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Abstract

Policies are designed to distinguish between correct and incorrect
actions; they are types. But badly typed actions may cause not com-
pile errors, but financial and reputational harm We demonstrate how
even the most complex ABAC policies can be expressed as types in de-
pendently typed languages such as Agda and Lean, providing a single
framework to express, analyze, and implement policies. We then go
head-to-head with Rego, the popular and powerful open-source ABAC
policy language. We show the superior safety that comes with a pow-
erful type system and built-in proof assistant. In passing, we discuss
various access control models, sketch how to integrate in a future when
attributes are distributed and signed (as discussed at the W3C), and
show how policies can be communicated using just the syntax of the
language. Our examples are in Agda.

1 Introduction
With large sums, confidential data, or reputation at risk, correctly applied
access policies can be the only barrier between business-as-usual and cyber
disaster. The increasing complexity of the digital environment only makes
this more true over time. We improve the state-of-the-art by providing
provable correctness for the most complex decidable policies through the
application of dependent typing. An access policy, even a complex one, is
a type in a sufficiently expressive(dependent) type system, but one where
the code implementing the policy can be statically type-checked. Only code
obeying the policies will pass. Thus, we can provide provable guarantees a
policy is correctly applied well beyond the capabilities of existing systems.
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There are a number of access control paradigms available, such as access
control lists (ACL)–just a triple of principal, object and right, role-based
access control (RBAC)–principals have roles, roles have rights over certain
objects, relation-based access control (ReBAC)–roles are just groupings and
there are relationships across these groups, and attribute-based access con-
trol (ABAC)–access is a function over attributes of the accessor, the object,
and the current environment, in order of increasing sophistication. Each
subsumes the previous model.

We argue for the importance of ABAC for web services especially, and fur-
ther that our approach represents a significant step forward beyond existing
ABAC technologies. In the extended introduction we will consider 4: Rego,
Sentinel, Cedar, and XACML.

Access control is implemented by technologies. These technologies require
a meta-model, such as roles or relations, to describe what we want to con-
trol by modeling in our particular domain through, for example, creating
roles. Consequently, what cannot be expressed in the meta-model cannot
be directly protected by the technology; i.e., you cannot control what you
cannot model. Where a model is too rigid to express a policy, additional,
uncontrolled code must be written to surround the control technology and
map into the limited model, creating a vector for bugs and attacks. If access
depends on context, such as geography or time of day, or attributes of the
principal or recipient, such as age, credit line, or recent withdrawals, then
only ABAC is sufficient to model a policy safely.

Within ABAC solutions we can further distinguish between solutions re-
quiring all attributes be delivered to the engine at evaluation time, mean-
ing some other system must know how to assemble attributes from some
“ground truth”, and those allowing the engine to access external sources
of “truth” during evaluation, the latter decreasing the distance of policy
evaluation from attribute values by one remove and simplifying the move
to a distributed credential model, such as from the W3C. Solutions also di-
vide on the expressivity of their language, between those whose policies are
stated as static structures to be evaluated and those with the strength of a
programming language.

But just as you cannot protect what you cannot model, you cannot trust
your model if you cannot be sure your code obeys it. The power of code
means powerful policies can be implemented, but not not necessarily that
they are implemented correctly. Likewise, even if individual policies are
correct, we may still want to prove their consistent application enjoys other
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properties. Reduced expressive power can get you the first, but none of the
available systems provides the second.

Needless to say, our solution, based on dependent types, provides such guar-
antees with the full expressive power of existing solutions. A policy evaluates
a quadruple (right, accessor, object, and environment) for correctness. Al-
ternatively stated, a policy is a type, permitting quadruples that are correctly
typed and prohibiting the ill typed. Our dependently typed approach turns
this into a reality; your policies of arbitrary complexity are types defined in
the language and code is statically checked to ensure only well typed (policy
obeying) access will occur at run time. Furthermore, the language comes
equipped with a proof assistant; not only are individual policies provable,
but one can also prove invariants hold over longer stretches of code.

The Discussion section makes this argument in the abstract. If you need
no convincing, you may skip to our comparison of ABAC languages. The
paper then goes head-to-head with Rego, a popular open-source ABAC lan-
guage/system. In it we concretely demonstrate our claims. As we include a
large amount of code, this may also work as a bit of an introduction to the
power of programming with dependent types, and functional programmers
may choose to head straight there. We implement in Agda but everything
we say holds equally in similar languages, such as Lean.

Within the body, we also demonstrate how the approach can be applied to
a world of distributed truth, where evaluating a policy may involve calling
external services.

2 Discussion
Access control systems (ACS) are the line of defense protecting your as-
sets from the malicious and the incompetent (and the buggy). Policies are
the expression of how you want that control to be applied. Policies can be
expressed in many ways, from ordinary language to pseudocode to various
formalisms. They can be implemented fully if your ACS supports everything
expressed in your policies, or indirectly, either by dropping part of the pol-
icy, or by surrounding the ACS with additional code to fill the gap; either
approach provides an attack vector for the malicious and the incompetent.
Systems of increasing expressiveness have been proposed to bridge the gap
between policy and implementation.

The ideal pairing of policy language and ACS has three properties:
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1. Consistency The ACS allows no activity prohibited by a policy and
prohibits no activity allowed by the policies.

2. Completeness The ACS faithfully implements every expressively pol-
icy.

3. Sufficiency Our policy language can express the policies we want.

We introduce Policy as Type (PAT), a new approach that significantly im-
proves the state of the art and brings us closer to that ideal state with a
policy language as expressive as it is computationally feasible to obtain.

Different assets will require different policies, and there is a spectrum of
meta-models, from Access Control Lists (ACLs) to Role Based (RBAC),
Relationship Based (ReBAC), and Attribute Based (ABAC) technologies,
in increasing order of complexity, to name the most common. Evolving
needs have pushed users along this spectrum; the complexities of real-time,
online, high-frequency web services and digital contracts push us to more
complex policies.

The ever-increasing complexity of the digital landscape, with real-time dig-
ital contracts, distributed digital identity, digital contracts, and rampant
impersonation and fraud, only makes this more difficult.

ACLs can be seen as a set of triples containing an object, a principal, and
a right. It can get a bit more complicated, such as in network ACLs, where
rules can apply to similar IP addresses without enumerating each of them.
While a correct ACL will provide an answer to any access request, it provides
no abstraction. Every triple is independent. Adding/removing/updating
anything more complex than a single user or object is complex because
many entries must be considered and updated. In a sense, there is neither
model nor metamodel; you simply store the answers.

RBAC provides some abstraction: principals are assigned to one or more
roles that they use when accessing the system. Objects, such as applica-
tions, give access rights to roles, not individuals, so one need only change an
individual’s roles without affecting any objects. This significantly reduces
overhead from ACLs - removing an individual means removing their roles,
updating likewise means changing roles, and there is no need to consider
objects. However, it cannot model simple relationships among sets of users
(i.e., roles) or sets of objects.

ReBAC, which originated with Google’s Zanzibar[12], was developed to ad-
dress this issue. Derivative systems such as OpenFGA[4] and Ory[5] are
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based on the Zanzibar model. It allows easy definition of direct rights (user
Alice can edit the Calendar because there is a directly defined relationship),
and role based access (Bob can edit the Calendar because he’s an Editor,
and Editors can edit the Calendar). However, roles can propagate through
indirect relationships - Bill can edit the Calendar because he has FullAccess
to the Project containing the Calendar, and there is a relationship between
the Calendar and its Project. This allows for much finer control, but all these
relationships are extrinsic to the users, objects, and situations it operates in
- they cannot peer into the properties of objects or users.

