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Abstract—Identifying the impact scope and scale is critical for
software supply chain vulnerability assessment. However, existing
studies face substantial limitations. First, prior studies either
work at coarse package-level granularity—producing many false
positives—or fail to accomplish whole-ecosystem vulnerability
propagation analysis. Second, although vulnerability assessment
indicators like CVSS characterize individual vulnerabilities, no
metric exists to specifically quantify the dynamic impact of
vulnerability propagation across software supply chains. To
address these limitations and enable accurate and comprehensive
vulnerability impact assessment, we propose a novel approach: (i)
a hierarchical worklist-based algorithm for whole-ecosystem and
call-graph-level vulnerability propagation analysis and (ii) the
Vulnerability Propagation Scoring System (VPSS), a dynamic
metric to quantify the scope and evolution of vulnerability
impacts in software supply chains. We implement a prototype
of our approach in the Java Maven ecosystem and evaluate it on
100 real-world vulnerabilities. Experimental results demonstrate
that our approach enables effective ecosystem-wide vulnerability
propagation analysis, and provides a practical, quantitative
measure of vulnerability impact through VPSS.

I. INTRODUCTION

The proliferation of software vulnerabilities has introduced
significant security risks. However, not all vulnerabilities carry
the same impact scope. Specifically, a vulnerability in a
client application usually only affects the application itself,
while a vulnerability in software supply chains often puts
downstream software that depends on the vulnerable upstream
libraries directly or transitively at risk as well. For instance,
Heartbleed [1], a vulnerability in the OpenSSL library, af-
fects countless services that rely on it. Another vulnerability,
Log4Shell [2], endangers numerous projects depending on
the popular Apache Log4j logging framework [3]. Hence,
it is critical to identify the impact scope and scale of the
vulnerability in software supply chains after a vulnerability is
disclosed, which is called vulnerability propagation analysis.

Researchers have conducted several studies to investigate
this problem for popular programming language ecosystems
(e.g., Java [4]-[18], JavaScript [19]-[23], and Python [24]) by
analyzing components and the corresponding dependencies in
software supply chains. While existing works take significant
steps toward software supply chain vulnerability analysis, a
substantial gap remains in enabling accurate and comprehen-
sive impact assessment. We observe the following fundamental
limitations that render current solutions suboptimal:

Limitation 1 (L.1): The lack of accurate and complete vul-
nerability propagation analysis. First, many studies only con-

duct package-level vulnerability propagation analysis based on
dependency declarations. This often leads to false positives, as
downstream projects may declare dependencies on vulnerable
packages without actually invoking the vulnerable functions
(VFs) [11], [14], [18]. Second, although the remaining studies
have explored call graph (CG)-level analysis, their methods
are often limited in scope and incomplete due to a lack of
efficient processing techniques for complex whole-ecosystem
dependencies. Specifically, (i) they consider only partial de-
pendency relationships rather than the complex, ecosystem-
wide structure; (ii) they analyze only a subset of project ver-
sions or a limited number of downstream projects, instead of
covering all relevant versions and dependencies; and (iii) they
focus solely on direct dependencies, ignoring vulnerability
propagation through transitive dependencies. We provide a
detailed discussion of these limitations in § I1I-B1.
Limitation 2 (L2): The lack of metrics for quantifying
the impact of vulnerabilities across software supply chains.
The widely adopted vulnerability assessment indicators are
only used to characterize the impact of a vulnerability itself.
For instance, although people can perceive the severity of a
vulnerability through its CVSS score [25], it is fundamentally
designed to assess and reflect the characteristics of individual
vulnerabilities. As such, its application does not extend well to
measuring vulnerability impacts across software supply chains,
which is explicitly acknowledged in the CVSS v4.0 FAQ [26].
To address these limitations, we propose a novel approach to
accurate and whole-ecosystem impact assessment of software
supply chain vulnerabilities and a propagation-based indicator
for quantifying such impact. Specifically, to address L1, we
draw inspiration from the data flow analysis and design a
worklist-based vulnerability propagation analysis algorithm to
efficiently identify affected downstream dependencies given
a specific vulnerability, which conducts CG-level analysis
that considers complete dependency relations, all potentially
affected downstreams, and transitive dependencies in a whole
ecosystem. Notably, we integrate hierarchical pruning strate-
gies into the propagation algorithm to reduce the complexity of
analysis. To address L2, we propose the Vulnerability Prop-
agation Scoring System (VPSS), a graph-theoretic dynamic
indicator specialized for quantifying vulnerability impact in
software supply chains and reflecting the temporal evolution
of impact. It is designed to consider both the breadth and depth
of vulnerability propagation. Furthermore, VPSS has a similar
score range (0—10) and impact levels (low, medium, high, and



TABLE I: Term Unification Across Ecosystems

Ecosystem | Project (P)

Groupld:Artifactld
package name
distribution name

Project-Version (PV)

Maven (Java)
npm (JavaScript)
PyPI (Python)

Groupld:Artifactld: Version
package @version
name==version

critical) as CVSS, making it easy to understand and use.

We implement a prototype of our approach for the Java
Maven ecosystem [27], one of the largest software ecosystems
in the world, and evaluate it on 100 real-world vulnerabilities
investigated by prior work [14]. The evaluation results indicate
that our approach successfully and efficiently completes the
propagation analysis for all 100 vulnerabilities. On average,
97.8% of projects and 99.2% of project version releases are
pruned during the analysis, with the longest and average
propagation path lengths reduced by at least 34.1% and 29.4%,
respectively. Importantly, our approach significantly lowers the
cost of call graph construction by reducing the number of CGs
that need to be built. In addition, by computing and analyzing
the VPSS scores for these vulnerabilities, we obtain insightful
findings: The VPSS scores generally decline over time after
disclosure, driven by patch adoption and ecosystem expansion.
Interestingly, some CVEs (e.g., CVE-2016-3086 [28]) show
temporary score increases due to delayed dependency updates.
Across the entire dataset, VPSS scores remain relatively low
and gradually stabilize. This aligns with expected ecosys-
tem dynamics where vulnerability propagation attenuates over
time. Overall, the results validate that VPSS captures both
temporal and distributional aspects of vulnerability impact,
offering a practical metric for supply chain risk assessment.

