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Abstract

As malware continues to become more complex and harder to detect, Malware Analysis needs to continue to evolve
to stay one step ahead. One promising key area approach focuses on using system calls and API Calls, the core
communication between user applications and the operating system and their kernels. These calls provide valuable
insight into how software or programs behaves, making them an useful tool for spotting suspicious or harmful
activity of programs and software. This chapter takes a deep down look at how system calls are used in malware
detection and classification, covering techniques like static and dynamic analysis, as well as sandboxing. By com-
bining these methods with advanced techniques like machine learning, statistical analysis, and anomaly detection,
researchers can analyze system call patterns to tell the difference between normal and malicious behavior. The
chapter also explores how these techniques are applied across different systems, including Windows, Linux, and
Android, while also looking at the ways sophisticated malware tries to evade detection.

1 Introduction

Malware ranging from viruses, spyware and worms to trojans, ransomware, and other harmful software and it
continues to be a major threat to individuals, businesses, and even the national infrastructure. Traditional methods
relying on known static signatures can still be effective in detecting familiar threats, but they often fail when
faced with increasingly complex and shape-shifting malware. This has led to a growing focus on behaviour based
detection and classification, where system calls have become a central point of interest. Because system calls
reflect the core actions a program takes, such as accessing files, managing processes, or connecting to networks,
they provide valuable clues about what software is really doing behind the scenes.

In this chapter, we explore how system calls or API calls are used to detect and classify malware, offering a
detailed look at both the theory and the real-world application of these techniques. We examine how analyzing sys-
tem call patterns, both statically and during run-time, can uncover malicious activity, even when malware is hidden
or brand new. We also look at how techniques like machine learning and statistical analysis can enhance accuracy
and minimize false alarms. By discussing the strengths, limitations, and practical impact of these methods.

The remaining sections of the chapter are formatted as follows: Section 2 outlines the basic concepts related
to Malware and System Calls. Section 3 details the methodology used to extract System or API Calls. Section 4
presents the Use cases and their analysis. Finally, Section 5 concludes with future research directions.

2 Basic Concepts

To effectively detect and classify malware, it is important to understand the basics of system calls, which act as the
communication link between regular applications and the core of the operating system i.e the kernel. Simply put, a
system call is when a program asks the operating system to carry out a task it can not do on its own, like accessing
a file, creating a new process, or sending data over a network. By keeping an eye on these interactions, security
tools can get a clearer picture of what a program or software is actually doing and spot unusual behavior that may
signal something malicious.

This section lays out the key concepts behind system calls and explains why they play such a crucial role
in identifying and classifying malware. It also takes a closer look at how system calls are implemented across
different platforms, highlighting the unique challenges and opportunities that come with each environment.
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2.1 Malwares

Malware is a short form of “malicious software” and it is a broad term that refers to any software or code designed
with the intent to infiltrate, damage, disrupt, or gain unauthorized access to computer systems, networks, or data. It
is typically created with harmful or criminal objectives in mind. This category includes a wide variety of malicious
programs, each with its own unique characteristics and purposes to execute.

2.1.1 Varieties of Malware

1. Viruses: Viruses are harmful software that attach to valid executable files or documents. Once the infected
file is opened, the virus code is triggered, allowing it to replicate and spread to other files and systems.
These malicious programs can cause substantial harm to a computer, such as corrupting or destroying files
and applications. A well-known example is the ILOVEYOU virus, which propagated through email in
2000, infecting millions of computers by overwriting files. It was spread through email messages with the
subject ILOVEYOU” and an attached file disguised as a text file (LOVE-LETTER-FOR-YOU.TXT.vbs).

2. Worms: Worms are self-replicating malware that can spread on their own, without needing a host file. They
often take advantage of weaknesses in network protocols or software to move across a network. Worms can
overwhelm networks and slow down system performance. A notable example is the Conficker worm, which
began infecting millions of computers globally in 2008 by exploiting vulnerabilities in Windows.

3. Trojans (Trojan Horses): Trojans are deceptive malware that masquerades as legitimate software or files.
When users unwittingly download and execute them, Trojans can provide attackers with unauthorized access
to the victim’s system, enabling the theft of sensitive data or the execution of other malicious activities. A
notable example is Zeus, a Trojan used to steal banking credentials since 2007.

4. Ransomware: Ransomware encrypts a victim’s files or entire system, rendering them inaccessible. At-
tackers demand a ransom in exchange for the decryption key. It is discouraged to pay the ransom, as it
offers no guarantee of data recovery and only serves to incentivize cybercriminals. A prominent example is
WannaCry, which in 2017 encrypted data on thousands of systems globally, demanding Bitcoin ransoms.

5. Spyware: Spyware is designed to clandestinely gather information from a victim’s computer or device,
including keystrokes, browsing history, and personal data. This pilfered information is then transmitted to a
remote server, often without the user’s awareness or consent. A famous example is DarkTequila spyware,
which targeted Latin American users to steal financial data.

6. Adware: Adware is software that shows users unwanted advertisements, often as pop-up windows or ban-
ners. While not inherently harmful, adware can be bothersome and may lead to performance issues. Some
adware may also collect user data without consent. A common example is Fireball, which in 2017 turned
browsers into ad-displaying tools on over 250 million devices.

7. Downloader: A “downloader” is a type of malware designed to download and install other malicious soft-
ware onto a victim’s computer or device. Downloaders are often used as a first-stage payload in a cyber-
attack to deliver more advanced and harmful malware, such as viruses, Trojans, ransomware, or spyware.
The primary function of a downloader is to act as a conduit for the delivery of additional malicious code. A
well-known example is Emotet, initially a banking Trojan but often used as a downloader for other malware
since 2014.

2.2 Classification and detection of Malwares

Malware detection and prevention techniques are essential to safeguarding computer systems and data against
these various types of threats. This includes using antivirus software, keeping software and systems up-to-date,
practising safe online behaviour, and implementing network security measures.

