
ar
X

iv
:2

50
6.

01
32

5v
1

 [
cs

.C
R

]
 2

 J
un

 2
02

5

Understanding the Identity-Transformation Approach in
OIDC-Compatible Privacy-Preserving SSO Services

Jingqiang Lin
‡
, Baitao Zhang

‡
, Wei Wang

‡
, Quanwei Cai

¶
, Jiwu Jing

♦
, and Huiyang He

‡

‡ School of Cyber Security, University of Science and Technology of China

¶ Beijing Zitiao Network Technology Co., Ltd, China

♦ School of Cryptology, University of Chinese Academy of Sciences

Abstract

OpenID Connect (OIDC) enables a user with commercial-off-the-

shelf browsers to log into multiple websites, called relying parties
(RPs), by her username and credential set up in another trusted

web system, called the identity provider (IdP). Identity transforma-
tions are proposed in UppreSSO to provide OIDC-compatible SSO

services, preventing both IdP-based login tracing and RP-based

identity linkage. While security and privacy of SSO services in Up-

preSSO have been proved, several essential issues of this identity-

transformation approach are not well studied. In this paper, we

comprehensively investigate the approach as below. Firstly, several

suggestions for the efficient integration of identity transforma-

tions in OIDC-compatible SSO are explained. Then, we uncover the

relationship between identity transformations in SSO and oblivi-

ous pseudo-random functions (OPRFs), and present two variations

of the properties required for SSO security as well as the privacy

requirements, to analyze existing OPRF protocols. Finally, new iden-

tity transformations different from those designed in UppreSSO,

are constructed based on OPRFs, satisfying different variations of

SSO security requirements.

To the best of our knowledge, this is the first time to uncover the

relationship between identity transformations in OIDC-compatible

privacy-preserving SSO services and OPRFs, and prove the SSO-

related properties (i.e., key-identifier freeness, RP designation and

user identification) of OPRF protocols, in addition to the basic

properties of correctness, obliviousness and pseudo-randomness.

1 Introduction

Single sign-on (SSO) [32, 33, 57] enables a user to visit multiple

websites, called relying parties (RP), by her username and credential

set up in another trusted web system, called the identity provider
(IdP). OpenIDConnect (OIDC) [57] is themost popular SSO protocol

in the Internet, for users to access the services by commercial-off-

the-shelf (COTS) browsers without a plug-in or extension.

Such SSO services raise the concerns on user privacy, because

the original designs facilitate interested parties to track a user. For

instance, when requesting identity tokens from an IdP to visit an RP,

an OIDC user submits the target RP’s identity, so that the curious

IdP could track the user’s all login activities [22, 23, 29], called IdP-
based login tracing. Meanwhile, if a user visits different RPs with

tokens binding an identical user identity, colluding RPs could link

the accounts across these RPs to profile this user [27, 29, 50], called

RP-based identity linkage.
Several solutions provide OIDC-compatible SSO services [22, 23,

27–31, 43, 61] for a user with COTS browsers, while preventing pri-

vacy leakage (i.e., IdP-based login tracing, RP-based identity linkage,

or both). However, none of them except UppreSSO [29, 30] offer all

describes properties. Some of these schemes prevent only one pri-

vacy threat [22, 23, 27, 31, 43], and the others introduce extra trusted

servers (or components) in addition to the honest-but-curious IdP

[28, 61] or impractical computation costs [31]. Compared with them,

UppreSSO proposes an identity-transformation approach to pro-

tect users against these two privacy risks, without trusted servers

more than an honest-but-curious IdP. When a user visits an RP in

UppreSSO, ephemeral pseudo-identities are generated for the visited
RP and the user, and signed in an identity token, which enables the

user to log into the target RP as her permanent account at this RP.
While the identity-transformation approach has been described,

proved, implemented, and evaluated in the implicit flow of OIDC

[29, 30], and integrated in the authorization code flow [35], there

are still essential issues not well studied. Firstly, the integration of

identity transformations in OIDC-compatible SSO sometimes intro-

duces unnecessary calculations [29, 35] or extra trusted servers [35].

In this paper we present several suggestions for the more efficient

integration. Moreover, the suggestion for an RP to accept identity

tokens efficiently, inspires us to analyze variations of the properties

required for secure SSO, i.e., user identification and RP designation,
either with or without checking the RP’s pseudo-identity in signed

tokens. Secondly, we construct more identity transformations qual-

ified for OIDC-compatible privacy-preserving SSO. The relation-

ship between the identity-transformation approach and oblivious

pseudo-random functions (OPRFs) is uncovered. This relationship

then helps us to analyze existing OPRF protocols, following the

variations of user identification and RP designation as well as the

properties required for privacy. Finally, based on the analysis results,

new identity transformations are constructed for OIDC-compatible

privacy-preserving SSO, satisfying different variations of security

requirements.