The ABAC model adds further expressiveness by allowing the attributes of
the sender, receiver, and environment to be included in a policy. Up to
this point, the first two have been considered opaque - the system essen-
tially manipulates labels applied to them - and the last has been completely
absent. This allows policies to consider age, location, recent transactions,
credit lines, ownership, etc.. In theory, policies of arbitrary complexity can
be represented. In practice, models need to be decidable; therefore, some
restrictions of power are necessary, but a policy that cannot be evaluated in
finite time is itself a problem. Each ABAC system has its own compromises.
We will examine four commercially available ones - Rego, Sentinel, XACML,
and Cedar - as well as PAT.

For each of these approaches there are implementing technologies. However,
a technology can only control what the model can express. It may seem
you can shoehorn a policy into a model, but where there is no fit, you are
inevitably writing uncontrolled code to map into an inadequate model, code
that leaves you open to attack. You can only control what you can model.

Our goal is to argue for ABAC as safely evaluating the most general set of
policies; other models fall short of providing adequate defense. Further, we
will show that even the existing ABAC languages fall short and propose a
more powerful but equally implementable alternative.

Because we are particularly concerned with web services, we will consider
the following kind of policy in particular: may sender S send message M to
receiver R in current context C?

More practically, we would like to be able to specify policies succinctly,
evaluate them quickly, and update them easily while maintaining consistency
(i.e., updating policies may create race conditions where part of a policy is
implemented before a change and part is implemented after).

These practical considerations conflict with expressibility - the kinds of poli-
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cies we can state in our language. Consider two:

1. Children under 13 may not watch PG-13 videos unless a parent grants
permission.

2. A corporate officer may transfer money from the treasury account only
between 09:00–17:00 US Eastern, at most five times per day, and from
a registered device whose request is signed with her key and originates
inside the USA.

Infringing the first may lead to legal or reputational damage, while the
second may protect a digital contract against exploitation; millions of dollars
have been lost through the failure to implement such constraints. How can
we enforce these given our models? What can each model express?

What cannot be stated directly within some policy language, and enforced
by the technology behind it, relies on the competence of programmers and
attackers, meaning it is inherently unreliable. There is a dependence on the
programmer, and there are additional aspects of coordination between this
external code and the policy machinery. Poorly defined policies are always
possible, but then it is clear where the blame lies.

2.1 Arguing for ABAC

With a traditional ACL, obtaining an answer is easy, but correctness is
difficult to maintain. Given many users and movies, we would need to track
every user’s right to view every movie. When a user turns 13, we’d need
to go through all movies to grant access. Somewhere we’d need to keep a
list of PG movies anyway. This little thought experiment shows ACLs have
clear scaling and responsiveness issues. The problems with ACLs have given
birth to our other challengers, and we will leave it here.

With roles, we can get a bit further. Roles apply to principals not objects,
but we can divide, in the first case, principals into, say, Everyone, Over13,
and HasParentalPermission. Every G-rated video (assuming only G and
PG) allows a principal with the Everyone role to view, while every PG-rated
video only allows principals with the roles Over13 or HasParentalPermis-
sion to view. This seems to work for a simple case, but there are still some
issues. The policy language is “principals with role R can send messages of
type X to object O”. Assigning principals to Over13 and HasParentalPer-
mission is outside the scope of the policy language; external code needs to
monitor it. If permission may be given for just a single movie, then we need
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a PermissionToSeeMovieM role for every movie, membership again main-
tained in code. If permissions can expire, we need even more code. We
cannot model the (human) parent–child relationship. Each movie stands on
its own; we cannot treat G movies or PG movies as groups. If something
changes, we must update every affected movie individually.

Relations add still more power to the model. We can create two objects:
G and PG. For any individual movie we can assign G or PG to a “rating”
relationship and then inherit who can view from them. We can create a
userset of all principals and another of just those over 13. G has a “can
view” relationship with both, while PG has with just the over 13 one. Each
movie can now inherit the “can view” relationship from its parent, either the
G or PG object. Permissions are modeled as additional permission objects
with a “permission” relationship (one might normally view the relationship
as proceeding from the permission object to the movie, but it is not clear
from the paper whether relations can be inverted, so we will add them as
relations from a given movie). The permission object would have a “permits”
relation to a parent which then has a “parent” relation to the child. Zanzibar
follows these using “userset rewrite rules”. We can even provide the right to
view any PG movie by attaching the permission to the PG object instead
of the movie.

This brings us much closer: we have a reasonable construct for designating
permission, and we can connect that through parenthood with the permit-
ted child. Expressing this in Zanzibar may be a bit tortured. However,
membership in the over 13 group needs to be externally monitored, and ap-
propriate relations added. If the permission has a time limit, that must also
be externally managed. As specified, the relational policy language unions
sets across relations. As such, it is difficult to describe a version of a permis-
sion that both includes parents and yet is restricted to a single child. The
permission should have relations to the granting parent and the child, but
also requires there be a transitive relationship - the grantor of the permission
must be the parent of the child.

Considering our second proposed policy, the issue of change is even more
significant; an external system needs to monitor transactions to move indi-
viduals in and out of relations, depending on temporal circumstances. These
cannot be stated within the relational policy language and may change fre-
quently. While Zanzibar has distributed consistency protocols, continually
changing rights could cause significant churn.

Finally, we consider the attribute-based approach. The models we have dis-
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cussed are unable to access either attributes of the entities involved (sender
age, receiver rating, message signature) or the context in which a decision
is being made (time of day, sender’s location). Therefore, these aspects of a
policy need to be handled externally to policy technology.

We are limited to labels the system places on them for us. This requires
us to create constructs to emulate the properties and execute external code
to maintain them. In an ABAC model, we address them directly. We can
directly access the age of a principal, we may even be able to ask about
additional objects, such as if the permission property includes a permission
for the given movie by another principal who is the parent of the first.

In an ABAC system, objects and contexts have attributes we can query. Of
course, the underlying system needs to model and maintain the attributes we
need. But, we can just ask for the age of the sender and check if it is greater
than 13. If not, we can check for, say, a permissions attribute pointing to
a list of permissions, filtering to permissions pointing to the receiver (the
video), and a parent attribute pointing to one or more other objects, one of
which is the grantor of the permission.

In our second policy, we can consider the user’s actual credit line, how much
they’ve transferred in the last 24 hours, where they are at the time of the
request, etc. This lets us precisely define the constraints of our policy in the
language of our implementing technology.

In theory, then, ABAC gives us access to the full power of our information
system. All the information we have about sender, receiver, environment,
and message, are available to us to use in evaluating a request.

On the reasonable assumption that our underlying system can keep track
of these values (the ABAC technology can only be as good as the system
supplying the attributes), we then need to consider the power of the policy
language under consideration.

2.2 Comparing ABAC Languages

We can consider four commercially available ABAC systems, as well as the
one we will propose. The existing languages are XACML[15], an XML based
language created by OASIS (there is also a YAML version called Alfa[1]);
Cedar[10], a more recent language developed by Amazon; Sentinel[7], a lan-
guage developed by Hashicorp, creators of Terraform; and Rego[3], an open
source policy language developed by Styra[8] and now part of the Open
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Policy Agent[3].

We will compare them along the following lines:

1. Where do the attributes come from?

2. What is the expressive power of the language?

3. How strong are its guarantees of correctness?

2.2.1 Where do the attributes come from?

The attributes a policy engine uses can either be supplied as some data
structure by an outside system, such as the caller, or retrieved directly by
the engine itself. In the former case, the results achieved from the policy
engine can only be as good as the external system assembling the input,
while in the latter the attributes are as good as the underlying system itself.
While we can try to drive out sources of doubt, attribute values need to
come from somewhere, some ground truth that we need accept as correct.

Languages in the former include XACML, Cedar, and Rego. A call to
any of these includes a data structure, XML or JSON, with the necessary
attributes, so the policies are actually a function over this data structure.
However the creation of this data structure is problematic: it is beyond
the control and verification of the policy apparatus; it relies on ensuring
the attribute generation process (or processes) evolves correctly with the
policies; and it is vulnerable to the time of check vs time of use race condition
(TOCTOU). Between the time the attributes are gathered and when the
policy is evaluated, values may have changed. Collecting attributes during
evaluation reduces the time delay, but the situation is really akin to atomic
transactions in databases.

