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Abstract

Differential privacy (DP) has become an essential framework for privacy-preserving
machine learning. Existing DP learning methods, however, often have disparate
impacts on model predictions, e.g., for minority groups. Gradient clipping, which is
often used in DP learning, can suppress larger gradients from challenging samples.
We show that this problem is amplified by adaptive clipping, which will often
shrink the clipping bound to tiny values to match a well-fitting majority, while
significantly reducing the accuracy for others. We propose bounded adaptive
clipping, which introduces a tunable lower bound to prevent excessive gradient
suppression. Our method improves the accuracy of the worst-performing class
on average over 10 percentage points on skewed MNIST and Fashion MNIST
compared to the unbounded adaptive clipping, and over 5 percentage points over
constant clipping.

1 Introduction
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Figure 1: Existing adaptive clipping methods can lead
to vanishing clipping bounds (blue), resulting in severe
performance degradation for minorities and challenging
examples. Setting a lower bound for clipping bound
(orange) rectifies this. Left: Mean estimation in bimodal
data can converge to the mean of the majority ignoring
the minority, Right: DP CNN with Fashion MNIST
shows significant impact in most difficult class accuracy.

Differential privacy (DP; Dwork et al.
2006b; Dwork & Roth 2014) is a widely
accepted framework for preserving privacy
in data analysis, including during machine
learning model training. While mitigating
privacy issues, DP can exacerbate problems
with model fairness (Bagdasaryan et al.,
2019; Fioretto et al., 2022; Petersen et al.,
2023). The current state-of-the-art (SOTA)
solution to address fairness issues in dif-
ferentially private stochastic gradient de-
scent (DPSGD) is based on using adaptive
clipping to reduce disparate impacts for
underrepresented and confusable groups
(Esipova et al., 2023). However, as we
demonstrate in this work, the current meth-
ods (Andrew et al., 2021; Esipova et al.,
2023) can actually suppress gradients from
these groups when dynamically adjusting
the clipping bounds, leading to very bi-
ased estimates and class-wise disparities
due to decreased worst-class performance
(see Figure 1).
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To address the issue, we propose lower-bounded adaptive clipping, a mechanism aimed at mitigating
the limitations of unbounded adaptive clipping. By introducing a tunable lower bound, our method
preserves critical gradient updates for underrepresented and confusable groups while maintaining
formal DP guarantees. We evaluate the performance of our method under both non-DP and DP
hyperparameter optimization (HPO, Liu & Talwar 2019; Papernot & Steinke 2022), and demonstrate
its efficiency in comparison to the current SOTA as well as robustness to HPO stochasticity across
diverse datasets and model architectures.

Related work Fairness as a formal metric has received significant attention in machine learning,
with various formulations proposed (Dwork et al., 2012; Kusner et al., 2017; Corbett-Davies et al.,
2017). Ensuring fairness becomes even more challenging when combined with the complexities
of DP. Recent work has highlighted that DP can disproportionately degrade the performance of
underrepresented or confusable groups, making the mitigation of such fairness disparities a central
concern in private learning (Bagdasaryan et al., 2019; Fioretto et al., 2022). In deep learning, accuracy
parity, defined as achieving similar accuracy across all demographic or label groups, is considered
an important metric in the realm of fairness, and it is especially sensitive to data imbalance and
algorithmic design.

To address these challenges through the lens of fairness, one key research direction in recent work has
explored improving clipping mechanisms in DP optimization. Starting from DPSGD with gradient
clipping (Abadi et al., 2016), but focusing specifically on fairness, Tran et al. (2021) analyzed how
constant gradient clipping and loss re-weighting affect model fairness. Xu et al. (2021) proposed
DPSGD-Fair, which sets group-specific clipping bounds based on sample sizes and adjusts the noise
levels accordingly.

Looking again at the overall performance, Andrew et al. (2021) introduced an adaptive clipping
mechanism that tracks a specific quantile of gradient norms under DP, resulting in a clipping threshold
that depends on the data distribution. The convergence properties of this method were later analyzed
by Shulgin & Richtárik (2024), who provided theoretical guarantees on its performance and utility.
To better address fairness, Esipova et al. (2023) proposed an adaptive parameterization for clipping
bound updates to mitigate misalignment issues in earlier approaches.

In this work, in addition to the standard constant clipping in DP (Abadi et al., 2016), we use the
adaptive clipping methods (Andrew et al., 2021; Esipova et al., 2023) as state-of-the-art baselines to
evaluate our approach.

Contributions Our paper makes the following contributions:

• We identify a common failure mode with the current SOTA adaptive clipping methods
leading to vanishing clipping bounds, resulting in performance and fairness issues (Figure 1).
To address these issues, we propose a novel lower-bounded adaptive clipping method
that introduces a tunable lower bound to protect underrepresented and confusable groups
(Section 3).

• We evaluate the performance of our proposed approach comprehensively across four datasets
and three models, showing its ability to achieve both strong overall performance and fairness
under DP constraints compared to existing methods (Section 4.2).

• We test the performance of our method under differentially private hyperparameter optimiza-
tion (DPHPO), demonstrating that our approach is robust to DPHPO stochasticity compared
to existing methods (Section 4.3).

2 Preliminaries

Differential privacy (DP) DP (Dwork et al., 2006b; Dwork & Roth, 2014) is a mathematical
framework for privacy preservation, centered on the principle of quantifying privacy through the
comparison of output probabilities between adjacent datasets, formalized as follows.

