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Abstract—Although federated learning preserves training data
within local privacy domains, the aggregated model parameters
may still reveal private characteristics. This vulnerability stems
from clients’ limited training data, which predisposes models
to overfitting. Such overfitting enables models to memorize
distinctive patterns from training samples, thereby amplifying
the success probability of privacy attacks like membership
inference. To enhance visual privacy protection in FL, we present
CSVAR(Channel-Wise Spatial Image Shuffling with Variance-
Guided Adaptive Region Partitioning), a novel image shuffling
framework to generate obfuscated images for secure data trans-
mission and each training epoch, addressing both overfitting-
induced privacy leaks and raw image transmission risks. CSVAR
adopts region-variance as the metric to measure visual privacy
sensitivity across image regions. Guided by this, CSVAR adap-
tively partitions each region into multiple blocks, applying fine-
grained partitioning to privacy-sensitive regions with high region-
variances for enhancing visual privacy protection and coarse-
grained partitioning to privacy-insensitive regions for balancing
model utility. In each region, CSVAR then shuffles between blocks
in both the spatial domains and chromatic channels to hide visual
spatial features and disrupt color distribution. Experimental
evaluations conducted on diverse real-world datasets demon-
strate that CSVAR is capable of generating visually obfuscated
images that exhibit high perceptual ambiguity to human eyes,
simultaneously mitigating the effectiveness of adversarial data
reconstruction attacks and achieving a good trade-off between
visual privacy protection and model utility.

Index Terms—Anti-Overfitting, Visual privacy protection, Im-
age shuffling, Federated learning

I. INTRODUCTION

Federated learning (FL [1]) has emerged as a promising
decentralized learning paradigm that enables multiple partici-
pants to collaboratively train a shared model without sharing
their raw data. Instead of centralizing sensitive data in the
cloud, FL allows clients to train locally and only exchange
model updates (e.g., gradients or weights) with a central server
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for aggregation. This framework enhances privacy by preserv-
ing training data within local privacy domains, while main-
taining model performance. Thus, FL is particularly valuable
for vision-based applications like medical imaging analysis,
facial recognition systems, and mobile photography services
where protecting visual privacy and preventing reconstruction
of identifiable images or extraction of sensitive visual features
are paramount.

Despite its privacy-aware design, FL still faces two critical
vulnerabilities for visual data protection. First, although clients
only share model updates rather than raw images with the
remote server, the typically small and non-IID local datasets
[2] often lead to severe overfitting during local training. This
causes model weights to encode excessive information about
specific training samples, enabling adversaries to visually
reconstruct private images through Model Inversion Attacks
[3] (e.g., recovering patient faces from medical image models)
or determine whether a given image belongs to training sets
through Membership Inference Attacks [4]. Second, in vision-
centric deployments (e.g., healthcare systems with CT/MRI
scanners, smart cameras), a security gap exists between image
collection sensors and computing nodes. The transmission
of private raw images within local networks creates attack
surfaces where images could be intercepted, undermining FL’s
end-to-end privacy guarantees for private data [5].

Differential privacy (DP) [6] has been widely adopted in FL
to mitigate such privacy risks through introducing carefully
calibrated random noise into training processes. For visual
data protection, this randomness ensures each training iteration
operates on effectively varied versions of the input images,
alleviating the overfitting phenomenon. However, DP’s noise-
based protection operates in the high-frequency domain - while
mathematically sound for membership privacy, the human eyes
can easily filter such perturbations, leaving sensitive image
features exposed [7]. What’s worse, achieving strong visual
privacy through DP often requires significant noise injection,
which often degrades model utility unacceptably.

Building upon these limitations of DP, we explore the image
shuffling mechanism that can generate obfuscated images for
data transmission and each training epoch, addressing both
overfitting-induced privacy leaks and raw image transmission
risks. However, designing an effective shuffling strategy faces
several nuanced challenges. First, there exists the non-uniform
nature of visual privacy across different image regions: sensi-
tive regions like faces or medical identifiers require stronger
obfuscation than structural features like backgrounds. This
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necessitates an adaptive shuffling granularity of a given re-
gion: overly fine-grained shuffling, like pixel-level shuffling,
maximally alleviates overfitting but destroys essential spatial
structures needed for model learning, whereas overly coarse
shuffling risks insufficient privacy protection. We need to
divide the region into smaller blocks, shuffle between them,
and preserve the pixels within the block. A one-granularity-
fits-all shuffling approach would either over-protect unim-
portant areas or under-protect sensitive ones, motivating the
need for spatially adaptive transformations to make the trade-
off. Second, we need a principled metric to measure a re-
gion’s visual privacy sensitivity (human-recognizable features)
and model overfitting risk. Without such guidance, naive
shuffling implementations either compromise privacy through
insufficient obfuscation or degrade model utility unacceptably
via excessive shuffling. Third, while conventional pixel-wise
spatial shuffling provides basic spatial obfuscation, it fails to
disrupt color distributions - a critical vulnerability as attackers
can reconstruct sensitive features through chromatic analysis.