Sentinel has the ability to make http calls during the evaluation of a policy,
meaning it can go directly to the sources of attribute values. As such it is
not dependent on a data structure of dubious quality and policies are free
to use any attributes supplied by an http call. However there is no control
on the authenticity of these URLs or the structure of the data returned.

PAT, being implemented in a strong, dependently typed language, can access
any external data to locate attributes, like Sentinel, but the safety of those
endpoints is explicitly managed. In Agda, for example, an external call
whose results are just accepted as true is a postulate, distinguishing what
is true because it has been proven, and what we will assume is true (i.e.,
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external data). With the full power of monastic functional programming
we can look at deeper solutions to issues like TOCTOU. This is a problem
which will only be exacerbated in a more distributed world.

2.2.2 What is the expressive power of the language

XACML and Cedar express policies as static structures containing some re-
lationship information and some logic over attribute values. As such the
language expressed directly in these two systems is quite limited. Any ad-
ditional computation must be pushed back to the calling system.

Rego and Sentinel, on the other hand, both derive from datalog, a descen-
dant of Prolog. Policies are arranged in logic-based rules capable of calling
each other. Each rule may have several bodies, with the system using back-
tracking across multiple rules with multiple bodies to find a final answer.

This comes close to the power of a general purpose programming language,
but these languages are deliberately weakened to ensure they terminate with
an answer for each call. Sentinel’s ability to make http calls can certainly
create trouble here, as backtracking could lead to multiple calls with poten-
tially different answers each time.

PAT fits into the same arena. The underlying language - currently Agda, but
eventually Lean - is deliberately designed to terminate. Indeed, all recursive
calls and loops are analyzed to ensure they terminate in a finite number of
steps. It is possible to program with potentially infinite data structures, but
that then becomes a clear choice. However, dependently typed languages
do not have backtracking as a resolution method.

This does not seem to cause any issues, as no one wishes to create policies
which cannot be evaluated in finite time.

Being directly tied to an existing language with all the power that entails,
PAT has access to the full power of the underlying language as well as
developments in other fields (for example, extensive areas of mathematics
have been formalized in both Agda and Lean), while Rego and Sentinel are
restrained in the libraries and other code they can import.

2.2.3 How strong are its guarantees of correctness?

Among our four existing languages, Cedar has gone the farthest in attempt-
ing to prove the correctness of its implementation, having started with a
provably correct implementation and then carefully rewriting that in Rust.
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While XACML predates more recent efforts in provable correctness, it could
certainly be subjected to a similar methodology. In both cases we should be
able to assume they will correctly apply a policy as it is written.

Rego and Sentinel both trade off correctness for power. They adhere to
the concept of policy as code, directly inspired by the idea of infrastructure
as code. While they are more expressive than Cedar and XACML, policies
expressed in Rego and Sentinel are simply programs, like any other programs
(although based on a logical framework with backtracking unfamiliar to most
programmers). Any sufficiently complex policy will be derived elsewhere
and translated into Rego. They are as vulnerable to bugs as any other
program with only testing and the strength of their type systems to save
the developer, and neither has a particularly strong type system.

PAT, on the other hand, exploits powerful advances in programming lan-
guages based on dependent types. In PAT, a policy is a type, a very sophisti-
cated type, but one for which there are type checkers. Your policies are not
only encoded in the very expressive logical language of Agda’s types, but
you are required to provide constructors to define how to prove a term is a
member of that type (playing a role similar to rules in Rego and Sentinel).
And then you will be required to prove your code follows the policies using
these constructors. The policies specify the set of legal quads (sender, re-
ceiver, message, context) and the built-in type-checker/proof assistant will
ensure code actually implements the policies. PAT cannot entirely eliminate
programmer error, but way fewer can pass through..

Beyond this, Agda and Lean both double as proof assistants. Not only
can one , for example, prove your policies are consistent and that your code
obeys them individually, one can prove that larger chunks of code interacting
with multiple policies will still maintain invariants. One could, for example,
encode ReBAC constraints into your policies and then directly interact with
Zanzibar or a clone by postulating they can correctly provide the relation
between two objects. Postulates are a way to work with foreign functions
(since, being foreign, they cannot be checked with Agda itself).

2.3 From here

From here we will explain our approach in a head to head comparison with
Rego, currently the open source champion of the ABAC approach. This will
involve a lot of Agda code and can also be seen as a bit of an introduction to
the value of dependently typed programming. We start with a translation of
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the introductory example from the Rego documentation and move on from
there. We implement the movie policy in detail and describe how this can
work in a decentralized trust environment, such as envisioned by the W3C
Verifiable Claims WG.

3 Dependent types and propositions as types -
turning a policy into a type

There is a new family of programming languages called dependently typed.
This family several languages in active use, including Agda[17], Lean[11],
and Idris[16], among others. Our examples will use Agda, but our reasoning
applies to all members of the family. Because dependent types are unfamil-
iar to most programmers, we will spend some time describing a particular
class of dependent types called propositional types which extend the famil-
iar structural types, and then use those to rewrite the Rego introductory
example in Agda.

Dependent typing breaks down the barrier between types and terms deeply
rooted in other programming languages. The canonical example is vectors
of length n, defined as:
data Vec : Set a : N → Set a where

[] : Vec A zero
_::_ : ∀ x : A (xs : Vec A n) → Vec A (suc n)

Here A gives the type of entries in the Vector. Bypassing much subtlety,
Set is Agda-speak for a type, so given a type A, Vec A is a type constructor
which, given a natural number, n, creates the type Vec A n. (N is the set
recursively consisting of zero and (suc n), where n is a member of N.)
There are two constructors, [] creates the unique term of type Vec A 0,
and _::_ adds an object of type A to the front of a vector of type Vec A
n, creating a vector of size n + 1, of type Vec A (suc n). This shows a
dependent type, a type containing a term, in this case an N, so ‘a’ :: ‘b’
:: [] is of type Vec Char 2. In most languages programmers are used to,
you cannot have a value, such as 2, as part of a type definition. Note that
the constructors have complete control over n - you can only declare an
object of Vec A n by constructing it one object at a time.

(Note that Set is at the bottom of a hierarchy of types so the type system
avoids Russell’s paradox. This is not germane to the current work, but the
curious reader is certainly encouraged to find out more.)
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More interesting are types such as
data _≤_ : Rel N 0 ℓ where

z≤n : ∀ {n} → zero ≤ n
s≤s : ∀ {m n} (m≤n : m ≤ n) → suc m ≤ suc n

_≤_ is a relation between two natural numbers. This describes types such
as 5 ≤ 6. For someone just exposed to this approach that takes a while to
sink in. 5 ≤ 6 is a type, not a function from a pair of numbers to a boolean
value. How do we get such a thing? We have two type constructors, z≤n
and s≤s. The first takes a single number, n, and constructs the type zero
≤ n for whatever n is. The curly braces indicate that Agda will attempt to
infer the appropriate n, so you don’t need to do so. Clearly that won’t give
us an example of 5 ≤ 6, so we look to the other constructor. It says, if we
have an object of type m ≤ n then we can get back an object of type suc
m ≤ suc n. In this case m is 4 and n is 5. We need (s≤s . . . object of type
4 ≤ 5 ). How do we get an object of type 4 ≤ 5? We repeat, until we can
get down to using z≤n, at which point n is just 1 (i.e., 6 - 5). The (only)
object of type 5 ≤ 6 (given these definitions) is (s≤s (s≤s (s≤s (s≤s
(s≤s z≤n 1))))). In general Agda infers the argument to z≤n, it is an
implicit argument. We supply it here for clarity; the curly braces indicate to
the compiler we are replacing an implicit parameter. The object is a proof
that 5 ≤ 6.