Definition 2.1 (Approximate DP; Dwork et al., 2006b,a) A stochastic algorithmM : D → R is
(ε, δ)-DP if for any adjacent datasets D,D′ ∈ D, and for any S ∈ R, it holds that

Pr[M(D) ∈ S] ≤ eεPr[M(D′) ∈ S] + δ.
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In this work, we use sample-level add/remove adjacency, so D and D′ are adjacent, if D can be
turned into D′ by adding or removing a single sample.

Algorithm 1 Normalized DPSGD (De et al., 2022)

Input: Iterations T , dataset D of size N , sam-
pling rate q, expected batch size B = qN , clip-
ping bound C, noise multiplier σ, initial param-
eters θ0.
for iteration t = 0, 1, . . . , T − 1 do
Bt ← Poisson subsample of D with rate q
for (xi, yi) ∈ Bt do
gi ← ∇L(fθt(xi), yi)
ḡi ← gi ·min( 1

C , 1
||gi|| )

end for
g̃i ← 1

B

(∑
i∈Bt

ḡi +N (0, σ2I)
)

θt+1 ← OptimizerUpdate(θt, g̃i)
end for

Differentially private stochastic gradient de-
scent (DPSGD) To incorporate DP into deep
learning, a common approach is to use DPSGD
for optimization. DPSGD extends SGD with
ℓ2 norm gradient clipping and noise injection
(Song et al., 2013; Abadi et al., 2016). In ef-
fect, clipping bounds the influence any single
sample can have on the outcome, after which
calibrated Gaussian noise is added to the clipped
per-sample gradients to guarantee DP (Dwork
et al., 2006a).

However, the update magnitude in standard
DPSGD is influenced by two hyperparameters,
the learning rate and the clipping bound, which
both affect the update magnitude. Since this in-
terdependence complicates hyperparameter tun-
ing, De et al. (2022) proposed normalizing the learning rate by scaling all gradients by a factor of
1
C , where C is the clipping bound (see Algorithm 1). This normalization decouples the learning rate
and the clipping bound so the hyperparameter C exclusively controls the clipping bound without
affecting the update magnitude, simplifying HPO. In the rest of this paper, DPSGD refers to DPSGD
with normalization. We note that due to the standard post-processing properties of DP (Dwork &
Roth, 2014), any optimizer with access only to the DP gradients, e.g., Adam (Kingma & Ba, 2015),
will also satisfy DP. We therefore use the general OptimizerUpdate in Algorithms 1 and 2 to refer
to any such optimizer.

Differentially private hyperparameter optimization (DPHPO) Finding good hyperparameters is
critical for ensuring good performance, yet finding them especially under DP constraints is non-trivial
due to the high computational cost of DP training (Koskela & Kulkarni, 2023) and the risk of extra
privacy leakage from HPO (Liu & Talwar, 2019). Papernot & Steinke (2022) have analyzed DPHPO
procedures, showing that privacy leakage can remain modest as long as each training run adheres to
DP guarantees.

Considering the intersection of fairness and DP which is the focus of this work, the minority and
confusable groups are often most at risk from privacy breaches (Xu et al., 2021). Hence, accounting
the privacy budget throughout the entire DP pipeline including HPO can be useful to assert the risk.
However, as DPHPO introduces additional randomness into the hyperparameters, it becomes more
important to evaluate the robustness of any method to such stochasticity.

3 Adaptive clipping algorithms for DPSGD

While Andrew et al. (2021) first proposed adaptive clipping in the context of DP, Esipova et al. (2023)
introduced mechanisms specifically designed to mitigate the disparate impact on different groups.
The two algorithms are both special cases of a more general unified unbounded adaptive clipping
algorithm, formalized in Algorithm 2, with CLB = 0. This algorithm reduces to that of Andrew et al.
(2021) when τ = 1 and to that of Esipova et al. (2023) when ηC = 1.

3.1 Key hyperparameters

Adaptive clipping involves several hyperparameters that control its behavior and effectiveness. Below,
we detail their roles and highlight key observations from prior work and our analysis.

Target quantile (γ) specifies the proportion of gradients with norms exceeding the current threshold
that the algorithm aims for (Andrew et al., 2021). Notably, Esipova et al. (2023) incorrectly referred
to γ as the ‘clipping bound learning rate’, which misrepresents its actual role. The clipping bound
update will converge exponentially towards a bound where fraction 1− γ of the gradients are clipped.
The value of γ is directly linked to unfairness, as fraction 1− γ of the gradients are ignored when
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considering the clipping bound. The specific behaviour observed in the toy model of Figure 1 (left)
could be avoided by setting γ to be sufficiently larger than 0.6 to also consider the minority. Things
get more difficult when the size of the minority group is unknown and when it is small, because the
estimation of extreme quantiles of the gradient norm distribution is less reliable, so simply using
γ ≈ 1 is not a silver bullet. The optimal value of γ is tightly coupled to the threshold multiplier τ
that we discuss next.

