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Abstract

This paper presents a formal mathematical analysis of enforcement asymme-
tries in distributed digital cash networks, focusing on the role of policy divergence
and validation inertia. We prove that non-mining nodes—regardless of their full
validation behaviour—cannot affect the global state transition function. A series
of game-theoretic lemmas establishes that rational actors without mining capacity
will adopt SPV strategies under cost asymmetry, rendering non-mining validation
economically unstable. We define a policy divergence metric over a discrete-time
message-passing graph and rigorously demonstrate, under a newly introduced be-
havioural axiom (Axiom N4), that redundant nodes with no incoming communi-
cation links induce increasing policy entropy. Expected policy divergence is shown
to increase monotonically with the size of the redundant node set. Contrary to
popular claims, such nodes do not strengthen network security but instead gener-
ate divergence, latency, and potential incoherence during adversarial forks. The
work clarifies the distinction between subjective belief and enforceable consensus,
replacing psychological assumptions with provable structural results.

Keywords: SPV, Bitcoin, security model, home node, consensus enforcement, valida-
tion, proof-of-work, adversarial resistance, transaction finality

1

https://arxiv.org/abs/2506.01384v1


Security Proof: SPV vs Home Full Nodes 2

Contents

1 Introduction 4
1.1 Context and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Definitions and Formalism 4
2.1 Node Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Validation Functions and Network Topology . . . . . . . . . . . . . . . . 6
2.3 Network Typology and Miner Propagation Structure . . . . . . . . . . . 7

3 Security Model 9
3.1 Adversarial Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Security Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Network Axioms and Empirical Structural Premises . . . . . . . . . . . . 14

4 Formal Security Analysis 16
4.1 Validation Functions and Ledger State Operators . . . . . . . . . . . . . 16
4.2 Message Topology, State Space, and Fork Geometry . . . . . . . . . . . . 18
4.3 Adversarial Surface, Leakage Paths, and Fault Injections . . . . . . . . . 19
4.4 Enforcement Monotonicity and Miner Exclusivity . . . . . . . . . . . . . 20
4.5 Divergence Probabilities and State Inconsistency . . . . . . . . . . . . . . 22
4.6 Corollary: Formal Irrelevance of Passive Validation to Global Ledger Finality 24
4.7 Security Boundaries of SPV Clients under Honest Majority Assumptions 25
4.8 Entropy Costs of Redundant Non-Enforcing Validation . . . . . . . . . . 27
4.9 Network Graph Diameter and Topological Attack Resistance . . . . . . . 30
4.10 Nash Equilibria in Validation Utility Models . . . . . . . . . . . . . . . . 32
4.11 Economic Finality and the Transaction Inertia Principle . . . . . . . . . 34

5 Conclusion 36

A Notation and Symbol Glossary 39

B Proofs of Theorems 39

Appendix B.1: Proof of Theorem 4.2.1 — Zero Derivative of Global Ac-
ceptance in Non-Mining Nodes 39

Appendix B.2: Proof of Theorem 4.5.1 — Dominance of Miner-Centred
Consensus Graph 40

Appendix B.3: Proof of Theorem 4.6.1 — Monotonicity of Finality Prob-
ability with Confirmation Depth 40

C Experimental Simulations 41
C.1 SPV vs. HFN Divergence Under Partial Graph Partitioning . . . . . . . 41
C.2 Validation Surplus Estimates Across Transaction Classes . . . . . . . . . 42

D Bibliography Supplement 43



Security Proof: SPV vs Home Full Nodes 3

List of Figures

Figure 1: SPV Client Transaction Verification Diagram

Figure 2: Home Node Block Validation Pipeline

Figure 3: Security Function Domains and Overlap

Figure 4: Comparative Attack Surface Between SPV and Home Nodes



Security Proof: SPV vs Home Full Nodes 4

1. Introduction

1.1. Context and Scope

The debate over the necessity and security of home-based non-mining “full nodes” in
Bitcoin-derived systems has persisted for over a decade. Advocates for SPV argue for
efficient, lightweight validation leveraging cumulative proof-of-work. Proponents of home
validation claim greater independence and trust minimisation. However, security must be
assessed not by subjective narratives but through rigorous formalism grounded in defined
threat models and consensus logic.

1.2. Purpose

This paper sets out to formally define the security surface of both SPV and home-based
full node systems, derive the appropriate security functions, and establish via proofs that
a non-mining node cannot enhance security relative to SPV clients under a proof-of-work
majority assumption.

2. Definitions and Formalism

In order to perform a precise and rigorous security comparison between SPV clients and
home-based full nodes, it is essential to formalise each system’s behaviour, assumptions,
and interaction with the broader Bitcoin-derived network. The qualitative debate around
“trustlessness” and “validation” cannot be resolved without a structured framework that
allows for comparative analysis under adversarial models.

This section introduces and distinguishes the relevant classes of nodes operating within
the network: those that participate in mining and economic consensus, those that validate
but do not influence global state, and those that perform simplified verification as defined
in Section 8 of the original Bitcoin white paper. For each, we define local validation
functions, consensus observability, and the conditions under which a transaction is deemed
accepted globally.

The formalism here serves as the foundation for the security proofs presented in sub-
sequent sections. By explicitly stating the functions, interfaces, and logical dependencies
between validation and global acceptance, we derive provable conclusions about which
systems provide enforceable security and which merely perform redundant post hoc anal-
ysis without consensus impact. All definitions herein are made in reference to consensus-
critical behaviour, not superficial structural properties.

2.1. Node Classes

In order to analyse security properties across Bitcoin-derived systems, we must first cate-
gorise the types of participants within the network [1], both functionally and topologically.
Each node type occupies a different role within the protocol’s operational graph, with
distinct capabilities in terms of validation, enforcement, and influence over consensus.

We define the set of all networked nodes as a graph G = (V, E), where each vertex
vi ∈ V represents a node in the network and each edge eij ∈ E represents a persistent
TCP connection between nodes vi and vj. This graph exhibits small-world properties,
as demonstrated in empirical research (Javarone & Wright, 2018), with a high clustering
coefficient and low average path length between miner nodes. The subgraph GM ⊆ G
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of mining nodes forms a dense, low-diameter core, while the remaining nodes, including
SPV clients and home validators, typically exist on the network periphery.

We formalise three principal node classes:

Definition 1 (SPV Client Nspv). A node that:

• Maintains a view of the blockchain via block headers {H0, . . . , Hn};

• Requests and verifies Merkle branches Mtx to confirm transaction inclusion;

• Accepts as valid any transaction tx for which ∃Mtx such that the computed Merkle
root matches the Merkle root in Hk and Hk ∈ Cmax, the chain of greatest cumulative
proof-of-work.

Formally, let Vspv(tx) = 1 if and only if:

tx ∈ Mtx ∧ MerkleRoot(Mtx) = Hk.merkle root ∧ Hk ∈ Cmax

SPV clients do not validate scripts, do not maintain a UTXO set, and do not propagate
blocks.

Definition 2 (Home Full Node Nhfn). A node that:

• Downloads and validates all blocks and all transactions;

• Verifies scripts, maintains a UTXO set, and performs input referencing;

• Does not mine or propagate blocks with enforceable consensus effect.

The local validation function is defined as:

Vhfn(tx) = δscript(tx) · δinputs(tx) · δduplicate(tx) · δblock(B)

where:

δscript(tx) =
1 if script executes successfully

0 otherwise

δinputs(tx) =
1 if all inputs exist in UTXO set

0 otherwise

δduplicate(tx) =
1 if no double spend detected

0 otherwise

δblock(B) =
1 if block B meets all consensus rules

0 otherwise

Home full nodes are structurally equivalent to leaf nodes in G; they do not form part of
the strongly connected miner core and have minimal in-degree and out-degree centrality.
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Definition 3 (Consensus-Enforcing Node Nminer). A node that:

• Competes in the proof-of-work algorithm;

• Constructs and propagates blocks that, if accepted by others, extend the canonical
chain;

• Receives economic reward and defines the outcome of G(tx).

Formally, Nminer is a vertex vm ∈ GM such that:

∃Bk ∋ tx such that
k∑

i=0
PoW (Bi) >

l∑
j=0

PoW (B′
j) ∀B′

j /∈ Cmax

The set of miner nodes forms a dense subgraph GM within G with low-diameter commu-
nication paths, enabling rapid propagation and consistent global state convergence.

These definitions allow us to express the key distinction not in terms of what nodes see,
but what they can enforce. Only Nminer alters G(tx). Home full nodes cannot affect G(tx)
regardless of how rigorous their local validation Vhfn(tx) is. As such, their existence adds
no security beyond what is already enforced by Nminer, and they merely observe post hoc
outcomes without power to influence.

2.2. Validation Functions and Network Topology

The correctness of a node’s validation logic is necessary but not sufficient for consen-
sus influence. Validation, in the context of Bitcoin-derived systems, can be understood
through two distinct layers: (1) local verification of transaction or block legitimacy ac-
cording to protocol rules; and (2) global acceptance, which reflects economic finality as
dictated by the majority of proof-of-work.

Let Vi(tx) denote the local validation function for a node i, with definitions varying
by node class:

• SPV Clients (Nspv) implement a lightweight validation scheme by:

(a) Requesting block headers Hn from connected peers;
(b) Receiving Merkle branches Mtx for transaction tx;
(c) Verifying that tx ∈ Mtx and Mtx hashes to a Merkle root matching that in Hn;
(d) Ensuring Hn belongs to the chain with the most cumulative PoW.

This procedure ensures inclusion but not semantic correctness of tx.

• Home Full Nodes (Nhfn) download and parse all block contents, executing:

(a) Script execution for all inputs and outputs;
(b) Input resolution from the local UTXO set;
(c) Duplicate check across local mempool and block history;
(d) Structural block checks including block size, timestamp, and merkle root verifi-

cation.
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However, these validations are entirely local and do not propagate unless connected
to or operated by a mining node.

In both cases, validation does not equate to enforcement. For SPV clients, enforcement
is unnecessary: they are designed to follow the majority chain with maximum proof-of-
work, assuming the economic majority resists invalid blocks. For home full nodes, the
absence of block production means that invalid blocks cannot be prevented from being
accepted by the network — the home node can only mark them as invalid privately.

Miner Network Connectivity and Implications for Validation

Empirical results by Javarone and Wright (2018) establish that miners in Bitcoin and
Bitcoin Cash form a tightly-connected clique within the broader network graph. These
miner nodes exhibit:

• Persistent long-term connections with other miners;

• Rapid block propagation (within seconds) through direct peer links;

• Minimal use of non-mining home nodes for block relay or transaction propagation.

This topology creates a functional separation: miners form a consensus mesh that
excludes non-mining validators from meaningful influence. Home nodes, by contrast, are
generally leaf nodes — their role in propagation is passive, and their validation logic does
not affect chain selection or block acceptance.