Another, almost ubiquitous, example is the equivalence type constructor
(_≡_), defined as
data _≡_ {A : Set} (x] : A) : A → Set where

refl : x ≡ x

Equivalence takes an object, x, of (implied) type A and constructs the type
x ≡ x. At first glance this might appear trivial, but it is quite subtle.
We can write the type x ≡ y, and try to construct an object of that type
with refl, but it will only type check if we can convince Agda that x and
y are always the same. It turns out needing to show two objects with
different definitions are actually the same happens a lot, and we will see
examples shortly. (Because dependently typed languages allow terms into
type definitions, they also allow function calls and other constructs. These
may need to be executed while type checking, sometimes leading to long
compile times. However Agda, and similar languages, forces iteration and
recursion to terminate so compile times are finite. Agda has other constructs
to support controlled non-termination.)
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We will dive deeper into this as we look at defining policies through depen-
dent types. The introductory example in the Rego documentation, which
we rewrite in Agda, is a filter on a putative server configuration. The config-
uration is expressed in YAML and the Rego code walks the tree. As given,
the typing of structures and Server, Protocol, Port and Network is en-
tirely implicit in the Rego code, although that can also be validated using
JSON-Schema.

We now duplicate the Rego example with the following Agda code. Agda,
like Haskell and many other languages (both functional and non-functional),
is strongly typed, so type declarations missing from Rego are present.
data Protocol : Set where

https : Protocol
ssh : Protocol
mysql : Protocol
memcache : Protocol
http : Protocol
telnet : Protocol

data Network : Set where
network : String → Bool → Network

data Port : Set where
port : String → Network → Port

data Server : Set where
server : String → List Protocol → List Port → Server

protocols : Server → List Protocol
protocols ( server _ a _) = a

net1 = network "net1" Bool.false
net2 = network "net2" Bool.false
net3 = network "net3" Bool.true
net4 = network "net4" Bool.true

publicNetwork : Network → Bool
publicNetwork ( network _ a) = a

getNetwork : Port → Network
getNetwork (port _ n) = n

p1 = port "p1" net1
p2 = port "p2" net3
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p3 = port "p3" net2

app = server "app" (https :: ssh :: []) (p1 :: p2 :: p3 :: [])
db = server "db" (mysql :: []) (p3 :: [])
cache = server "cache" ( memcache :: []) (p3 :: [])
ci = server "ci" (http :: []) (p1 :: p2 :: [])
busybox = server " busybox " ( telnet :: []) (p1 :: [])

servers = app :: db :: cache :: ci :: busybox :: []
networks = net1 :: net2 :: net3 :: net4 :: []
ports = p1 :: p2 :: p3 :: []

We first define the data types and then define the values from the example.

The Rego example then introduces two policies:

1. Servers reachable from the Internet must not expose the insecure ’http’
protocol. 2. Servers are not allowed to expose the ’telnet’ protocol.

We will slightly generalize this and consider 3 lists of protocols:

1. badProtocols, which just includes telnet
badProtocols : List Protocol
badProtocols = telnet :: []

2. weakProtocols, which just includes http
weakProtocols : List Protocol
weakProtocols = http :: []

3. strongProtocols, which contains everything else
strongProtocols : List Protocol
strongProtocols = https :: ssh :: mysql ::

memcache :: http :: []

So far Agda looks like any conventional functional language, like Haskell.
We now wade into the weeds.

We have a bunch of servers and we can define three properties of servers:

1. A Server is good if it exposes no bad protocols 2. A Server is private if
it is not exposed to the Internet 3. A Server is compliant if it is good and
either it is private or it exposes no weak protocols

They appear in Agda code as:
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data GoodProtos : Server → Set where
*good* : (s : Server ) →

(( protocols s) ∩ badProtocols ) ≡ [] → GoodProtos s

data PrivateServer : Server → Set where
* private * : (s : Server ) →

(Data.List.Base. length ( anyExposed ( portList s))) ≡ 0
→ PrivateServer s

data GoodServer : (s : Server ) → Set where
* goodserver * : ∀ (s : Server ) → ( GoodProtos s) →

( PrivateServer s) → ( GoodServer s)
* safeserver * : ∀ (s : Server ) → ( GoodProtos s) →

¬ ( PrivateServer s) →
(( protocols s) ∩ weakProtocols ≡ []) →
( GoodServer s)

We now start using dependent types in earnest, and they show their power.
Here, the types serve as propositions about Servers. GoodProtos s repre-
sents that we have a Server none of whose protocols are prohibited (protocols
is a helper function). It is dependent because the type depends on a term,
in this case the particular Server, s. Since it is dependent on the particular
Server, GoodProtos db is not the same type as GoodProtos app.

(The helper function protocols is defined as
protocols : Server → List Protocol
protocols ( server _ a _) = a

and just returns the list of Protocol terms defined for the server.)

To construct a value of type GoodProtos, we need to call a constructor.
There is only one, *good*. We need to pass it first a Server, s, and then
something of type (protocols s) ∩ badProtocols) ≡ [], at which point
we receive back a value of type GoodProtos. Look at the definition of the
Server name db. We can get a proof of GoodProtos db with the statement
*good* db refl. Since the definition of db is known at compile time, Agda
can automatically reduce ((protocols s) ∩ badProtocols) to ((mysql
:: []) ∩ telnet :: []) and then to [], at which point refl, implic-
itly given the result of this operation (the Agda compiler can infer many
arguments automatically), generates a value of type [] ≡ []. This type
checks, and we have proof that db does not expose any bad protocols. You
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can enter *good* db refl into the interpreter or compile it and it type
checks; it is a value of type GoodProtos db. However, you cannot do the
same with busybox, which exposes telnet. Because the intersection is no
longer empty, you would need to create a value of type (telnet :: [])
≡ []. But that type is empty - the only constructor for equivalence is refl,
which only takes one value. You cannot create a value of type GoodProtos
busybox, so *good* busybox refl does not type check.

Getting a value of PrivateServer s proceeds similarly, although here we
ensure the number of exposed ports is 0. Once again, a value of the ap-
propriate type can only be established if, indeed, there are no ports on the
server exposed to the Internet.

Finally, a Server, s, is acceptable if we have a proof of GoodServer s. There
are two possibilities here: only acceptable protocols are used and either the
server is Private or it is not Private but no weak protocols are exposed.

While it is good to prove such properties, an object of type GoodServer s
is fairly opaque and doesn’t give access to s at the term level. We really
want both the object, s, and the proof together.

A dependent pair is the combination of an object and a statement about that
object. The type Σ[ s ∈ (Server) ](GoodServer s) is an existentially
quantified type. It says here exists s, a Server which is a GoodServer. The
constructive logic underlying the type system requires me to provide both
such an object and a proof. The constructor for a dependent pair is _,_.
An example is:
(db , * goodserver * db (* good* db refl) (* private * db refl)

where db is defined as above. This type checks, meaning I have a pair of db
and a proof that GoodServer db holds.

From this, one can prove servers are good at construction time. For example,
in
randomServer : Σ[ s ∈ ( Server ) ] ( GoodServer s)
randomServer = let foo = server "foo" (mysql :: [])

(p3 :: []) in
(foo , * goodserver * foo (* good* foo refl)

(* private * foo refl ))

randomServer is a dependent pair. One can get the Server object by pro-
jection:
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goodServer = proj 1 randomServer

and be guaranteed to have a usable Server.

This immediately contrasts with Rego, where the decision that a server is
good lies far from its definition. With Rego, the definition of a Server must
be serialized into JSON or other understood format, transmitted to a Rego
server with a query, the answer received and interpreted, and finally some
decision must be made. You cannot bring the policy into the construction
of the Server, only through a convoluted check.