To the best of our knowledge, this is the first time to (a) un-
cover the relationship between identity transformations in OIDC-

compatible privacy-preserving SSO services and OPRFs, and (b)
prove the SSO-related properties of OPRFs (i.e., key-identifier free-

ness, RP designation and user identification), which are indepen-

dent of the basic OPRF properties of correctness, obliviousness and

pseudo-randomness.

The rest of this paper is organized as follows. Section 2 briefly

describes the identity-transformation approach. Section 3 compares

existing privacy-preserving SSO schemes and presents suggestions

for the efficient integration of identity transformations in SSO sys-

tems. We construct and prove new identity transformations in Sec-

tion 4, and discuss related work in Section 5. Section 6 concludes

this paper.

https://arxiv.org/abs/2506.01325v1

2 Identity Transformations in UppreSSO

This section describes the identity-transformation approach pro-

posed in UppreSSO [29, 30], implementing privacy-preserving SSO

services accessed from COTS browsers. Only the fundamental de-

signs of this approach are included in this section, and more details

can be found in [30].

2.1 System Model and Initialization

An OIDC-compatible SSO system consists of several RPs, a set of

users, and an honest-but-curious IdP signing identity tokens for a

user to visit these RPs. Malicious adversaries could fully control

some RPs and users, attempting to break the security or privacy

guarantees for honest users and RPs.

Authenticated and confidential links are established between

honest entities, and the cryptographic primitives are secure. The

software stack of an honest entity is correctly implemented to

deliver messages to receivers as expected.

E is an elliptic curve over a finite field F𝑞 . 𝐺 is a generator on

E, and the order of 𝐺 is a prime 𝑛. Each user registers at the IdP

with a unique identity, denoted as 𝐼𝐷𝑈 = 𝑢 ∈ Z𝑛 , and each RP is

assigned a unique identity 𝐼𝐷𝑅𝑃 = [𝑟]𝐺 , where [𝑟]𝐺 denotes the

addition of 𝐺 on the elliptic curve 𝑟 times.

During the registrations 𝑢 and 𝑟 are randomly selected in Z𝑛 by

the IdP, and kept unknown to users and RPs. 𝐼𝐷𝑈 is processed only

by the IdP internally and never enclosed in any messages, and 𝑟 is

not used any more after the registration.

Finally, the user with 𝐼𝐷𝑈 = 𝑢 is automatically assigned an

account 𝐴𝑐𝑐𝑡 = F𝐴𝑐𝑐𝑡∗ (𝐼𝐷𝑈 , 𝐼𝐷𝑅𝑃) = [𝐼𝐷𝑈]𝐼𝐷𝑅𝑃 = [𝑢𝑟]𝐺 at the

RP with 𝐼𝐷𝑅𝑃 = [𝑟]𝐺 .

2.2 The Implicit Flow of OIDC with Identity

Transformations

In addition to F𝐴𝑐𝑐𝑡∗ (), the following functions are defined [29, 30]:
• 𝑃𝐼𝐷𝑅𝑃 = F𝑃𝐼𝐷𝑅𝑃

(𝐼𝐷𝑅𝑃 , 𝑡) = [𝑡]𝐼𝐷𝑅𝑃 = [𝑡𝑟]𝐺 , where 𝑡 is a
random number in Z𝑛 .

• 𝑃𝐼𝐷𝑈 = F𝑃𝐼𝐷𝑈
(𝐼𝐷𝑈 , 𝑃𝐼𝐷𝑅𝑃) = [𝐼𝐷𝑈]𝑃𝐼𝐷𝑅𝑃 = [𝑢𝑡𝑟]𝐺 .