Classifying malware is a critical task in cybersecurity. One effective approach involves analyzing the sequence
of Application Programming Interface (API) calls made by a program. API sequence data can provide valuable
insights into the behaviour of a program, allowing us to distinguish between benign and malicious software.

API sequence data is a series of API calls made by a program during its execution. Each API call represents an
interaction with the operating system or external libraries. For malware classification, we can collect API sequence
data by monitoring a program’s execution and recording the order of API calls.

We can use machine learning algorithms to classify malware based on API sequence data. One common
approach is to extract features from the API sequences and train a classifier to distinguish between benign and
malicious behaviour.



2.3 System Calls for Malware Detection and Classification

A system call is a programmatic request made by a user-level application to the operating system’s kernel to
perform privileged operations that the application cannot execute directly. These operations include tasks such as
file access (e.g., open, write), process management (e.g., fork, execve), and network communication (e.g.,
socket, connect). System calls serve as the primary interface between user applications and the operating
system, enabling controlled access to hardware and system resources. For example, on Linux, the open system
call allows a program to access a file, while on Windows, NtCreateFile serves a similar purpose through the
Native API (NTAPI). In the context of malware detection, system calls are critical because they reveal a program’s
runtime behavior, allowing analysts to identify malicious activities, such as unauthorized file modifications or
network data exfiltration, by monitoring sequences and parameters of these calls.

System calls are vital in malware analysis as they provide a low-level view of a program’s interactions with the
operating system kernel, revealing behaviors critical for detecting malicious activities. These interactions, such as
file operations (open, Nt CreateFile), process management (fork), or network communications (socket),
are monitored using tools like st race, Process Monitor, or Cuckoo Sandbox to identify suspicious patterns, such
as file encryption by ransomware or data exfiltration by spyware. Their universal role across platforms (Win-
dows, Linux, Android) ensures consistent analysis, while their inevitability makes them resistant to obfuscation
techniques like code packing.

System calls vary across operating systems due to differences in kernel design, architecture, and intended use
cases. Below, we discuss how system calls are utilized for malware detection on Windows, Linux, and Android,
providing examples for each platform, analyzing their differences, and evaluating their traceability and robustness
against issues like process threads, stack overflows, or memory vulnerabilities.

2.3.1 Windows

On Windows, system calls are managed through the Native API (NTAPI), a low-level interface exposed by the
ntdll.d11 library. These calls, prefixed with Nt or Zw, include operations like Nt CreateFile (file creation)
and NtWriteVirtualMemory (memory manipulation). Malware detection on Windows often involves moni-
toring these calls to identify suspicious patterns, such as unauthorized file modifications or process injection and
memory overflow. Below are the some hooked API call categores and examples.

Hooked APIs and Categories

_Notification__

__missing__, __exception__, __Process__, __Anomaly__ etc

Exception

SetUnhandledExceptionFilter, RtIDispatchException, RtlIAdd VectoredExceptionHandler, RtIRemove VectoredEx-
ceptionHandler, RtIRemoveVectoredContinueHandler etc

Certificate

CertOpenSystemStoreW, CertOpenSystemStoreA, CertOpenStore, CertControlStore, CertCreateCertificateCon-
text, etc

Crypto

SsI3GenerateKeyMaterial, PRF, CryptUnprotectMemory, CryptUnprotectData, CryptProtectMemory, CryptPro-
tectData, CryptHashMessage, CryptEncryptMessage, etc

File

WSASocketW, WSASocketA, WSASendTo, WSASend, WSARecvFrom, WSARecv, WSAConnect, WSAAc-
cept, TransmitFile, NtQueryInformationFile, NtQueryFull AttributesFile, NtQueryDirectoryFile, NtQueryAttributes-
File, NtOpenFile, etc

Misc

WriteConsoleW, WriteConsoleA, GetTimeZoneInformation, GetDiskFreeSpaceW, GetDiskFreeSpaceExW, Uuid-
Create, GetComputerNameW, GetComputerNameA, LookupAccountSidW, GetUserNameW, GetUserNameA, etc



NetAPI

NetUserGetLocalGroups, NetUserGetInfo, NetShareEnum, NetGetJoinInformation, etc

OLE

Olelnitialize, ColnitializeEx, CoCreatelnstance, etc

Network

URLDownloadToFileW, ObtainUserAgentString, ConnectEx, GetInterfacelnfo, GetBestInterfaceEx, GetAdaptersinfo,
GetAdaptersAddresses, DnsQuery_W, DnsQuery_UTFS8, DnsQuery_A, InternetWriteFile, InternetSetStatusCall-

back, InternetSetOptionA, InternetReadFile, InternetOpenW, InternetOpenUrlW, InternetOpenUrlA, InternetOpenA,
InternetGetConnectedStateExW, InternetGetConnectedStateEx A, InternetGetConnectedState, InternetCrackUrlW,
InternetCrackUrlA, InternetConnectW, InternetConnectA, InternetCloseHandle, HttpSendRequestW, HttpSendRequestA,
HttpQuerylInfoA, HttpOpenRequestW, HttpOpenRequestA, DeleteUrlCacheEntryW, DeleteUrlCacheEntryA, etc

System

ShellExecuteExW, RtlCreateUserThread, RtlCreateUserProcess, NtCreateThread, NtTerminateThread, NtTermi-
nateProcess, NtSuspendThread, NtSetContextThread, NtResumeThread, NtReadVirtualMemory, NtQueueApc-
Thread, NtOpenThread, NtProtectVirtualMemory, NtOpenSection, NtOpenProcess, NtMapViewOfSection, Nt-
MakeTemporaryObject, NtMakePermanentObject, NtGetContextThread, NtFreeVirtualMemory, NtCreateUser-
Process, NtCreateThreadEx, NtCreateSection, NtCreateProcessEx, NtCreateProcess, NtAllocateVirtualMemory,
UnhookWindowsHookEx, SetWindowsHookExW, SetWindowsHookExA, SendNotifyMessageW, SendNotifyMes-
sageA, GetKeyboardState, GetKeyState, GetAsyncKeyState, ExitWindowsEx, RtlDecompressFragment, RtlDe-
compressBuffer, RtICompressBuffer, NtUnloadDriver, NtLoadDriver, NtDuplicateObject, NtClose, etc