To the best of our knowledge, this is the first work achieving
CG-level and whole-ecosystem vulnerability impact assess-
ment for software supply chains. In summary, this paper makes
the following contributions:

e We design a hierarchical worklist-based vulnerability
propagation analysis algorithm to accurately and effi-
ciently identify affected downstream dependencies across
a whole software ecosystem.

« We propose Vulnerability Propagation Scoring System
(VPSS), the first time-aware indicator for quantifying
vulnerability impact in software supply chains.

« We implement a prototype of our approach for the Java
Maven ecosystem and evaluate it on real-world vulner-
abilities. We will release our prototype’s code upon the
paper’s acceptance to support future research.

II. BACKGROUND AND MOTIVATIONS
A. Background

1) Terminology: Different software ecosystems use diverse
naming conventions to refer to software units and their
versions, such as packages, modules, or distributions. This
inconsistency may lead to inaccurate descriptions and hin-
der understanding. To provide a unified abstraction across
ecosystems, we use the terms Project (P) and Project-Version
(PV) to represent software units and their specific releases,

respectively. Table I shows how these terms correspond to
identifiers in representative ecosystems.

2) Vulnerability Propagation Analysis: Given a vulnerabil-
ity, identifying the scope and scale of its impact in software
supply chains is called vulnerability propagation analysis,
which takes vulnerability intelligence and inter-project depen-
dencies as input to reason out the vulnerability’s impact on
downstream projects. Vulnerability propagation analysis can
be conducted at different granularity levels. One option is
the PV-level analysis, which considers a downstream PV as
affected by the vulnerability if it declares a dependency on the
upstream vulnerable PVs. The other one is the call graph (CG)-
level analysis, which regards a downstream PV as affected
only when it directly or transitively calls vulnerable functions
(VFs) of the upstream vulnerable PVs. A prerequisite for CG-
level analysis is to identify the VFs, where the vulnerable logic
exists. Currently, the most widely adopted VF identification
method is the patch-based approach [8], [14], [29]-[31], which
identifies functions deleted or modified in patches as VFs,
a widely adopted strategy due to its logical rationale and
alignment with standardized patch information.

B. Limitations of Existing Solutions

1) Vulnerability Propagation Analysis: To better profile
existing vulnerability propagation research, we conduct a com-
prehensive literature review. Prior works are mainly empirical
studies on Java [4]-[18], JavaScript [19]-[23], and Python [24]
ecosystems, as shown in Table II. To clearly display and
compare these works, we profile them from six aspects:

Direction indicates whether the work conducts a forward
analysis to answer ‘which vulnerabilities in upstream depen-
dencies affect a downstream project’, or a backward analysis
to answer ‘which downstream projects (as the call sites) are
affected by an upstream vulnerability—by using a chain of
function calls to reach it’. Intuitively, backward analysis is
more suitable for vulnerability impact analysis, as it starts from
the vulnerable site and propagates to the downstream projects.

Dep Scope clarifies whether the work examines the partial
or complete dependency relations for a target ecosystem. For
example, if a work only selects a subset from a software
ecosystem with their dependencies for analysis, it has partial
dependency scope. Instead, if the work conducts the prop-
agation analysis with considering the whole ecosystem and
dependency relations, the dependency scope is complete.

Coverage shows whether the work analyzes partial or com-
plete projects. For example, if a work only selects one version
to represent the target project, then it has partial coverage.
Conversely, if the work considers all released versions for the
propagation, it has complete coverage.

Transitivity indicates whether the work analyzes only the
direct dependency relations or the transitive dependencies.
Direct analysis only takes projects that directly depend on
the vulnerable project into consideration, i.e., one-hop de-
pendency; transitive analysis considers multi-hop dependency
towards the root vulnerable project.



TABLE II: Summary of related works in comparison with this work. In ‘LAN’, ‘JA’ stands for Java, ‘JS’ stands for JavaScript,
and ‘PY’ stands for Python. In ‘Granularity’, ‘PV’ means the work analyzes the propagation at PV level, and ‘CG’ means
CG-level analysis. In ‘VF Identification’, ‘Manual’ means the work identifies VFs manually, ‘Patch’ means the work uses a
patch-based method to identify VFs, and ‘Patch (Optimized)’ means the work uses an optimized patch-based method.

Year | LAN | Research

| Direction | Dep Scope | Coverage | Transitivity | Granularity | VF Identification

2015 JA Cadariu et al. [4]

2015 JA Ponta et al. [5] Patch

2017 JS Lauinger et al. [19] Transitive

2018 JS Decan et al. [20]

2018 JA Kula et al. [6]

2018 JA Du et al. [7]

2018 JA Ponta et al. [8] CG Patch

2018 JA Pashchenko et al. [9] Patch

2019 JA Hu et al. [10] Complete Transitive

2019 JS Zimmermann et al. [21] | Backward Complete Complete Transitive

2020 JA Wang et al. [11] CG Patch

2020 JA Ponta et al. [12], [32] CG Patch

2020 PY Ma et al. [24] Backward Transitive CG

2022 JS Liu et al. [23] Backward Complete Complete Transitive

2023 IS Wang et al. [22] Backward Complete Complete Transitive

2023 JA Zhang et al. [13] Backward Complete Complete Transitive

2023 JA Wu et al. [14] Complete CG Patch

2023 JA Mir et al. [15] Complete Transitive CG Patch

2024 JA Ma et al. [16] Complete Transitive

2024 JA Zhang et al. [17] Backward Complete CG Patch (Optimized)

2025 JA Shen et al. [18] Backward Transitive CG Patch
‘ | This Work | Backward | Complete | Complete | Transitive | CG | Patch (Optimized)

Granularity shows the granularity at which a work conducts
the propagation analysis. CG-level analysis inspects whether
downstream PVs directly or transitively call upstream VFs,
which is much more accurate than PV-level analysis that only
considers PV dependency relations [14].