• 𝐴𝑐𝑐𝑡 = F𝐴𝑐𝑐𝑡 (𝑃𝐼𝐷𝑈 , 𝑡) = [𝑡−1]𝑃𝐼𝐷𝑈 = [𝑡−1𝑢𝑡𝑟]𝐺 = [𝑢𝑟]𝐺 =

F𝐴𝑐𝑐𝑡∗ (𝐼𝐷𝑈 , 𝐼𝐷𝑅𝑃).
F𝐴𝑐𝑐𝑡∗ () determines a user’s account unique at every RP, while

F𝑃𝐼𝐷𝑅𝑃
() and F𝑃𝐼𝐷𝑈

() transform an RP’s identity and a user’s

identity into two pseudo-identities in a login to prevent IdP-based

login tracing and RP-based identity linkage, respectively. Finally,

F𝐴𝑐𝑐𝑡 () enables an RP to derive a user’s permanent account based
on ephemeral 𝑃𝐼𝐷𝑈 , equal to the one determined by F𝐴𝑐𝑐𝑡∗ ().

The implicit flow of OIDC with identity transformations works

as follows.

1. When attempting to access protected resources at an RP, a

user prepares her user agent by downloading scripts. The

trusted part of user-agent scripts is downloaded from the

honest-but-curious IdP, and the other script is downloaded

from the visited RP to forward identity tokens.

2. The user obtains 𝐼𝐷𝑅𝑃 of the target RP, randomly selects

𝑡 ∈ Z𝑛 , and calculates 𝑃𝐼𝐷𝑅𝑃 = F𝑃𝐼𝐷𝑅𝑃
(𝐼𝐷𝑅𝑃 , 𝑡). Then, she

requests an identity token for 𝑃𝐼𝐷𝑅𝑃 from the IdP, and 𝑡 is

sent to the RP.

3. The IdP authenticates the user, if not authenticated yet. It

then calculates 𝑃𝐼𝐷𝑈 = F𝑃𝐼𝐷𝑈
(𝐼𝐷𝑈 , 𝑃𝐼𝐷𝑅𝑃), signs an iden-

tity token binding 𝑃𝐼𝐷𝑅𝑃 and 𝑃𝐼𝐷𝑈 , and returns this token

to the user.

4. The user forwards the signed token to the visited RP. The RP

verifies the received token, extracts 𝑃𝐼𝐷𝑈 from it, calculates

𝐴𝑐𝑐𝑡 = F𝐴𝑐𝑐𝑡 (𝑃𝐼𝐷𝑈 , 𝑡), and allows the user to log in as𝐴𝑐𝑐𝑡 .

We particularly note some issues [29, 30]. In UppreSSO user

operations are implemented on a COTS browser with two scripts

(or windows), so it works compatibly in OIDC services with pop-

up UX [26, 46, 59], but not redirect UX. In these operations, the

trapdoor 𝑡 is kept secret to the honest-but-curious IdP, and known

to only the user and the visited RP. The target RP is designated,

as 𝑃𝐼𝐷𝑅𝑃 is calculated based on 𝐼𝐷𝑅𝑃 of the visited RP (but not

any other RP). This target is ensured by a signed RP certificate

binding 𝐼𝐷𝑅𝑃 and the RP’s endpoint to receive identity tokens. The

RP certificate is verified in browsers, and the token is forwarded to

only the endpoint specified in this certificate.

After verifying the IdP’s signature on a received token, an RP

does not check whether 𝑃𝐼𝐷𝑅𝑃 in this token equals to [𝑡]𝐼𝐷𝑅𝑃 or

not. This efficient design does not result in attacks, because an

unmatching token results in a meaningless account corresponding
to a non-existing user, which has been proved [30].

2.3 Security and Privacy of SSO Services

This section briefly explains the properties related to security and

privacy, which have been proved [30].

2.3.1 Security. As authenticity, confidentiality and integrity of

identity tokens in SSO services are ensured by secure communi-

cations (i.e., HTTPS among entities and security mechanisms of

COTS browsers [26, 29, 30, 46]) and digital signatures (i.e., signed

identity tokens and RP certificates [29, 30]), the following suffi-

cient conditions of secure SSO services are proved with the identity

transformations [30], namely user identification and RP designation,
under the adversarial model including (a) an honest-but-curious

IdP and (b) malicious RPs colluding with users.

In UppreSSO an identity token, denoted as 𝑇𝐾 , is signed by the

IdP to bind 𝑃𝐼𝐷𝑅𝑃 = [𝑡]𝐼𝐷𝑅𝑃 and 𝑃𝐼𝐷𝑈 = [𝐼𝐷𝑈]𝑃𝐼𝐷𝑅𝑃 .