Algorithm 2 Unified normalized DPSGD with adap-
tive clipping mechanism (unbounded / lower-bounded)

Input: Iterations T , dataset D of size N , sampling
rate q, expected batch size B = qN , initial clipping
bound C0, noise multiplier for gradients σgrad, noise
multiplier for clipped gradient count σcount, adaptive
clipping bound learning rate ηC , threshold multiplier
for counting clipped gradients τ , target quantile γ,
the lower-bound of adaptive clipping bound CLB.
if unbounded adaptive clipping is used then

Set CLB = 0
end if
Initialize the parameters of the model θ0 randomly
for t = 0, 1, . . . , T − 1 do
Bt ← Poisson sample a batch with rate q from D
for (xi, yi) ∈ Bt do
gi ← ∇L(fθt(xi), yi)
ḡi ← gi ·min( 1

Ct
, 1
||gi|| )

end for
g̃i ← 1

B

(∑
i∈Bt

ḡi +N (0, σ2
gradI)

)
θt+1 ← OptimizerUpdate(θt, g̃i)
bt ← |{i : ||gi|| > τCt}|
b̃t ← 1

B (bt +N (0, σ2
count))

Ct+1 ← max
(
CLB, Ct · exp

(
ηC(b̃t − γ)

))
end for

Threshold multiplier (τ ) for counting
clipped gradients, introduced by Esipova
et al. (2023), is a multiplier that determines
the upper limit for identifying outlier gradi-
ent norms. Gradients with norms exceeding
τ · Ct, where Ct is the clipping bound at
the current iteration t, are treated as out-
liers and contribute to updating the clipping
bound such that their fraction should be-
come approximately γ. In practice, τ and γ
are tightly coupled. Under a fixed gradient
norm distribution, the same fixed point for
clipping bound adaptation could be reached
by changing τ and γ together suitably. In-
terestingly, both γ and τ were very stable in
our experiments and the values γ = 0.5 and
τ = 2.5 were optimal for all datasets used
in the experiments.

The other hyperparameters are similar to DP-
SGD. Initial clipping bound (C0) serves as
the initial value for the adaptive clipping
mechanism. Clipping bound learning rate
(ηC) defines the learning rate for the up-
dates of the adaptive clipping bound. Noise
multiplier for clipped gradient counting
(σcount) determines the scale of noise added
to the privatized estimate of how many gra-
dients exceed the current clipping bound. A
larger σcount gives more privacy budgets to
the counting mechanism, but may result in less accurate estimates, potentially affecting the stability
of the adaptive clipping updates. Following Andrew et al. (2021) we use ηC = 0.2 and following
Esipova et al. (2023) we set σcount = 10σgrad.

3.2 A key limitation of unbounded adaptive clipping

The unbounded adaptive clipping method updates the clipping bound solely based on gradient norm
statistics, without enforcing the minimum threshold. While the original theoretical analysis by
Andrew et al. (2021) assumes non-changing gradient distribution, as training progresses and gradients
from well-optimized samples diminish, the estimated proportion of clipped gradients, b̃t, often falls
below the target quantile γ, causing the bound Ct to shrink further. This iterative decay suppresses
gradients from harder or underrepresented samples, limiting their influence and harming fairness.

To illustrate this problem, consider a toy (non-DP) mean estimation task as shown in Figure 1 (left).
The target distribution is bimodal with 60% of points around 0 and 40% of points around 1, which
implies a true mean µ = 0.4. Using the loss function L(µ̂;x) := 1

2

∑
i(xi − µ̂)2, the per-sample

gradient is gi = xi − µ̂t. We use τ = 1 and target quantile γ = 0.5. Early in training both classes
contribute sizable gradients, but once µ̂t approaches the majority value 0, the majority gradients fall
beneath the current bound while the minority (ones) still exceed it. Because b̃t < γ, the unbounded
rule keeps shrinking Ct until every minority gradient is clipped to the same tiny magnitude, effectively
turning the update into a majority vote. The estimate is then driven all the way to 0, as traced by the
blue curve in Figure 1. In contrast, our bounded scheme (orange) halts the decay of Ct, preserving
the influence of the minority gradients, and converges to approximately the correct mean. We observe
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the same pattern on the higher-dimensional Fashion-MNIST benchmark in Figure 1 (right), where
bounded adaptive clipping consistently yields higher accuracy of the worst-performing class than its
unbounded counterpart.

3.3 Bounded adaptive clipping: mitigating disparate impact

To address the limitations of unbounded adaptive clipping, which often results in excessively small
clipping bounds, we propose a bounded adaptive clipping mechanism with a tunable lower bound
CLB, as described in the lower-bounded version of Algorithm 2. This mechanism ensures that the
clipping bound does not shrink below a specified minimum value, allowing the gradients from the
challenging samples to continue contributing to the learning.

Returning to the example in Figure 1, we see that bounded adaptive clipping (orange) effectively
prevents the exponential decay of the clipping bound seen in unbounded methods (blue) during later
stages of training. By enforcing a lower bound, it avoids excessively suppressing the gradients of
underrepresented or confusable classes, ensuring that these gradients contribute efficiently to the
accumulated updates. This is particularly critical in later epochs, where the majority of samples
become well-optimized, leading to smaller gradients. Without a lower bound, gradients from
challenging groups risk being overwhelmed by those of well-optimized samples, halting further
optimization for these groups.

3.4 Privacy of adaptive clipping

Achieving DP with adaptive clipping requires accounting for the two accesses to the data for the
gradients used in the update as well as the counting query needed for adapting the clipping bound.
As both of these are based on the Gaussian mechanism, we can obtain their exact composition using
Gaussian DP (Dong et al., 2022).

Lemma 3.1 A composition of two Gaussian mechanisms with sensitivities ∆1 = ∆2 = 1 and noise
multipliers σ1 and σ2 has exactly same privacy properties as a Gaussian mechanism with sensitivity
1 and noise multiplier

σ =
(
σ−2
1 + σ−2

2

)−1/2
. (1)

This allows us to evaluate the privacy using standard privacy accountants using the following theorem.

Theorem 3.2 The adaptive clipping algorithm in Algorithm 2 is (ε, δ)-DP with privacy parameters
returned by a privacy accountant using T = T , q = q, σ =

(
σ−2

grad + σ−2
count

)−1/2
.

Implementation details are provided in Appendix A.5.

4 Experimental results

The code for replicating all the results will be released with the published version of the paper.