Resource

SizeofResource, LoadResource, FindResourceW, FindResourceExW, FindResourceExA, FindResourceA, etc

Services

StartServiceW, StartServiceA, OpenServiceW, OpenServiceA, OpenSCManagerW, OpenSCManagerA, EnumSer-
vicesStatusW, EnumServicesStatusA, DeleteService, CreateServiceW, CreateServiceA, ControlService, etc

Synchronization

timeGetTime, NtQuerySystemTime, NtDelayExecution, NtCreateMutant, GetSystemTimeAsFileTime, GetSys-
temTime, GetLocalTime, etc

Ul

MessageBoxTimeoutW, MessageBoxTimeoutA, LoadStringW, LoadStringA, GetForegroundWindow, FindWin-
dowW, FindWindowExW, FindWindowExA, FindWindowA, DrawTextExW, DrawTextExA, etc

Example: A ransomware might invoke Nt CreateF1ile to access a user documents, followed by NtWriteFile
to encrypt the contents. By tracing these calls using tools like Process Monitor or a custom kernel driver, analysts
can flag the behavior as malicious.

2.3.2 Linux

Linux employs a POSIX-compliant system call interface, accessible via the syscall instruction or higher-level
wrappers like glibc. Common system calls include open (file access), fork (process creation), and socket
(network operations). Malware detection on Linux leverages tools like st race or pt race to monitor these calls
and detect anomalies, such as unexpected network connections or privilege escalation attempts.

Example: A rootkit might use open to access /etc/passwd and write to modify it stealthily. By analyz-
ing the sequence and parameters of these calls, detection systems can identify the malicious intent.



2.3.3 Android

Android, built on a modified Linux kernel, uses system calls inherited from Linux but extends them with a Java-
based framework via the Android Runtime (ART). Key system calls include read, write, and bind for I/O
and networking, often invoked indirectly through Android APIs. Malware detection on Android typically involves
monitoring both native system calls and higher-level API calls using tools like Frida or Xposed.

Example: A spyware app might call socket and write to exfiltrate user data over a network. By hooking
these calls at the native level or inspecting API usage, detection systems can pinpoint the malicious activity.

2.3.4 Differences Between System Calls

The system calls of Windows, Linux, and Android differ significantly in their implementation and accessibility.
Below, we discuss some of the differences:

* Windows: Uses a proprietary NTAPI with undocumented calls, making it complex but tightly integrated
with the kernel. Calls are invoked via interrupt 0x2E or SYSENTER.

e Linux: Offers an open, well-documented POSIX interface, invoked via syscall or software interrupts
(int 0x80). It is simpler and more transparent than Windows.

* Android: Combines Linux system calls with a layered architecture (Java APIs over native calls), adding
complexity due to the abstraction but enabling cross-layer analysis.

2.3.5 Ease of Tracing and Robustness

* Ease of Tracing: Linux is the easiest O.S. to trace due to its open-source nature and tools like strace,
which provide detailed call logs. Windows tracing is more challenging due to proprietary APIs and anti-
debugging techniques, requiring specialized tools like Sysinternals. Android falls in between, as tracing
native calls is feasible, but Java-layer obfuscation complicates analysis.

* Robustness: Windows is relatively robust against stack or memory overflows in system call handling due
to its strict kernel-user separation and memory protection mechanisms. Linux is moderately robust but
vulnerable to kernel exploits if improperly configured. Android, inheriting Linux’s kernel, is less robust due
to its mobile-optimized design and frequent use of native code, increasing the risk of memory overflows or
thread-related vulnerabilities.

In summary, Linux offers the most traceable system calls, while Windows provides greater robustness. An-
droid’s hybrid architecture presents unique challenges and opportunities for malware detection, balancing trace-
ability and resilience based on the layer analyzed.

3 Methodologies for Extracting System Calls

To effectively utilize system calls for malware detection, various methodologies are employed to extract and an-
alyze them. These approaches can be broadly categorized into three categories such as static analysis, dynamic
analysis, and sandboxing. Each method offers distinct advantages and challenges, depending on the target platform
and the nature of the malware. This section explores these techniques, with a focus on their application to malware
detection, and provides an overview of sandboxing tools, including open-source and license/enterprise solutions.

3.1 Static System Call Analysis

Static analysis involves examining a program’s code or binary without executing it, aiming to identify system
calls and infer potential behavior. This method typically uses disassemblers (e.g., IDA Pro) or decompilers to
extract system call references from the executable. For instance, on Windows, static analysis might reveal calls to
NtCreateProcess or NtOpenKey, suggesting process creation or registry manipulation. On Linux, tools like
ob jdump can identify calls to execve or connect, indicating process execution or network activity.

In the process of reverse engineering a Portable Executable (PE) file, one critical step is identifying the external
functions it relies on, commonly referred to as API calls, which are essential for understanding the program’s
behavior and interactions with the operating system. To achieve this, analysts must focus on the the PE file
structure, shown in Figure 1a, has different parts called sections. These sections are listed below from the start to
the end of the file (increasing file offsets).
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Figure 1: PE and APK File Architecture
DOS Header

The DOS header is the first part of the PE file. It’s like an old piece from the MS-DOS days. It helps the file work
on older systems and points to the newer PE header.

PE Header

The PE header comes next. It’s the main header that tells the computer how to read the file. It has important details
like the file type and where other sections start.