User Identification: At the designated RP, 𝑇𝐾 identifies only the
user who requests this token from the IdP. That is, based on 𝑇𝐾 , the
designated honest RP will derive only the account corresponding to
the user requesting 𝑇𝐾 .
RP Designation:𝑇𝐾 designates the target RP, and based on𝑇𝐾 only
the designated (honest) RP derives meaningful accounts corresponding
to registered users. That is, at any honest RPs other than the designated
one, no meaningful account is derived based on 𝑇𝐾 .

As described in Section 2.2, provided that a user selects 𝑡 , cal-

culates 𝑃𝐼𝐷𝑅𝑃 = [𝑡]𝐼𝐷𝑅𝑃 , and sends 𝑡 to the target RP, once RP

designation is ensured as above, an (honest) RP does not need to

check whether 𝑃𝐼𝐷𝑅𝑃 enclosed in the token equals to [𝑡]𝐼𝐷𝑅𝑃 be-

cause no meaningful account will be derived at any honest RPs

other than the designated one.

However, if an RP selects 𝑡 , calculates 𝑃𝐼𝐷𝑅𝑃 = [𝑡]𝐼𝐷𝑅𝑃 , and

sends 𝑃𝐼𝐷𝑅𝑃 to users, impersonation attacks happen as below, even

when an (honest) RP checks 𝑃𝐼𝐷𝑅𝑃 in received tokens. For example,

a malicious user receives 𝑃𝐼𝐷𝑅𝑃 when visiting an honest RP. This

Table 1: OIDC-compatible Privacy-preserving SSO Solutions

OIDC w/ PPID Miso UP-SSO BrowserID Spresso Poidc/AIF UppreSSO

IdP-based Login Tracing ⊥ √ √ √ √ √ √

RP-based Identity Linkage

√ √ √ ⊥ ⊥ ⊥3
√

Extra Trusted Server

√ ⊥ ⊥1
√ ⊥2

√ √
√
means a privacy threat is prevented or extra trusted servers more than an honest IdP are eliminated, and ⊥ means not.

1. Although UP-SSO [28] does not introduce an independent trusted server, it requires a fully-trusted component (i.e., Intel SGX enclave)

on the user side.

2. In Spresso [23] an extra trusted Forwarder distributes user-agent scripts to users, because a malicious IdP is assumed and then scripts

downloaded from this IdP are potentially malicious (but in other schemes an honest-but-curious IdP is assumed).

3. A variation of Poidc [31] proposes to also hide a user’s identity in the commitment and prove this to the IdP in zero-knowledge, so

RP-based identity linkage is also prevented theoretically; but it takes seconds to generate such a zero-knowledge proof even on a

powerful server [18, 48], which is impracticable for an SSO user agent.

malicious user does not request identity tokens for 𝑃𝐼𝐷𝑅𝑃 from

the IdP, but forwards 𝑃𝐼𝐷𝑅𝑃 to some colluding RP. Once an honest

user visits this colluding RP, it immediately sends 𝑃𝐼𝐷𝑅𝑃 to this

honest victim to obtain an identity token, shared among colluding

adversaries. Finally, the malicious user exploits this token binding

𝑃𝐼𝐷𝑅𝑃 , to successfully log in as the honest victim’s account at the

honest RP. In this attack, the honest RP is not the designated one,

because 𝑃𝐼𝐷𝑅𝑃 is not calculated based on its 𝐼𝐷𝑅𝑃 .

A naive prevention against such impersonations in the above

procedure is to additionally check 𝑃𝐼𝐷𝑅𝑃 = [𝑡]𝐼𝐷𝑅𝑃 by the user,

who receives 𝑃𝐼𝐷𝑅𝑃 and also 𝑡 from the visited RP. Thus, 𝑃𝐼𝐷𝑅𝑃 is

calculated repeatedly: The RP selects 𝑡 , calculates 𝑃𝐼𝐷𝑅𝑃 = [𝑡]𝐼𝐷𝑅𝑃 ,

and sends them to the user, who checks whether 𝑃𝐼𝐷𝑅𝑃 equals to

[𝑡]𝐼𝐷𝑅𝑃 by calculating [𝑡]𝐼𝐷𝑅𝑃 again.
1

The calculation of 𝑃𝐼𝐷𝑅𝑃 = [𝑡]𝐼𝐷𝑅𝑃 only by users [30], prevents

such impersonation attacks effectively and efficiently. This results in

no attacks, because (a) RP designation is ensured as above with the

proposed identity transformations, which has been proved [30], and

(b) as 𝑃𝐼𝐷𝑅𝑃 = [𝑡]𝐼𝐷𝑅𝑃 is calculated by the user requesting identity

tokens from the IdP, the RP with 𝐼𝐷𝑅𝑃 is designated accordingly.