To address the challenges outlined above, we propose

CSVAR (Channel-Wise Spatial Image Shuffling with Variance-
Guided Adaptive Region Partitioning), a novel anti-overfitting
mechanism that employs dynamic region-adaptive shuffling.
By preventing model overfitting through variance-guided im-
age shuffling, CSVAR simultaneously prevents overfitting-
induced visual privacy leakage and client-side data transmis-
sion under FL.CSVAR will first divide the images into regions
and calculate each region’s variance. Guided by variances,
CSVAR will partition the region into smaller blocks adaptively
and shuffle between blocks both in the spatial domain to de-
stroy spatial visual features and the chromatic channel space to
disrupt color distributions. Specifically, CSVAR will partition
a privacy-sensitive region with high variance into small blocks
to enhance privacy protection. Meanwhile, for a privacy-
insensitive region with low variance, CSVAR will partition
it with much bigger blocks to preserve model utility. CSVAR
ensures that: 1) private training images are protected during
client-side transmission by transmitting obfuscated versions
instead of raw images, 2) different shuffled versions are used in
different epochs to alleviate overfitting and overfitting-induced
privacy leakage, and 3) the adaptive shuffling approach main-
tains a careful balance between visual privacy protection and
model utility throughout the federated learning process.

Our contributions are summarized as follows:

o We propose CSVAR, a novel image shuffling framework
to prevent visual privacy leakage from overfitting and
client-side data transmission under Federated Learning.

o We adopt region-variance as the metric to quantify the
visual privacy sensitivity of different regions of an image
and guide the shuffling granularity.

o We adaptively partition each image region into smaller
blocks with different granularity guided by region-
variance, and then shuffle between blocks in both the
spatial domains and chromatic channels.

« We conduct extensive experiments on real-world datasets,
demonstrating that CSVAR can generate visually ob-

fuscated images that exhibit high perceptual ambiguity
to human eyes, mitigate the effectiveness of adversarial
data reconstruction attacks, and achieve a good trade-off
between visual privacy protection and model utility.

II. THREAT MODEL AND DESIGN GOALS

This section formalizes our system model and threat model,
followed by our design goals.

A. System Model

We consider a conventional federated learning framework
comprising a central server and multiple distributed clients,
composed of two functionally distinct components: local data
collection and computation nodes. This architecture mirrors
a lot of real-world deployments, particularly in privacy-
sensitive domains like healthcare, where medical imaging
scanners (CT/MRI, lacking computational capabilities) must
send collected data to local computation nodes through internal
networks to perform local model training.

During each training epoch, the system operates through
several key phases. Initially, data collection nodes gather
raw local training data through their sensing capabilities,
then transfer private data to co-located computation nodes
via internal networks. The computation nodes subsequently
perform local model training using their private datasets before
submitting parameter updates to the central server. Following
aggregation of clients’ updates, the server distributes the
updated global model back to all participating clients for the
next training epoch.

B. Security Model

We focus on two key attack scenarios for image data
protection in the above system model. First, attackers can
intercept client-side data transmissions between data collec-
tion nodes and computation nodes during internal network
transfers. Second, attackers can access the server’s global
model weights. Here, the attacker can be the curious-but-
honest servers that honestly perform federated learning tasks
but attempt to extract private data from model weights by
employing techniques such as GAN-based data reconstruction
attacks to reconstruct private training images or membership
inference attacks to identify the ownership of the data used
in the training process. These scenarios cover both raw data
exposure during local transfers on the client side and potential
privacy leaks through model weights on the server side.

C. Design Goals

Our framework aims to achieve three fundamental objec-
tives that alleviate overfitting, and preserve the visual privacy
of image data while retaining the utility of the model:

Secure data transmission between data collection and
computation nodes on the client side. Our framework should
provide robust obfuscation to the private image data to avoid
privacy leakage even if the attacker can access obfuscated data.