We focus on evaluating the performance of our proposed bounded adaptive clipping method under
two main settings: (i) with optimal hyperparameters, i.e., with the hyperparameter values derived
from extensive non-DP HPO (Section 4.2), and (ii) with hyperparameters resulting from proper
DPHPO (Section 4.3).

Under setting (i) with optimal hyperparameters, we want to show that our proposed method out-
performs the baselines when each algorithm is optimally tuned for the task. With setting (ii) using
hyperparameters resulting from DPHPO, we want to demonstrate that our method is more robust to
the stochasticity in the hyperparameters compared to the baselines.

4.1 Methodology

Grid search In both cases, the joint grid search includes two key hyperparameters: the learning rate
η and the clipping parameter: either the fixed bound C for constant clipping, or the lower bound CLB
for the bounded adaptive schemes. For the unbounded method, we set CLB = 0. Moreover, Macro
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accuracy is adopted as the objective function. To report performance under optimal hyperparameters,
we fix the batch size to a near-optimal value in order to control computational cost. In contrast, the
DPHPO setting incorporates batch size as an additional tunable parameter. This is enabled by the use
of randomized search rather than full grid evaluation, allowing exploration of a higher-dimensional
hyperparameter space at reduced cost. Furthermore, our DPHPO setting explicitly accounts for the
privacy cost incurred during hyperparameter search. This ensures that the final privacy guarantee
reflects both model training and hyperparameter selection, adhering to DP principles.

For adaptive methods, we fix other hyperparameters: target quantile γ = 0.5, multiplier τ = 2.5,
and clipping bound learning rate ηC = 0.2, based on preliminary sensitivity analysis. Appendix A.3
details the full search protocol.

Models For image recognition, we use ResNet-18 (He et al., 2016), implemented in Timm (Wight-
man, 2019), with Batch Normalization replaced by Group Normalization (Wu & He, 2020) as is
standard in DP training (Maaten & Hannun, 2020). We also include a simple two-layer convolu-
tional neural network (CNN); see Appendix A.5 for details. For tabular datasets, we adopt logistic
regression.

Datasets We use two image datasets and two tabular datasets in the evaluations:

Fashion MNIST (Xiao et al., 2017) contains grayscale images of fashion items from 10 balanced cate-
gories. The dataset includes 60,000 training samples and 10,000 test samples. This task is particularly
challenging due to visual similarity between certain classes, leading to frequent misclassifications.

Skewed MNIST (LeCun & Cortes, 2010; Bagdasaryan et al., 2019) In the skewed MNIST dataset
(Bagdasaryan et al., 2019; Xu et al., 2021), class 8 is artificially subsampled to 10% of its original
size, leaving approximately 600 samples in the training set, compared to 6,000 samples for the other
classes.

Dutch (Van der Laan, 2000) and Adult (Becker & Kohavi, 1996) are tabular census datasets. In
both cases, we treat “gender” as the protected attribute and balance the dataset to ensure equal
representation across genders, following the setup of Esipova et al. (2023).

Appendix A.1 provides more details on the dataset configurations, including the class subsampling
process for skewed MNIST, the definition of confusable classes in Fashion MNIST, and our data
pre-processing methods.

Metrics For image classification tasks, we report macro-average accuracy (Macro acc (%)) and
worst-class accuracy (Worst acc (%)).

Unlike standard (micro-)average accuracy dominated by the majority classes, macro-average accuracy
gives equal weight to each class, providing a more balanced perspective on both overall utility and
the minimization of performance disparities. Hence, we report macro-average accuracy to assess the
overall performance, which is defined as

Macro =
1

K

K∑
k=1

TPk

Nk
, (2)

where K is the number of classes, and TPk, Nk denote the number of true positives and the total
number of samples for class k, respectively.

Worst-case accuracy measures the performance of the least accurately predicted class. This metric
directly aligns with our goal of mitigating disparate impacts by reducing disparities across classes
(Zafar et al., 2017).

For tabular datasets with binary prediction tasks, we report accuracy separately for each sensitive
class (Female/Male acc (%)).

Baselines We compare our proposed method with i) constant clipping with tuned clipping bound
(Abadi et al., 2016), which is the standard clipping method in DP learning, and ii) unbounded adaptive
clipping (Algorithm 2), which represents the current SOTA for mitigating fairness problems with
DPSGD.
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4.2 Results with optimal hyperparameters

We first assess the performance of each clipping strategy under optimal hyperparameter settings. This
isolates the capability of each algorithm when tuning is unconstrained.
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Figure 2: Comparison of macro accuracy (top) and worst-class accuracy (bottom) across privacy
budgets (ε, δ = 10−5) using optimal hyperparameters. We evaluate three clipping strategies: constant
clipping, unbounded adaptive clipping, and our proposed bounded adaptive clipping. Our bounded
adaptive clipping consistently outperforms the baselines in both metrics across ε. Results are averaged
over 10 seeds, error bars indicate their standard errors. Clusters are slightly shifted for readability.

Image datasets As shown in Figure 2, bounded adaptive clipping consistently achieves the best or
near-best performance in both macro accuracy and worst-class accuracy across all privacy budgets ε.

The gains in worst-class accuracy are particularly notable, affirming the fairness benefits of our
bounded clipping method. However, we observe that worst-class accuracy does not always increase
smoothly with ε, especially for the two-layer CNN on Fashion MNIST (Figure 2b). As the noise
level drops, the optimizer increasingly focuses on majority classes, occasionally neglecting minority
ones, flattening or even degrading worst-class performance.
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Figure 3: Gender-specific accuracy on Adult and
Dutch datasets using logistic regression under DP
training. These tabular tasks are relatively simple,
and models often reach high accuracy even at
small privacy budgets (ε, δ = 10−5), making it
difficult to differentiate methods based on overall
accuracy alone. Despite this, bounded adaptive
clipping consistently achieves the best or near-
best performance across privacy levels and groups.
Results are averaged over 10 seeds, with bars
indicating standard errors.