VF identification indicates whether the work identifies VFs
and how it identifies them. Manual identification cannot be
scaled to large software ecosystems. Although the patch-based
VF identification has been widely used in existing work, it
has two limitations. First, vulnerability patches are not always
publicly available [33], though several methods have been
proposed to address this [33]-[40], which are beyond the scope
of this paper. Second, patches sometimes contain changes
unrelated to the vulnerability.

2) Vulnerability Assessment: For a software supply chain
vulnerability, it is equally important to assess its own char-
acteristics and its impact on downstream dependents. The
Common Vulnerability Scoring System (CVSS) by FiRST
provides a way to capture the principal characteristics of a
vulnerability and produce a numerical score (0-10) reflecting
its severity [25]. However, it is fundamentally designed to
assess and reflect the characteristics and severity of individual
vulnerabilities, and does not extend well to measuring vulnera-
bility impacts across software supply chains. This limitation is
explicitly acknowledged in the CVSS v4.0 FAQ [26], where it
is clarified that there is no prescribed way to use CVSS Base
and Environmental metrics to score a vulnerability along a
long supply chain. Furthermore, prior research mainly focuses
on automating existing assessments [41]-[S1] or proposing
new metrics [52]-[59] to profile a vulnerability’s own char-
acteristics. How to assess the impact of a vulnerability in
software supply chains is still an open problem.

Overall, for vulnerability propagation analysis, an accurate
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Fig. 1: Approach Overview

and comprehensive solution should be a backward, transitive,
CG-level analysis that considers complete dependency scope
and project coverage and is capable of identifying VFs. Nev-
ertheless, according to our comprehensive investigation, there
still remains a gap between existing works and this goal. For
vulnerability assessment, the community needs a new metric
reflecting vulnerability impact in software supply chains.

III. APPROACH

A. Overview

Figure 1 illustrates the overview of our approach, which
consists of four components:

1) Dependency Graph Construction: To carry out vul-
nerability propagation analysis, we first need to identify all
the downstream projects depending on the upstream project
where the given vulnerability is located. We construct a P-
level dependency graph for this purpose by analyzing the
dependency declaration files (e.g., POM files in Java Maven
ecosystem) of all the projects in the target software ecosystem.



2) Vulnerable Function Identification: For CG-level analy-
sis, VFs serve as the starting points. This component first gen-
erates a list of VF candidates using the patch-based method,
and then takes a large language model (LLM)-assisted strategy
to filter out vulnerability-irrelevant candidates.

3) Vulnerability Propagation Analysis: The goal of this
component is to effectively identify all the downstream PV's in
the whole ecosystem that directly or transitively call the VFs
in the root upstream PVs where the vulnerability is located.
We design a hierarchical worklist-based propagation algorithm
to achieve this goal. Beginning with the root upstream P, each
pass of the algorithm handles the direct dependencies between
the upstream P and its downstream dependent Ps by pruning
the downstream PVs with hierarchical pruning methods to
minimize the number of dependencies.

4) VPSS Calculation: This component is responsible for
calculating the VPSS score based on the results of the prop-
agation analysis, which considers both the breadth and depth
of the vulnerability impact scope in software supply chains.

B. Dependency Graph Construction

Given a vulnerability and the PVs affected by it, one of
the preliminaries is to figure out which PVs depend on these
vulnerable PVs. The graph structure can effectively organize
PVs and their dependency information for querying. We call
this directed graph a dependency graph. Based on the level
of granularity, the dependency graph can be constructed in
two distinct ways: the PV-level and the P-level design. In the
PV-level dependency graph, nodes represent PVs and edges
denote direct dependencies between them. In contrast, the P-
level graph abstracts nodes as Ps, with edges summarizing
relations derived from the underlying PV-level dependencies.

Existing graph-based studies all construct PV-level depen-
dency graphs. However, based on two observations, this option
is not efficient for ecosystem-scale vulnerability propagation
analysis. First, modern software ecosystems have become
extremely large. For example, the Java Maven ecosystem has
more than 15 million PVs [27], and the PV-level dependency
graph could have tens of millions of nodes and even more
edges. This huge scale makes the PV-level dependency graph
too large to be queried efficiently, especially for transitive
dependencies. Second, the number of PVs that depend on
the upstream vulnerable PVs is usually a minority in a target
ecosystem. Even among the PVs that do have dependencies,
the ones that are actually affected are not many [14], which
means that most of the nodes and edges in the PV-level
dependency graph are irrelevant to the vulnerability propaga-
tion analysis. Therefore, it is not necessary and inefficient to
construct a PV-level dependency graph for a whole ecosystem.

To address these issues, we propose to construct a P-level
dependency graph. The number of Ps in an ecosystem is
usually much smaller than that of PVs, meaning that the P-
level dependency graph has a much smaller scale than the PV-
level dependency graph. The P-level graph can not only reduce
computational overhead, but also serve as an efficient pre-filter,
allowing queries to quickly narrow down the search space.

Path e [DEL in func | semantics unchanged |
/> _ A0 in Func | space/comments/... |
v |ED)

D&A in func

Patch semantics changed |

Hunks | [<> 2 [DEL a funcl [log/{ge,se}tter/... |

Fig. 2: Vulnerable Function Identification

With the initial traversal confined to a smaller, less complex
P-level graph, the overall analysis becomes more scalable.