Optional Header

The optional header is the third part. It’s not always needed, but it has extra info like the size of the program and
what system it runs on.

Section Header

The section header is the fourth part. It’s like a map that lists all the sections in the file, such as where they are and
how big they are.

.text Section

The .text section is the fifth part. This is where the program’s code lives—the instructions that the computer runs
when you open the file.

.idata Section

The .idata section is the sixth part, placed above the .text section and below the .esrc section, as shown in Figure 1a.
It’s also called the import directory. This section has a list called the Import Address Table (IAT), which shows
all the outside tools (APIs) the program needs from other files called DLLs, like kernel32.dll or user32.dll. You
can look at this section using tools like PE Explorer [13], IDA Pro [7], or Ghidra [14]. For example, in IDA Pro,
you can go to the "Imports” tab to see the DLL names and the APIs the program uses. Checking the .idata section
helps you understand what the program depends on and what it does, making it a key part to study in the file.

.esrc Section

The .esrc section is the seventh part. It holds extra stuff like text strings, images, and other resources the program
might need to show or use.



.reloc Section

The .reloc section is the last part, the eighth one. It helps the program work in different spots in the computer’s
memory by storing memory translation info.

APK File Structure

The APK file structure, shown in Figure 1b, has different parts called sections. These sections are listed below
from the start to the end of the file.

resources.arsc

The resources.arsc is the first part of the APK file. It’s like a storage box for all the app’s resources, such as text
strings and settings, that the app needs to work.

classes.dex

The classes.dex is the second part. This is where the app’s code lives. It has all the instructions that tell the Android
device what the app should do. The classes.dex file contains the compiled Dalvik bytecode of the application,
which includes the Java or Kotlin code turned into a format that can run on the Android Runtime (ART) or Dalvik
Virtual Machine (DVM). This bytecode has the API calls the app makes to talk to the Android system, system
libraries, or other third-party libraries. To see these API calls, you can use tools like APKTool, dex2jar, or IDA
Pro. For example, with dex2jar, you can turn the classes.dex file into a JAR file, then use JD-GUI to change it
back into Java code, showing the API calls. Or, in IDA Pro, you can load the APK, go to the classes.dex section,
and look at the Dalvik bytecode to find the methods the app uses, helping you understand how the app works with
other functions. So, the classes.dex section is the main place to check for understanding how the app uses APIs,
giving important clues about what the app does and what it needs in the Android system.

res

The res section is the third part. It holds resources like pictures, layouts, and other files the app uses. It has
subfolders like:

* Drawable: For images and icons.
» Layout: For how the app’s screens look.

* Variable XML files: For other settings the app needs.

META-INF
The META-INF section is the fourth part. It has important files that keep the app safe and show it’s real. It includes:
¢ CERT.RSA and CERT.SF: These are security files that prove the app is genuine.

* MANIFEST.MF: A file that lists all the other files in the APK and checks they haven’t been changed.

Lib

The lib section is the fifth part. It has extra code libraries the app might need to work on different devices, like
special code for certain types of Android hardware.

Assets

The assets section is the last part, the sixth one. It stores raw files like fonts, sounds, or other data the app uses,
which aren’t in the resources section.

Advantages: Static analysis is fast, does not require runtime resources, and can detect malicious intent in dormant
code.

Limitations: It struggles with obfuscated or packed malware, where system calls are hidden or dynamically
resolved at runtime.

Example: A static scan of a binary revealing repeated calls to NtWriteFile might suggest file encryption, a
hallmark of ransomware, though confirmation requires further context.



3.2 Dynamic System Call Analysis

Dynamic analysis monitors system calls during program execution, capturing real-time behavior. This is achieved
using tools like st race (Linux), Process Monitor (Windows) [4], or Frida (Android) [6], which log system call
sequences as the program runs. For example, a malware sample might invoke socket and sendto during
execution, indicating data exfiltration.

Advantages: Dynamic analysis captures actual runtime behavior, bypassing obfuscation techniques like code
packing.

Limitations: It requires a controlled environment to avoid harm, may miss dormant malicious code (e.g., logic
bombs), and can be evaded by malware detecting monitoring tools.

Example: Tracing a trojan on Linux might show fork followed by execve, revealing a process-spawning attack,
observable only during execution.

3.3 Sandboxing to Extract System Calls

Sandboxing involves executing a program in an isolated, virtualized environment to safely observe its system calls
and behavior. Sandboxes simulate an operating system, logging interactions like file access, network traffic, and
memory usage. They are widely used in malware analysis to combine the benefits of dynamic analysis with safety
and scalability.
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Figure 2: Cuckoo Sandbox Analysis and feature engineering

A sandbox is a security mechanism used in software development and testing, as well as in cybersecurity, to
isolate running programs or processes from the rest of the system as shown in phase one of Figure 2. The concept
is inspired by children’s sandbox play areas, where kids can play freely without affecting the surrounding envi-
ronment. In the context of software, a sandbox provides a controlled environment where untrusted or potentially
harmful code can be executed without posing a risk to the underlying system.

3.3.1 Working Principle of a Sandbox

1. Isolation: Sandboxes work by isolating the execution of applications or processes from the rest of the
system. This isolation prevents any malicious or unintended actions performed by the sandboxed code from
affecting the host system.

2. Resource Control: Sandboxes typically control the resources available to the processes running within
them. This includes limiting access to files, network resources, memory, and CPU usage. By restricting
access to critical resources, sandboxes can mitigate potential damage caused by malicious code.

3. Monitoring and Analysis: Sandboxes often include monitoring and analysis capabilities to observe the
behaviour of the code running within them. This may involve logging system calls, network activity, file
operations, and other interactions with the environment. Analysing this data can help detect and analyse
suspicious or malicious behaviour.