Defend against visual privacy leakage from the overfit
model on the server side. Our proposed method should
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Fig. 1. ROC results of Membership Inference Attacks Varying Degrees of
Opverfitting. Low AUC means low attack Success Rate.

address the overfitting-induced privacy leakage on the private
client data: (1)preventing data reconstruction attacks from
reconstructing private images and (2) resisting membership
inference attacks that attempt to identify training data partici-
pation.

Achieve satisfactory trade-off between visual privacy
protection and model utility. Our framework should ag-
gressively protect privacy-sensitive areas while maintaining
structural integrity in privacy-insensitive regions, to minimize
accuracy degradation while meeting privacy requirements.

III. MOTIVATION
A. Oveffitting-Induced Privacy Leakage in FL

Federated learning systems are particularly vulnerable to
overfitting due to the typically small and non-IID nature of
local client datasets. As training progresses, this overfitting
causes model weights to encode increasingly sensitive features
about private training samples, and we verify the growth of pri-
vacy leakage through membership inference attacks(MIA)
[4]. Taking advantage of the model weights after training, MIA
aims to determine whether a given data point belongs to the
training dataset. Figure 1 demonstrates that moderately trained
models have low MIA success rates (showing accuracy with
low AUC near 0.5 similar to Random Guess), while heavily
overfit models show high success rates (high AUC of 0.70).

This motivates our key insight: by shuffling training images
for each epoch, we can ensure models encounter varying ver-
sions of the data, thereby simultaneously mitigating overfitting
and reducing associated privacy leakage risks.

B. Region-Variance as Visual Privacy Indicator

Visual privacy protection requires recognizing that privacy
exhibits an inherent spatial non-uniform nature: while privacy-
sensitive regions(e.g., facial features) demand strong obfusca-
tion, homogeneous backgrounds can tolerate lighter protection.
An intuition that the variance of a given region can be used to
measure privacy-sensitivity, based on the observation that sen-
sitive areas typically exhibit higher pixel-value variance due
to complex textures and edges, whereas uniform backgrounds
show minimal variance.

To verify this intuition, our variance computation follows
three steps: (1) partitioning the image into 14x14 regions
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Fig. 2. Region-Variance of different regions in the image of a bird. Lighter
region means a higher region-variance.

Fig. 3. Visual privacy protection effect under different block size(BS) with
spatial-only shuffling and channel-wise spatial shuffling. Results show we
can recognize fewer visual features when using a small BS with channel-wise
spatial shuffling than a large BS with spatial-only shuffling.

(16x16 pixels each), (2) calculating per-channel variance
across all pixels within each region, and (3) averaging vari-
ances from each channel. As shown in Figure 2, results show
that high-variance regions (lighter areas in the heatmap) con-
sistently correspond to semantically sensitive features (like the
bird’s beak/body in Figure 2). The strong alignment between
variance and visual sensitivity confirms region-variance’s suit-
ability for guiding protection strategies, thus, we propose
region-variance as a quantifiable metric for privacy sensitivity.

C. Shuffling Granularity Trade-off

The effectiveness of visual privacy protection through shuf-
fling depends critically on shuffling granularity. As shown
in Figure 3, we systematically explore this by the following
steps: (1) dividing each 224x224 image into 14x14 base
regions(16x16 pixels in each region), (2) further splitting each
region into BSxBS blocks (BlockSize(BS) € [1,2,4,8]),
and (3) shuffling between blocks while preserving intra-
block pixels. Columns varying with different BS in figure 3
demonstrate that we can recognize more visual features with
a large shuffle granularity(BS=8), which means we can get
more visual privacy protection with small BS (e.g., BS=1).
This is because pixels within each block will not be shuffled.
Small BS provides stronger visual obfuscation by thoroughly
disrupting spatial relationships, but at the cost of damaging
semantically important structures needed for model learning.
Conversely, large blocks maintain better model utility but leak
more recognizable features. One key insight we obtain from
this is that an effective shuffling strategy requires adaptive BS
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Fig. 4. The System Overview of CSVAR. Note that light color in the heatmap denotes a high variance region. BS means block size.

to partition different regions - using small BS for regions with
high region-variances and large BS elsewhere.