As argued above, if you create your Server where the compiler can “see” it,
it can move policy checking into a compile time action. However, it may be
the Server configuration is loaded or in a separate module. Then the com-
piler cannot see the configuration and we need to deal with a list of Servers
which may be either good or not. The function goodServerCheck examines
a Server and returns a Maybe (Σ[ s ∈ (Server) ] (GoodServer s)) -
either a dependent pair or nothing.
goodServerCheck : (s : Server ) →

Maybe (Σ[ s ∈ ( Server ) ] ( GoodServer s))
goodServerCheck s@( server _ protList portList ) with

( emptyIntersection protList badProtocols )
... | no _ = nothing
... | yes noBad with isPrivate s
... | yes yesPrivate = just (s , * goodserver * s

(* good* s noBad) yesPrivate )
... | no notPrivate with ( emptyIntersection protList

weakProtocols )
... | no _ = nothing
... | yes noWeak = just (s , * safeserver * s

(* good* s noBad) notPrivate noWeak )

Here, emptyIntersection is Dec([] ≡ []). If it fails on the 3rd line, then
return nothing. Otherwise, check if it’s private. If so, return a pair, using
*goodserver* for proof. The values noBad and yesPrivate are evidence
for the proof. If it’s not private, then test for weakProtocols. If there are
none, return a pair, using *safeserver* as proof - or nothing.

With this function we can get either the list of good Servers or of violations
by simply filtering the list. For the good servers one might return the list
with a proof that all servers in the list are good.
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goodServerList : List Server → List Server
goodServerList [] = []
goodServerList (h :: t) with goodServerCheck h
... | nothing = goodServerList t
... | just _ = h :: ( goodServerList t)

There are a few additional desiderata to consider.

As mentioned, emptyIntersection is Dec([] ≡ []). Decidable, Dec, is
defined as
data Dec {a} (P : Set a) : Set a where

yes : ( p : P) → Dec P
no : (¬p : ¬ P) → Dec P

Dec takes a propositional type and has two constructors. Yes returns with
a proof of type P and no returns with a proof of its negation. For a proposi-
tional type to be decidable then one must be able to prove it holds or prove
it doesn’t.

There are two ways to prove a Server is a GoodServer. One, *safeserver*,
requires proving a Server is ¬(PrivateServer s). This requires a brief
detour into the treatment of negation in Agda.

Proof in Agda is based on the theories of Per Martin-Löf (for a short pre-
sentation consider this preprint[13]). As it is a constructive logic, it lacks
the law of the excluded middle, i.e., (P ∨ ¬P) is not an axiom. Instead,
¬(PrivateServer s) is shorthand for (PrivateServer s) → ⊥. ⊥ (bot-
tom) is the empty type, and deriving it means there’s been a contradiction,
i.e., from bottom you can prove anything. Essentially, ¬(PrivateServer
s) means you should not be able to prove (PrivateServer s), because if
you could, that would be a contradiction.

While Agda does not employ the law of the excluded middle for proof, there
still are types that are decidable, as just mentioned. For example, a natural
number is either 0 or it isn’t, so there is a decidable version of equivalence
for N: _ ?=_. A value of this type is either a yes or a no, and we use that in
the definition of isPrivate, where we check how many exposed ports the
server has:
isPrivate : (s : Server ) → Dec ( PrivateServer s)
isPrivate s with (Data.List.Base. length

( anyExposed ( portList s))) ?= 0
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... | yes eq = yes (* private * s eq)

... | no neq = no ( negatePrivateServer s neg)

Being decidable, (Data.List.Base.length (anyExposed (portList s)))
?= 0 actually returns either yes 0 ≡ 0 or no (0 ≡ 0 → ⊥). We will use
both.

The first case uses (*private* s eq) to return a value of PrivateServer
s. For ¬(PrivateServer s) we consider the helper function negatePrivateServer,
defined as
negatePrivateServer : ∀ (s : Server ) →

{Data.List.Base. length ( anyExposed ( portList s)) ̸≡ 0 } →
¬ ( PrivateServer s)

negatePrivateServer s { neq } (* private * _ p) = ⊥-elim (neq p)

As explained, ¬(PrivateServer s) is shorthand for (PrivateServer s)
→ ⊥ and (Data.List.Base.length (anyExposed (portList s)) ̸≡ 0 is
really shorthand for 0 ≡ 0 → ⊥. In the body of negatePrivateServer we
first pass in a function that derives a contradiction when handed 0 ≡ 0 (we
have this from neg in isPrivate, as described above). That is then curried
to a function of type Private p → ⊥. (*private* _ p) is the parameter
to that function (because, being *private*, p cannot contain any exposed
ports) and ⊥-elim (neq p) derives the contradiction we need.

3.1 Regression Tests vs. Regression Proofs

Programmers are all familiar with the concept of regression tests - a set of
tests run after changes to try to ensure that new code doesn’t break existing
behavior. Regression tests basically run sets of sample data on various parts
of the application to try to ensure behavior is correct. Likewise we can prove
properties of our current system which may fail if it is changed.

Just as we can prove properties of a transaction request, we can prove prop-
erties of the underlying model. For example, we have established a Protocol
type with a number of different protocols. We have divided them into
three categories, badProtocols, weakProtocols, and strongProtocols.
We might want to ensure every Protocol is in one of these three categories,
and that they are exclusive. We can prove these properties for the current
code, and if a Protocol is added but not categorized, or if a Protocol is
entered in two categories, the code proving these properties will not compile.
This is a regression proof, not just a test.
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To prove the three categories are exclusive do as follows:
separate : ( badProtocols ∩ weakProtocols ≡ []) ×

( badProtocols ∩ strongProtocols ≡ [])
× ( weakProtocols ∩ strongProtocols ≡ [])

separate = refl , refl , refl

The type of separate is an and over the three conditions. This is rep-
resented by × at the type level. We generate an object of the type by
proving the type, which we do with three repetitions of refl. For each of
these, the compilation has evaluated the condition (e.g., badProtocols ∩
weakProtocols and passed the results to the only constructor for equiva-
lence, refl. Since the intersections are all empty, this proves the proposition.

Proving each Protocol is in one category or another requires a proof for
each:
allProtosAssigned : (p : Protocol ) →

((p ProtDecSetoid .∈ badProtocols ) ⊎
(p ProtDecSetoid .∈ weakProtocols ) ⊎
(p ProtDecSetoid .∈ strongProtocols ))

allProtosAssigned https = inj 2 (inj 2 (here refl ))
allProtosAssigned ssh = inj 2 (inj 2 (there (here refl )))
allProtosAssigned mysql = inj 2 (inj 2 (there (there

(here refl ))))
allProtosAssigned memcache = inj 2 (inj 2 (there (there

(there (here refl )))))
allProtosAssigned http = inj 2 (inj 1 (here refl ))
allProtosAssigned telnet = inj 1 (here refl)

Here, the symbol ⊎ represents an or, so a disjoint union type. To follow the
first case, for https, we first need to prove it is in strongProtocols. After
Agda is done applying implicits, the calls to inj2 (inj2) indicate we are
looking at the second type of the second union, i.e., strongProtocols. The
call here refl grabs the first item in the list and proves it’s equivalent to
https. For the next entry, there grabs the tail of the list, and so on.

Were another protocol to be added to the type, say smtp, and not included
in one of our lists, or included in more than one, these proofs would fail,
just as a regression test may fail.

These proofs are small but ensure an important property. More complex
proofs can be applied to other parts of the system. When the script is
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monitoring actions in a financial contract, proving certain conditions hold
(or do not) can be worth millions of dollars.

4 Approving a transaction
Generically, a transaction, such as a call from an entity to a service or a
credit card purchase, involves multiple parties. Each party has some set
of attributes (we may also call these properties or, to foreshadow, claims).
A policy needs to determine if the transaction is valid or not. To do so
it evaluates some proposition for each of the parties, and if all are proven,
then the transaction can proceed. The value of dependent types is we can
logically specify the policies in code and enforce them in code.