4. Dynamic Analysis: Sandboxes employ dynamic analysis techniques to evaluate the behaviour of code in
real-time. This allows them to detect and respond to threats as they occur, such as identifying attempts to
exploit vulnerabilities or execute malicious actions.



5. Containment: If a sandbox detects malicious behaviour, it can take measures to contain the threat, such as
terminating the offending process or reverting any changes made to the system.

3.3.2 Open-Source Sandboxes

Open-source sandboxes are freely available tools developed by the community, offering flexibility and trans-
parency. Examples include:

¢ Cuckoo Sandbox: A popular open-source solution supporting Windows, Linux, and Android. It logs system
calls, API calls, and network activity, generating detailed reports. For instance, Cuckoo [8] might detect a
malware calling NtCreateFile to drop a payload.

e Limon [18]: A Linux-specific sandbox built on strace and ptrace, focusing on native system call
tracing. It excels at lightweight analysis of Linux malware.

Advantages: Cost-free, customizable, and widely supported by the research community.
Limitations: Limited support, reliance on volunteer updates, and less polished user interfaces compared to com-
mercial options.
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3.3.3 License/Enterprise Sandboxes

License or enterprise-grade sandboxes are commercial solutions designed for scalability, advanced features, and
professional support. Examples include:

* FireEye Malware Analysis [9]: An enterprise tool offering deep system call tracing across multiple plat-
forms, with integrated threat intelligence. It might identify a zero-day exploit viaNtAllocateVirtualMemory.

* Joe Sandbox [19]: A license sandbox supporting Windows, Linux, and Android, with detailed behavioral
analysis and cloud-based reporting. It excels at detecting sophisticated malware evading basic sandboxes.

Advantages: Robust feature sets, regular updates, and customer support, making them suitable for large-scale
deployments.
Limitations: High costs and potential vendor lock-in, which may deter smaller organizations or researchers.



3.3.4 Comparison and Use Cases

Open-source sandboxes like Cuckoo are ideal for academic research or small-scale analysis due to their free acces-
sibility and adaptability. In contrast, enterprise solutions like FireEye are better suited for organizations requiring
real-time threat detection and integration with broader security ecosystems. Both approaches extract system calls
effectively, but license tools often provide deeper insights into obfuscated or evasive malware through proprietary
heuristics.

Example: A sandboxed Android app calling bind and send might be flagged as spyware. Cuckoo could
detect this in a basic setup, while Joe Sandbox might also identify obfuscated API calls triggering the behavior.

3.4 Discussion

Static analysis is great for quickly scanning software before it runs, but it often falls short when malware uses
obfuscation to hide its behavior during execution. In contrast, dynamic analysis and sandboxing can uncover
threats by observing how programs behave in real time, though these methods tend to be more resource-heavy
and can sometimes be sidestepped by sophisticated malware. Sandboxing, in particular, strikes a good balance—it
offers a safe but realistic environment where suspicious code can be tested without putting actual systems at risk.
Whether to use an open-source or commercial sandbox depends largely on your budget, the size of your operation,
and how advanced your detection needs are. Each option brings its own strengths to the table, helping to improve
system call-based malware detection in different ways.

4 Applications and Use Cases

There are several ways to effectively utilize a system or API Call for malware detection and classification using
deep learning techniques, various feature extraction approaches can be employed depending on the model archi-
tecture. First, feature vectors extracted from malware binaries or logs can be passed as arguments to an API that
interacts with a deep learning model such as a feedforward neural network or LSTM. This structured numerical
representation captures key behavioral or static properties of the malware. For a similarity-based approach using
n-grams, the system processes n-gram sequences (e.g., byte-level or opcode sequences), converts them into feature
vectors based on frequency or embedding similarity, and uses these vectors as inputs to the API call. Finally, for
CNN-based analysis, the API accepts inputs where malware binaries have been converted into grayscale images
(e.g., byte-to-pixel mapping) and processed as image data. The API call with this image argument allows the
CNN to extract spatial patterns typically associated with malware families or variants. These approaches allow the
malware detection system to support multiple deep learning backends while abstracting the input format through
structured API calls. Below we present some of the real-world applicatons used as use cases.

4.1 API call with argument Feature Vector n-gram using similarity approach

This subsection discusses the methodology for using n-grams of API call sequences, including both API names and
their arguments, to create feature vectors for malware classification using a similarity-based approach, as detailed
in the paper “NLP-Driven Malware Classification: A Jaccard Similarity Approach” [1]. The approach utilizes
Natural Language Processing (NLP) techniques combined with Jaccard similarity to capture behavioral patterns in
malware samples, enabling effective classification across various malware types.

The process begins with dynamic analysis of malware samples in a Cuckoo Sandbox environment, where
behavioral reports are generated in JSON format. These reports are segmented into four components: API category,
API name, API argument, and API return. For feature extraction, the API name and argument are combined to
form n-grams (unigrams, bigrams, and trigrams), with arguments appended to API names using underscores (e.g.,
LdrLoadDll_urlmon_urlmon.dll for a unigram). This representation captures the contextual relationship
between API calls and their parameters, reflecting malware behavior more comprehensively than API names alone.

After analyzing the PE files and generating JSON data, we segmented the behavioral processes of function
calls into four components: API name, API return, API argument, and API categories as shown in Figure 2. From
these four segments, we concatenated the API name and argument together, as illustrated in Figure 4. In this figure,
the API call is mentioned first, followed by all DLL files invoked by the API in the same sequence of calls. This
approach enables a more comprehensive understanding of the function call behavior within the analyzed PE files,
facilitating a clearer insight into the runtime interactions and dependencies of the software components.