2.3.2 Privacy. The identity transformations provide IdP untrace-
ability against IdP-based login tracing by the honest-but-curious

IdP, and RP unlinkability against RP-based identity linkage by col-

luding RPs [29, 30].

Among the messages received by an honest-but-curious IdP in

UppreSSO, only 𝑃𝐼𝐷𝑅𝑃 is calculated based on 𝐼𝐷𝑅𝑃 , while RP-based

identity linkage is launched by malicious RPs colluding with some

users. So the following privacy-related properties are defined.

IdP Untraceability: The IdP cannot distinguish 𝑃𝐼𝐷𝑅𝑃 from a uni-
formly random variable. That is, the IdP learns nothing on the visited
RP from 𝑃𝐼𝐷𝑅𝑃 .
RP Unlinkability: Malicious RPs colluding with users, cannot link
any login initiated by an honest user visiting a malicious RP, to any
subset of logins visiting any other colluding RPs by honest users. That
is, logins visiting different malicious RPs by any honest user, are
indistinguishable to these colluding RPs.

1
This inefficient design was originally presented in the preliminary version of Up-

preSSO [29] in 2022, and then inherited by ArpSSO [35] in 2024. It is improved later

[30], and this unnecessary repeated calculation of 𝑃𝐼𝐷𝑅𝑃 is finally eliminated in the

integration of identity transformations.

3 OIDC-Compatible Privacy-Preserving SSO

We compare existing SSO solutions with privacy protections, and

investigate the integration of identity transformations in OIDC.

3.1 Comparison

Table 1 compares existing privacy-preserving SSO solutions. We do

not consider identity federation [2, 37, 38, 49, 54, 62] which requires

a browser plug-in or extension.

Pairwise pseudonymous identifiers (PPIDs) [27] protect user

privacy against colluding RPs. An IdP assigns a unique PPID for a

user at every RP and encloses it in identity tokens, so that colluding

RPs cannot link accounts across these RPs. IdP-based login tracing

still exists because the IdP needs the visited RP’s identity to set

PPIDs. UP-SSO [28] runs a trusted Intel SGX enclave on the user

side, which is remotely attested by the IdP and then receives a secret

to generate PPIDs for a user. Miso [61] decouples the calculation of

PPIDs from an IdP, and introduces a fully-trusted server based on

Intel SGX, called Mixer, to calculate PPIDs based on 𝐼𝐷𝑈 , 𝐼𝐷𝑅𝑃 and

a secret, so that it prevents also IdP-based login tracing for 𝐼𝐷𝑅𝑃 is

disclosed to the Mixer but not the IdP. However, in Miso the Mixer

could track a user’s all login activities.

Some schemes prevent IdP-based login tracing but are vulnerable

to RP-based identity linkage, due to unique user identities in identity

tokens. In BrowserID [22] an IdP issues a “user certificate” binding

a user identity to an ephemeral key pair. The user then uses the

corresponding private key to sign an “identity assertion” binding

the target RP’s identity, and sends both of them to the RP. In Spresso

an RP creates a one-time tag (or pseudo-identity) for each login

[23], while in Poidc [31] or AIF [43] a user requests an identity

token by sending a hash commitment on the target RP’s identity,

which are bound in the token with the user’s unique identity.

Compared with other schemes, the identity-transformation ap-

proach proposed in UppreSSO [29, 30] prevents both IdP-based

login tracing and RP-based identity linkage, and requires no trusted

server more than the honest-but-curious IdP. The experimental

performance evaluation with COTS browsers demonstrated its rea-

sonable overheads. Besides, ArpSSO shifted the identity transfor-

mations on elliptic curves [29] into a finite field F𝑞 , and integrated

them in the authorization code flow of OIDC. Thus, IdP-based login

tracing and RP-based identity linkage are prevented in ArpSSO by

the integrated identity transformations.
2
However, it introduces

extra trusted servers to distribute and verify the user-agent scripts,

which are unnecessary due to the common honest-but-curious

assumptions of the IdP in ArpSSO.

3.2 Integrating Identity Transformations in

OIDC Services

While unnecessity of 𝑃𝐼𝐷𝑅𝑃 checking by an RP is proved in the

implicit flow [30] (see Section 2.3.1), it is applicable to the integra-

tion of identity transformations in the authorization code flow. We

explain this applicability by improving ArpSSO [35] as below.