We follow a four-step procedure to build the P-level de-
pendency graph. First, we download the ecosystem index and
extract all the PV identifiers from the index into a list. Second,
we obtain the dependency declaration files for PVs in this list
from the official repository. Third, we parse the dependency
declaration files to extract the dependencies of each PV and
save them into deps. json files. Fourth, we construct the P-
level dependency graph by analyzing the deps. json files
of all the PVs. Specifically, for each P, we aggregate all
the recorded dependent PVs from the deps. json files of
the PVs that belong to it. During the propagation analysis
(§ TI-D), we conduct a targeted PV-level inspection by
querying the deps . json files when necessary, at which point
the scale of the subject has been significantly reduced.

C. Vulnerable Function Identification

As presented in Figure 2, the VF identification component
consists of two steps: (1) patch-based VF candidate generation
and (2) LLM-assisted VF filtering.

First, we parse the patch of the target vulnerability into
individual hunks and only extract the function-modifying
hunks. There are five types of function-modifying hunks:
function addition & deletion, and internal deletion & addition
& modification (including deletion and addition). We filter out
the function addition hunks as prior work [14] does because
they are not the root cause of the vulnerability.

Second, we leverage LLMs for VF filtering. This method
has three advantages: (1) LLMs possess broad domain knowl-
edge across programming languages, enabling us to develop
a language-agnostic and generalizable filtering approach. (2)
LLMs are capable of recognizing non-standard syntax and
syntactic sugar that are difficult to enumerate manually. (3)
As LLMs continuously evolve and incorporate newly observed
patterns from code corpora, their filtering capabilities remain
up-to-date and adaptable, whereas manually maintained rules
are often incomplete and costly to update.

Specifically, for the remaining VF hunk candidates, we de-
sign an in-context learning (ICL) [60] strategy and drive LLMs
to follow two filtering principles: semantics-equivalent modi-
fication and semantics-changing modification. If the semantics
of a function remain equivalent after being modified by a
hunk, the hunk is considered irrelevant to the vulnerability and
should be filtered out, because it does not affect the existence
of the vulnerability. For example, if a hunk only changes
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variable names, adds or deletes whitespaces, it is likely to be
vulnerability-irrelevant. Even if a hunk changes the semantics
of a function, it still can be irrelevant to the vulnerability. For
example, if a hunk only adds or deletes logging or debugging
code, it is likely to be irrelevant. To reduce incorrect filtering
caused by LLMs, we also ask LLMs to provide reasons for
decisions to conduct manual verification.

D. Vulnerability Propagation Analysis

The vulnerability propagation analysis is to start from a
root P (comprising a series of PVs in the vulnerable version
range) with a vulnerability and identify all downstream Ps
(with the corresponding PVs) affected by this vulnerability
at CG level along the dependency graph. Specifically, given
an upstream P, we first query the dependency graph to get
its direct downstream dependent Ps, verify the validity of
dependency between each pair of upstream and downstream
Ps by inspecting whether the downstream PVs transitively call
the VFs in the root PVs, and then recursively propagate the
analysis only for the truly affected downstream Ps. Figure 3
illustrates this inter-PV analysis: For each PV of an upstream
P in affected target versions (TVs), we first need to identify the
entry-point functions (EPs) that can reach the target functions
(TFs) in the same upstream PV and be called from outside. For
PVs of the root P, VFs are the TFs. Then, we need to identify
which downstream PVs call EPs in the upstream PV. If any,
we need to record the functions that call upstream EPs in the
downstream PVs, which serve as the TFs in future passes.

In terms of vulnerability propagation analysis, we need to
consider three possible dependency scenarios. In Figure 4a,
downstream B and C have individual dependencies on A.
Therefore, we can identify affected downstream PVs for A,
B, and C sequentially ({A, B, C}). In Figure 4b, downstream
B and C share a common dependency on A, while C also has
a dependency on B. In this scenario, analysis order {A, B, C}
and {A,C, B} could potentially lead to different results. The
result of {A,C,B} is potentially incomplete, because only
EPs of upstream A exist when C is being processed, and
the algorithm may miss the EPs of upstream B that are
called by downstream C. For {A,C,B}, there should be
a mechanism to ensure that C is analyzed again after its
upstream EPs are updated (i.e., B involves new EPs). In
Figure 4c, the dependencies form a cycle, which could lead
to infinite analysis loops if not handled properly. Although
software dependencies are expected to form a directed acyclic
graph (DAG) [61], cyclic dependency relationships still exist in
real-world software ecosystems. For example, in Java Maven
ecosystem, dom4j:dom4j:1.5.2 [62] and jaxen:jaxen:1.1-beta-
4 [63] have mutual dependencies on each other.

To effectively handle the aforesaid scenarios, we adopt the
worklist algorithm—a well-established method in data flow
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Fig. 4: Dependency Scenarios

frameworks—to systematically perform vulnerability propa-
gation analysis over the dependency graph. Specifically, we
maintain a worklist of Ps whose states (i.e., TVs, versioned
reachable EPs, and affected downstream PVs) may still be
updated. Initially, only the root P is added to the work-
list. In each pass, we dequeue an item from the worklist,
perform inter-PV analysis to update its downstream items,
and enqueue the affected downstream Ps if their associated
versioned reachable upstream EPs have been updated. This
approach ensures that each P is revisited only when necessary,
effectively handling shared dependencies and cyclic structures
while avoiding redundant analysis. The propagation continues
until a fixed point is reached—when no new updates occur
across the graph, ensuring both soundness and efficiency.

Moreover, we notice that there could be a large number
of PV dependencies involved in the analysis, and the time
and space costs associated with constructing CGs for large
PVs are non-negligible. Consequently, it is computationally
inefficient to analyze all dependencies directly at the CG level.
To avoid lots of unnecessary fine-grained analysis, we employ
a hierarchical pruning strategy, which first applies coarse-
grained pruning methods to efficiently exclude false positive
downstream dependent PV's (as well as their corresponding Ps,
if all associated PVs are pruned out), and then performs the
fine-grained CG-level analysis only on the remaining down-
stream candidates. As shown in the middle part of Figure 1,
this hierarchical pruning mechanism comprises three levels
of pruning: (1) Version-based pruning, which excludes down-
stream PVs that do not declare a dependency on the specific
upstream TVs; (2) import-based pruning, which further elim-
inates downstream PVs that, despite declaring a dependency,
do not actually import or include upstream contents; (3) CG-
level pruning, which finally removes downstream PVs that do
not invoke any of the upstream EPs at the CG level.