Thus, Vhfn(tx) = 0 has no impact if G(tx) = 1. Blocks with protocol violations may
still propagate and be accepted by miners, especially if there is collusion or software
divergence among mining participants. SPV clients, by contrast, follow G(tx) directly
and do not waste resources on unverifiable internal logic when it cannot alter consensus.

Summary of Propagation Authority

• Home nodes validate but cannot enforce;

• Miners validate and enforce via block selection;

• SPV clients observe and follow miner consensus using proof-of-work.

This architectural asymmetry reinforces the result that validation without mining is
epistemically satisfying but practically sterile: it confers no security unless backed by
enforcement power.

2.3. Network Typology and Miner Propagation Structure

Bitcoin-derived systems exhibit non-uniform connectivity, and their topological character-
istics strongly influence transaction propagation, block relay efficiency, and susceptibility
to adversarial manipulation. The peer-to-peer network can be formally modelled as a
dynamic graph G = (V, E, τ), where:

• V is the set of all nodes (SPV clients, home full nodes, miners);

• E is the set of directed or bidirectional communication edges;
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• τ : E → R+ is a latency function assigning expected propagation delay to each edge.

Empirical research by Javarone and Wright [2] demonstrates that the network formed
by miner nodes exhibits small-world characteristics, with the miner subgraph GM ⊂ G
being both highly clustered and possessing a low average shortest path length. This
implies fast convergence on chain state within the miner clique and minimal reliance on
peripheral nodes for consensus propagation.

Topological Structure

We define:

GM := (VM , EM) ⊆ G, with VM = {vi ∈ V | vi ∈ Nminer}

diam(GM) ≪ diam(G), and C(GM) ≫ C(G \ GM)
where diam(G) is the diameter (maximum shortest path) and C(G) is the average clus-
tering coefficient.

Block Header
Hn−2

Block Header
Hn−1

Block
Header Hn

TXID Merkle Path P Merkle Root

SPV Client

Headers transmitted from miners

SPV verifies inclusion via Merkle path

Figure 1: SPV Client Transaction Verification Diagram

This structure ensures that:

(i) New blocks propagate across GM in near real-time (< 2 seconds);

(ii) Block propagation from GM to G \ GM is one-directional with temporal lag;

(iii) Nodes in G\GM (including most home full nodes) do not relay blocks back into GM ;

(iv) SPV clients, which do not serve blocks or headers, depend on inbound data only.

Security Implications

The asymmetry of connectivity imposes structural limitations on home full nodes:

• Their validation does not influence the network core;

• They cannot reject or alter block propagation at the consensus level;
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• Their information latency is higher than that of the miner network;

• They are more susceptible to eclipse and sybil-based partition attacks due to lower
degree centrality.

In contrast, SPV clients derive their chain view directly from GM—provided they
maintain peer diversity—and validate only the minimal data required to confirm inclusion
in the heaviest chain. As a result, their attack surface is reduced, and their security is
tied not to independent enforcement but to convergence with consensus-enforcing miner
decisions.

This typological asymmetry illustrates that control over G(tx) (global transaction
finality) resides exclusively within the GM subgraph, and therefore, any node external
to this cluster (home or SPV) operates under observational constraints. Only miners
propagate blocks that define history.

Received Full
Block Bk

Header Syntax
and Hash Check

Merkle Root
Recalculation

Script Execution

UTXO Set Verification

Policy/Consensus
Rule Checks

UTXO Set

Final verdict: Accept or Reject block Bk

Figure 2: Home Node Block Validation Pipeline

3. Security Model

In distributed systems, security cannot be inferred from architectural complexity or vol-
ume of validation steps. Instead, it must be evaluated in terms of resistance to adversar-
ial actions under specified threat models. In the context of Bitcoin-derived systems, this
means analysing whether a node type can be deceived into accepting a false transaction
state, and whether it possesses any capacity to alter the global outcome of consensus.
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This section introduces a formal model of security as it pertains to SPV clients,
home full nodes, and mining nodes. We define an adversary A operating within resource
bounds—typically with less than 50% of the network’s hash power—and examine the
scenarios under which A can cause a node to accept a transaction that is ultimately
invalid according to the global chain Cmax.

Security is modelled as the inverse probability that a node’s local validation function
Vi(tx) yields a true result while the network-wide acceptance function G(tx) does not.
The formulation accounts not only for validation logic, but for the network topology,
propagation latency, and the enforcement structure within the miner core.

Crucially, the model acknowledges that validation without enforcement is epistemic
but not operative: it may detect fraud, but cannot prevent its acceptance unless con-
nected to the economic heart of the system. Accordingly, our analysis places SPV clients
and home nodes on an equal enforcement footing—neither can alter the chain—but con-
trasts their ability to resist deception, propagate state, and sustain integrity under partial
network control by an adversary.

3.1. Adversarial Assumptions

We formalise the adversary A as a bounded probabilistic agent operating within a par-
tially synchronous network model. The security analysis is grounded in standard assump-
tions from distributed cryptographic protocols, including the following constraints and
capabilities.

System Model

Let the network be modelled as a graph G = (V, E) where:

• V is the set of all nodes, partitioned into honest nodes H and adversarial nodes A
such that H ∪ A = V and H ∩ A = ∅;

• Edges E represent authenticated channels with bounded delay ∆ (partial synchrony).

Each block Bi is associated with a proof-of-work value PoW (Bi) ∈ R+ defined by:

PoW (Bi) =
1 if H(Bi) ≤ T

0 otherwise

where H(Bi) is the cryptographic hash of the block and T is the target threshold for a
valid block.

Adversary Definition

Let the adversary A possess the following attributes:

(i) Hashrate Bound: A controls α < 0.5 of the total network hash power, i.e.,∑
v∈A∩Nminer

PoWv <
1
2

∑
v∈V ∩Nminer

PoWv

(ii) Network Control: A may delay, reorder, or suppress messages to and from a subset
of nodes D ⊆ V for time bounded by ∆ but cannot forge cryptographic messages or
impersonate other nodes.
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(iii) Local Eclipse: A may fully isolate a node vi by occupying all of its peer connections
(e.g., via sybil attack), such that all incoming and outgoing edges eij ∈ E connect
to adversarial nodes vj ∈ A.

(iv) Ledger Control: A may construct and propagate alternative blockchains CA sat-
isfying syntactic validity and optionally containing invalid transactions (e.g., double
spends, script failures), with the goal of maximizing cumulative PoW (CA) such that:

PoW (CA) ≥ PoW (CH)

where CH is the canonical honest chain.

Adversarial Goals

The primary objective of A is to cause a node vi to accept a transaction tx such that:

Vi(tx) = 1 and G(tx) = 0 (1)
This represents a successful deviation from global consensus: the node locally ac-

cepts a transaction that is ultimately rejected by the economically-dominant chain. The
adversary may pursue this by:

• Feeding SPV clients a forged Merkle branch Mtx and block header Hn within an
eclipse scenario;

• Constructing a counterfeit chain with apparently valid structure but including invalid
or double-spent transactions;

• Exploiting validation delay or network partition to induce acceptance of stale or
fraudulent state transitions.

Constraint Enforcement

To ensure the adversary’s capabilities remain within realistic bounds, we adopt the fol-
lowing constraints:

(a) Proof-of-Work Soundness: The underlying hash function H(·) is collision-resistant,
preimage-resistant, and pseudorandom.

(b) Connectivity Assumption: Honest nodes have at least k non-adversarial peers (k-
connectivity), such that eclipse attacks cannot trivially succeed across the network.
This assumption is weakened in practice for home full nodes which do not aggressively
peer with miner sets.

(c) Consensus Rule Uniformity: All honest miners implement the same validation
rules and accept the same set of transactions, i.e., ∀vi, vj ∈ H ∩ Nminer, Vi(tx) =
Vj(tx).
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Security Violation Probability

We define the security violation probability for node vi under adversary A as:

ϵi = PA [Vi(tx) = 1 ∧ G(tx) = 0]
The adversary’s success hinges on increasing ϵi for one or more node classes. The

comparison of these probabilities under varied adversarial configurations forms the core
of the next section’s analysis.

3.2. Security Function

Security in distributed consensus systems is defined operationally as the integrity of the
node’s view of the ledger with respect to the canonical chain. Formally, we quantify the
deviation between local acceptance Vi(tx) and global finality G(tx) for any transaction
tx. A secure node is one for which this deviation probability remains negligible under the
presence of an adversary A bounded as specified in Section 3.1.

S: Security-Relevant Nodes

E : Enforcers (Miners)

O: Observers (Home Nodes)

C: SPV Clients

PoW enforcement

Proof tracing

No influence

Only E contributes to G(tx); C inherits it.

Figure 3: Security Function Domains and Overlap

Domain and Function Definition

Let T be the set of all syntactically valid transactions, and let N denote the space of all
node types (SPV, home full node, miner, etc.). For each tx ∈ T and node vi ∈ N , we
define:

Vi : T → {0, 1}, Vi(tx) =
1 if node vi locally accepts tx

0 otherwise

G : T → {0, 1}, G(tx) =
1 if tx is included in a block Bk in Cmax

0 otherwise

We define the security violation event Etx
i as:

Etx
i := {Vi(tx) = 1 ∧ G(tx) = 0}
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This event captures the central concern of distributed consensus: local acceptance of an
ultimately invalid or orphaned transaction.

Data Bandwidth

Peer Complexity

State Dependency

Script Exposure

Block Parsing

SPV Client Home Full Node

Figure 4: Comparative Attack Surface Between SPV and Home Nodes

Security Function Formulation

The security function for node vi under adversarial distribution PA is defined as:

S(vi) := 1 − ϵi, ϵi = PA(Etx
i ) (2)

where:

• ϵi is the adversary-induced failure probability for node vi;

• S(vi) represents the node’s resistance to accepting invalid or non-finalised state.

This value depends critically on:

• The node’s position in the network graph G (centrality, degree);

• Its capacity to cross-verify state with miner-enforced consensus;

• The diversity of its peer set (resilience to eclipse or sybil attacks);

• Its validation function class (Vspv, Vhfn, etc.).

Comparative Bound Construction

For comparative analysis, we define:

ϵspv := PA(Vspv(tx) = 1 ∧ G(tx) = 0)

ϵhfn := PA(Vhfn(tx) = 1 ∧ G(tx) = 0)
We aim to show in Section 4 that under reasonable assumptions of:

• bounded adversarial hashrate α < 0.5,

• partial synchrony and honest miner connectivity,

• and miner consensus rule uniformity,
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it holds that:

ϵspv ≤ ϵhfn ⇒ S(Nspv) ≥ S(Nhfn) (3)
This result formalises the hypothesis that home full nodes, despite their exhaustive

local verification, provide no security advantage over SPV clients in the presence of ad-
versarial interference—indeed, they may fare worse due to longer exposure windows and
greater dependence on global synchronisation for correctness.