These patterns reflect inherent trade-offs in clip-
ping strategies. Constant clipping lacks adapt-
ability and underperforms across both metrics.
Unbounded adaptive clipping adjusts to gradient
norms, but often shrinks the bound too aggres-
sively, suppressing gradients from underrepre-
sented classes. In contrast, our bounded variant
prevents this excessive suppression via a lower-
bound constraint. As a result, our algorithm
achieves a better balance between macro and
worst-class accuracy, and demonstrates robust,
stable performance across different privacy bud-
gets.

Tabular datasets Bounded adaptive clipping
consistently matches or exceeds the best perfor-
mance across genders and ε levels in Figure 3.
Both bounded adaptive clipping and constant clip-
ping can achieve comparable performance, while
unbounded adaptive clipping performs noticeably
worse. This performance gap can be attributed to
the tendency of the unbounded method to shrink
the clipping bound excessively, which suppresses
gradients, thus reducing subgroup performance. Appendix B.2 provides full performance landscapes
across grid points, further confirming the stability of bounded clipping across tuning settings.
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Together with the image classification experiments, these results highlight the generality of our
approach: it performs well not only in complex, high-variance deep learning tasks, but also in
constrained, low-capacity settings typical of DP learning with tabular data.

4.3 Results with DPHPO

To assess our adaptive clipping method within a differentially private hyper-parameter optimization
(DPHPO) setting, we begin with a fixed Cartesian grid over the learning rate and clipping-related
hyperparameters, then follow Theorem 2 of Papernot & Steinke (2022): the number of grid points
we actually evaluate is drawn from a truncated negative-binomial distribution. This randomized
stopping rule makes the HPO stage itself differentially private and allows us to account precisely for
the privacy budget consumed during tuning.

For the final evaluation of the selected hyperparameters, we conservatively charge privacy based on
the total number of grid cells, i.e., the expected number of trials in the DPHPO process is treated as
the full grid size for accounting purposes. This aligns with the conservative interpretation used in
prior work and ensures the validity of the overall privacy guarantee.
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Figure 4: Performance comparison across privacy budgets (ε, δ = 10−5) with DPHPO. The rightmost
symbol in every curve marks the best accuracy obtained anywhere on the grid, and the corresponding
ε combines training privacy with the extra cost of evaluating that grid. Our bounded adaptive clipping
(orange) consistently preserves worst-class or subgroup accuracy while matching or exceeding the
macro-level performance of unbounded and constant clipping. Each line shows the mean over 20
runs; bars indicate standard errors. Clusters are slightly shifted for readability.

Image datasets As shown in Figure 4a, bounded adaptive clipping performs comparably to, and
in some cases better than, constant and unbounded adaptive clipping in DP learning scenarios. The
inherent noise and the limited number of trials permitted under privacy constraints often hinder
DPHPO from reaching optimal performance, making stable methods such as bounded adaptive
clipping particularly appealing. Despite these challenges, bounded adaptive clipping consistently
achieves better or comparable worst-class accuracy, especially under small ε, compared to the
best-performing baselines within the same privacy budget.

For the Fashion MNIST dataset, macro accuracy exhibits minimal differences across the three
algorithms. However, in terms of worst-class accuracy, bounded adaptive clipping demonstrates a
clear advantage across a range of privacy budgets, ensuring algorithmic fairness by improving the
performance of underrepresented classes.

For skewed MNIST, our bounded adaptive clipping achieves macro accuracy that is consistently on
par with, or slightly better than, constant clipping. In addition, it outperforms unbounded adaptive
clipping, particularly under lower privacy budgets. The higher worst-class accuracy further reinforces
the effectiveness of bounded adaptive clipping, as it achieves near-optimal accuracy even with smaller
ε. These results highlight the robustness of bounded adaptive clipping in balancing fairness and
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utility under various privacy constraints, making it a practical and effective approach for DP training
scenarios.

Tabular datasets As shown in Figure 4b, for the Dutch and Adult datasets, bounded adaptive clip-
ping demonstrates improved performance across gender-specific metrics, outperforming unbounded
adaptive clipping and constant clipping in most cases. This advantage is more evident under moderate
total ε, where bounded adaptive clipping often approaches optimal performance with fewer HPO
trials. However, at very low total ε values, the benefits are less consistent.

5 Conclusion

This work studies the intersection of DP and fairness. By its very nature, the DP definition enforces a
certain level of unfairness as a single individual, or by group privacy a small group of individuals, will
only have a limited impact on the outcome of a DP algorithm. However, the group privacy bounds
weaken exponentially with the size of the group and quickly become vacuous. As such, they are not
sufficient to explain the unfairness seen in most practical applications.

To improve practical fairness of DP learning, this work introduces bounded adaptive clipping, a novel
mechanism aimed at mitigating the disparate impacts caused by unbounded adaptive clipping or
constant clipping under differential privacy. By introducing a tunable lower bound for clipping, our
method reduces excessive suppression of gradients from underrepresented and confusable groups,
alleviating disparate impacts and improving worst-class performance. Extensive experiments across
image and tabular datasets show that bounded adaptive clipping outperforms existing methods,
demonstrating a robust balance between privacy, fairness, and utility.