Another issue in vulnerability propagation analysis arises
from the presence of fat PVs—release packages that bundle
not only a project’s own code but also its external dependen-
cies. Such packaging practices, common in ecosystems like
Java where fat JARs are widely used, can interfere with precise
analysis by conflating intrinsic and extrinsic program elements.
For efficient analysis, only the intrinsic scope (i.e., the program
components that are native to the project itself) should be
considered. To address this issue, we propose a general method
for identifying the intrinsic scope of a given PV, even when
fat packaging practices differ across ecosystems. Specifically,
for a target PV, we first obtain the set of files in its release
package, denoted as Up. We then collect the release files of all
its declared dependencies as set Down. By subtracting Down
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from Up, we obtain the intrinsic scope of the PV, which serves
as the foundation for subsequent vulnerability analysis.

Taking all the above into consideration, we design a hi-
erarchical worklist-based algorithm to perform vulnerability
propagation analysis, illustrated in Figure 5, with the corre-
sponding steps annotated using circled numbers that match
those in the pseudocode provided in Algorithm 1 for clarity.
Given a vulnerability, the algorithm takes three inputs: the root
P of the vulnerability (VP), the vulnerable versions of the
root P (VV), and the vulnerable functions of the root P (V. F).
The worklist is initialized with the root P, and the algorithm
iteratively processes items in the worklist.

At the beginning of each pass (step (0)), one item (P) is
fetched from the worklist. At step (1), the algorithm generates
the TV list (Atvs) of current item that are affected by the
vulnerability. Specifically, if it is the first pass, the list is
initialized with V). Otherwise, the current item must have its
own upstream Ps, the list of which is saved and updated in the
previous passes (step (9)). Consequently, the algorithm queries
the Inter-PV Calls record of each upstream P in this list to get
the latest affected versions of the current item into tvs. It then
loads the cached old version list (old_tvs) if the current P has
been processed in previous passes, and derives the difference
between the two lists to get the new affected versions (Atwvs).
The combination of old_tvs and tvs is cached for future use.
At step (2), the algorithm generates the TF list (Atfs) of
the current item that are affected by the vulnerability. The
generation process is similar to the generation of Atws. Also,
the combination of old_tfs and ¢ fs is cached for future use.
Then, at step (3), the algorithm queries the dependency graph
to extract the dependency relationships between the current
item and its direct downstream dependent Ps into pdeps.

With pdeps, Atvs, and Atfs available, the hierarchical
pruning begins. At step (4), the algorithm generates the PV
dependencies for the current item (upstream P) by querying
the deps. json records belonging to Ps in pdeps, and then
prunes out irrelevant PV dependencies by checking whether
the downstream PVs rely on upstream PVs covered by Atws.
After this step, the dependency relationships between upstream
PVs and the remaining downstream PVs are used to generate

Algorithm 1: Worklist-based Propagation Algorithm

Input: Vulnerable P VP, vulnerable versions VYV,
vulnerable functions V. F

Output: All the cached analysis results in Figure 5

1 ROOT < true, worklist «+ {VP}

2 while worklist is not empty do

3 (© item <« worklist.pop()

(tvs,tfs) «+ getTVAndTF(item, VV, VF, ROOT)

ROOT <« false

(old_tvs,old_tfs) <+ 1oadOIdTVAndTF(item)

(D) Atws < diffMergeSave(old_tvs, tvs)

(@ Atfs « diffMergeSave(old_tfs, tfs)

(3) pdeps < genPDeps(item,)

10 // hierarchical pruning: (4) —

11 (changed,v3) < prune(item, pdeps, Atvs, Atfs)

12 if changed then

13 (9) propagateTVAndTF(item, v3)

14 L worklist.extend(v3)

NIRRT N

or update PV Deps viI. At step (5), the algorithm further
prunes the dependencies by checking whether the downstream
PVs import contents from upstream PVs in PV Deps vi. The
check is restricted to the intrinsic scope for both upstream
and downstream PVs. After this step, PV Deps v2 is gen-
erated or updated. Then, at step (6), the algorithm identifies
new EPs (Aeps) for CG-level pruning. To achieve this, the
algorithm loads the cached old EP list, derives the new EPs list
by constructing CG and conducting backward BFS traversal
from Atfs to externally accessible functions, and uses the
difference between the two lists as Aeps for each upstream
PV. The combination of old_eps and eps is cached for future
use. Notably, empty Aeps for all the upstream PVs indicates
that the dependency state of the current item has not changed,
and the algorithm will not append its downstream Ps to the
worklist. With Aeps available, at step (7), the algorithm prunes
the dependencies by checking whether downstream PVs call
EPs in Aeps. After this step, PV Deps v3 (v3 in Algorithm 1
for brevity) is generated or updated. At the end of the pruning
process, the algorithm generates and caches the Inter-PV Calls
record for the current item at step (3).

At step (9), the algorithm sends the inter-PV information
(versions and calls) to each downstream P from PV Deps v3
for future passes. Finally, at step (10, the algorithm appends
the downstream Ps from PV Deps v3 to the worklist. The
algorithm continues until the worklist becomes empty.

E. VPSS Calculation

After the propagation analysis, we obtain graph-based statis-
tics that reflect a vulnerability’s impact across the ecosystem.
However, these raw data are not readily interpretable or
actionable. To better profile this impact, we introduce the
Vulnerability Propagation Scoring System (VPSS)—a metric
that transforms propagation data into a standardized and mean-
ingful impact score for software supply chain vulnerabilities.