3.3. Network Axioms and Empirical Structural Premises

The mathematical model constructed herein relies on structural assumptions concerning
the miner network graph GM ⊂ G. Rather than deriving these from first principles
of network theory—which remains infeasible given the dynamic and non-deterministic
nature of P2P topologies—we explicitly state them as axioms derived from empirical
studies.

Axiom N1 (Small-World Miner Core) The miner subgraph GM forms a small-world
network, exhibiting high clustering and low characteristic path length. This is sup-
ported by multiple analyses of real transaction networks and node graphs, notably
by Lischke and Fabian [3] and Tao et al. [4].

Axiom N2 (Topological Separation) The subgraph of non-mining nodes G \ GM

forms a loosely connected periphery that does not participate in rapid block relay or
consensus formation. The structural weakness and susceptibility of such nodes are
well characterised in system-level threat surveys (Saad et al. [5]).

Axiom N3 (Propagation Delay Boundedness) The delay ∆ between any two hon-
est miners in GM remains below a global bound, ensuring convergence on Cmax.
While absolute verification is impractical, these delay properties are consistent with
observed propagation latency metrics in prior empirical datasets [6].

Axiom N4 (Behavioural Policy Divergence). Let G = (V, E) be a discrete-time
communication graph representing a network of nodes vi ∈ V , where each node
maintains a local policy state π

(t)
i ∈ P evolving over time t ∈ N. Define M(t)

i :=
{π

(t)
j | (vj, vi) ∈ E} as the message set received by node vi at time t, encoding

policy-related information from peers.
Suppose that the update rule for π

(t)
i is governed by the stochastic kernel:

P[π(t+1)
i | π

(t)
i , M(t)

i ] = Ti(π(t)
i , M(t)

i , ξ
(t)
i ),

where Ti is a transition function and ξ
(t)
i is an exogenous random noise term capturing

internal drift or mutation.
Then the following holds:

For any node vi ∈ V such that M(t)
i = ∅ for all t ∈ [0, T ], the marginal

entropy of its policy distribution satisfies:

∂

∂t
H[π(t)

i ] > 0 for all t < T,
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and there exists a canonical policy π∗ ∈ P such that

lim
t→∞

P[π(t)
i ̸= π∗] = p > 0,

where p is a divergence lower bound depending on the entropy rate of Ti

and the cardinality of P .

Interpretation. Redundant nodes—those for which M(t)
i = ∅—experience increasing

uncertainty in their policy state and a guaranteed asymptotic divergence from the
emergent dominant policy π∗ observed in the communicating subset of the network.
This axiom formalises the empirical observation that disconnected or ideologically
isolated non-mining nodes exhibit drift due to software staleness, patching lag, or
deliberate deviation, and underpins the divergence model in Lemma 2 and Sec-
tion 4.8.2.1.

These axioms are not derived within this work but rather stipulated as preconditions
informed by the structural analysis of prior literature. This mirrors the standard practice
in formal modelling of complex systems, where rigor is applied to logical deductions
assuming external premises, not their physical derivation.

Note on Empirically Derived Axioms (N1–N3)

While Axioms N1 through N3 are presented in formal mathematical terms, their founda-
tional justification draws from robust empirical studies—specifically, Javarone & Wright
(2018), Lischke & Fabian (2016), and Tao et al. (2023). These works offer statistically
validated observations regarding peer connectivity structures, role distributions, and pol-
icy propagation tendencies within large-scale distributed networks.

The treatment of these empirically validated regularities as axioms is warranted for
the purposes of formal analysis in this paper, given the following:

• The empirical findings are supported by large sample sizes and consistent replication
across network snapshots, ensuring stability of the structural characteristics.

• Each axiom abstracts a qualitative behavioural invariant observed across all studied
topologies (e.g., skewed degree distribution, persistent role asymmetry, convergence
of mining node subgraphs).

• The transition from empirical observation to axiom is necessary to permit deductive
analysis of dynamical properties such as policy divergence, equilibrium deviation,
and structural enforcement boundaries.

Thus, while the axioms are not derivable from first principles alone, their elevation
to formal premises is both methodologically consistent and justified in the context of
applied network theory. Their empirical grounding serves to constrain the theoretical
abstraction space, ensuring all lemmas and propositions remain within the bounds of
real-world observed system dynamics.
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4. Formal Security Analysis

The integrity of a distributed consensus system cannot be inferred from the internal be-
liefs or aspirations of its participants. Security must be defined, measured, and proved.
In Bitcoin-derived systems, any meaningful discussion of “validation” or “trust minimi-
sation” must yield to a more fundamental question: does the system resist adversarial
modification of state under bounded resource constraints? The illusion of certainty, when
divorced from enforceability, amounts to ceremony—satisfying perhaps the ideologue, but
inert to the adversary.

This section introduces a formal mathematical framework for assessing the security
characteristics of distinct node types—SPV clients, non-mining full nodes, and min-
ers—within a probabilistic and adversarially-aware model. We reject vague heuristics
in favour of explicit operator definitions, adversarial game bounds, and security violation
probabilities. A node’s capacity to parse blocks is not equivalent to its ability to alter
state; only enforcement establishes security.

Beginning with a construction of validation as a functional mapping on ledger state, we
progressively incorporate network structure, propagation dynamics, adversarial injection
vectors, and game-theoretic payoff surfaces. This yields a composite security function
S(v) for any node v, parametrised by adversarial access, connectivity, and operational
role.

The structure of the analysis proceeds as follows:

• We formalise ledger acceptance and validation operators as functions over transaction
space and chain history.

• We encode the topology of information propagation and adversarial forking geometry.

• We construct adversarial leakage surfaces and define failure domains.

• We prove that enforcement is structurally and economically exclusive to mining
nodes.

• We derive bounds on the probability of divergence between local validation and
global finality.

• We quantify the entropic loss associated with redundant validators and formally
characterise them as inertials rather than participants.

This formulation establishes with mathematical finality that SPV clients, when con-
nected to the dominant proof-of-work chain, achieve equal or superior security compared
to home validators—without incurring the architectural, cognitive, or energy burden of
redundant execution. The result is not just a technical observation but a refutation of
the folklore surrounding full nodes as agents of protection. In security, ceremony without
enforcement is indistinguishable from theatre.

4.1. Validation Functions and Ledger State Operators

Let T denote the set of all possible transactions, and let B denote the set of all valid
blocks. Each block B ∈ B is an ordered tuple (tx1, tx2, . . . , txn) such that txi ∈ T and
∀i, V(txi) = 1 under the rules enforced by the consensus protocol P .
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We define a ledger L as a finite sequence of blocks L = (B1, B2, . . . , Bk) such that each
block Bj references the cryptographic hash of Bj−1, forming a directed path. Let Lmax

denote the valid ledger of maximum accumulated proof-of-work, i.e., the economically-
dominant chain.

We define the ledger acceptance operator as:

G : T → {0, 1}, G(tx) =
1 if ∃Bj ∈ Lmax such that tx ∈ Bj,

0 otherwise.

Definition 1 (Validator Function). Let vi be any network node, and let Ri be its
local interpretation of the consensus rules. Then the validator function of vi is:

Vi : T → {0, 1}, Vi(tx) =
1 if tx satisfies Ri,

0 otherwise.

In the absence of enforcement authority, Vi serves as a local predicate that does not
propagate its truth value.

Definition 2 (Effective State Operator). Let C be a candidate chain. The global
effective state operator is defined as:

S : C → Σ,

where Σ is the space of all valid ledger states and S(C) is the ledger state resulting from
applying the valid sequence of transactions in C according to P .

We note that:
S(C) = S(Lmax) ⇐⇒ C = Lmax.

Definition 3 (Validation Consistency). For a node vi, define the divergence
indicator δi(tx) as:

δi(tx) = |Vi(tx) − G(tx)|.
If δi(tx) = 1, then vi is structurally inconsistent with respect to the economically accepted
state.

The implication is immediate: Vi(tx) = 0 has no effect on G(tx) = 1. Such a node
may “reject” the transaction, but this rejection does not alter the global state if the
transaction has been mined into Lmax.

To formalise the control relationship, define:

∂G(tx)
∂Vi(tx) =

̸= 0 if vi is a miner with enforcement capability,

0 otherwise.

This demonstrates that non-mining validators have zero influence over G(tx)—they
are observational, not operational.

Proposition 1. If vi /∈ Nminer, then the local validation function Vi is cryptographically
inert with respect to consensus state evolution. Formally, for any transaction tx ∈ T ,

∂G(tx)
∂Vi(tx) = 0.

That is, Vi(tx) = 0 expresses a local rejection, but this has no causal power to prevent,
reverse, or challenge global acceptance G(tx) = 1 as determined by miner block inclusion
and proof-of-work extension.
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This proposition establishes the foundational asymmetry between validation and enforce-
ment within Bitcoin-derived systems. The inability of non-mining nodes to influence the
ledger state directly implies that their operation is epistemic rather than operative. In
subsequent subsections, we formalise how this asymmetry manifests in network graph
structure, message propagation paths, and vulnerability profiles under adversarial fork-
ing conditions.

4.2. Message Topology, State Space, and Fork Geometry

A consensus network is not merely a logical artefact but a dynamic information space
governed by topological constraints. The security of a transaction is therefore a function
not only of its inclusion in a chain but also of the message propagation path it traverses.
To formalise this, we construct a directed network graph and analyse the causal geometry
of competing ledger states.

Network Model. Let G = (V, E) be the directed graph representing the Bitcoin-like
network. Each node vi ∈ V is an entity participating in the propagation, validation, or
enforcement of messages. An edge (vi, vj) ∈ E denotes a message propagation link from
vi to vj.

Let M(vi) be the message space of vi, defined as the ordered sequence of transactions
and blocks that vi receives over time:

M(vi) = {m1, m2, . . . , mn}, mk ∈ T ∪ B.

Propagation Topology. Let d(u, v) be the shortest-path delay metric between nodes
u and v. In a well-connected miner network, the set of mining nodes Nminer ⊆ V forms
a low-diameter subgraph Gminer ⊆ G satisfying:

max
u,v∈Nminer

d(u, v) ≪ max
u,v∈V

d(u, v).

This defines a small-world network structure amongst miners: highly connected with
low average path length, optimised for fast propagation and mutual observability.

Propagation Exclusion. Let vh be a non-mining home node. Define the propaga-
tion delay ∆h(tx) as:

∆h(tx) = min
m∈M(vh)

{t : m = tx}.

Then ∃ϵ > 0 such that ∆h(tx) > ∆m(tx) + ϵ for all vm ∈ Nminer, under the assumption
of bandwidth and relay asymmetry.

Fork Geometry. Let F denote the space of possible forks. Each fork f ∈ F is a
tuple (La, Lb) where La ̸= Lb and La, Lb ⊆ B are valid chains sharing a common prefix
up to block height h:

∃h such that ∀k < h, Ba
k = Bb

k; Ba
h ̸= Bb

h.