10



LdrLoadDII(
———— ADVAPI32.dll

API call —— ADVAPI32dll
API arguments :
(DLL file) )
-
API arguments
(DLL file)

LdrLoadDIl_ADVAPI32 ADVAPI32.dll
LdrLoadDIl_urlmon_urlmon.dll

Figure 4: Feature creation from API Sequence [21]

Measuring Text Similarity with Jaccard Similarity and TF-IDF
Preprocess the Data

We start by preprocessing the input data and reference data, which are in the form of data frames. We convert each
data frame into a single text string. This text string represents all the content within each data frame, which can
include multiple rows and columns.

n-grams after Cuckoo Sandbox Analysis
The following are the examples of unigrams, bigrams and trigrams that we have used in this research project.
e Unigram: NrAllocateVirtualMemory_na

* Bigram: NtAllocateVirtualMemory_na,
LdrLoadDll_ole32 _ole32.dll

e Trigram: NtAllocateVirtualMemory_na,
LdrLoadDll_ole32 _ole32.dll
LdrGetProcedureAddress_ole32_OleUninitialize

Vectorization with TF-IDF

Term Frequency-Inverse Document Frequency (TF-IDF) is a numerical statistic that reflects how important a word
is to a document in a collection or corpus. We use TF-IDF to convert the text strings into numerical vectors. Each
word in the text strings becomes a feature, and the TF-IDF score of each word in each text string is calculated. The
TF-IDF score reflects the importance of the word within the text string. Common words like “the” will have lower
TF-IDF scores, while unique words will have higher scores. The TF-IDF vectors represent the content of the data
in a way that can be used for similarity measurement.

(IO 7 I
COONIO000
L S L0
Malware Sample A Malware Sample B Malware Sample A Malware Sample B
(a) (b)
Malware Sample A Malware Sample B Malware Sample A Malware Sample B
(c) (d)

Figure 5: Similarity Based Approach [1]
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Figure 6: Malware Classification using NLP and Jaccard Similarity [1]

Calculate Jaccard Similarity

Jaccard similarity is a measure used to compare the similarity and dissimilarity between two sets. It is defined as
the size of the intersection of the sets divided by the size of the union of the sets. In other words, it calculates
the ratio of the number of common elements to the total number of distinct elements in the sets. Mathematically,
the Jaccard similarity (J(A, B)) between sets A and B is represented as: The formula for Jaccard similarity (J)
between two sets A and B is given in Eq. 1.

_ |ANnB|
- AU B]

In our case, the sets A and B represent the unique words (tokens) in two text strings.

The n-grams are processed to create a refined feature set by applying Term Frequency-Inverse Document Fre-
quency (TF-IDF) vectorization. TF-IDF weights emphasize the importance of each n-gram relative to the corpus,
enhancing the discriminative power of the features. Subsequently, Jaccard similarity is computed to quantify the
similarity between n-gram sets of different malware samples. The Jaccard similarity metric, defined in Eq. 1,
measures the proportion of shared n-grams relative to the total unique n-grams, providing a robust indicator of
behavioral overlap as shown in Figure 6. A similarity matrix is constructed, where each element represents the
Jaccard similarity between pairs of malware samples, facilitating clustering and classification.
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Figure 7: Confusion matrices for malware classification [1]

Experimental results demonstrate that higher-order n-grams (e.g., trigrams) yield improved classification per-
formance, with worms achieving an accuracy of 98.78% and an F}-score of 87.04% using 3-gram features as
shown in Figure 7. The approach excels in identifying nuanced patterns, particularly for malware types like down-
loaders and spyware, due to the detailed representation of API call sequences. The use of a large dataset (55,537
samples from VirusShare [2] ) ensures generalizability, while the similarity-based method offers computational
efficiency compared to traditional techniques.
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Table 1: Datasets Used for Malware Analysis Using Jaccard Similarity [1]

S.No Type Train Sample Test Sample Total Sample
1 Adware 2094 2500 4594
2 Worm 1390 2500 3890
3 Virus 2410 2500 4910
4 Backdoor 1896 2500 4396
5 Spyware 2395 2500 4895
6 Benign 11000 10579 21579
7 Trojan 3838 2500 6338
8 Downloader 2435 2500 4935
Total 27458 28079 55537

4.2 API call with argument Feature Vector using deep learning

This subsection elaborates on the use of n-grams of API call sequences, including API names and arguments,
as feature vectors for malware classification using deep learning techniques, as presented in the paper “A Deep
Learning Framework for Malware Classification using NLP Techniques” [21]. The approach harnesses the power
of deep learning models, specifically Artificial Neural Networks (ANN), Convolutional Neural Networks (CNN),
and Recurrent Neural Networks (RNN), to capture complex patterns in malware behavior.

The methodology starts with dynamic analysis in a Cuckoo Sandbox, producing JSON-formatted behavioral
reports for malware samples. These reports are divided into API category, API name, API argument, and API return
components. The API name and argument are combined to form n-grams (e.g., NtAllocateVirtualMemory_na
for a bigram), which serve as feature vectors. These n-grams are vectorized using Term Frequency (TF) calcula-
tions, where,

fra

TF(t,d) = =———— 2
(td) = =2 @)

to quantify the importance of each n-gram within a sample. A hybrid feature selection process reduces the feature
set from 5,578,098 to 88,975 (approximately 1.6% of the original), eliminating redundant or irrelevant features to
enhance model efficiency. Three deep learning models are employed for classification:

o Preprocessing Phase APlcategory Ei o NLP Phase
e S |
i nique erm !
—» JSON ':'f"{ HoaEle n-grgms H Frequency :
- APIargumenl :l::::::::::111111111111:11111111111111‘_i:::::::::::::::::::::::::::{
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0" Feature Based Frequency o Feature Selection !
Hi S 1

Feature Feélgtlre Phase
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HH i Deep Learning Feature
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[ ] APIargument i i T Malware

Testing EE o Malware Classification Evaluation Cretrian
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API Datasct
Cuckoo Sandbox Analysis
&

Figure 8: Malware Classification using Deep Learning Techniques [21]

1. ANN Model: Comprises of multiple dense layers with tanh activation, dropout layers (rate 0.4), and a
softmax output layer for eight classes. It achieves a validation accuracy of 97.35% after 100 epochs.