ArpSSO shifts the identity transformations into a finite field,

where 𝐼𝐷𝑈 = 𝑢, 𝐼𝐷𝑅𝑃 = 𝑔𝑟 , 𝑃𝐼𝐷𝑅𝑃 = 𝐼𝐷
𝑡1

𝑅𝑃
= 𝑔𝑟𝑡1

and 𝑃𝐼𝐷𝑈 =

𝑃𝐼𝐷𝑢
𝑅𝑃

= 𝑔𝑟𝑢𝑡1
in F𝑞 . Meanwhile, it employs PS signing [55] to

verify that 𝑃𝐼𝐷𝑅𝑃 is calculated based on the visited RP’s identity:

During the registration an RP obtains a PS signature (𝑔𝑟 , 𝑔𝑟 (𝑥+𝑦1D))
for its domain D, where (𝑥,𝑦1) is the IdP’s PS signing key.

Let 𝜎2 = 𝑔𝑟 (𝑥+𝑦1D)
, and the login flow in ArpSSO is described as

below. It is worth nothing that, 𝑡1 and 𝑡2 in this description, corre-

spond to𝑘 and 𝑡 in the original expressions in [35], respectively. The

second random number 𝑡2, is generated for RP anonymous authen-

tication [62] to the IdP in the retrieval of tokens in the authorization

code flow, unrelated to the identity transformations.

1. When visited by a user, an RP randomly selects 𝑡1, 𝑡2 ∈ F𝑞 ,

and calculates (𝑔𝑟𝑡1 , (𝜎2𝑔
𝑟𝑡2)𝑡1) which is sent to the user

along with 𝑡2. Moreover, (𝑔𝑟𝑡1 , (𝜎2𝑔
𝑟𝑡2)𝑡1) is kept by the RP

for the subsequent authentication to the IdP.

3. The user calculates 𝑣 = (1/𝑔𝑟𝑡1)𝑡2
and𝑤 = 𝑣 (𝜎2𝑔

𝑟𝑡2)𝑡1
, and

verifies whether (𝑔𝑟𝑡1 ,𝑤) is a valid PS signature forD, which

is the visited domain.

4. The user requests an identity token for 𝑃𝐼𝐷𝑅𝑃 = 𝑔𝑟𝑡1
, and

receives an authorization code. This authorization code is

forwarded to the RP, and used to retrieve the token binding

𝑃𝐼𝐷𝑅𝑃 = 𝑔𝑟𝑡1
and 𝑃𝐼𝐷𝑈 = 𝑃𝐼𝐷𝑢

𝑅𝑃
= 𝑔𝑢𝑟𝑡1

. The RP finally

allows the user to log in as 𝐴𝑐𝑐𝑡 = (𝑔𝑢𝑟𝑡1)1/𝑡1 = 𝑔𝑢𝑟 .

In the above procedure, 𝑃𝐼𝐷𝑅𝑃 = 𝐼𝐷
𝑡1

𝑅𝑃
= 𝑔𝑟𝑡1

is first calculated

by the visited RP and later checked actually by the user calculating

𝑣 = (1/𝑔𝑟𝑡1)𝑡2
and𝑤 = 𝑣 (𝜎2𝑔

𝑟𝑡2)𝑡1
. We improve it to eliminate the

unnecessary 𝑃𝐼𝐷𝑅𝑃 checking by an RP as follows.

1. The RP directly sends (𝑔𝑟 , 𝜎2) to the user.

2. After verifying that (𝑔𝑟 , 𝜎2) is a valid PS signature forD, the

user randomly selects 𝑡1, calculates 𝑔
𝑟𝑡1

, and sends both 𝑔𝑟𝑡1

and 𝑡1 to the RP.

3. The RP randomly selects 𝑡2, and calculates only (𝜎2𝑔
𝑟𝑡2)𝑡1

to

construct (𝑔𝑟𝑡1 , (𝜎2𝑔
𝑟𝑡2)𝑡1) for the subsequent anonymous

authentication to the IdP.

4. An identity token binding 𝑃𝐼𝐷𝑅𝑃 = 𝑔𝑟𝑡1
and 𝑃𝐼𝐷𝑈 = 𝑔𝑢𝑟𝑡1

is requested by the user and signed by the IdP. This token

allows the user to log in.