Furthermore, the second row of Figure 3 shows the shuffled
image after applying spatial shuffling to each RGB channel.
Results show this channel-wise spatial shuffling provides
additional visual privacy protection by disrupting color dis-
tributions, thereby preventing potential reconstruction attacks
through chromatic analysis.

IV. SYSTEM DESIGN
A. System Overview

Building upon the motivation and design goals above, we
present the system architecture of CSVAR. Figure 4 illustrates
the end-to-end workflow of CSVAR. The process begins at
the client data collection nodes, where raw private images
are applied offline shuffling to generate distinct obfuscated
versions for each training epoch and data transmission. First,
CSVAR partitions each image into multiple regions and com-
putes their region-variances as the privacy sensitivity metric.
Guided by region-variance, CSVAR then adaptively partitions
each region: privacy-sensitive regions with high variance will
be divided into smaller blocks to maximize obfuscation, while
low-variance regions with less sensitive features are split into
larger blocks to better preserve model utility. Finally, CSVAR
performs block-wise spatial shuffling, which shuffles between
blocks both in the spatial domain to destroy spatial visual
features and the chromatic channel space to disrupt color
distributions. These shuffled images are then transmitted to
the client computation nodes for local model training.

During the online federated learning phase, each training
epoch follows a distributed workflow where participating com-
putation nodes execute local model training on epoch-specific
shuffled images. These clients subsequently transmit their local
model updates to the central server. Upon receiving updates
from all clients, the server employs a secure aggregation
protocol to compute the global model update, which is then
redistributed to participating nodes for the subsequent epoch.

Notably, each training epoch incorporates distinct versions of
shuffled image data to alleviate model overfitting.

This design ensures that: (1) Private images are protected
during client-side transmission by sending obfuscated versions
instead of raw images, (2) different shuffled versions are used
in different epochs to alleviate overfitting and overfitting-
induced privacy leakage, and (3) the adaptive approach main-
tains a careful balance between visual privacy protection and
model utility throughout the federated learning process.

B. Design Details

1) Sub-region Generation & Region-Variance Calcula-
tion. CSVAR begins by partitioning each input image I €
RAXWXC into non-overlapping regions R; ; of size S x S
pixels, where S is determined adaptively based on image
Height(H) and Width(W):

S — 9[logz(y/max(H,W))] (1)

This choice of region size ensures: (1) sufficient granularity
for privacy protection while maintaining recognizable local
features (S = 16 for standard 224 x 224 images), (2) power-of-
two region sizes enable natural binary partitioning(like 16 —
8 — 4) into smaller blocks in the subsequent step.

For each region R;;, we compute its privacy sensitivity
metric - the region-variance Rij - through:
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where:

I, 4. Pixel value at position (z,y) in channel ¢
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Fig. 5. Comparison of Vlsual obfuscation effect with different Protections.

2) Variance-Guided Adaptive Region Partitioning. Build-
ing upon the region-variance calculations, CSVAR implements
an adaptive partitioning strategy that automatically adjusts
protection strength based on each region’s privacy sensitivity.
Specifically, CSVAR will partition a privacy-sensitive region
with high variance into small blocks to enhance privacy
protection. Meanwhile, for a privacy-insensitive region with
low variance, CSVAR will partition it with much bigger block
sizes to preserve model utility.

CSVAR first computes the median variance ]{V2 across all
regions to establish the sensitivity threshold. For each region
Ri .

Jr

if RV2 > RV (privacy-sensitive)

15/4]
|S/2| if RV2 < RV’ (privacy-insensitive)
3)

3) Channel-wise Spatial Shuffling between Blocks. After
adaptive block partitioning, CSVAR performs two complemen-
tary shuffling operations to protect visual privacy. First, spatial
shuffling randomly permutes the positions of all blocks within
each region using different random seeds for each training
epoch. This breaks spatial correlations between blocks while
preserving pixel relationships within each block.

Second, channel-wise shuffling processes all channels inde-
pendently: each block is decomposed into per-channel sub-
blocks (e.g., R/G/B for color images), which are then shuffled
across the region. For example, a block’s first channel may
relocate to the region’s top-left while other channels scatter to
different positions. This dispersion breaks channel correlations
to disrupt color distributions, as adjacent positions now contain
uncorrelated channels from different blocks.