Consider a service providing videos with a simple policy: a user must be
older than a video’s minimum age to see it, or have permission from their
parent to do so. Just to add a little networking, we require that the request
pass over https before noon and the answering server is approved. Finally,
we want to establish that the returning video is the one requested.

We define Agda record types for the various parties to the transaction. Each
record type has a field for a unique name and additional fields to provide
attributes. For our purposes, we assume we a reference to atrusted external
system to provide the appropriate attributes given a unique name.
record ItemRequest : Set where

field
name : String
videoName : String
ageLimit : N

record Item : Set where
field

name : String
ageLimit : N

{-# NO_POSITIVITY_CHECK #-}
record User : Set where

inductive
field

name : String
age : N
parent : Maybe User
grantsPermission : User → ItemRequest → Bool
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isParent : User → Bool

record Transport : Set where
field

name : String
protocol : Protocol

record Context : Set where
field

name : String
timeOfDay : N

record Service : Set where
field

name : String
isApproved : Bool

We also provide an equivalence operation over Users to be used when looking
for parents.
data _≡U_ : Rel User (# 0) where

*≡U* : ∀ ( p q : User ) → (User.name p) ≡ (User.name q) → p ≡U q

_ ?=U_ : (a : User) → (b : User) → Dec ( a ≡U b)
a ?=U b with (User.name a) Data. String . Properties . ?= (User.name b)
... | yes y = yes (*≡U* a b y)
... | no n = no (nent n)

where
nent : ∀ {s t : User} → (User.name s) ̸≡ (User.name t)

→ ¬ (s ≡U t)
nent neq (*≡U* s t ff) = ⊥-elim (neq ff)

This assumes names are unique. In a realistic implementation we expect
these to explicitly be unique identifiers or public keys.

Next we provide policies as propositional dependent types. These are the
equivalent of Rego’s rules.
data SafeContext : Context → Set where

* contextProp * : (c : Context )
→ ( Context . timeOfDay c) Data.Nat.Base.≤ 12
→ SafeContext c

data HasPermission : (s : User) → (p : ItemRequest ) → Set where
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*hp* : (s : User) → (p : ItemRequest ) → (r : User)
→ (User. isParent s r) ≡ Bool.true
→ (( User. grantsPermission r) s p) ≡ Bool.true
→ HasPermission s p

data SafeSender : User → Set where
* senderPropOldEnough * : (s : User) → (p : ItemRequest )

→ ( ItemRequest . ageLimit p) Data.Nat.Base.≤ (User.age s)
→ SafeSender s

* senderPropYoung * : (s : User) → (p : ItemRequest )
→ HasPermission s p → SafeSender s

data SafeChannel : Transport → Set where
* isHttps * : (c : Transport ) → ( Transport . protocol c) ≡ https

→ SafeChannel c

data SafePayload : ItemRequest → Set where
* safePayload * : (i : ItemRequest ) → SafePayload i

data SafeService : Service → Set where
* safeService * : (s : Service ) → ( Service . isApproved s) ≡ Bool.true

→ SafeService s

data SafeResponse : Item → Set where
* safeResponse * : (r : ItemRequest ) → (i : Item)

→ ( ItemRequest . videoName r) ≡ (Item.name i)
→ SafeResponse i

The most interesting of these is SafeSender. There are two rules, following
the two allowed conditions. First is *senderPropOldEnough* which holds if
a User’s age is greater or equal to the ageLimit of the requested Item. Oth-
erwise we have *senderPropYoung* where SafeSender holds if the sender
HasPermission to request the Item. HasPermission holds for a sender and
a requested Item if there is another User, that User is the parent of the
sender, and that parent grants permission for the sender to see the Item.

The core of this is safeCall, a function that only takes dependent pairs and
performs the actual server call underneath.
safeCall : Σ[ c ∈ Context ] ( SafeContext c) →

Σ[ u ∈ User ] ( SafeSender u) →
Σ[ ch ∈ Transport ] ( SafeChannel ch) →
Σ[ s ∈ ItemRequest ] ( SafePayload s) →
Σ[ s ∈ Service ] ( SafeService s) →
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Maybe Item
safeCall context sender channel payload service = answer
where

doCall : Transport → ItemRequest → Service → Maybe Item
doCall a b c = -- The server call happens here
answer : Maybe Item
answer with doCall (proj 1 channel ) (proj 1 payload )

(proj 1 service )
... | nothing = nothing
... | just result with constrainResponse response

(proj 1 payload )
... | nothing = nothing
... | just isGood = just (proj 1 isGood )

Each parameter to safeCall is a dependent pair proving the first object has
passed the policies applied to it. Since the actual server call is embedded in
safeCall, the call doesn’t occur unless the policy is met.

Accessing safeCall is preCall which just tries to gather those proofs.
preCall : Context → User → Transport → ItemRequest → Service

→ Maybe Item
preCall context sender channel payload service

with ( checkContext context )
... | nothing = nothing
... | just safeContext with ( checkSender sender payload )
... | nothing = nothing
... | just safeSender with ( checkChannel channel )
... | nothing = nothing
... | just safeChannel with ( constrainPayload payload )
... | nothing = nothing
... | just safePayload with ( checkService service )
... | nothing = nothing
... | just safeService = safeCall

safeContext safeSender
safeChannel safePayload safeService

It is a cascade of calls to check each proof, which (following intuitionistic
logic) either returns just a proof or returns nothing. If all the proofs are
available it can call safeCall with the appropriate dependent pairs. One
could also replace Maybe with a type containing just a value or error and
a message

In between are a number of boring routines to generate the necessary proofs,
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such as
checkChannel : (s : Transport )

→ Maybe (Σ[ s ∈ Transport ] ( SafeChannel s))
checkChannel s with ( Transport . protocol s) ?=P https
... | yes p = just (s , * isHttps * s p)
... | no _ = nothing

Eventually these should be auto generated.

Given a small set of objects:
payload : ItemRequest
payload = record { name = " Payload " ;

videoName = "I'm PG 13"; ageLimit = 13 }

response = record { name = "I'm PG 13" ; ageLimit = 13 }

daddyPerm : User → ItemRequest → Bool
daddyPerm child item with (User.name child) ?=S " Sender "
... | no _ = Bool.false
... | y with ( ItemRequest . videoName item) ?=S "I'm PG 13"
... | no _ = Bool.false
... | yes p = Bool.true
daddy : User
daddy = record { name = "Daddy" ; age = 40 ; parent = nothing ;

grantsPermission = daddyPerm ;
isParent = λ { _ → Bool.false }

}

isParently : (a : User) → (b : User) → Bool
isParently a b with a ?=U b
... | no _ = Bool.false
... | yes _ = Bool.true

sender = record { name = " Sender " ; age = 10 ;
parent = just daddy ;

grantsPermission = λ { u i → Bool.false }
; isParent = λ { pq → isParently pq daddy }

}

youngSender = record { name = " YoungSender " ; age = 10
; parent = just daddy
; grantsPermission = λ { u i → Bool.false }
; isParent = λ { pq → isParently pq daddy }
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}

channel : Transport
channel = record {name = " Channel " ; protocol = https }

context : Context
context = record { name = " Context " ; timeOfDay = 10 }

service : Service
service = record { name = "Foo" ; isApproved = Bool.true }

service2 : Service
service2 = record { name = "Foo" ; isApproved = Bool.false }

We can evaluate a few calls. For example, preCall context sender channel
payload service will evaluate to just response (while sender is under-
age, they have permission from daddy), but preCall context youngSender
channel payload service fails, as youngSender does not have permission.
Likewise, using service2 will fail as it is not approved.