Thus, 𝑃𝐼𝐷𝑅𝑃 = 𝑔𝑟𝑡1
is calculated only by the user. We eliminate

the calculations of 𝑣 = (1/𝑔𝑟𝑡1)𝑡2
and 𝑤 = 𝑣 (𝜎2𝑔

𝑟𝑡2)𝑡1
, while the

security and privacy guarantees are still strictly provided [30].

2
In ArpSSO [35] the identity transformations of 𝐼𝐷𝑅𝑃 -𝑃𝐼𝐷𝑅𝑃 and 𝐼𝐷𝑈 -𝑃𝐼𝐷𝑈 are

called RP anonymization and user identity mix-up, respectively.

Next, to efficiently integrate identity transformations in the au-

thorization code flow, in the retrieval of identity tokens, we rec-

ommend (a) the widely-used OIDC option of proof key for code

exchange (PKCE) [56], and (b) anonymous credentials such as ring

signature [5] and privacy-pass token [14, 60], to serve for RP anony-

mous authentication to the IdP. In every login an RP generates a

PKCE code verifier and hashes it to a challenge. This PKCE chal-

lenge is sent to the user, and forwarded to the IdP. Then, to retrieve

a token from the IdP, the RP submits an authorization code and

the verifier over anonymous networks [16, 58], both of which are

verified by the IdP, after anonymously authenticated to the IdP (i.e.,

along with a ring signature or privacy-pass token). Then, the target

RP anonymously retrieves the token, and any other registered RP

cannot obtain the token from the IdP, even if it intercepts the autho-

rization code. Ring signature or privacy-pass token is much more

efficient than the zero-knowledge proofs [62] adopted in ArpSSO.

Alternative to RP certificates [29, 30] and PS signatures [55] sent

from RPs, hashing-to-elliptic-curves [20] is proposed to establish

the relationship between 𝐼𝐷𝑅𝑃 and the visited RP [29, 30] with no

cost of messages transmitted. However, the design of RP certifi-

cates can be utilized without extra messages transmitted: 𝐼𝐷𝑅𝑃 is

enclosed in an RP’s HTTPS certificate, signed by a trusted certifica-

tion authority (CA) and used in secure communications between

the RP and users. Then, the user-agent scripts directly obtain this

certificate [44] and then 𝐼𝐷𝑅𝑃 . This method does not introduce

extra trusted entities, because HTTPS is adopted in SSO services

and the CA has been implicitly trusted by all users.

The above suggestions help to efficiently integrate identity trans-

formations in OIDC services, while some have been applied or

discussed but not clearly explained.

4 Constructing Identity Transformations Based

on OPRFs

4.1 Basic Properties of OPRFs

Given a pseudo-random function 𝑧 = PR(𝑘, 𝑥), where𝑘 is the secret
key held by an OPRF server and 𝑥 is a private input fromOPRF users,

the OPRF server and users cooperate as below [10, 24, 34, 39, 42, 51]:

1. The server sends a parameter 𝜔 . This step is optional.

2. An OPRF user blinds her input 𝑥 into 𝑥 ′ = BL(𝑥, 𝑡, 𝜔) using
a random number 𝑡 , and sends 𝑥 ′ to the OPRF server.

3. The OPRF server calculates the output as 𝑧′ = OPR(𝑘, 𝑥 ′).
4. On receiving 𝑧′, the user unblinds it into 𝑧 = UBL(𝑧′, 𝑡, 𝜔).

This formalization covers typical protocols, as shown in Table 2:

(a) HashDH [24, 34], (b) the NR OPRF using homomorphic encryp-

tion (HE) [1, 39], denoted as NRHE in this paper, (c) the DY OPRF

using HE [6, 42, 51], denoted as DYHE, and (d) 2HashRSA [39].

An OPRF protocol satisfies the basic properties [10, 24]:

• Correctness: For any 𝑥 , 𝑘 , 𝑡 , and 𝜔 ,UBL(𝑧′, 𝑡, 𝜔) is equal
to PR(𝑘, 𝑥).
• Pseudo-Randomness: In an OPRF user’s view, 𝑧 is indistin-

guishable from uniformly random variables, and she learns

nothing on 𝑘 .

• Obliviousness: The OPRF server learns nothing on 𝑥 .