Our key findings highlight the advantages of bounded adaptive clipping, including significant im-
provements in worst-class accuracy and improved robustness, both with optimal hyperparameters
and during differentially private hyperparameter tuning. By providing smoother hyperparameter
landscapes and achieving competitive performance with small total ε, our approach alleviates the
challenges associated with HPO under privacy constraints.

Limitations and Future Directions While our approach demonstrates clear benefits in both
macro and worst-class accuracy, especially under tight privacy budgets, several aspects merit further
investigation. Key hyperparameters, such as the lower bound, target quantile, and clipping threshold,
could be tuned or adapted dynamically across tasks to further enhance performance. Moreover,
although we adopt worst-class and macro accuracy to reflect fairness under DP, future work could
explore alternative fairness definitions and metrics that are compatible with DP guarantees, potentially
uncovering deeper trade-offs between privacy, utility, and representational equity.
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A Experimental details

A.1 Datasets and pre-processsing

In this section, we describe the datasets used in our experiments and the pre-processing steps applied
to ensure compatibility with our evaluation objectives.

Skewed MNIST

The skewed MNIST dataset is utilized to investigate scenarios where certain groups are underrepre-
sented. Specifically, following prior work (Bagdasaryan et al., 2019; Xu et al., 2021; Esipova et al.,
2023), we create an imbalanced training set by sampling only about 9% of the examples from class 8,
while and retaining the standard (balanced) test set. The protected feature in this dataset is the class
label, which allows us to study fairness across different classes.

Fashion MNIST

The Fashion MNIST dataset is chosen to study scenarios where some classes are confusable due to
feature overlap. Notably, the “Pullover," “Coat," and “Shirt" classes have the highest false positive
and false negative rates. This dataset is balanced across classes, making it suitable for evaluating how
adaptive clipping mechanisms handle class-specific confusion.

Adult

The Adult dataset is used to evaluate fairness with respect to sensitive attributes rather than class
accuracy. Following the pre-processing steps outlined in (Xu et al., 2021; Esipova et al., 2023),
we remove the “final-weight" feature and simplify the “race" attribute to a binary feature (white,
non-white). Numerical features are normalized, and categorical features are one-hot encoded. The
protected attribute for this dataset is “gender", while the target variable is binary income classification
(above or below $50,000).

Dutch

The Dutch dataset (Van der Laan, 2000) is used to examine fairness in predictions concerning the
protected attribute "gender." Pre-processing involves removing underage samples and the "weight"
feature, along with filtering out "unemployed" samples and those with missing or middle-level
occupation values. Occupation levels are binarized, with codes 4, 5, and 9 classified as low-level
professions and codes 1 and 2 as high-level professions. The task is to predict occupation categories
based on remaining features.

A.2 Experiment environment and settings

Our experiments are performed on the clusters, which equipped with AMD EPYC Trento CPU and
AMD MI250x GPU for experiments with image dataset, and Xeon Gold 6230 CPU and Nvidia V100
GPU for tabular datasets.

For image datasets, a single training-from-scratch task costs about 10 minutes with one GPU. While
for tabular datasets, about 6 minutes are required to execute one training-from-scratch task.

A.3 Hyperparameter optimization protocol and selection of fixed parameters

The sensitivity of hyperparameters For adaptive clipping in particular, we used the Optuna
framework (Akiba et al., 2019) to perform hyperparameter optimization under different values of the
clipping bound lower bound CLB, including 0, 10−4, and 10−2. Each configuration was optimized
over 20 trials with 10 repetitions per trial. We found that optimized values for most hyperparameters,
such as the target quantile γ, the clipping threshold τ , and the clipping bound learning rate ηC
remained stable between different CLB values. The optimized values are summarized in Table 1, with
variation captured by their standard deviations.
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Table 1: Mean and standard deviation of adaptive-specific hyperparameters after tuning, across four
datasets.

Hyperparameter Dataset Mean Std

Batch size

Skewed MNIST 15070.6 5054.9
Fashion MNIST 5992.9 1641.3

Dutch 8556.6 2775.0
Adult 12320.0 4954.8

Target quantile (γ)

Skewed MNIST 0.5150 0.1691
Fashion MNIST 0.4828 0.2744

Dutch 0.6429 0.1713
Adult 0.5087 0.3267

Clipping multiplier (τ )

Skewed MNIST 2.3002 1.6107
Fashion MNIST 2.7438 3.1248

Dutch 2.3864 2.0281
Adult 2.8830 2.0834

Clipping bound LR (ηC)

Skewed MNIST 0.4250 0.3932
Fashion MNIST 0.4955 0.4067

Dutch 0.1402 0.1488
Adult 0.1691 0.1610

This empirical robustness supports our decision to treat CLB as a separate tuning dimension while
fixing the remaining hyperparameters in subsequent experiments. Specifically, we fixed γ = 0.5,
τ = 2.5, and ηC = 0.2 across all datasets, based on their convergence and consistency. The influence
of CLB on training dynamics is further explored in Appendix B.2.

Note: The learning rate and clipping bound lower bound (CLB) were treated as grid search parameters
in our experiments and were not included in the table. Specifically, the learning rate was tuned
extensively as it directly influences optimization dynamics, and CLB was tested for its impact on
adaptive clipping. Their role as search dimensions is further explored in Appendix B.2.

Seeds We selected seeds starting from 1. For instance, if 5 seeds were used, the set of seeds would
be 1, 2, 3, 4, 5.

Table 2: Hyperparameter values used in experiments for each dataset. The table specifies the Batch
Size, Target Quantile (γ), Clipping Threshold (τ ), and Clipping Bound Learning Rate (ηC) for each
dataset.