The design of VPSS follows three key principles: (1) Graph
awareness: The metric should capture both the breadth (num-
ber of affected downstream projects) and depth (propagation
chains) of a vulnerability in the dependency graph, reflecting
how widely and deeply it spreads. (2) Interpretability and
compatibility: VPSS must be easy to understand, ensuring
seamless integration into current vulnerability management
workflows and complementing static severity metrics such
as CVSS. (3) Time-awareness: As ecosystems evolve, the
metric should adapt to changes such as new dependencies or
patches. VPSS is thus a dynamic score, supporting longitudinal
tracking and timely risk assessment.

To apply these principles, VPSS transforms the results of
vulnerability propagation analysis into a normalized impact
score within the 0-10 range. As shown in Figure 1, the score
is divided into four tiers—low (0-4), medium (4-7), high (7—
9), and critical (9—10)—for intuitive risk interpretation.

VPSS captures both the scale and complexity of vulner-
ability propagation through two multiplicative components:
the Propagation Breadth Factor (PBF), which quantifies
how widely a vulnerability spreads via direct and transitive
downstream dependencies, and the Propagation Depth Factor
(PDF), which measures how deeply it penetrates the depen-
dency graph based on propagation chain length. These two
factors define the raw score:

VPSSuw = PBF x PDF (1)

The PBF component is computed from four normalized ra-
tios representing the proportion of affected downstream P and
PV entities, separately for direct and transitive dependencies.
Here, Total_P and Total PV denote the total number of Ps and
PVs in the target ecosystem, respectively, which are obtained
in the construction process of the dependency graph.

ro g — P, dir r _ Rrans
T Total P’ ™™ T Total P’
r - P ‘/dir r — P ‘/trans
P Total PV P T Total_PV

These values are aggregated using a weighted sum:
W = (w1 w2 w3 U}4)

X = (Tp_dir Tp_trans  Tpv_dir Tpv_lrans)

Generally, the relationship between these weights should be
wy > w3 > we > wy, Which is based on the following consid-
erations: Direct dependencies face greater risks than transitive
dependencies; P dependencies are more stable and reflect their
impact on the entire ecosystem, while PV dependencies may
be less stable due to version fluctuations.

To avoid concentration of PBF values in a narrow range,
we apply a logarithmic scaling with an amplification factor ~:

PBF =In (1 NIV WXT) @)

The PDF component is more straightforward, measuring
the average and maximum depth of propagation paths on the

dependency graph, where L, 1S a normalization constant
used to adjust the depth metric to a reasonable scale:

Lmax + Lavg

PDF =1+
2Lnorm

3)

The raw VPSS score is then normalized to the final 0-10
range using an exponential saturation function, where k is
the saturation parameter controlling the rate at which the raw
scores are converted to the final scores:

VPSS =10 x <1 — exp (—%)) 4)

In total, VPSS introduces seven parameters—w;, ws, ws,
Wyq, ¥, Lnorm, and k—whose values affect the scaling and
sensitivity of the score. Currently, we set these parameters
based on domain knowledge and empirical tuning. We leave
automating their setting based on statistical learning from
historical vulnerability data as future work.

Lastly, to reflect the evolving nature of software ecosystems,
VPSS is explicitly time-aware. As new software versions
are released and patches are applied, the downstream impact
of a vulnerability naturally diminishes. Particularly, when
calculating a time-aware VPSS score at ¢, all Ps and PVs
released later than ¢ will be excluded. Therefore, each VPSS
score corresponds to a specific snapshot in time and should
be represented in the form: <CVE, VPSS, Timestamp>.

IV. IMPLEMENTATION

We implement a prototype of our approach for the Java
Maven ecosystem in 2.3K lines of Python and 1K lines of Java
code. In this section, we present the implementation details.

Dependency Graph Construction. We download the
Maven repository index from the Maven Central Repository
(MCR) [64], and parse it with Apache Lucene [65] to extract
the PV information. Then, we download the POM files for PVs
in the index, and use Maven Model Builder [66] to extract the
dependency information from them. We follow prior work [9]
to filter out non-deployed dependencies whose scope are
not compile or runtime. Finally, we build the P-level
dependency graph with Python NetworkX [67], and store it
in a Neo4j graph database [68] for efficient querying.

Vulnerable Function Identification. For the filtering pro-
cess, we use the GPT-40-mini API provided by OpenAl [69]
to filter out the vulnerability-irrelevant VF candidates.

Vulnerability Propagation Analysis. We query the depen-
dency graph stored in the Neo4j database to obtain all the
downstream dependencies of specific P. To verify whether
a downstream PV imports an upstream PV, we use the
Java Dependency Analysis Tool (jdeps) tool provided by the
Open]DK [70] to analyze the JAR files. To quickly determine
whether an upstream method is called by in a downstream PV,
we utilize the ASM [71] to parse and search in the bytecode
of the JAR files. For CG-level analysis, we use Soot [72] to
analyze the bytecode of JAR files and generate call graphs.
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@@ -182,7 +198,7 @@ public String toString() { | @@ -711,14 +712,6 @@ private void delayedStop(final int wait...
if (query == null) { }

return path; }
} - public void setAdvisor:
return path + "2" + quer: - this.advisorySessi
return path + '?' + quer

}

@\ullable

ession(AMQSession amgSession ) L
= amgSession;

- public AMQSession getAdvisorySession() {
return this.advisorySession;

}
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Fig. 6: Excerpts of Patches for CVE-2021-{43795,26118}

V. EVALUATION

In this section, we evaluate the effectiveness of our approach
by answering the following research questions (RQs):

RQ1: How effective and scalable is our ecosystem-scale
vulnerability propagation analysis in identifying potentially
affected downstream software projects? (§ V-B)

RQ2: What statistical insights can be drawn from the VPSS
scores computed across real-world vulnerabilities? (§ V-C)

All the experiments are conducted on a server equipped
with an AMD EPYC 9184X 16-Core Processor and 500 GB
of physical memory, running Ubuntu 22.04.5 LTS on the host.