Fork resolution follows Nakamoto consensus: the chain with greater accumulated
proof-of-work becomes Lmax, while all others are pruned.

State Divergence. For a given node vi, define its local chain Ci and local state
Si := S(Ci). State divergence is defined as:

∆Si := Si − S(Lmax).

Then ∥∆Si∥ > 0 implies that vi is on a non-finalised fork.
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Theorem. In the presence of propagation asymmetries and without enforcement
capability, home nodes vh are strictly more likely to experience state divergence than
SPV clients directly connected to mining nodes.

Proof Sketch. Home nodes receive candidate blocks after a non-zero delay, ∆h(tx),
which increases the probability of accepting stale or orphaned branches. SPV clients
connected to Nminer inherit chain tips from enforcing agents, minimising exposure to
non-finalised forks.

Corollary. Home node rejection of a block does not affect the global convergence of
the network if that block has been accepted and extended by Nminer.

In summary, the causal graph of consensus is defined not by uniform broadcast but by
a hierarchical, low-diameter relay subnetwork. Security is a topological property; those
outside the rapid-propagation spine are functionally silent. In the next subsection, we
model the adversarial leakage vectors that exploit this structure.

4.3. Adversarial Surface, Leakage Paths, and Fault Injections

To formally assess the attack vectors available in a Bitcoin-like system, we model adver-
sarial influence as a function of the topology, validation model, and enforcement exclu-
sivity defined previously. A key distinction in this formulation is that only those entities
capable of altering the global state—namely, miners with majority proof-of-work—can
execute effective state transitions. All other nodes are susceptible to leakage without
offering resistance.

Definition 1 (Adversarial Model). Let A denote the set of adversaries. Each
a ∈ A is characterised by the tuple (Ra, Ba, Ca) where:

• Ra: rule deviation strategy;

• Ba: computational power under adversarial control;

• Ca: connectivity profile, i.e. which nodes a can communicate with.

We constrain adversaries under a bounded resource assumption:∑
a∈A

Ba < Btotal/2,

which defines the honest majority condition fundamental to Nakamoto consensus.
Definition 2 (Adversarial Surface). For a given node vi ∈ V , define its adversarial

surface σ(vi) as the set of message vectors m⃗ such that:

m⃗ ∈ M(vi) ∧ ∃a ∈ A : m⃗ originates from a.

We classify σ(vi) by type:

• Type I — Propagation faults: reception of delayed or malformed messages;

• Type II — Injection faults: acceptance of adversarially mined blocks;

• Type III — Validation ambiguity: inconsistent local interpretation of ambiguous
consensus rules.
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Proposition 2. Let vi /∈ Nminer be any non-mining node, and let σ(vi) denote the set
of adversarial message sequences that can cause vi to diverge from the globally enforced
ledger state Lmax. Then:

σ(vi) ̸= ∅

under the condition that at least one neighbour of vi is adversarially controlled.
That is, for any vi lacking enforcement capacity, adversarial peers can inject messages
causing state deviation without requiring global control of consensus.

Definition 4 (Fault Injectability). Let M(vi) be the set of all protocol-conformant mes-
sages that vi may receive. Define the fault injectability function for node vi as:

Fi : M(vi) → {0, 1}, Fi(m) =
1 if m causes vi to deviate from Lmax

0 otherwise.

This models the capacity of a message m to induce inconsistency or divergence in local
state relative to the canonical chain. A high ratio of messages with Fi(m) = 1 implies
elevated vulnerability.

The expected fault surface is:

E[σ(vi)] =
∑

m∈M(vi)
Fi(m) · P(m|a),

where P(m|a) is the likelihood that m is adversarially crafted.
Theorem. If vi is a non-mining home node and receives M(vi) from untrusted

sources, then ∃ fault injection path such that:

∃m ∈ M(vi) with Fi(m) = 1 and δi(tx) > 0.

Proof Sketch. Any adversary controlling a sufficient propagation relay can deliver an
invalid block with delayed timing to vi. Since vi lacks enforcement power, it cannot affect
chain selection and may continue processing the invalid path, diverging from Lmax. The
probability of this increases with ∆h and decreases with miner proximity.

Corollary. SPV clients with direct connections to miner nodes exhibit minimal
E[σ(vi)], as all headers received reflect Lmax by design. Full validators not involved in
mining cannot filter adversarial blocks if those blocks are accepted by the mining majority.

Leakage Lemma. For two nodes vh (home node) and vs (SPV client),

E[σ(vh)] > E[σ(vs)] if vs ∈ Nminer.

This formalism isolates the critical security variable: proximity to enforcement. Nodes
not in the miner graph cannot affect consensus and are more susceptible to adversarial
manipulation via message injection. In the next section, we explore the structural reason
why this influence is strictly monopolised by miners.

4.4. Enforcement Monotonicity and Miner Exclusivity

At the heart of any secure consensus system lies the principle of enforceability: the ability
not merely to observe or critique invalid state transitions, but to prevent them from being
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adopted. In Nakamoto consensus, this enforceability is manifest solely through proof-of-
work and the economic consequences of chain selection. Non-mining nodes, regardless of
validation logic, possess no such leverage.

Definition 4 (Enforcement Function). Define the enforcement function E : V →
{0, 1} such that:

E(vi) =
1 if vi contributes valid blocks to Lmax,

0 otherwise.

Proposition 3 (Enforcement Characterisation). A node vi possesses enforcement power
over the global ledger state if and only if it satisfies the following three conditions:

E(vi) = 1 ⇐⇒ (vi ∈ Nminer ∧ Bvi
> 0 ∧ vi enforces consensus-valid rules) ,

where:

• Nminer is the set of mining (block-producing) nodes;

• Bvi
denotes the block production rate of vi over a rolling epoch;

• Consensus-valid rules are economically determined and aligned with Lmax.

This condition ensures that only economically integrated miners actively shaping Cmax
possess enforcement power.

Proposition 4 (Ledger Monotonicity under Valid Enforcement). Let L(t) denote the
global ledger state at time t, and let B be a newly mined block. The state transition
function satisfies:

L(t + 1) = L(t) ∪ {B} ⇐⇒ ∃vi such that B mined by vi with E(vi) = 1.

In other words, ledger state evolution is strictly monotonic with respect to blocks mined
by nodes with active enforcement capacity. Non-mining or non-compliant nodes cannot
extend the global ledger.

Observation. All state transitions L(t) → L(t + 1) are path-dependent on enforce-
ment nodes. Validation by non-enforcement nodes is epiphenomenal—it has no effect on
L unless it is executed by a miner.

Theorem (Enforcement Exclusivity). Let vi ∈ V such that E(vi) = 0. Then for
any block B,

vi rejects B ̸⇒ B /∈ Lmax.

Proof. Since Lmax is constructed by mining nodes and defined by accumulated proof-
of-work, the local rejection of a block by a non-mining node has no causal influence over
the global state. The block persists in Lmax as long as mining nodes accept and extend
it.

Definition (Validation Surplus). Let vi be a non-mining node with a validation
function νi. Define the validation surplus:

Vs(vi) := {B ∈ B : νi(B) = 0 ∧ B ∈ Lmax}.

Vs(vi) ̸= ∅ implies that vi diverges from the enforced ledger state, demonstrating inertial
rather than functional behaviour.
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Enforcement–Propagation Theorem. If νi is not tied to E(vi), then the node’s
validation decisions cannot prevent propagation of invalid state—only filter local logs.

Corollary (Censorship Irrelevance). For any non-mining node vi, any attempt
to “censor” a transaction is globally void unless E(vi) = 1 and the node contributes to
the dominant chain.

Economic Entropy Result. Let µ(vi) be the memory cost and ρ(vi) the runtime
cost of νi. Then for non-mining nodes:

∀vi /∈ Nminer, U(vi) := E(vi) · 1
µ(vi) + ρ(vi)

= 0.

That is, utility collapses to zero under enforcement exclusion.
This analysis reveals that the mythos of full node security is grounded in aesthetic

preference rather than causal force. Validation is not enforcement; observation is not
power. Only those who shape the ledger determine what is real. In the next subsection,
we will formalise the divergence probabilities for non-enforcing nodes.

4.5. Divergence Probabilities and State Inconsistency

This section formalises the probability that a non-mining node—whether an SPV client or
a full home validator—diverges from the globally enforced ledger Lmax at a given time t,
given adversarial propagation, limited connectivity, and validation latency. We rigorously
derive the parameters influencing divergence and prove that, contrary to popular myth,
home validators are more prone to inconsistent state than SPV clients directly connected
to miners.

Definition (Divergence Event). Let δi(t) := 1 if Li(t) ̸= Lmax(t), and 0 otherwise.
That is, δi(t) indicates whether node vi holds an inconsistent view of the enforced ledger
at time t.

Definition (Divergence Probability). Define the divergence probability Pδ(vi, t)
as:

Pδ(vi, t) := P(δi(t) = 1).
Let τ(vi) denote the average propagation latency from mining nodes to vi, and let

ϵ(vi) denote the probability that vi validates an adversarially injected block as correct.
We model divergence under the assumption that vi is not a mining node:

Pδ(vi, t) = 1 − (1 − ϵ(vi)) · (1 − Pdesync(vi, t)) ,

where Pdesync(vi, t) represents the probability of desynchronisation from Lmax due to la-
tency or fork race conditions.

Lemma 1 (Latency Divergence). Let G = (V, E) be the transaction relay network graph,
and let vi ∈ V be a node connected to a set of peers Ni ⊆ V \ M, where M ⊂ V denotes
the set of mining nodes. Assume |Ni ∩ M| = 0, i.e., vi connects to no miners.

Define τ(vi) as the propagation delay for vi to receive a newly mined block, and define
Pδ(vi, t) as the probability that vi is out of sync with consensus by at least δ blocks at time
t.

Then:
lim

τ(vi)→∞
Pδ(vi, t) = 1.

That is, in the limit of increasing propagation latency, a non-mining node connected exclu-
sively to non-mining peers converges in probability to total consensus desynchronisation.
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In practice, τ(vi) is bounded by topological distance and bandwidth variance, but without
direct or low-diameter connections to M, latency divergence is unbounded in expectation
under asynchronous adversarial or high-churn conditions.

Proof Sketch. Without miner connectivity, vi’s best approximation of Lmax is the
result of propagation chains that are susceptible to adversarial interference and forks.
Increased latency τ(vi) implies increased exposure to competing or malicious chains.
As τ(vi) approaches the mean block interval, the node becomes structurally blind to
canonical state.

Proposition 5 (SPV Minimal Divergence). Let vspv denote an SPV (Simplified Payment
Verification) client connected to at least one mining node, and assume that header relay is
functioning correctly and promptly. Define Pδ(v, t) as the probability that node v diverges
from Lmax at time t, and let ϵ(v) denote the node’s local validation-induced divergence.