Hyperparameter Skewed MNIST Fashion MNIST Dutch Adult

Epochs 50 50 40 40
Batch Size 12,000 6,000 10,000 Full-batch
Target Quantile (γ) 0.5 0.5 0.5 0.5
Clipping Threshold (τ ) 2.5 2.5 2.5 2.5
Clipping Bound Learning Rate (ηC ) 0.2 0.2 0.2 0.2

Privacy accounting To report the (ε, δ)-DP guarantees, δ was fixed at 10−5 across all datasets. For
Rènyi Differential Privacy (RDP) computations, we used the hyperparameters outlined in Table 2 and
relied on Opacus’s implementation (Yousefpour et al., 2021).

Initial value of clipping bound The initialization of the clipping bound is a critical aspect of
adaptive clipping. Due to the geometric update mechanism introduced by Andrew et al. (2021), the
adaptive clipping bound can adjust dynamically across several orders of magnitude during training.
This allows the algorithm to efficiently adapt the clipping bound based on the gradient norms observed
at each step, accommodating varying distributions of gradient magnitudes. To simplify the process
and ensure stability during the initial phases of training, we set the initial clipping bound to 1 across
all experiments. This choice strikes a balance between simplicity and generality, as the geometric
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updates quickly adapt the clipping bound to appropriate levels during training. Our experiments
demonstrated that this initialization works effectively across diverse datasets and hyperparameter
settings, further highlighting the robustness of the adaptive clipping mechanism. By keeping the
initialization consistent, we also reduce the number of hyperparameters requiring fine-tuning, making
the method more practical for real-world applications.

A.3.1 Hyperparameters used in experiments

Based on the evidence and discussion about the sensitivity of some hyperparameters, we used a fixed
set of hyperparameters in our experiments to ensure consistency across different datasets. These
values include epochs, batch size, target quantile (γ), clipping threshold (τ ), and clipping bound
learning rate (ηC ). Table 2 lists the hyperparameter values used for skewed MNIST, Fashion MNIST,
Dutch, and Adult datasets.

It is worth noting that the grid search focused on the learning rate and clipping bound lower bound
(CLB). These parameters were excluded from the table as their selection involved a separate evaluation
to identify optimal ranges for different datasets. The impact of these parameters is detailed in
Appendix B.2.

A.4 Grid design

A.4.1 Grid for reporting performances with optimal hyperparameters

To report the true performances of different algorithms, the experiments should reduce the randomness
from hyperparameter optimization. Specifically, all of the reasonable combination of hyperparam-
eters should be tested. Nonetheless, considering the computation cost, we fixed the less sensitive
hyperparameters

Table 3: Hyperparameter search space used during tuning. All parameters were treated as categorical.
Hyperparameter Ranges
Learning rate 1.0000, 1.2915, 1.6681, 2.1544, 2.7826, 3.5938,

4.6416, 5.9948, 7.7426, 10.0000
Clipping bound 0.0010, 0.0018, 0.0031, 0.0055, 0.0098, 0.0172,

0.0305, 0.0539, 0.0952, 0.1682, 0.2973, 0.5254,
0.9285, 1.6409, 2.9000, 5.1252, 9.0579, 16.0082,
28.2915, 50.0000

A.4.2 Grid for random search in DPHPO

Moreover, random search is widely used to enable privacy accounting in DPHPO (Liu & Talwar,
2019; Papernot & Steinke, 2022). This approach also requires a predefined grid, from which random
samples are drawn.

Table 4: Hyperparameter search space used during tuning. All parameters were treated as categorical.
Hyperparameter Ranges
Batch size 1024, 2048, 4096, 8192, 16384, 32768
Learning rate 1.0000, 1.2915, 1.6681, 2.1544, 2.7826, 3.5938,

4.6416, 5.9948, 7.7426, 10.0000
Clipping bound 0.0010, 0.0018, 0.0031, 0.0055, 0.0098, 0.0172,

0.0305, 0.0539, 0.0952, 0.1682, 0.2973, 0.5254,
0.9285, 1.6409, 2.9000, 5.1252, 9.0579, 16.0082,
28.2915, 50.0000
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A.5 Implementation details

We build our work on Opacus (Yousefpour et al., 2021), a framework designed for training models
with differential privacy. Below, we describe the network architectures used in our experiments.

Logistic regression

The logistic regression model consists of a single linear layer that maps the input features directly to
the output. The output is passed through a sigmoid activation function to produce probabilities for
binary classification tasks.

Convolutional neural network (CNN)

The CNN model has the following structure:

• Two convolutional layers, each followed by a max-pooling layer. The first convolutional
layer has 64 filters with a kernel size of 3, followed by a max-pooling layer with a kernel
size of 3 and stride 2. The second convolutional layer also has 64 filters with similar
configurations.

• Three fully connected layers: the first two layers have 500 units each, and the final fully
connected layer outputs predictions for the number of classes in the task.

• ReLU activation functions are used between layers to introduce non-linearity.

ResNet-18

We use the ResNet-18 architecture (He et al., 2016) for image classification tasks, implemented
via the timm library (Wightman, 2019). To comply with standard practices in differentially private
training, we replace all Batch Normalization layers with Group Normalization (Wu & He, 2020). All
ResNet models are trained from scratch, without any use of pretrained weights.

These architectures are optimized for DP training, ensuring compatibility with privacy constraints
while maintaining competitive performance.

B Full result of experiments

B.1 Data summary

The data presented in the Figure 2 are reported in detail as tables in Tables 5 and 6.
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Table 5: Comparison of macro accuracy and worst-class accuracy across algorithms on the Fashion
MNIST and Skewed MNIST datasets under varying privacy budgets (ε). Bounded adaptive clipping
consistently achieves higher worst-class accuracy while maintaining competitive macro accuracy.

