs.aaai.org/index.php/
AAAI/article/view/5624.

[65] Qian Wei, Bingzhe Li, Wanli Chang, Zhiping Jia, Zhaoyan Shen, and Zili Shao.
A survey of blockchain data management systems. ACM Trans. Embed. Comput.
Syst., 21(3), May 2022. ISSN 1539-9087. doi: 10.1145/3502741. URL https:
//doi-org.ezp.biblio.unitn.it/10.1145/3502741.

[66] Huan Yu Wu, Xin Yang, Chentao Yue, Hye-Young Paik, and Salil S. Kan-
here. Chain or dag? underlying data structures, architectures, topologies and
consensus in distributed ledger technology: A review, taxonomy and research
issues. Journal of Systems Architecture, 131:102720, 2022. ISSN 1383-
7621. doi: https://doi.org/10.1016/j.sysarc.2022.102720. URL https://www.
sciencedirect.com/science/article/pii/S1383762122002077.

[67] Karl WÃijst, Sinisa Matetic, Silvan Egli, Kari Kostiainen, and Srd-
jan Capkun. Ace: Asynchronous and concurrent execution of com-
plex smart contracts. In Proceedings of the ACM Conference on
Computer and Communications Security, pages 587–600, 2020. doi:
10.1145/3372297.3417243. URL https://www.scopus.com/inward/record.
uri?eid=2-s2.0-85096161986&doi=10.1145%2f3372297.3417243&
partnerID=40&md5=86515ecf98b7c301c895e45e27353ba4. Cited by: 29;
All Open Access, Bronze Open Access.

[68] Huahui Xia, Jinchuan Chen, Nabo Ma, Jia Huang, and Xiaoyong Du. Effi-
cient execution of blockchain transactions through deterministic concurrency

34

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063318541&doi=10.1109%2fPADSW.2018.8644573&partnerID=40&md5=34fd356f01861d9ec6366861441a54f3
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063318541&doi=10.1109%2fPADSW.2018.8644573&partnerID=40&md5=34fd356f01861d9ec6366861441a54f3
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063318541&doi=10.1109%2fPADSW.2018.8644573&partnerID=40&md5=34fd356f01861d9ec6366861441a54f3
https://doi-org.ezp.biblio.unitn.it/10.1145/3318041.3355457
https://doi-org.ezp.biblio.unitn.it/10.1145/3576899
https://doi-org.ezp.biblio.unitn.it/10.1145/3576899
https://ojs.aaai.org/index.php/AAAI/article/view/5624
https://ojs.aaai.org/index.php/AAAI/article/view/5624
https://doi-org.ezp.biblio.unitn.it/10.1145/3502741
https://doi-org.ezp.biblio.unitn.it/10.1145/3502741
https://www.sciencedirect.com/science/article/pii/S1383762122002077
https://www.sciencedirect.com/science/article/pii/S1383762122002077
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096161986&doi=10.1145%2f3372297.3417243&partnerID=40&md5=86515ecf98b7c301c895e45e27353ba4
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096161986&doi=10.1145%2f3372297.3417243&partnerID=40&md5=86515ecf98b7c301c895e45e27353ba4
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096161986&doi=10.1145%2f3372297.3417243&partnerID=40&md5=86515ecf98b7c301c895e45e27353ba4

control. Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
13943 LNCS:509–518, 2023. doi: 10.1007/978-3-031-30637-2_33. URL
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85161654879&
doi=10.1007%2f978-3-031-30637-2_33&partnerID=40&md5=
7d0d01cd2a6bb0d750eaa00ae34bc744. Cited by: 1.

[69] Cheng Xu, Ce Zhang, Jianliang Xu, and Jian Pei. Slimchain: Scaling
blockchain transactions through off-chain storage and parallel process-
ing. Proceedings of the VLDB Endowment, 14(11):2314–2326, 2021.
doi: 10.14778/3476249.3476283. URL https://www.scopus.com/
inward/record.uri?eid=2-s2.0-85119678964&doi=10.14778%2f3476249.
3476283&partnerID=40&md5=0083c4152ed2912bdf744a0f96bcbb98.
Cited by: 52.

[70] Guangsheng Yu, Xu Wang, Kan Yu, Wei Ni, J. Andrew Zhang, and Ren Ping
Liu. Survey: Sharding in blockchains. IEEE Access, 8:14155–14181, 2020. doi:
10.1109/ACCESS.2020.2965147.

[71] Atefeh Zareh Chahoki, Maurice Herlihy, and Marco Roveri. Conthereum: Con-
current ethereum optimized transaction scheduling for multi-core execution. In
The 37st ACM Symposium on Parallelism in Algorithms and Architectures, SPAA
’25, pages 349–358, New York, NY, USA, 2025. Association for Computing Ma-
chinery. ISBN -. doi: -. URL -.

[72] An Zhang and Kunlong Zhang. Enabling concurrency on smart contracts using
multiversion ordering. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
10988 LNCS:425–439, 2018. doi: 10.1007/978-3-319-96893-3_32. URL
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051129282&
doi=10.1007%2f978-3-319-96893-3_32&partnerID=40&md5=
ad208a90b3e81dd28f09f5e7c643bd57. Cited by: 21.

[73] Kaiwen Zhang and Hans-Arno Jacobsen. Towards dependable, scalable, and per-
vasive distributed ledgers with blockchains. In ICDCS, pages 1337–1346, 2018.