BlockSize = {

V. EVALUATION

In this section, we conduct extensive experiments across
various real-world datasets and models to evaluate CSVAR’s
effectiveness in enhancing visual privacy and preservation in
model utility. We begin with the experimental setups, then
present evaluation results to answer the following questions:

e Can CSVAR enhance visual privacy to generate visually

obfuscated images that exhibit high perceptual ambiguity
to human eyes and mitigate the effectiveness of adversar-
ial data reconstruction attacks?

e Can CSVAR achieve a good trade-off between visual

privacy protection and model utility?

Vanilla FL FL+DP

Raw FL+CSVAR

n
:
e

Fig. 6. Effect of GAN-based Data Reconstruction attack.

A. Experiment Setup

Models. We evaluate CSVAR using three representative
CNN architectures selected to span the spectrum of modern
computer vision applications. ResNet-50 serves as the base
residual network, representing standard medium-scale mod-
els widely used in FL systems. MobileNet is included as
the lightweight architecture optimized for edge devices with
limited computational resources. ShuffleNet provides an ad-
ditional efficiency-focused design point. This selection covers
a range of model capacities (4.2M to 25.5M parameters) and
computational requirements (0.6B to 4.1B FLOPs), ensuring
thorough evaluation of CSVAR’s compatibility across differ-
ent neural network designs commonly deployed in computer
vision applications under federated learning scenarios.

Datasets. Our experiments employ three benchmark
datasets widely used in computer vision. CelebA Face Dataset
(400 grayscale images of 40 subjects) evaluates the effective-
ness of facial privacy protection. MNIST (70,000 handwritten
digits) can assess preservation of basic structural features while
preventing digit recognition. CIFAR-10 (60,000 color images
across 10 categories) can test performance on more complex
natural images with varied textures and compositions.

Baselines. We compare CSVAR against two baselines: (1)
Vanilla FL, the standard federated learning framework without
any privacy protection, serving as the upper-bound reference
for model utility; and (2) DP-enhanced FL, which adds
Gaussian noise to training images with a Differential-Privacy
based method. Here the o of Gaussian noise is 50.

B. Enhancement for Visual Privacy

Visual Obfuscation Effectiveness. Figure 5 demonstrates
the visual obfuscation effects on CIFAR-10 images across
three approaches. Vanilla FL uses raw training images with
no obfuscation, leaving all object details clearly visible.
FL+DP(c = 50) applies random noise to all pixels, yet
fails to adequately obscure privacy-sensitive regions - object
shapes like airplanes and animals remain distinguishable. In
contrast, CSVAR’s adaptive shuffling obfuscates images to
show complete disruption of original object contours and
textures, with no identifiable features remaining. This figure
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Fig. 7. ROC results of MIA with different protection methods. Low AUC
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confirms CSVAR’s superior perceptual ambiguity, particularly
in preserving privacy for sensitive regions that DP fails to
obfuscate adequately.

Resistance to GAN-based Reconstruction attacks. We
evaluate GAN-based data reconstruction attacks [8] on models
trained with different protection schemes. As shown in Figure
6, attacking models trained by vanilla FL yields nearly perfect
reconstructions where all facial features from CelebA and
number features from MNIST are clearly recoverable. While
FL+DP-protected models produce visibly distorted outputs,
salient facial and number features still remain decipherable
to human eyes. With FL+CSVAR, the reconstructed images
show only random noise patterns - no eyes, noses can be
distinguished in facial images.

Mitigation of Membership inference attacks. Targeting
the model weight after training, membership Inference attacks
aim to determine whether a given data point belongs to
the training dataset. Figure 7 demonstrates that membership
inference attacks achieve high accuracy when targeting mod-
els trained with vanilla FL(the blue curve, AUC=0.7). For
FL+DP, the attack performance decreases significantly(the
orange curve, AUC=0.66), though some leakage remains de-
tectable. CSVAR provides the strongest protection, where the
attack AUC decreases to 0.6, close to the random guess curve.

C. Model Utility Preservation

We evaluate CSVAR’s impact on model accuracy across
three standard datasets (MNIST, CelebA, CIFAR-10) and three
models (ResNet50, MobileNet, ShuffleNet), comparing against
vanilla FL and FL+DP baselines. The results demonstrate
CSVAR'’s ability to maintain model utility while providing
strong visual privacy protection.