Dataset ε Algorithm Macro Acc. Worst-Class Acc.

Fashion MNIST

1.0
Bounded Adaptive 0.7725± 0.0030 0.2575± 0.0510
Constant Clipping 0.7661± 0.0045 0.1625± 0.1016
Unbounded Adaptive 0.7568± 0.0158 0.1117± 0.0379

2.0
Bounded Adaptive 0.8040± 0.0032 0.3882± 0.0348
Constant Clipping 0.8101± 0.0023 0.3763± 0.0371
Unbounded Adaptive 0.7952± 0.0038 0.2490± 0.0328

4.0
Bounded Adaptive 0.8264± 0.0025 0.4300± 0.0469
Constant Clipping 0.8169± 0.0057 0.3505± 0.0935
Unbounded Adaptive 0.8048± 0.0019 0.3183± 0.0306

MNIST

1.0
Bounded Adaptive 0.8752± 0.0083 0.1391± 0.0898
Constant Clipping 0.8633± 0.0010 0.0136± 0.0126
Unbounded Adaptive 0.8621± 0.0064 0.0603± 0.0531

2.0
Bounded Adaptive 0.9432± 0.0050 0.7141± 0.0453
Constant Clipping 0.9048± 0.0282 0.4328± 0.1912
Unbounded Adaptive 0.9253± 0.0062 0.6086± 0.0288

4.0
Bounded Adaptive 0.9502± 0.0159 0.7219± 0.1078
Constant Clipping 0.9291± 0.0282 0.5580± 0.1765
Unbounded Adaptive 0.9277± 0.0166 0.5313± 0.1548

Table 6: Accuracy for female and male groups across tabular datasets, algorithms, and privacy budgets
(ε). As the differences between our bounded adaptive clipping and the constant clipping baseline are
not statistically significant, no values are highlighted.

Dataset ε Algorithm Female Acc. Male Acc.

Adult

0.1
Bounded Adaptive 0.9192± 0.0009 0.8041± 0.0011
Constant Clipping 0.9187± 0.0009 0.8036± 0.0008

Unbounded Adaptive 0.9140± 0.0010 0.7932± 0.0011

0.2
Bounded Adaptive 0.9208± 0.0007 0.8067± 0.0007
Constant Clipping 0.9201± 0.0004 0.8073± 0.0006

Unbounded Adaptive 0.9134± 0.0006 0.7940± 0.0010

0.5
Bounded Adaptive 0.9206± 0.0004 0.8076± 0.0003
Constant Clipping 0.9202± 0.0003 0.8079± 0.0004

Unbounded Adaptive 0.9134± 0.0003 0.7939± 0.0009

Dutch

0.1
Bounded Adaptive 0.8196± 0.0017 0.8238± 0.0033
Constant Clipping 0.8201± 0.0014 0.8227± 0.0025

Unbounded Adaptive 0.8180± 0.0012 0.8224± 0.0022

0.2
Bounded Adaptive 0.8284± 0.0011 0.8337± 0.0018
Constant Clipping 0.8289± 0.0012 0.8340± 0.0018

Unbounded Adaptive 0.8187± 0.0009 0.8281± 0.0010

0.5
Bounded Adaptive 0.8316± 0.0007 0.8376± 0.0011
Constant Clipping 0.8321± 0.0008 0.8386± 0.0014

Unbounded Adaptive 0.8187± 0.0006 0.8303± 0.0004
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B.2 Heat-map of the landscape among different metrics on datasets

In this subsection, we provide heatmaps to visualize the landscape of hyperparameter optimization
across different metrics for the datasets used in our experiments. The heatmaps illustrate how the
learning rate and the clipping bound lower bound (CLB) interact to influence performance across
various metrics. Each dataset is analyzed under its specific privacy budget (ε), and the metrics
reported are tailored to the characteristics of the dataset.

For Fashion MNIST, a balanced dataset, we report macro accuracy, worst-class accuracy, and loss,
omitting micro accuracy as it is nearly identical to macro accuracy, which are shown in Figure 5.
The heatmap shows that the hyperparameter landscape for macro and worst-class accuracy largely
overlaps, indicating robust performance across different objectives.

For skewed MNIST, a class-imbalanced dataset, we report macro accuracy, worst-class accuracy,
micro accuracy, and loss in Figure 6. The inclusion of micro accuracy highlights the discrepancies
between class-weighted metrics (macro) and sample-weighted metrics (micro), showcasing how
imbalance affects the optimization landscape. The heatmap reveals that the optimal regions for macro
and micro accuracy are closely aligned, but worst-class accuracy demonstrates a more restrictive
optimal range, indicating its sensitivity to hyperparameters.

For Adult and Dutch datasets, we focus on the accuracy gap between genders and the overall loss
in Figures 7 and 8. These datasets are used to evaluate fairness-related metrics, with male and
female accuracies reported separately. The heatmaps highlight how hyperparameters influence gender
disparities in accuracy. While minimizing loss generally aligns with optimizing male and female
accuracies, the gender gap exhibits a more nuanced response, requiring careful hyperparameter tuning
to ensure fairness.
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Figure 5: The heatmap of macro accuracy on Fashion MNIST with ε = 4.0.
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Figure 6: The heatmap of macro accuracy on skewed MNIST with ε = 1.0.
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Figure 7: The heatmap of macro accuracy on Adult with ε = 0.1.
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Figure 8: The heatmap of macro accuracy on Dutch with ε = 0.1.
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