2. CNN Model: Features convolutional layers with ReLU activation, max-pooling, and dense layers, yielding
the highest performance with a validation accuracy of 98.53% and a loss of 0.0161 at 100 epochs.

3. RNN Model: Uses a SimpleRNN layer with ReLU activation, but struggles with a constant accuracy of
39.16%, indicating unsuitability for this task.
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Table 2: Datasets Used for Malware Analysis Using Deep Learning [21]

S.No Type Test Sample Train Sample Total Sample
1 Adware 406 1580 1986
2 Spyware 190 756 946
3 Trojan 695 2873 3568
4 Backdoor 123 551 674
5 Virus 500 1892 2392
6 Worm 277 1080 1357
7 Benign 1724 6910 8634
8 Downloader 495 2002 2497
Total 4410 17644 22054

Table 3: Summary of Loss and Accuracy for Different Epochs of ANN, CNN, and RNN

Model No. Epoch Loss ValLoss Accuracy Val Accuracy

1 1 1.1005  0.5596 0.6485 0.8203
2 20 0.1959  0.1678 0.9461 0.9658
ANN 3 40 0.1524  0.1490 0.9577 0.9694
4 60 0.1096  0.1400 0.9730 0.9703
5 80 0.0869  0.1258 0.9780 0.9723
6 100 0.0761  0.1226 0.9799 0.9735
1 1 7.8877  4.6905 0.7281 0.8645
2 20 0.1254  0.1722 0.9691 0.9764
CNN 3 40 0.0505  0.1292 0.9875 0.9850
4 60 0.0248  0.1570 0.9927 0.9866
5 80 0.0312  0.1081 0.9937 0.9859
6 100 0.0161  0.1846 0.9950 0.9853
1 1 1.9359  1.8120 0.3754 0.3908
2 20 1.7850  1.7761 0.3916 0.3908
RNN 3 40 1.8376  1.8367 0.3916 0.3908
4 60 1.7867  1.7881 0.3916 0.3908
5 80 1.7376  1.7967 0.3916 0.3908
6 100 1.6867  1.8181 0.3916 0.3908

The dataset, consisting of 22,054 samples as shown in Table 2, from VirusShare [20], is split into training
(17,644) and testing (4,410) sets. The CNN model outperforms others, leveraging its ability to detect local patterns
in n-gram sequences. The use of API arguments in n-grams enhances the model’s ability to differentiate malware
types, achieving a classification accuracy of 99.5% for the CNN model as shown in Table 3. This approach
demonstrates robustness against evolving malware threats by capturing intricate behavioral patterns.

4.3 API call with argument converted into Graph for malware detection and classifica-
tion using GNN

This subsection elaborates on the use of n-grams of API Call Embedding and Graph Neural Networks, as presented
in the paper “Malware Detector and Classifier Using API Call Embedding and Graph Neural Networks” [3] ad-
dresses the growing threat of malware, particularly on Windows OS. The proposed framework leverages API call
sequences, including arguments, to enhance malware detection and classification. It employs Levenshtein distance
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Figure 9: Malware Classification using Graph Neural Network [3]

for API call embedding to capture nuanced differences in arguments, addressing limitations of prior methods like
Jaccard similarity. A graph is constructed from these embeddings, and a Graph Neural Network (GNN) model,
incorporating linear transformations, graph convolution, and matrix factorization convolution layers, is used to
analyze structural patterns as shown in Figure 11.

Table 4: GNN based malware detector performance parameters

Parameters Value (%)
Recall 100.00
F1-score 99.83
Accuracy 99.70
Precision 99.66
MCC 99.59

The model was tested on a dataset of 41,483 samples from VirusShare [2], including various malware families
and benign samples, achieving a detection accuracy of 99.70%, an F1-score of 99.83%, and a Matthews Correlation
Coefficient (MCC) of 99.59% as shown in Table 4. For classification, it attained 87.08% accuracy and a 74.39%
MCC, with strong performance on families like downloader and ransomware but lower accuracy for trojans due
to behavioral overlaps. Compared to state-of-the-art methods, the proposed model outperforms others in accuracy
and Fl-score, attributed to its robust feature extraction and GNN architecture. The study highlights the model’s
efficiency, with a 20ms execution time per sample, comparable to commercial tools like VirusTotal. Future work
aims to explore additional GNN architectures and improve explainability for detecting zero-day malware and
enhancing cybersecurity.

4.4 API call converted into Image for malware detection and classification using CNN

Recent advancements in machine learning have inspired novel approaches to malware detection, notably the trans-
formation of behavioral data into visual representations. One such technique involves converting sequences of API
calls and their arguments into images, which are then analyzed using convolutional neural networks (CNNs) for
detection and classification tasks.

This approach leverages the insight that API call patterns, along with their associated arguments (e.g., file
names, registry keys, network addresses), encapsulate the behavioral signatures of malware. When encoded into
image formats, these patterns can reveal latent structures more effectively captured by deep learning models.
Nataraj et al. [23] were among the first to propose converting malware binaries into grayscale images for clas-
sification, demonstrating the potential of visual analysis in security contexts. Building on this idea, researchers
have extended this method to dynamic behavioral data.