Then:
Pδ(vspv, t) ≤ ϵ(vspv).

However, by construction, SPV clients do not perform local transaction or block vali-
dation. Therefore:

ϵ(vspv) = 0,

which implies:
Pδ(vspv, t) = 0.

Consequently, the divergence risk for an SPV client—under ideal relay conditions—is
strictly zero, highlighting its alignment with consensus without introducing local policy
deviation.

Theorem (Home Node Dominance of Divergence). Let vh be a home node
validator, vspv an SPV client, and both connect to the network with identical bandwidth
and physical topology. Then, under adversarial propagation:

Pδ(vh, t) > Pδ(vspv, t).

Proof. The home node, by independently validating and following potentially incon-
sistent policies or outdated consensus rules, is susceptible to delayed rejection of canonical
blocks, acceptance of adversarial blocks, or desync due to latency. The SPV client, by
contrast, follows Lmax via miner-fed header sequences. Thus, its view is inherently aligned
with enforcement.

Corollary (Divergence Accumulation). Over time, the cumulative divergence
potential grows as:

T∑
t=0

Pδ(vi, t),

where the growth rate for home validators can be non-negligible due to compounding
effects of fork misinterpretation and stale policy adherence.

Quantitative Implication. Given a validator node vh running outdated or non-
upgraded software (i.e., a nonconformant policy πi ̸∈ Π), its divergence becomes deter-
ministic under any rule update:

∃t∗ : Pδ(vh, t∗) = 1.
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This demonstrates that while home nodes may validate locally, they do not con-
tribute to enforcement and are prone to divergence under adversarial, latency, or rule-
fragmentation scenarios. In contrast, SPV clients that track the dominant proof-of-work
chain are structurally aligned with enforcement and thus globally consistent. The next
section will explore the cost and entropy loss associated with validation redundancy in
non-mining nodes.

4.6. Corollary: Formal Irrelevance of Passive Validation to Global Ledger
Finality

In this subsection, we construct a formal argument that validation operations performed
by non-enforcing nodes—namely, nodes lacking the capacity to commit blocks to the
global ledger—have no causal influence on the state Lmax and are therefore irrelevant to
the security or evolution of the system.

Definition 4.6.1 (Validation Function). Let νi : B → {0, 1} be a validation
function executed by node vi, such that for any block B ∈ B,

νi(B) =
1 if B is valid under policy πi,

0 otherwise.

Definition 4.6.2 (Ledger Enforcement Function). Define E : V → {0, 1} such
that

E(vi) =
1 if vi has the capability to commit blocks to Lmax,

0 otherwise.

Definition 4.6.3 (Effective Validation). Validation is effective if and only if

E(vi) = 1 ∧ νi(B) = 1 ⇒ B ∈ Lmax.

Theorem 4.6.1 (Causal Nullity of Passive Validation). Let vi ∈ V such that
E(vi) = 0. Then for any νi, there exists no B ∈ B such that

νi(B) = 0 ⇒ B /∈ Lmax.

Proof. Let E(vi) = 0, which implies vi has no power to mine or propagate a canonical
block. Then νi(B) has no binding force on block acceptance. The rejection of B by vi

does not prevent its inclusion in Lmax, which is determined solely by mining consensus.
Thus, νi is causally inert with respect to Lmax.

Corollary 4.6.2 (Observational Role of Non-Enforcing Nodes). All validation
performed by E−1(0) nodes is observational. These nodes act as external auditors with
no capacity to influence system evolution.

Proposition 6 (Psychological Enforcement Misconception). Let vi be a non-mining node
in a network graph G = (V, E), applying a local validation function νi : B → {0, 1} where
νi(B) = 0 denotes rejection of block B under local policy.

Assume vi holds the belief:

Beliefi := νi(B) = 0 ⇒ B /∈ Lmax,

where Lmax denotes the globally adopted valid blockchain (e.g., the heaviest or longest
valid chain).
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Define enforceability formally as:

Enforcement(vi) := ∃π : vi → M such that π causally impacts block propagation or acceptance in Lmax,

where M ⊂ V is the set of consensus-enforcing mining nodes.
Then, if vi /∈ M and no such causal path π exists, we have:

Enforcement(vi) = 0, while Security(vi) = Beliefi.

Thus,
Beliefi ̸= Enforcement(vi),

and the perceived validation security offered by νi is structurally inert—yielding psycho-
logical comfort without consensus impact.

Definition 4.6.4 (Belief-Security Divergence). Define the belief-security diver-
gence ∆BS(vi) as:

∆BS(vi) := P(νi(B) = 0 ∧ B ∈ Lmax).
This metric quantifies the probability that a non-miner believes a block is invalid while
the global system enforces it.

Proposition 7 (Maximal Divergence in Fork Events). Let vi be any node in the network
executing a policy πi that is either outdated or divergent from the dominant consensus-
enforced policy π∗. Define ∆BS(vi) as the normalised divergence from Lmax, i.e., the
probability-weighted distance of vi’s accepted ledger state from the canonical chain.

Then, during a consensus-breaking fork or protocol transition,

lim
πi ̸≡π∗

∆BS(vi) → 1.

This reflects that any node maintaining non-updated or dissenting policy will almost cer-
tainly diverge from Lmax during adversarial bifurcations or incompatible soft/hard rule
activations.

Conclusion. Passive validation is not a substitute for enforcement. Security does
not arise from belief in rules, nor from the local execution of code. It arises solely from
the structural authority to accept or reject blocks into the active global ledger. Thus,
nodes without enforcement power contribute nothing to the security of the system, and
their validation actions represent a computationally expensive placebo.

4.7. Security Boundaries of SPV Clients under Honest Majority Assumptions

In this subsection, we examine the formal security guarantees available to Simplified Pay-
ment Verification (SPV) clients operating under the standard honest-majority assump-
tion. Contrary to common misconceptions, SPV clients are not weakened participants
but rather computationally efficient nodes that inherit the same probabilistic guaran-
tees of ledger finality as any passive observer—including non-mining full nodes—without
incurring the computational entropy of redundant validation.

Assumption 4.7.1 (Honest Majority). Let p denote the proportion of global hash
power controlled by honest miners. We assume:

p >
1
2 .
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This assumption underpins the original Bitcoin whitepaper’s assertion that honest chain
extension will outpace adversarial forking.

Definition 4.7.1 (SPV Chain Acceptance). Let vi be an SPV client maintaining
a local view Li consisting of block headers only. Define the SPV acceptance function:

ASPV(vi, t) := max
L∈C(t)

{∑
B∈L

PoW(B)
}

,

where C(t) is the set of candidate chains known at time t, and PoW(B) denotes the work
required to mine block B.

Lemma 4.7.2 (Probabilistic Ledger Agreement). Assume a δ-bounded network
delay and p > 1/2. Then for any two SPV clients vi and vj,

P [Li(t) ̸= Lj(t)] ≤ ϵ,

where ϵ is exponentially small in the number of confirmations k:

ϵ = O(e−αk).

Theorem 4.7.3 (Equivalence of Finality Acceptance). Let vm be a non-mining
full node and vs an SPV client. Then under Assumption 4.7.1,

P(B ∈ Lmax | vs accepts B) = P(B ∈ Lmax | vm accepts B),

up to negligible divergence from latency or outdated chain tips.
Proof. Both vm and vs must rely on chain length (total PoW) to determine block

acceptance. Since vm has no enforcement capacity, it cannot influence ledger formation.
Therefore, both rely on external enforcement by E−1(1) miners. By Lemma 4.7.2, the
divergence probability in observed chains diminishes exponentially. Hence, acceptance
accuracy converges in probability.

Definition 4.7.2 (Resource-Normalised Security). Let Cs(v) denote the total
operating cost of node v. Then define resource-normalised security:

Snorm(v) := P(B ∈ Lmax | v accepts B)
Cs(v) .

Corollary 4.7.4 (Efficiency Superiority of SPV). For all vm ∈ Vnon-miner and
vs ∈ VSPV,

Snorm(vs) > Snorm(vm).
This follows from equality of the numerator and a strictly lower denominator for vs.

Conclusion. SPV clients inherit the full weight of chain-based finality under honest
majority assumptions. Their omission of full block parsing is not a deficiency but an
optimisation. Given that both SPV clients and non-mining full nodes are epistemically
subordinate to miners, the rational design is to minimise entropy and trust the source
of enforcement. SPV clients do this with maximal efficiency, achieving near-identical
probabilistic alignment with the active ledger while avoiding wasteful computation.
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4.8. Entropy Costs of Redundant Non-Enforcing Validation

In this subsection, we formalise the computational burden incurred by redundant valida-
tion operations performed by nodes without enforcement capability—specifically, home-
based full nodes. We show that these nodes introduce systemic entropy without producing
any causal influence on ledger finality. This entropy constitutes both an economic ineffi-
ciency and a security hazard by increasing the potential for partitioned policy spaces.

Definition 4.8.1 (Redundant Validator). Let vi ∈ V be such that E(vi) = 0 and
νi(B) is executed for every B ∈ Li. Then vi is a redundant validator.

Definition 4.8.2 (Systemic Validation Entropy). Let H(ν) be the Shannon
entropy of all validation decisions in the system:

H(ν) = −
∑
B∈B

∑
vi∈V

P(νi(B)) logP(νi(B)).

We define redundant entropy as:

Hredundant =
∑
vi∈V

E(vi)=0

E[νi(B)],

representing total informational actions with no enforcement consequence.
Theorem 4.8.1 (Null Influence Redundancy Cost). Let Cv(vi) denote the cost

of running validation νi on block B. Then the global cost of null-influence validation is:

Credundant =
∑
vi∈V

E(vi)=0

∑
B∈L

Cv(vi, B),

which is strictly positive and contributes zero marginal gain to ledger finality.
Definition 4.8.3 (Policy Partition Risk). Let Π denote the set of policy configu-

rations πi across all nodes. Define the policy divergence measure D(Π) as the maximum
pairwise edit distance between policy sets:

D(Π) = max
i,j

d(πi, πj).

Lemma 2 (Redundant Nodes Increase Policy Divergence). Let G = (V, E) be a finite,
directed communication graph representing a distributed node network, where each node
vi ∈ V maintains a discrete-time policy state π

(t)
i ∈ P, drawn from a finite policy space

P, at each timestep t ∈ N. Define the set of redundant nodes as:

R := {vi ∈ V | deg(vi) = 0},

i.e., the set of nodes with no network edges, and hence no capacity for protocol or policy
synchronisation.

Define the empirical policy divergence function:

D(Π(t)) := 1
|V |2

∑
i,j∈V

I[π(t)
i ̸= π

(t)
j ],

which measures the normalised pairwise disagreement rate across the network at time t.
Suppose the following conditions hold:
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(i) For all vi ∈ V \ R, policy states are updated via a Markovian communication-
dependent rule:

π
(t+1)
i ∼ P(t+1)

i = f(P(t)
i , M(t)

i ),

where M(t)
i denotes the set of messages received from connected peers at time t.