A. Dataset Preparation

To evaluate the effectiveness of our full-ecosystem vulnera-
bility propagation analysis, we build upon the dataset released
by Wu et al. [73], which contains over 800 vulnerabilities
in Maven. However, running our full analysis on all 800+
vulnerabilities would impose a heavy burden on MCR and sig-
nificantly increase computational cost. To balance evaluation
thoroughness and practical feasibility, we randomly sample
100 vulnerabilities as our experimental dataset.

With this dataset, we make the following enhancements.
First, in Wu er al.’s dataset, only one vulnerable version was
selected for each CVE, which can not fully capture the affected
version range. To address this limitation, we enhance the
dataset by incorporating the complete list of vulnerable ver-
sions for each CVE from the National Vulnerability Database
(NVD) [74]. Second, we identify inaccurate VF annotations in
the original dataset with our method in § III-C, and remove two
incorrect VFs. Figure 6 shows excerpts from the corresponding
patches [75], [76]. In CVE-2021-43795 [77], the only change
is replacing double quotes with single quotes around the
character ‘?’, without altering statement semantics. Thus, the
toString () method should not be considered a VF. In
CVE-2021-26118 [78], the removed Setter and Getter methods
for AMQSession only access this.advisorySession
and contain no vulnerability-related logic.

In summary, each entry in our refined dataset contains the
groupld and artifactld of the vulnerable project, an augmented
list of vulnerable versions, and a set of vulnerable functions.

B. Vulnerability Propagation Analysis

For each vulnerability in the dataset, we run our prototype
to assess its software supply chain impact in the Java Maven
ecosystem. We use the snapshot of MCR index on December
26, 2024, to construct the dependency graph. There are around
660K Ps in the dependency graph, much fewer than the 15M

PVs in MCR. During the analyzing process, we limit the
request frequency when downloading JAR files to avoid exces-
sive load on MCR. Excluding the time spent on downloading
the JAR packages, analyses for all 100 vulnerabilities are com-
pleted within one week. The completion itself demonstrates
that our approach is capable of vulnerability impact assessment
in a large-scale software ecosystem such as Maven.

To further evaluate the effectiveness of our hierarchical
worklist-based propagation algorithm, we collect data on the
number of Ps and PVs involved in vulnerability propagation
at different stages of the algorithm, as well as the length
of the longest propagation paths and the average length of
propagation paths on the dependency graph. Figure 7 presents
the average values of these data at different stages. For direct
and transitive P (Figure 7a) and PV dependencies (Figure 7b),
we obtain the average values before the whole pruning process
and after each pruning step. For dependency paths (Figure 7c),
we find that getting the average and longest path length before
pruning would take too long to compute, so we decide to only
look at the results after each pruning step.

We obtain the following findings from the analysis results:
First, the hierarchical pruning mechanism is quite effective,
as 97.8% Ps and 99.2% PVs on average are pruned out
during the vulnerability propagation analysis. Also, the length
of the longest path and average length decrease at least by
34.1% and 29.4%, respectively. In addition, all the statistics
in Figure 7 decrease in stages, confirming that every pruning
process makes its own contributions. Considering the time and
space cost of constructing CGs, our approach greatly reduces
the number of CGs that need to be built. Second, performing
vulnerability propagation analysis at the PV level based only
on project-declared dependencies will result in a large number
of false positives, as 94.9% PVs are pruned out with import-
based pruning and CG-level pruning.

C. VPSS Statistics

After the propagation analysis is completed for vulnerabili-
ties in our dataset, we collect results for VPSS calculation. As
mentioned in § III-E, we determine the parameter values based
on preliminary experiments and expert knowledge, aiming
to balance the influence of different components and ensure
that VPSS scores meaningfully reflect the propagation im-
pact—higher scores correspond to wider and deeper impact in
supply chains. Particularly, we empirically set the parameters
for VPSS computation as follows: wy = 5, we = 2.5, wg = 3,
and wy = 1.5, v = 500, Lyom = 10, and k£ = 0.5.

With such settings, for each vulnerability, we sample 24
time points at 30-day intervals starting from its disclosure date
in NVD (denoted as tg). We compute the VPSS score at each
point (o to ts3) to capture the evolution of the vulnerabil-
ity’s impact on software supply chains over approximately
24 months. To evaluate whether VPSS effectively captures
the temporal and distributional characteristics of vulnerability
propagation, we visualize its evolution and overall trends.
Specifically, we present Figure 8 to highlight VPSS trajectories
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of the top-10 most impactful CVEs, and Figure 9 to show the
distribution of VPSS scores across all 100 CVEs over time.

As shown in Figure 8, at ¢, the top-10 VPSS scores scale
from 7.35 to 4.68, reflecting risk levels from high to medium.
Nevertheless, the VPSS scores generally decline over time,
indicating a decreasing impact on software supply chains. This
trend can be attributed to two main factors: (1) as patched
versions are released, an increasing number of downstream
projects migrate to vulnerability-free versions; and (2) over
time, more projects emerge in the Maven ecosystem. Addi-
tionally, we observe an unusual increase in the VPSS score of
CVE-2016-3086 [28] from t( to t; (from 6.95 to 7.19). This
anomaly may be explained by delayed dependency updates in
downstream projects [14]. Lastly, under the current parameter
settings, none of the vulnerabilities in our dataset reach the
critical VPSS risk level, leaving room for potentially higher-
impact vulnerabilities beyond the scope of the current dataset.

Similar to the top-10 CVEs, in Figure 9, the distribution of
VPSS scores across all 100 CVEs shows a gradual decline in
both median and interquartile range over time. The boxplots
reveal that the majority in the dataset maintain relatively
low VPSS scores. Over time, the overall dispersion narrows
slightly, suggesting that the propagation effects of most vul-
nerabilities tend to stabilize or diminish within two years.
This aligns with the expected lifecycle of patch adoption and
ecosystem decoupling from vulnerable packages.