This simple example provides a framework for more sophisticated examples.
Like Rego, this entire system can be run as a sidecar in conjunction with the
basic application. A client communicates values for sender, receiver, etc.,
to a script. The script finds the appropriate attributes and evaluates them.
Unlike Rego, however, the script could perform the actual service call. This
allows the script to operate on both the payload and response. For example,
the payload may contain information requiring a higher security level to view
than that of the service; the script can filter out, mask, or tokenize values in
the payload to lower its security level. Likewise, the return value may need
to be manipulated before being returned to the caller.

Agda being a functional language, we have a main routine in the IO Monad
pulling invocations from a Stream. An invocation consists of identifiers
for sender, receiver, etc., as well as some representation of the payload.
Within the IO Monad we can retrieve or generate attributes for all of these,
evaluate the policy functionally, and then perform the call within the IO
Monad.

4.1 Building a decentralized authorization ecosystem

In a distributed system, if a call crosses a trust boundary, the recipient
must ensure any policies are applied, even if the sender has already proven
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the receiver’s policies were upheld. However, if a policy is viewed, as we’ve
shown, as the validation of a proposition over some set of properties, and
the sender can send some trustworthy values for those properties, which we
will now call claims, along with a sketch of the proof, the receiver can just
validate the correctness of the proof.

Some claims, such as claims about the payload itself, may be easy to validate,
but others may be claims supplied by third parties. For example, a claim
containing a purchase limit, credit score, or current age attribute is a claim
by some third party, such as a bank. For the sender to pass this to the
receiver, the claim needs to be authentic. In the current web architecture,
this implies either a record on a blockchain or a token signed with the private
key of the third party.

Consider the work of the W3C Verifiable Claims WG[9] on their data model[14].
In the model, a claim is a statement about a subject, expressed as a subject-
property-value relationship. A credential is a set of claims about the same
subject, and a verified credential is a credential packaged with some meta-
data and cryptographic proof of the issuer. Finally, a presentation takes this
one step further, packaging a set of verified credentials from a single party
(the “holder”) with, again, cryptographic proof they come from the holder.

For our current purposes, we will just consider a credential packaging a sin-
gle claim about an entity or the context. We will posit the existence of a
set of ClaimServers at particular URLs. A qualified entity can query a
ClaimServer to get information about an entity. Every party to a trans-
action will have a list of ClaimsServers they trust, and so would trust a
verified claim signed by that ClaimsServer.

Clearly there is a separate set of interactions around becoming qualified to
query a ClaimServer and further complexity around which claims for which
entities a specific ClaimServer can make.

For two parties to do business, there must be some overlap in the Claim-
Servers they trust and further overlap in which claims for which entities they
trust a particular ClaimServer. For our purposes we will elide that code
and assume there’s a single ClaimServer all parties trust.

We add new types supporting trust of the form
data ITrustYou : (s : Service ) → (a : ClaimServer ) → Set where

iTrustYou : (s : Service ) → (a : ClaimServer ) → ITrustYou s a

28



showing an entity, in this case a Service, trusts some ClaimServer.

A verified claim is a subject-property-value triple signed by a ClaimServer.
Within Agda it is a dependent pair. The first part of the pair is the signed
claim, a chunk of text. The second part is a type with three fields. The
name of the type reflects the property the claim is about, and the fields are
the ClaimServer, the entity, and the value.

For example, when a ClaimServer is queried about a User’s age, this propo-
sitional type
data AgeClaim : ClaimServer → User → Set where

ageClaim : (a : ClaimServer ) → (e : User) → (n : N)
→ AgeClaim a e

represents an AgeClaim and says the ClaimServer says the User is n years
old. All our properties of interest can be specified as claims. The signed
claim is kept for further communication, but the instantiated object can be
used in proof.

Proofs are now longer as they need to specify the trust relationships. For
example, the proof that a sender was old enough to view an item was

* senderPropOldEnough * : (s : User) → (p : ItemRequest )
→ ( ItemRequest . ageLimit p) Data.Nat.Base.≤

(User.age s)
→ SafeSender s

But now it becomes
* senderPropOldEnough * : (u : User) → (a : ClaimServer )

→ (s : Service ) → ITrustYou s a
→ (ac : AgeClaim a u) → (p : ItemRequest )
→ ( ItemRequest . ageLimit p) Data.Nat.Base.≤

( getAge ac)
→ SafeSender s

i.e., we have a User, a ClaimServer, and a Service, the Service trusts the
ClaimServer, the ClaimServer makes a claim about the User’s age (ac),
and the age specified by the claim is greater or equal to the age specified by
the ItemRequest.

Any party can represent its view of a transaction by an Agda record type.
The record has fields for all the appropriate parties and fields for each of the
proofs that party requires. For example,
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record ServerSide : Set where
field

callContext : Context
callSender : User
callTransport : Transport
requestedItem : ItemRequest
recipient : Service

safeContext : SafeContext callContext
safeSender : SafeSender callSender
safeChannel : SafeChannel callTransport
safePayload : SafePayload requestedItem
safeService : SafeService recipient

The ServerSide record type has fields for the entities of interest in the first
part, as we’ve discussed so far. The bottom half has fields with propositional
types referring to fields defined in the record. To instantiate a ServerSide
record, one not only needs entities of the appropriate types, but one needs to
also provide the necessary proofs about those entities. A ClientSide record
would include a field for the returning Item and at least one accompanying
proof.

Other definitions, such as data type definitions, can be included in shared
Agda modules.

Now clients can generate appropriate records and send them to the server.
The work of validating a policy is shifted from server to client. However, we
have no simple serialization mechanism to implement this. Instead we need
to convert this for transport ourselves.

For the entities in the first part of the record, each should have a unique
URI. The pair (field name, URI) should be sufficient for the recipient to
create a local object of the appropriate type (as the record type gives the
type of each field). For the proofs we hope to rely on Agda’s internal re-
flection mechanism, which provides more than enough information to glean
the proof tree. Of course, not all information is necessary. We need the
tree of proof constructors and the claims used. In the process of serializing,
some information local to where the proof is being executed may need to
be signed to verify to the recipient that it was generated by the sender. If
reflection turns out to be inadequate, we can alter the code that finds the
proof to add in that serialization, so in the end we either have a nothing or a
proof with its serialization and the list of verified claims used in generating
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it.

With this information the recipient will be able to reconstruct a proof from
the proof tree and the given claims without needing to either find the proof
or perform the process of gathering the claims itself, as the claims are all
signed by trusted ClaimServers.

This provides a framework for a decentralized trust architecture, but also
a means for collaborating parties to share policy definitions and allow each
party to specify their requirements.

4.2 Beyond Synchrony

We have described a simple synchronous call and response architecture and
a decentralized authorization system. The latter, as well as many financial
systems, require a more complex architecture, capable of juggling multiple
overlapping communications. We will sketch such an architecture.

Consider a credit card purchase request. Nominally, this has five parties
involved - the purchaser, the merchant, the merchant’s bank, the card issuer,
and the card network. The dance starts when a merchant sends purchase
details to its bank. The merchant’s bank sends these details to the card
network, which sends them to the card issuer. If all is above board, the
purchase details were precipitated by an exchange between the purchaser
and the merchant, but perhaps there is fraud. What should the card issuer
do?

Clearly the issuer’s policy will require answering many questions, such as:

- What is the issuer’s history with the merchant? Have they ever been seen?
Any past examples of fraud? - What is the size of the purchase? - Was it
point-of-sale or ordered over the internet? - Where is the card holder? Can
we contact them? - . . . and so on.

Answering these questions, vital to the business, may cause some delay,
during which other requests may come in from the merchant, the purchaser,
or even the merchant’s bank. Should these be allowed to proceed, or be
paused? If paused, how do we communicate that across requests?

4.3 A dependently typed response

In the dependently typed functional world we abandon our synchronous
architecture. Instead, as has really been the case, we adopt message pass-
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ing. Messages come in from an unbounded Stream and are handled quickly.
Perhaps more messages are sent to be later collected before sending a fi-
nal approval or denial message back to the original sender, after using the
collected evidence to evaluate approval or denial against the issuer’s policies.