35

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85161654879&doi=10.1007%2f978-3-031-30637-2_33&partnerID=40&md5=7d0d01cd2a6bb0d750eaa00ae34bc744
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85161654879&doi=10.1007%2f978-3-031-30637-2_33&partnerID=40&md5=7d0d01cd2a6bb0d750eaa00ae34bc744
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85161654879&doi=10.1007%2f978-3-031-30637-2_33&partnerID=40&md5=7d0d01cd2a6bb0d750eaa00ae34bc744
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85119678964&doi=10.14778%2f3476249.3476283&partnerID=40&md5=0083c4152ed2912bdf744a0f96bcbb98
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85119678964&doi=10.14778%2f3476249.3476283&partnerID=40&md5=0083c4152ed2912bdf744a0f96bcbb98
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85119678964&doi=10.14778%2f3476249.3476283&partnerID=40&md5=0083c4152ed2912bdf744a0f96bcbb98
-
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051129282&doi=10.1007%2f978-3-319-96893-3_32&partnerID=40&md5=ad208a90b3e81dd28f09f5e7c643bd57
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051129282&doi=10.1007%2f978-3-319-96893-3_32&partnerID=40&md5=ad208a90b3e81dd28f09f5e7c643bd57
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051129282&doi=10.1007%2f978-3-319-96893-3_32&partnerID=40&md5=ad208a90b3e81dd28f09f5e7c643bd57

Table 5: Abbreviations

AUs Atomic Units
BFT Byzantine Fault-Tolerant
BG Block Graph
CIC Computationally Intensive Contracts
CSP Communicating Sequence Processes
DAG Directed Acyclic Graph
DPoS Delegated Proof of Stake
DVC deterministic concurrency control
ET Energy Trading
EVM Ethereum Virtual Machine
FDR Failure Divergence Refinement
ILP Integer Linear Programming
Mempool Memory Pool
MEV Maximal Extractable Value
P2P Peer to Peer
PBFT Practical Byzantine Fault Tolerance
PoA Proof of Authority
PoS Proof of Stake
PoV Proof of Value
PoV Proof of Vote
PoW Proof of Work
PPoV Parallel Proof of Vote
SC Smart Contract
SMuLC Sequential Multi-Layer Consensus
STM Software Transactional Memory
TOD Transaction Ordering Dependency
TPS Transaction Per Second
TTP Trusted Third Party

Abbreviations The following abbreviations are used in this manuscript:

36

8 About the Authors
Atefeh Zareh Chahoki is a Ph.D. candidate in Computer Sci-
ence at the University of Trento. Her research interests in-
clude blockchain system reliability, formal verification of smart
contracts, and transaction scheduling optimization in distributed
ledgers. She publishes in venues such as IEEE Transactions on
Information Forensics and Security and is committed to open
science-releasing all implementations as open-source software.
Before commencing her doctoral studies, she acquired extensive
industry experience in enterprise software development, project

management, and university lecturing.

Maurice Herlihy has an A.B. in Mathematics from Harvard Uni-
versity, and a Ph.D. in Computer Science from M.I.T. He has
served on the faculty of Carnegie Mellon University and the staff
of DEC Cambridge Research Lab. He is the recipient of the 2003
Dijkstra Prize in Distributed Computing, the 2004 Gödel Prize
in theoretical computer science, the 2008 ISCA influential paper
award, the 2012 Edsger W. Dijkstra Prize, and the 2013 Wallace
McDowell award. He received a 2012 Fulbright Distinguished
Chair in the Natural Sciences and Engineering Lecturing Fellow-

ship, and he is fellow of the ACM, the National Academy of Inventors, the National
Academy of Engineering, and the National Academy of Arts and Sciences. In 2022,
he won his third Dijkstra Prize.

Marco Roveri is an Associate Professor in the Department of In-
formation Engineering and Computer Science at the University of
Trento, Italy. He was a Senior Researcher in the Embedded Sys-
tems Unit of Fondazione Bruno Kessler, and before a researcher in
the Automated Reasoning Division of the Istituto Trentino di Cul-
tura. His research interests include formal verification of hardware
and software systems, formal cyber security, formal requirements
validation, and automated model-based planning, and application
of such techniques in industrial settings.

37

	Introduction
	Problem Statement And Motivation
	Background
	Concurrency concepts
	Smart contracts
	Proof of Work (PoW) & Bitcoin
	Proof of Stake (PoS) & Ethereum Mechanism
	Transaction Process
	Transaction Finality
	Ethereum's Layered Architecture
	Ethereum Networks and Their Purposes
	Terminology and Roles in Ethereum PoS

	Hyperledger Fabric
	Nodes in Hyperledger Fabric

	Other Consensus Protocols
	Performance in smart contracts

	Methodology
	Research questions
	Source databases and search query
	Inclusion and exclusion criteria
	Screening Results

	Concurrency in smart contracts: a taxonomy
	Category 1: Concurrent Consensus
	Category 2: Sharding
	Category 3: Intra-block Concurrent Processing
	Speculative
	Deterministic
	Partitioning
	Intra-block Performance Comparison

	Category 4: Directed Acyclic Graph (DAG) approaches
	Category 5: Semi-Centralized Solutions
	Category 6: Off-chain solutions
	Category 7: Cross-chain solutions
	Category 8: Transaction Ordering Dependency(TOD) and Front-Running Attacks
	Category 9: Available concurrent transaction execution vulnerabilities (misconception)

	Addressing the Flawed Assumption (Category 9)
	Evidence from blockchain design
	Sharding and potential for transactions concurrency issue
	Sharding architecture
	Potential benefits of sharding for concurrency

	Conclusion and future work
	About the Authors