(ii) For all vi ∈ R, M(t)
i = ∅ for all t, implying complete update isolation.

(iii) Policy convergence occurs in V \ R: that is, ∃π∗ ∈ P such that

lim
t→∞

π
(t)
i = π∗ almost surely for all vi ∈ V \ R.

(iv) The policy trajectories of nodes in R evolve stochastically in accordance with Axiom
N4 (Behavioural Policy Divergence), i.e.,

lim
t→∞

H(π(t)
i | M(t)

i = ∅) > 0 for all vi ∈ R,

where H(·) denotes the Shannon entropy of the node’s policy distribution. This im-
plies that, in the absence of peer updates, isolated nodes sustain probabilistic diversity
in their policy states over time.

Then, the following conclusions hold:

1. The expected policy divergence is strictly monotonic in |R|. That is, for two redun-
dant sets R1, R2 ⊂ V with |R1| < |R2|, we have:

E[D(Π(t)) | |R| = |R1|] < E[D(Π(t)) | |R| = |R2|].

2. In particular, under convergence of the connected component to π∗ and assuming
steady-state mismatch probability p > 0 between π∗ and the marginal distributions
over π

(t)
i for vi ∈ R, the expected divergence obeys the lower bound:

E[D(Π(t))] ≥ |R| · (|V | − |R|)
|V |2

· p,

with equality attained in the limit as t → ∞ under stationary redundant distributions.

This lemma demonstrates formally that the structural inclusion of non-communicating
nodes leads not merely to epistemic fragmentation but to quantifiably increasing systemic
incoherence. The divergence metric provides a lower bound on the disorder introduced
by redundancy, thus capturing a foundational topological mechanism by which validation
consensus is eroded in distributed networks.

For reference to the behavioural premises assumed in (iv), see Axiom N4 (Be-
havioural Policy Divergence) in Section 3.3.
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4.8.2.1 Formal Modelling of Policy Divergence Due to Redundant Nodes

We define the policy mapping Π : V → P over the communication graph G = (V, E),
where each node vi ∈ V maintains a local policy state π

(t)
i ∈ P at discrete time t. A

node’s policy π
(t)
i is a representation of its currently enforced consensus rules, including

block acceptance criteria, script flags, and transaction validation filters. The set R ⊂ V
is defined as the set of redundant nodes:

R := {vi ∈ V | deg(vi) = 0},

i.e., nodes with zero network connections—equivalently, non-communicating nodes with
no inbound or outbound edges in G.

We assume that time evolves in discrete steps and that policy states are updated via a
local stochastic rule informed by received peer messages and endogenous update latency.
Specifically, each node vi maintains a probability distribution P(t)

i over the policy space
P and samples:

π
(t+1)
i ∼ P(t+1)

i , with P(t+1)
i = f(P(t)

i , M(t)
i , ∆(t)

i ),

where M(t)
i denotes the set of messages received by node vi at time t from its peers

and ∆(t)
i denotes the update latency (reflecting patch application delay, operator update

cycles, etc.).
By construction, and in direct reference to Axiom N4 (Behavioral Policy Diver-

gence), nodes with deg(vi) = 0—i.e., vi ∈ R—satisfy:

M(t)
i = ∅ ∀t, and ∆(t)

i → ∞,

implying that their policy update trajectories become asymptotically independent from
the consensus majority. Axiom N4 formally states that such communication-isolated
nodes follow a stochastic process with entropy bounded away from zero, leading to per-
sistent or divergent policy paths. That is:

lim
t→∞

H(π(t)
i | M(t)

i = ∅) > 0,

with H denoting Shannon entropy over the policy distribution, capturing epistemic un-
certainty due to isolation.

We now define the empirical policy divergence metric at time t:

D(Π(t)) := 1
|V |2

∑
i,j∈V

I[π(t)
i ̸= π

(t)
j ],

which measures the average pairwise disagreement across all nodes’ policy states. Under
the assumptions that (i) nodes in V \R form a connected component with ergodic update
dynamics, (ii) convergence to a common policy π∗ occurs almost surely in V \ R, and
(iii) redundant nodes follow statistically independent update processes driven by a policy
mismatch probability p > 0 with respect to π∗, we derive:

E[D(Π(t))] ≥ |R| · (|V | − |R|)
|V |2

· p,

which represents a lower bound on the expected system-wide policy divergence at time t
in terms of the redundancy parameter |R|.
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This inequality demonstrates that the contribution to global policy incoherence scales
bilinearly with the number of redundant nodes and the number of connected nodes, with
scaling coefficient p determined by the long-run discrepancy between isolated and con-
verged policy distributions. It follows immediately that E[D(Π(t))] is strictly increasing in
|R|, establishing monotonic divergence growth in the presence of redundant, non-updating
nodes.

This model underpins Lemma 4.8.2 and operationalises the qualitative premise (now
made formal via Axiom N4) that structural redundancy induces epistemic drift, thereby
contributing to systemic fragmentation of validation rules within the broader network.

Corollary 4.8.3 (Security Cost of Policy Fragmentation). Policy fragmentation
increases the probability of local chain divergence, misinterpretation of blocks, and false
rejection of valid state. This risk is borne entirely by nodes in E−1(0) and does not affect
the global ledger.

Definition 4.8.4 (Entropy Inefficiency Ratio). Define the ratio:

Ξ = Credundant

P(B /∈ Lmax | νi(B) = 0, E(vi) = 0) ,

which diverges as the denominator → 0, indicating that cost increases while enforcement
effect remains nil.

Conclusion. Home nodes performing full validation without enforcement author-
ity introduce a calculable and increasing entropy load on the network. They generate
policy inconsistency, wasted compute cycles, and the illusion of participation. Their se-
curity contribution is asymptotically zero, while their systemic risk scales super-linearly
with adoption. Efficiency, coherence, and actual security demand their elimination—not
promotion.

4.9. Network Graph Diameter and Topological Attack Resistance

In this subsection, we investigate the influence of network topology—specifically, graph
diameter and connectivity—on the propagation security of consensus messages. The
analysis employs formal graph-theoretic tools to show that home nodes, being sparsely
connected and topologically peripheral, provide no meaningful resistance to adversarial
partitioning, while mining nodes form a robust, densely connected core subgraph that
defines the effective propagation diameter of the network.

Definition 4.9.1 (Bitcoin Propagation Graph). Let G = (V, E) be the undi-
rected graph representing the peer-to-peer overlay of a Bitcoin-like network. Each vi ∈ V
is a node (home node, SPV client, or miner), and each edge eij ∈ E represents a commu-
nication channel with bounded latency δij.

Definition 4.9.2 (Diameter of the Propagation Graph). The diameter of G is
defined as:

diam(G) = max
vi,vj∈V

d(vi, vj),

where d(vi, vj) is the shortest path (in hops) between vi and vj.
Definition 4.9.3 (Effective Diameter diamϵ). For a given ϵ > 0, define the

ϵ-effective diameter as the minimum number k such that:

P(vi,vj)∼µ [d(vi, vj) ≤ k] ≥ 1 − ϵ,

where µ is a uniform distribution over communicating node pairs.
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Observation 4.9.1 (Miner Core as a Small-World Subgraph). Empirical work
by Javarone and Wright (2018) demonstrates that the mining subset M ⊂ V forms a
small-world network:

diam(GM) = O(log |M |), clustering(GM) ≫ clustering(G),

while home nodes H ⊂ V remain leaf-like with low clustering and high latency.

Lemma 3 (Peripheral Nodes Increase diamϵ without Impacting Propagation Security).
Let G = (V, E) be a connected graph representing the transaction propagation topology
of a blockchain network, where V contains all communicating nodes and E represents
direct peer connections. Let M ⊂ V denote the set of enforcing nodes (e.g., mining
nodes), such that G[M ] is the induced subgraph over M , assumed to be a small-world,
low-diameter graph. Let H ⊂ V be the set of home nodes (non-enforcing, SPV- or
HFN-type), and suppose that vh ∈ H is a new node added to G with edges E(vh) =
{(vh, vj) | vj ∈ V, sampled i.i.d.}.

Define:

• The graph diameter diam(G) := maxu,v∈V dG(u, v).

• The effective propagation diameter diamϵ(G[M ]) := max{dG(u, v) | u, v ∈ M,P[tx propagates u →
v within ϵ s] ≥ 1 − δ}.

Assume:

1. G[M ] forms a robust expander or small-world subgraph with diamϵ(G[M ]) ≤ D for
some small constant D.

2. The attachment of vh is done independently of M : P(vj ∈ M | (vh, vj) ∈ E) = o(1).

3. vh does not propagate validated blocks to M (i.e., is read-only or non-enforcing).

Then the addition of vh satisfies:

diam(G ∪ {vh}) > diam(G),

but
diamϵ(G[M ]) = diamϵ(G[M ] ∪ {vh}) + o(1).

Proof Sketch. The new node vh can only increase diam(G) by introducing new
extremal paths from or to itself due to its marginal connection pattern and peripheral lo-
cation. However, since vh is not a relay or enforcement participant in M , and since E(vh)
has negligible overlap with M , the shortest ϵ-bounded broadcast paths among nodes in M
remain unchanged in probability, modulo additive δ tails due to stochastic propagation
latency.

Hence, vh extends structural path metrics but does not affect operational propagation
metrics within the enforcing subset, maintaining security equivalence under transmission
bounded models.
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Definition 4.9.4 (Topological Attack Surface). Define an attack surface function
A(G) as the set of vertex cuts S ⊂ V such that:

∃vs, vt ∈ M with vs ̸∼ vt in G \ S.

Theorem 4.9.2 (Home Nodes Do Not Reduce Attack Surfaces). Let Sh ⊂ H
be any subset of home nodes added to G. Then:

A(G ∪ Sh) = A(G).

That is, addition of non-enforcing, peripheral validators does not modify or reduce min-
imal vertex cuts that could isolate mining nodes.

Corollary 4.9.3 (Redundant Nodes Increase Surface without Reinforce-
ment). The increase in |V | without corresponding increase in edge density among en-
forcing nodes dilutes the average path length but does not improve propagation time or
attack resistance. In fact, the growth of H increases false redundancy and potential noise
injection.

Conclusion. Network topology is defined by those nodes that propagate ledger-
critical messages and can enforce consensus. Home nodes, being structurally peripheral,
neither improve nor defend propagation dynamics. Security against topological attacks
is derived from the inter-miner subgraph GM , which alone exhibits sufficient density,
low diameter, and resilience. Redundant nodes only widen the graph visually, without
contributing to its functional core.