In the functional world these messages and their processing are handled by
a State Monad which is continuously updated before the next message is
seen. Some messages, such as a new purchase request, start a new process,
but others, such as a response from another system (such as credit scoring),
may just update the continuation of an existing process. Sending a message
to retrieve a value updates the State with a new continuation to handle the
response. Eventually all information is gathered, a response generated, and
that process disappears from the State.

When a request comes in requiring additional information, the State can
be updated to prevent other transactions from moving forward before that
information is gathered and resolved. A policy may place a sliding window
transaction limit on an account; the sum of transactions for that window
becomes an important attribute. A transaction may pass through a num-
ber of states as information is gathered and evaluated; these states can be
embedded directly into the types to prevent erroneous messages.

This kind of event loop programming is very common in user interfaces
where a user may update any visible item. Techniques such as those in [my
dissertation] can be used to lower the burden.

Underlying this approach needs to be a persistent store, whether database,
blockchain, or persistent queue. The State Monad retains information be-
tween messages; if there is a failure that information would be lost. Pro-
viding a persistent store can also allow different executing policy scripts to
share information about parties in different transactions.

The format of this store can be derived from the data of the attributes
as understood by the scripting language, e.g. Agda. The policies deter-
mine which attributes are needed to prove or disprove a policy, and which
attributes need to persist across messages.

In a complex system such as credit card processing, the evidence we’ll need
to prove policies will come from a variety of systems, such as bank records,
internal credit scoring systems, balances, etc. Nevertheless, each logical
statement in a policy specifies the kind of evidence it needs. The code in
the script must have access to routines supplying that evidence or a script
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will not type check. Any pass through a script leading to a claim a policy
is applied needs to find all the necessary evidence.

The discussion above leads directly to a particular approach to policy. Poli-
cies are statements of conditions; under certain conditions, certain opera-
tions are permitted. As such they are expressible as logical statements. In
Agda (and other dependently typed languages serving as theorem provers
and programming languages) we can express these policies in a logical lan-
guage. We can prove properties of a policy directly using Agda as a proof
assistant. Policies require kinds of evidence; the policies in Agda specify
exactly what kind of evidence is needed. From there one can implement
functions to retrieve that evidence. Finally code can be written or likely
generated to gather evidence and prove a given operation is valid or invalid
under the appropriate conditions. All this together provides very strong
guarantees of correctness.

We can go beyond this. As multiple parties are involved in long running
financial interactions, should we not consider implementing digital contracts
this way?

4.4 A Rego response

Rego performs as an oracle with respect to its clients. In theory, using Rego
splits policy from processing; code doesn’t need to know about policy, just
needs to get an answer. However, when a client queries Rego it needs to
ensure Rego has all the information it needs. As described in the Rego
documentation, as that becomes more complex, the processes surrounding
Rego to ensure its knowledge base is up to date becomes more baroque.
As we’ve seen, proving is policy is being correctly applied requires various
pieces of evidence. In the dependently typed setting, it is obvious what that
evidence is and the script can retrieve evidence as necessary. For Rego, all
that information needs to be supplied before at query time, meaning that
knowledge needs to be exported from the script and into the supporting
infrastructure so all possible evidence is available.

We have shown how gathering evidence and applying policies can become
quite complex. By functioning only as an oracle, Rego can only function
in such a scenario by deep cooperation with supporting code. For example,
when approving a transaction is based on the status of other outstanding
transactions, the code supporting Rego needs to understand how to provide
and update that kind of information, leading to further integration. As
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Rego does not control the actual communication, it cannot operate on the
response before the client. The client needs to understand the various stages
of a complex communication and access Rego multiple times as the state of
the process evolves.

Inevitably, to keep policy matters away from application code, there will
need to be another layer of code that sits between the application and Rego,
accessing all the necessary code to add data to the final Rego call and per-
haps performing some updates based on the results before returning the final
decision to the application. All of this coordination is based on documents
flowing between developers of these three components, little of which can be
type checked and none of which can be proven correct.

4.5 Other programming languages

What we have demonstrated is based on the particular characteristics of
dependently typed languages; it would not generally hold for other languages
as it would require a change to the type system. A notable exception is
Java’s allowance for type annotations and its integration with the Checker
Framework[2].

Java has included annotations since version 1.5 and extended those to types
in SE 8. Annotations on types allow developers to add additional constraints
on types. At the same time, Java added a plugin framework for the compiler.
The Checker Framework (CF) is a compiler plugin enabling users to extend
compiler functionality by processing typed annotations at compile time.

CF ships with many annotations, such as a nullness checker, a lock checker,
and, closest to this work, a tainting checker. Tainted and untainted values
can be seen as private and public, controlling visibility.

With this assist, annotations on Java code can be used to force various
operations to be performed with compile time checks, including with re-
lationships among annotations. It can also be used to ensure callouts to
policy code, such as Agda or other, and that the results are properly han-
dled. Otherwise a policy framework is entirely dependent on the client to
actually implement the decisions of the policy server.

Python has powerful decorators to provide some of the services of anno-
tations, although only at run time. Nevertheless these have been used to
provide metadata to numerous services, such as the Pydantic[6] type checker
to support sophisticated but optional type hints. It would be interesting to
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combine that with our proposals.

5 Conclusion
Current approaches to the access control problem rely on ad hoc policies
written in untyped languages. As the policy is implemented in the body
of rules, there is no way to test correctness except through observation and
testing use cases. There is also no way to separate the specification of the
policy and the implementation code checking individual requests.

We demonstrate the applicability of dependent types, especially proposi-
tional types, to the access control problem. By specifying policies directly
as types in a strongly typed programming language we get the usual compile
time guarantees that our policies are well formed as types. However, a pol-
icy is also a set of requirements to be fulfilled before an action is taken. Our
approach ensures these steps are taken through compile time guarantees;
i.e., specifying the policies as types forces the code validating an action to
necessarily perform all the necessary steps or it will not compile; the code
needs to always prove the policy has been enforced or it does not type check.

Having specified a policy as a set of propositions separate from its imple-
mentation, we can directly analyze the policy. Agda, like other dependently
typed languages, such as Lean, doubles as a proof assistant. We can use this
to prove desirable properties of our policies, such as preventing simultaneous
withdrawals from an account. By including these proofs in our code, we can
test for regressions when policies evolve. A regression proof provides much
stronger guarantees than any number of regressions tests, the only way to
test existing systems. We can also translate the policy into other formats so
we can apply both SAT solvers and model checking to provide guarantees.

As there is no separate specification of a policy in Rego, there is no separate
specification of the attributes required to validate that policy. Therefore
there will be a need for an intermediate layer between application and script
to provide them. In Agda, attributes are well defined and with an API the
script can retrieve the values it needs.

As policies become more complex, there are interactions among transactions
due to race conditions, account limits, time delays, etc. These require main-
taining state across invocations. We show how to apply functional program-
ming techniques to minimize the overhead of checking these dependencies,
as well as interacting with external transactional stores to share state. We
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believe the intermediate layer mentioned will become more complex with
existing policy languages, breaking down the application/policy barrier.

Currently, any service receiving a message needs to apply policies from a no
trust perspective. However we show how to integrate our approach with a
verifiable claims infrastructure, such as that specified by the W3C Verifiable
Claims WG[9]. In such a system, the client can undertake the overhead
of retrieving attributes and proving claims. The proof sketch and signed,
verified attribute values can be passed to the server, which only needs to
verify the proof and not start from the beginning.

This implies the ability to share definitions of attributes and policies among
the entities involved in some transaction, such as a digital contract. We
show how Agda language constructs, such as modules and record types, can
serve to specify these, as well as share proofs and back and forth.
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