D. Case Study: CVE-2016-5393

In this section, we take CVE-2016-5393 [79] as an ex-
ample to illustrate how our framework captures vulnera-
bility propagation in software supply chains. CVE-2016-
5393 is a high-severity vulnerability (CVSS score: 8.8) in
org.apache.hadoop:hadoop-common. In affected versions of
Apache Hadoop, a remote attacker can potentially execute
commands with the privileges of the HDFS service. The VFs
include several command execution utilities in the Shell
class that are widely reused by other components in Hadoop.

Our analysis shows that CVE-2016-5393 exhibits substan-
tial propagation at the ecosystem level. At ¢y, the vulnerability
directly affected 228 Ps and transitively propagated to 154
others, impacting a total of 618 direct and 321 transitive PVs.
The resulting VPSS score reached 7.35—the highest among
all CVEs in our dataset. Over the course of 24 months, the

VPSS score exhibited a gradual decline to 6.86, indicating
a slow mitigation pace, which reflects long-tail dependency
retention in real-world ecosystems. Notably, the longest prop-
agation chain consists of 7 dependency hops, spanning critical
components of the Hadoop and Hive data processing stacks,
illustrating how a single low-level vulnerability can affect a
wide range of downstream analytical and database compo-
nents. The average path length also increased slightly over
time, reaching 2.33 by ¢,3, indicating deepening propagation.

VI. DISCUSSION

A. Accuracy of Propagation Analysis

Several factors affect the accuracy of our vulnerability
propagation analysis. First, vulnerable versions from public
databases such as NVD may be incomplete or inaccurate [80],
leading to false positives or negatives in propagation results.
Recent work [81]-[83] proposes version identification methods
that could be integrated into our framework. Second, although
we enhance patch-based VF identification, real-world security
patches occasionally include unrelated but substantial code
changes, complicating accurate VF extraction. These cases
require a deeper understanding of vulnerability root causes and
control-flow analysis to avoid false positives. We leave more
precise VF identification as future work. Third, to achieve
ecosystem-scale analysis, we rely on static techniques such
as import analysis and CG construction. While efficient and
broadly applicable, static analysis may miss paths involving
dynamic features like dynamic class loading or reflection,
causing false negatives. Nevertheless, our modular framework
allows static analysis advances to be easily incorporated, im-
proving accuracy without altering the core propagation logic.

B. Parameter Setting of VPSS

In designing the VPSS framework (§ III-E), we introduce
a set of configurable parameters to enhance its flexibility and
adaptability across different analytical contexts. In the evalu-
ation, we instantiate these parameters with fixed values based
on domain expertise (§ V-C). These settings are explicitly
provided to ensure the reproducibility of our results. While
this manual configuration suffices for our work, a promising
direction for future work is to explore data-driven approaches
for parameter tuning. For example, one could employ sta-
tistical optimization or learn optimal settings from historical
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vulnerability propagation data, enabling more adaptive and
context-aware scoring across diverse software ecosystems.

C. Application of VPSS

The VPSS framework offers three key applications. First,
after a vulnerability is disclosed, VPSS enables quantification
of its impact across software supply chains. It can be used
with CVSS to provide more actionable and early-warning
signals. Second, VPSS can be integrated into vulnerability
management workflows to enhance the prioritization process,
ensuring that remediation efforts focus on weaknesses with the
greatest propagation risk. Finally, by translating the complex
software interdependencies into a standardized score, VPSS
facilitates the quantification of software supply chain risk for
cyber-insurance underwriting [84], supporting more granular
and data-driven policy design and premium calculation.

VII. RELATED WORK
A. Vulnerability Propagation Analysis

Existing work on vulnerability propagation spans Java,
JavaScript, and Python ecosystems: In Java, Wu et al. [14]
and Mir et al. [15] perform CG-level reachability analyses
on global and subset Maven graphs; Ponta et al. [5], [8], [9],
[12], [32] combine static and dynamic methods for application-
level VF detection; Zhang et al. [17] determine whether a
given project is threatened by vulnerabilities by establishing
and querying a vulnerable API database; others parse POM

files for one-hop dependency analyses [4], [6], [7] or build
dependency graphs for direct and transitive analyses [10],
[11], [13], [16], [18]. In JavaScript, empirical studies trace
client-side library usage and vulnerability inclusions [19], npm
direct dependencies [20], and ecosystem-wide propagation
via dependency graphs [21]-[23]. In Python, Ma et al. [24]
propose a two-stage impact estimation for scientific projects.

B. Vulnerability Assessment

In recent years, researchers have proposed several ap-
proaches to improving existing assessments and conducting
novel assessments [85]. Among them, some works aim to
automatically predict the CVSS scores for vulnerabilities [41]-
[46]; some propose methods to automate the Common Weak-
ness Enumeration (CWE) classification task [47]-[51]. In ad-
dition to the widely adopted assessments, to better understand
and profile vulnerabilities, researchers have begun to study
more characteristics of them. One active area is exploitation
prediction [52]-[59], which adopts data-driven techniques to
estimate the likelihood that a vulnerability will be exploited
in the wild. For instance, the Exploit Prediction Scoring
System (EPSS) managed by FiRST provides probability scores
between 0 and 1 for vulnerabilities as a daily estimate of
exploitation being observed over the next 30 days [57].

VIII. CONCLUSION

In this paper, we fill two key gaps in software supply
chain security: the lack of accurate whole-ecosystem vulner-
ability propagation analysis and the absence of quantitative
indicators for assessing vulnerability propagation impact. We
propose a novel framework that combines a hierarchical
worklist-based algorithm with multi-level pruning to enable
scalable, call-graph-level propagation analysis across direct
and transitive dependencies. To quantify propagation impact,
we introduce the Vulnerability Propagation Scoring System
(VPSS), a graph-based metric capturing both propagation
breadth and depth over time. We implement our approach
for the Java Maven ecosystem and validate it on real-world
CVEs, demonstrating the effectiveness of our analysis and the
expressiveness of VPSS in assessing supply chain risk.
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