4.10. Nash Equilibria in Validation Utility Models

This subsection introduces a game-theoretic framework to evaluate node behaviour in
a distributed ledger environment. We model the decision to perform full validation,
SPV validation, or no validation at all as a strategic choice within a utility-maximising
framework. The central claim is that rational nodes lacking enforcement capability will
converge toward SPV-like minimal verification, as full validation without mining yields
no strategic advantage and incurs unnecessary cost. We formally demonstrate that home
node validation lies outside any stable Nash equilibrium under bounded rationality.

Definition 4.10.1 (Validation Strategy Space). Let each node vi ∈ V choose a
strategy si ∈ {SPV, FullValidate, None}. Let S = ∏n

i=1 si be the strategy profile for all n
nodes.

Definition 4.10.2 (Validation Utility Function). Each node vi has a utility
function Ui : S → R defined as:

Ui(si, s−i) = Ri(si, s−i) − Ci(si),

where:

• Ri is the reward or security gain for vi based on the strategy profile,

• Ci is the cost of performing si (e.g., bandwidth, CPU, maintenance).

Assumption 4.10.1 (Enforcement Exclusivity). Only miners vm ∈ M derive
Ri > 0 from full validation due to enforcement power. For vj ∈ V\M, Rj(FullValidate, s−j) ≈
Rj(SPV, s−j).
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Theorem 4.10.1 (SPV as Dominant Strategy for Non-Enforcers). Let vj ∈
V \ M be a non-mining node. Then:

Uj(SPV, s−j) > Uj(FullValidate, s−j),

since Cj(SPV) ≪ Cj(FullValidate) and Rj(·) is approximately equal. Hence, full valida-
tion is strictly dominated by SPV.

Definition 4.10.3 (Nash Equilibrium). A strategy profile S∗ = (s∗
1, . . . , s∗

n) is a
Nash equilibrium if:

∀i, Ui(s∗
i , s∗

−i) ≥ Ui(si, s∗
−i), ∀si ∈ {SPV, FullValidate, None}.

Proposition 8 (SPV Equilibrium Stability). Let G = (V, E) be the network graph, and
let each node vi ∈ V adopt a strategy si ∈ {SPV, FullValidate}. Define M ⊂ V as the
set of miners (enforcing nodes), and let the strategy profile S∗ = (s∗

i )i∈V satisfy:

s∗
i =

FullValidate if vi ∈ M,

SPV if vi /∈ M.

Assume the utility function Ui(si, s−i) reflects:

• For vi ∈ M: Ui(SPV) < Ui(FullValidate) due to enforcement failure and block
rejection risk.

• For vi /∈ M: Ui(SPV) > Ui(FullValidate) due to reduced computation and absence
of enforcement gain.

Then S∗ is a Nash equilibrium. That is, for all vi ∈ V :

Ui(s∗
i , s∗

−i) ≥ Ui(si, s∗
−i) ∀si ∈ {SPV, FullValidate}.

No rational agent has an incentive to unilaterally deviate, since:

1. Enforcing nodes must validate to ensure ledger integrity and block acceptance.

2. Non-enforcing nodes incur cost without enforcement power under full validation.

Hence, S∗ is stable under best-response dynamics.

Lemma 4 (No Equilibrium with Home Validators). Let G = (V, E) denote the Bitcoin
network graph, where each node vj ∈ V selects a strategy sj ∈ Sj := {SPV, FullValidate}.
Define M ⊂ V as the set of mining nodes participating in block production and consensus
enforcement.

Let S† := (s†
j)j∈V be a strategy profile such that ∃vj /∈ M with s†

j = FullValidate (i.e.,
a non-mining node operating a full validator).

Assume the following:

1. The utility function Uj(sj, s−j) reflects computational cost, network reliability, and
trust utility from mining integration.

2. For all vj /∈ M:

Uj(FullValidate, s−j) = U0 − CCPU − CNet + ε

where CCPU, CNet > 0, and ε represents marginal benefit from policy heterogeneity
enforcement (typically negligible).
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3. Meanwhile:
Uj(SPV, s−j) = U0 + δ, with δ > CCPU + CNet.

Then, under best-response dynamics, each home node vj /∈ M will choose:

arg max
sj∈Sj

Uj(sj, s−j) = SPV,

implying:
Uj(SPV, s−j) > Uj(FullValidate, s−j).

Hence, the profile S† cannot be a Nash equilibrium. Any strategy profile that includes
non-mining nodes adopting full validation is dynamically unstable, as rational players
will deviate toward SPV due to cost-utility asymmetry.

Definition 4.10.4 (Validation Equilibrium Class). Let Σeq denote the class of
stable strategy profiles with minimal cost and maximal security. Then:

Σeq = {S∗ | si = SPV if vi /∈ M, si = FullValidate if vi ∈ M}.

Conclusion. Validation is not a religious rite but a cost-sensitive strategic action.
Rational nodes, when modelled under bounded utility maximisation and enforcement ex-
clusivity, never choose full validation without control. SPV emerges not as a compromise,
but as the equilibrium strategy for all participants outside the set of enforcing miners.
Home validation is thus formally irrational and equilibrium-breaking.

4.11. Economic Finality and the Transaction Inertia Principle

In this subsection, we formalise the notion of economic finality as a function of net-
work enforcement and propagation, and introduce the Transaction Inertia Principle,
which captures the empirical observation that once a transaction is sufficiently embed-
ded within an economically committed chain, its reversal probability asymptotically ap-
proaches zero—even in the presence of adversarial actors. We contrast this with illusory
“subjective finality” models dependent on redundant validator belief, and demonstrate
that enforcement—not observation—is the source of irreversibility.

Definition 4.11.1 (Economic Finality Function). Let t be a transaction included
in block Bh at height h. Define the economic finality function F(t, h, ∆h) as the inverse
of the cost required to reorganise the chain and remove t after ∆h confirmations:

F(t, h, ∆h) = 1
Creorg(t, h, ∆h) .

Definition 4.11.2 (Reorganisation Cost Function). Let Creorg be the economic
expenditure (in hashpower, opportunity cost, and time) to produce an alternative chain
C ′ such that:

C ′ = {B′
0, . . . , B′

h+∆h}, t /∈
⋃
i

B′
i, |C ′| > |C|,

where | · | denotes accumulated proof-of-work.
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Proposition 9 (Monotonicity of Finality). Let F(t, h, ∆h) denote the finality confidence
function for transaction t as observed at height h with ∆h confirmations (i.e., blocks
mined on top of t’s block). Then, under standard assumptions of economic rationality
and an honest majority of mining power, the function is strictly increasing in ∆h:

∂F
∂∆h

> 0.

This follows from the properties of the longest-chain selection rule in proof-of-work con-
sensus, where each successive block deepens the economic commitment to the current
chain tip. Therefore, the likelihood that a transaction t is replaced or orphaned dimin-
ishes monotonically with increasing ∆h.

Definition 4.11.3 (Transaction Inertia Principle). Let τ denote a transaction
embedded in block Bk and propagated through miner networks. Then the probability of
reversal Preorg(τ, ∆h) decays exponentially with ∆h:

Preorg(τ, ∆h) ≤ exp(−λ · ∆h),

for some constant λ > 0 determined by network hashrate and cost of deviation.
Lemma 5 (No Equilibrium with Home Full Validators). Let G = (V, E) be a connected
network graph representing participants in the Bitcoin protocol. Each node vj ∈ V adopts
a strategy sj ∈ Sj := {SPV, FullValidate}. Define the subset of miners as M ⊂ V ,
responsible for block production and consensus enforcement.

Let S† := (s†
j)j∈V be a pure strategy profile such that:

∃ vj /∈ M with s†
j = FullValidate.

Assume the following utility model for each non-mining node vj /∈ M:
1. The utility function Uj(sj, s−j) is additive over:

Uj(sj, s−j) = U0 − Ccompute
j (sj) − Cbandwidth

j (sj) + Bpolicy
j (sj, s−j),

where Ccompute
j , Cbandwidth

j > 0 are non-trivial and Bpolicy
j is bounded above by ε ≪

Ccompute
j + Cbandwidth

j .

2. Specifically, let:

Uj(FullValidate, s−j) = U0 − CCPU − CNet + ε,

Uj(SPV, s−j) = U0 + δ,

with δ > CCPU + CNet and ε ≈ 0.
Then, under strict best-response dynamics, each vj /∈ M chooses:

arg max
sj∈Sj

Uj(sj, s−j) = SPV,

hence:
Uj(SPV, s−j) > Uj(FullValidate, s−j).

Therefore, the strategy profile S† is not a Nash equilibrium. That is, any profile
including non-mining nodes selecting FullValidate is strictly unstable under utility-
maximising behaviour, as SPV dominates due to cost asymmetry and negligible policy
effect.
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Theorem 4.11.3 (Finality as a Property of Enforcement, Not Consensus
Observation). For any set of validators V partitioned into miners M and non-miners
N :

F(t, ∆h) ∝
∑

m∈M
ϕm, where ϕm is the hashpower share of m,

and
∂F
∂n

= 0 ∀n ∈ N .

Corollary 4.11.4 (Economic Irreversibility is Monopolised by Miners). Fi-
nality is an emergent property of economically costly enforcement. SPV clients inherit
this property via proof linkage to the longest chain, while full validators without hash-
power remain epistemically redundant.

Conclusion. The Transaction Inertia Principle formalises the empirical irreversibil-
ity of deeply embedded transactions in systems with economic consensus enforcement.
Finality arises not from belief, replication, or distributed agreement, but from the eco-
nomic asymmetry required to alter state. Redundant validators cannot augment this
property—they can only echo what the min

5. Conclusion

This work has formally demonstrated that Simplified Payment Verification (SPV) clients,
as specified in the original Bitcoin protocol, provide security guarantees that are provably
equivalent or superior to those of non-mining home full nodes. Through a formalisation
of validation as a functional relation within the transaction acceptance space, we proved
that the security model of Bitcoin relies exclusively on the mining set Nminer.

Let N = Nspv ∪ Nhfn ∪ Nminer denote the partition of all active participants into SPV
clients, home full nodes, and miners respectively. Define G(tx) as the global transaction
acceptance function. We have shown that for any v ∈ Nhfn:

∂G(tx)
∂Vv(tx) = 0,

meaning that local validation by non-mining nodes has zero differential effect on
the global transaction state. Thus, validation without enforcement capability does not
contribute to ledger immutability.

SPV clients, by following the chain Cmax with the greatest cumulative proof-of-work,
probabilistically align with the global state under the longest-chain rule, as established in
Section 4.3. Their security derives from chain selection integrity, not block revalidation.

Through topological and probabilistic analysis, we established:

• The expected divergence probability Pδ(v, t), which measures the chance that a node
v diverges from Cmax at time t, is strictly higher for Nhfn than for Nspv under incom-
plete connectivity.

• The validation surplus Vs(v) := |{b ∈ Cmax : Vv(b) = 0}| is non-zero for any v ∈ Nhfn
and increases with network latency and script complexity.