Tobiyama et al. [22] developed a system that models malware behavior through long short-term memory
(LSTM) networks and CNNs by visualizing API sequences as behavior graphs, which are then rendered into
images for classification.
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Ko et al. [24] introduces a novel malware detection method for Windows environments using a Convolutional
Neural Network (CNN) that leverages 2-gram opcode frequency data transformed into images. Unlike traditional
methods that rely on manual signature-based analysis or byte-to-image conversion, this approach extracts opcode
sequences from disassembled executable files, computes their 2-gram frequencies, and converts these into spatial
image data for CNN processing. The method employs Hierarchical Clustering to group highly correlated opcodes,
positioning them closely in the image to capture semantic relationships. The CNN model, consisting of convo-
lutional layers, max-pooling, batch normalization, and fully-connected layers, achieved a 91% accuracy rate in
detecting malware on a dataset of 10,000 malicious and 10,000 benign files. The study compares various clus-
tering algorithms, finding Hierarchical Clustering most effective, and outperforms Multi-Layer Perceptron (MLP)
models by 3-5% in accuracy. The method’s use of opcode frequency images enhances semantic analysis, offering
a scalable solution for automated malware detection. Future work aims to integrate this approach with other CNN-
based frameworks to improve detection accuracy further. These studies underline the effectiveness of converting
API call arguments into image formats, enabling more accurate and scalable detection. Such transformations help
abstract complex execution traces into forms suitable for deep learning, improving detection rates while reducing
reliance on handcrafted features.

Shahnawaz et al. [26] introduces a novel image-based dynamic malware classification framework that trans-
forms runtime API call arguments from Windows Portable Executable (PE) files into grayscale images. By utilizing
Cuckoo Sandbox, the authors extract API behavior logs, focusing on API names and their arguments during ex-
ecution. These are then converted into structured feature vectors, normalized, reshaped into 128x128 matrices,
and enhanced with techniques like Gaussian blur, CLAHE, and Sobel edge detection. The resulting images are
visualized using the magma colormap and used to train a custom Convolutional Neural Network (CNN). The CNN
architecture comprises three convolutional and pooling layers, a dense layer, and dropout regularization, ending in
a softmax classifier for multi-class prediction. The model is trained on a dataset of 22,056 samples across eight
classes, achieving high accuracy (up to 100%) and robustness, especially against obfuscated or polymorphic mal-
ware. With an average classification accuracy of 98.36%, the approach proves scalable, interpretable, and resistant
to common evasion tactics. Future directions include incorporating Large Language Models (LLMs) for API se-
mantics, cross-platform adaptability, model compression for IoT use cases, and sequential modeling using LSTMSs
or Transformers.
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Figure 10: Malware Classification using Convolutional Neural Network [26]
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Figure 11: Detailed Convolutional Neural Network [26]
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Malware Type Accuracy F1Score Recall Precision

Adware 98.00% 87.50% 78.60% 98.70%
Backdoor 99.20% 86.70% 84.40% 89.10%
Benign 96.00% 95.10% 98.70% 91.80%
Downloader 100.00%  100.00% 100.00%  100.00%
Spyware 99.20% 89.90% 84.70% 95.80%
Trojan 97.60% 92.30% 89.80% 95.00%
Virus 98.80% 94.60% 93.10% 96.10%
Worm 98.10% 85.80% 91.10% 81.00%

Table 5: Performance metrics of the proposed CNN-based malware classification model [26]

4.5 Discussion

The similarity-based approach for malware classification, utilizing n-grams of API call sequences with arguments
and Jaccard similarity, offers a computationally efficient method to capture behavioral patterns. As experimental
results on a large dataset of 55,537 samples demonstrate high accuracy, particularly for worms (98.78%) and
spyware, due to the nuanced representation of API interactions. This method’s strength lies in its simplicity and
ability to generalize across diverse malware types, though it may struggle with highly obfuscated samples due to
reliance on surface-level similarities.

In contrast, the deep learning approach, which also uses n-grams of API calls and arguments, employs advanced
models like CNNs, ANNs, and RNNs to uncover complex behavioral patterns, achieving superior performance
with a CNN model accuracy of 99.5% on a 22,054 sample dataset for classification and GNN model accuracy
of 99.70% on a 41,483 sample dataset for Detection. By combining API names and arguments into n-grams
and applying TF-based feature selection to reduce the feature set to 88,975, this method enhances efficiency while
capturing intricate relationships. The CNN and GNN models excels in detecting and capturing local patterns within
n-gram sequences, making it robust against evolving malware threats. However, its computational complexity and
reliance on large labeled datasets may limit scalability compared to the similarity-based approach, particularly in
resource-constrained environments.

5 Conclusion and Future Scope

Detecting and classifying malware through system call or APi Call analysis has become a powerful approach for
spotting harmful software and program by looking at how programs interact with an operating system. Using static
analysis can help catch threats quickly before a program even runs. However, this method often struggles with more
advanced malware that uses techniques like obfuscation to hide its true nature. On the other hand, dynamic analysis
where the software is run in a controlled environment or sandbox, it can expose malicious behavior in real time.
While this gives a more complete picture, it also requires a secure setup to avoid any unintended consequences.

The above Use cases have brought impressive results using deep learning techniques. For example, researchers
have used n-gram models, graph neural networks (GNN5s), and even visual representations of API call sequences to
improve detection. Convolutional neural networks (CNNs) have reached classification accuracies as high as 99.5%,
while GNNs have pushed detection rates to around 99.7%. Open-source tools like Cuckoo Sandbox offer a low-
cost, customizable way for researchers and smaller teams to experiment with these ideas. Meanwhile, commercial
solutions such as FireEye provide large organizations with scalable, more sophisticated systems that integrate well
into broader cybersecurity strategies.

Still, this field faces real challenges. Malware developers continue to find ways to hide from detection tools,
and running dynamic analysis remains resource intensive. To address these issues, future research should focus
on making detection methods more resistant to tricks like polymorphism and zero-day exploits. One promising
direction is building hybrid models that combine both static and dynamic techniques, and use of LLM based
Classifers finetuned with Malware API call Sequence that will offer a more well-rounded defense. Another key area
is improving the transparency and explainbility of complex Al models such as GNN, CNN and etc, cybersecurity
experts can better understand how and why a system flags certain behaviors.
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