Accuracy Analysis. As demonstrated in Table I, CSVAR
maintains model performance close to models trained with
vanilla FL despite its strong privacy protections, in stark
contrast to the substantial accuracy degradation with FL+DP.
In general, on MNIST and CIFARIO datasets, models
trained with FL-CSVAR introduce negligible model utility
loss(average 0.21%) compared to vanilla FL. Furthermore,
across all evaluated models, FL+CSVAR demonstrates a con-
sistent accuracy improvement over FL+DP, with an average
accuracy increase of 3.23% on the CIFAR10 and a more pro-
nounced 9.75% increase on the CelebA face dataset. Most no-

Resnet-50  ShuffleNet =~ MobileNet
Vanilla FL 97.42% 96.88% 97.08%
MNIST FL+DP 97.09% 95.44% 96.92%
FL+CSVAR 97.39% 95.67% 97.03%
Vanilla FL 84.24% 85.09% 85.18%
CIFAR10 | FL+DP 80.49% 82.33% 80.03%
FL+CSVAR 84.17% 83.71% 84.67%
Vanilla FL 89.75% 85.50% 86.75%
CelebA FL+DP 65.50% 77.25% 78.75%
FL+CSVAR 85.25% 82.74% 82.75%
TABLE I

MODEL ACCURACY TRAINED WITH DIFFERENT PROTECTION METHODS.

tably, on CelebA, FL+CSVAR achieves 85.25% accuracy with
ResNetS0—demonstrating a mere 4% decrease from vanilla
FL, while FL+DP exhibits a catastrophic 24.25% accuracy
drop. This stark contrast underscores CSVAR’s exceptional
capability to preserve model utility while enhancing privacy.

VI. CONCLUSION

We propose CSVAR, a novel image shuffling framework
to prevent visual privacy leakage from overfitting and the
Client-side insecure private data transmission under Federated
Learning. CSVAR adopts region-variance as the metric to mea-
sure a region’s visual privacy sensitivity. CSVAR adaptively
partitions each image region into smaller blocks with differ-
ent granularity guided by region-variance, and then shuffles
between blocks in both the spatial domains and chromatic
channels. Experimental results show that CSVAR achieves
a good trade-off between visual privacy protection against
overfitting-induced privacy leakage and model utility.

REFERENCES

[1] S. Yue, Y. Deng, G. Wang, J. Ren, and Y. Zhang, “Federated offline
reinforcement learning with proximal policy evaluation,” Chinese Journal
of Electronics, vol. 33, no. 6, pp. 1360-1372, 2024.
[2] Y. Deng, F. Lyu, J. Ren, H. Wu, Y. Zhou, Y. Zhang, and X. Shen,
“Auction: Automated and quality-aware client selection framework for ef-
ficient federated learning,” IEEE Transactions on Parallel and Distributed
Systems, vol. 33, no. 8, pp. 1996-2009, 2021.
Y. Zhang, R. Jia, H. Pei, W. Wang, B. Li, and D. Song, “The secret
revealer: Generative model-inversion attacks against deep neural net-
works,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020. Computer
Vision Foundation / IEEE, 2020, pp. 250-258.
R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership infer-
ence attacks against machine learning models,” in 2017 IEEE Symposium
on Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017.
IEEE Computer Society, 2017, pp. 3-18.
[5] J. Geiping, H. Bauermeister, H. Droge, and M. Moeller, “Inverting
gradients-how easy is it to break privacy in federated learning?” Advances
in neural information processing systems, vol. 33, pp. 16937-16947,
2020.
[6] M. Abadi, A. Chu, 1. J. Goodfellow, H. B. McMahan, 1. Mironov, K. Tal-
war, and L. Zhang, “Deep learning with differential privacy,” in 2016
ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, October 24-28, 2016, E. R. Weippl, S. Katzenbeisser,
C. Kruegel, A. C. Myers, and S. Halevi, Eds. ACM, 2016, pp. 308-318.
Q. Li, Y. Zhang, J. Ren, Q. Li, and Y. Zhang, “You can use but cannot
recognize: Preserving visual privacy in deep neural networks,” in 3/st
Annual Network and Distributed System Security Symposium, NDSS 2024,
San Diego, California, USA, February 26 - March 1, 2024. The Internet
Society, 2024.
B. Hitaj, G. Ateniese, and F. Perez-Cruz, “Deep models under the gan:
information leakage from collaborative deep learning,” in Proceedings
of the 2017 ACM SIGSAC conference on computer and communications
security, 2017, pp. 603-618.

3

—

[4

—

[7

—

[8

=