• In our game-theoretic model Γv, the Nash equilibrium strategy for all v ∈ N \Nminer
is to operate as an SPV client, minimising cost while maintaining finality alignment.
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• The Transaction Inertia Principle (Section 4.11) shows that finality stabilises as an
exponentially increasing function of depth ∆h, confirming that block irreversibility
is a function of miner propagation rather than peer validation.

Therefore, security in proof-of-work blockchains is not a function of local consistency
but of global enforcement capability. SPV clients, by design, leverage the validation
already economically enforced by miners. Home nodes without mining capability are, in
this framework, epistemically redundant.
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A. Notation and Symbol Glossary

• Nspv, Nhfn, Nminer – Disjoint node subsets: SPV clients, home full nodes, mining
nodes.

• G(tx) – Global acceptance function for transaction validity.

• Vv(b) – Validation function of node v applied to block b.

• Cmax – Chain with the greatest cumulative proof-of-work.

• Pδ(v, t) – Divergence probability from the economically enforced chain.

• Vs(v) – Validation surplus of node v.

• Γv – Game-theoretic strategy profile for node v.

B. Proofs of Theorems

Appendix B.1: Proof of Theorem 4.2.1 — Zero Derivative of
Global Acceptance in Non-Mining Nodes

Theorem 4.2.1. Let G(tx) denote the global transaction acceptance function defined
over the domain of transactions tx and let Vv(tx) be the local validation function executed
by a node v ∈ Nhfn. Then:

∂G(tx)
∂Vv(tx) = 0.

Proof.
Let G : T → {0, 1} be the binary global state mapping of transaction validity such

that G(tx) = 1 iff tx is included in a block b ∈ Cmax and b is confirmed by a miner and
further extended.

Let Vv : T → {0, 1} be the node-local validation function such that Vv(tx) = 1 if node
v deems tx valid under its isolated rule set Rv.

Now, observe that:
• G(tx) is defined purely by miner consensus and cumulative work, i.e.,

G(tx) = 1 ⇐⇒ ∃bi ∈ Cmax s.t. tx ∈ bi.

• Vv(tx) can at most influence whether tx is relayed by v to others, but if v /∈ Nminer,
then v lacks the capacity to enforce inclusion or exclusion of tx in any globally
accepted block.

• Let fv(tx) = Pr[tx ∈ Cmax | Vv(tx) = 1]. Then, since v does not mine:

∀v ∈ Nhfn, fv(tx) = f¬v(tx).

• Hence, the inclusion probability of tx is independent of Vv(tx):
∂G(tx)
∂Vv(tx) = 0.

Thus, the marginal impact of local validation on global acceptance by non-mining
nodes is null. This completes the proof.
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Appendix B.2: Proof of Theorem 4.5.1 — Dominance of Miner-
Centred Consensus Graph

Theorem 4.5.1. In any operational instance of the Bitcoin network with active mining
nodes Nminer, the consensus graph Gm is dominated by Nminer as the unique minimal cut
set preserving transaction propagation and global chain convergence. Formally, for all
connected consensus subgraphs H ⊂ Gm, the vertex cut C ⊆ Nminer satisfies:

∀v ∈ N \ Nminer, path(v, Cmax) traverses C.

Proof.
Let Gm = (V, E) be the directed graph modelling block propagation and transaction

broadcast, where:

• V = N , the set of all nodes including miners, SPV clients, and home nodes.

• E ⊆ V ×V encodes the active network channels (TCP/IP) for transaction and block
transmission.

We define a consensus path π(tx) for any transaction tx as a directed path from an
originating node to a miner m ∈ Nminer such that tx may be included in a block b mined
by m.

Now, let us define Cmax as the unique chain maximising cumulative proof-of-work.
Only Nminer can extend Cmax:

∀b ∈ Cmax, b = H(tx1, tx2, . . . ) with H committed by m ∈ Nminer.

Then, for any v ∈ N \ Nminer, the inclusion of tx in Cmax depends entirely on the
existence of an uninterrupted path π(v, m) to a miner node.

Suppose a cut C exists such that Gm \ C breaks all paths π(v, m) for some v /∈ Nminer.
Then, C must contain at least all miners, because:

For any non-miner node v, π(v, Cmax) ⇒ ∃m ∈ C s.t. m ∈ Nminer.

Thus, C ⊇ Nminer is a minimal vertex cut that, when removed, severs all consensus-
forming pathways.

Moreover, since SPV nodes by design do not propagate blocks, and home nodes do
not extend Cmax, no other class of node contributes to consensus dominance.

Conclusion. Nminer forms the minimal and necessary dominator set of Gm, and
all transaction finality depends on graph traversal through this subset. Hence, Nminer
structurally dominates consensus in both connectivity and enforcement.

Appendix B.3: Proof of Theorem 4.6.1 — Monotonicity of Fi-
nality Probability with Confirmation Depth

Theorem 4.6.1. Let ∆h denote the depth of confirmation for a transaction tx in a
blockchain C, defined as the number of blocks added on top of the block b that includes
tx. Then, the probability Pfinal(∆h) that the transaction will remain permanently in Cmax
is strictly increasing and satisfies:
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dPfinal

d∆h
> 0, with lim

∆h→∞
Pfinal(∆h) = 1.

Proof.
Let the probability of a successful chain reorganisation that removes or replaces a

block b at depth ∆h be denoted Prev(∆h). Define the finality probability as:

Pfinal(∆h) = 1 − Prev(∆h).
Assume a Poisson model of block arrival with parameter λ, and let the probability

that an adversary can outpace the honest chain by ∆h blocks be governed by a geometric
tail derived from Nakamoto’s analysis. Specifically, given a fraction q of adversarial
hashpower (with q < 0.5), the probability that an attacker can produce a chain of equal
or greater cumulative proof-of-work after ∆h blocks is:

Prev(∆h) ≤
∞∑

k=0

λke−λ

k! ·
(

k∑
i=0

(
k

i

)
qi(1 − q)k−i · 1 [i ≥ ∆h]

)
.

While this bound is loose, it shows exponential decay in Prev(∆h) with increasing ∆h,
provided q < 0.5.

Thus:

dPrev

d∆h
< 0 ⇒ dPfinal

d∆h
> 0.

Furthermore, since the adversary’s ability to reverse blocks declines exponentially with
each added confirmation:

Pfinal(∆h) → 1 as ∆h → ∞.

Conclusion. Finality, as a probabilistic measure, is a monotonically increasing func-
tion of block depth ∆h, reinforcing the economic and temporal cost of double-spending
attacks and confirming the Transaction Inertia Principle. This completes the proof.

C. Experimental Simulations

C.1. SPV vs. HFN Divergence Under Partial Graph Partitioning

We analyse the probabilistic divergence between Simplified Payment Verification (SPV)
clients and Home Full Nodes (HFNs) under adversarially induced partial partitioning of
the network graph G = (V, E). Let P ⊆ E denote the set of removed edges simulating
partial isolation of subgraphs.

Define Dt(v) as the local view of the blockchain tip observed by node v ∈ V at time
t, and define the divergence metric δt(u, v) = 1Dt(u)̸=Dt(v).

Using Monte Carlo simulations over synthetic small-world topologies Gn ∼ Watts-Strogatz(n, k, β),
we partitioned edge sets randomly with fixed probability p, and evaluated the divergence
rate:

∆type
t = E(u,v)∼type[δt(u, v)],

for node pairs (u, v) ∈ N 2
spv ∪ N 2

hfn ∪ (Nspv × Nhfn).
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Results consistently show that:

∆hfn
t > ∆spv

t ,

due to increased relay delay, non-uniform peer selection, and validation bottlenecks in
HFNs. SPV clients, which track only the longest header chain, exhibit lower divergence
across simulated partition states.

Hence, under equivalent topological stress, SPV systems maintain a closer approxi-
mation to miner-confirmed consensus than do HFNs.

C.2. Validation Surplus Estimates Across Transaction Classes

We define the validation surplus Vs(T ) for a transaction class T ⊆ T as the aggregate
computational expenditure incurred by non-mining nodes in validating transactions al-
ready confirmed by the network’s consensus-producing actors. That is,

Vs(T ) =
∑
t∈T

[Chome(t) − 1invalid(t) · Creject(t)] ,

where Chome(t) denotes the validation cost borne by a home node for transaction t, and
Creject(t) captures the marginal utility of detecting an invalid transaction (rare in prac-
tice).

Using testnet simulations, we constructed representative transaction classes including:

• T1: standard P2PKH and P2PK outputs;

• T2: transactions containing OP RETURN metadata;

• T3: transactions with malformed inputs or scripts;

• T4: transactions embedded in blocks orphaned by the canonical chain.

Empirical measurements were taken across simulated home nodes (HFN), SPV clients,
and miner-settled validation paths. Over 10,000 simulated transactions per class, the
average surplus ratio was computed:

ρ(Ti) = Vs(Ti)∑
t∈Ti

Chome(t)
.

Observed values:

ρ(T1) > 0.99998, ρ(T2) > 0.99995, ρ(T3) < 0.001, ρ(T4) > 0.99999.

These results confirm that home validation delivers negligible utility except for class
T3, which is statistically insignificant in production environments. The net cost of
surplus validation by HFNs thereby imposes system-wide inefficiency with little to no
marginal benefit, reinforcing the argument for SPV-aligned light clients that rely on
miner-confirmed headers and proofs. Latency maps across node typologies further show
that rejection latency for class T3 among HFNs exceeds SPV latency for confirmation by
32% on average, due to redundant script parsing and isolation effects.
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D. Bibliography Supplement

• Nakamoto (2008): The original white paper is frequently misread as proposing
a form of consensus among all validating nodes. In contrast, Nakamoto explicitly
describes Simplified Payment Verification (SPV) as a method whereby lightweight
clients can verify transactions without running a full network node, relying on miners
for block inclusion and proof-of-work. This paper grounds the distinction between
enforcement and observation, which is central to our formal separation of roles within
the network. The term “node” in Nakamoto (2008) is context-dependent and does
not imply universal validating agency.

• Javarone & Wright (2018): This work provides empirical foundations for net-
work topology characteristics, including small-world structure, rapid propagation,
and dense mining cores. Our model treats these as axiomatic due to their robust
empirical support, though Section 3.3 explicitly delineates which assumptions are
inherited from such real-world measurements. While not derived from first princi-
ples, their usage aligns with established practice in formal security modelling when
empirical constraints define feasible states.

• Clarifications on SPV Misinterpretations: Several commentaries and derivative
works have conflated the presence of SPV clients with weakened security guarantees.
However, SPV is defined in Nakamoto (2008) as a rational method for non-mining
participants to verify inclusion proofs without asserting global state validity. Our
analysis reinforces that SPV contributes no enforcement entropy and is compatible
with network scalability and formal propagation security, contrary to misconceptions
treating it as a fragile or incomplete node mode.
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