Table 2: Functions and Parameters of Typical OPRFs

HashDH NRHE DYHE 2HashRSA

𝑧 = PR(𝑘, 𝑥)
𝑘

$← F𝑞

𝑥
$← F𝑞

𝑧 = 𝑥𝑘

𝑘 = (𝑎0, 𝑎1, · · · , 𝑎𝑙)
$← F𝑙+1

𝑞

𝑥 = 𝑥1 · · · 𝑥𝑙 ∈ {0, 1}𝑙

𝑧 = 𝑔𝑎0

∏𝑙
𝑖=1

𝑎
𝑥̃𝑖
𝑖

𝑘
$← F𝑞

𝑥
$← F𝑞

𝑧 = 𝑔1/(𝑘+𝑥)

(𝑁, 𝑒, 𝑘)⇐𝑅𝑆𝐴()
𝑥

$← Z𝑁

𝑧 = 𝐻2 (𝑥, 𝑥𝑘)

𝜔 -

(𝑟1, · · · , 𝑟𝑛)
$← F𝑙

𝑞

𝜔 = 𝑔𝑎0

∏𝑙
𝑖=1

1/𝑟𝑖
(𝑠𝑘, 𝑝𝑘)⇐𝐻𝐸 ()
𝜔 = 𝐸𝑛𝑐 (𝑘) 𝜔 = (𝑁, 𝑒)

𝑥 ′ = BL(𝑥, 𝑡, 𝜔) 𝑡
$← F𝑞

𝑥 ′ = 𝑥𝑡

𝑡 = (𝑠𝑘, 𝑝𝑘)⇐𝐻𝐸 ()
𝑚𝑖 = (1 − 𝑥𝑖 , 𝑥𝑖)

𝑥 ′ = {𝐸𝑛𝑐 (𝑚𝑖=1,· · · ,𝑙)}
𝑡

$← F𝑞

𝑥 ′ = (𝜔𝐸𝑛𝑐 (𝑥))𝑡
𝑡

$← Z𝑁

𝑥 ′ = 𝑥𝑡𝑒

𝑧′ = OPR(𝑘, 𝑥 ′) 𝑧′ = 𝑥 ′𝑘 𝑧′ = {𝐸𝑛𝑐 (𝑚𝑖) (𝑟𝑖 ,𝑟𝑖𝑎𝑖) }
𝑡 (𝑘 + 𝑥) = 𝐷𝑒𝑐 (𝑥 ′)
𝑧′ = 𝑔1/𝑡 (𝑘+𝑥) 𝑧′ = 𝑥 ′𝑘

𝑧 = UBL(𝑧′, 𝑡, 𝜔) 𝑧 = 𝑧′1/𝑡
{𝑟𝑖𝑎

𝑥̃𝑖
𝑖
} = 𝐷𝑒𝑐 (𝑧′)

𝑧 = 𝜔
∏𝑙

𝑖=1
𝑟𝑖𝑎

𝑥̃𝑖
𝑖

𝑧 = 𝑧′𝑡 𝑧 = 𝐻2 (𝑥, 𝑧′/𝑡)

1. In the original HashDH, 𝑧 = 𝐻1 (𝑥)𝑘 and 𝐻1 () is a collision-free hash function outputting uniformly random elements in F𝑞 . As 𝑥

is randomly selected in F𝑞 , we set 𝐻1 (𝑥) = 𝑥 . Besides, it is easy to shift HashDH to elliptic curves, resulting in HashECDH. The

conclusions in this paper are applicable to HashECDH.

2. (𝑠𝑘, 𝑝𝑘)⇐𝐻𝐸 () generates a key pair of an additively HE scheme such as Paillier [53]. 𝐸𝑛𝑐 () and 𝐷𝑒𝑐 () represents its encryption and

decryption, respectively. So 𝐸𝑛𝑐 (𝑎)𝐸𝑛𝑐 (𝑏) = 𝐸𝑛𝑐 (𝑎 + 𝑏) and 𝐸𝑛𝑐 (𝑎1, 𝑎2) (𝑏1,𝑏2) = 𝐸𝑛𝑐 (𝑎1)𝑏1𝐸𝑛𝑐 (𝑎2)𝑏2 = 𝐸𝑛𝑐 (𝑎1𝑏1 + 𝑎2𝑏2).
3. (𝑁, 𝑒, 𝑘)⇐𝑅𝑆𝐴() generates an RSA key pair, and 𝐻2 () is a collision-free hash function outputting uniformly random elements in Z𝑁 .

4. In 2HashRSA the calculations are conducted in Z𝑁 , while those of other OPRFs are done in F𝑞 .

4.2 Building SSO Services Based on OPRFs

The (F𝑞 versions of the) identity transformations proposed in Up-

preSSO [29, 30] mathematically utilize the same functions as the

HashDH OPRF protocol [39, 52]; that is, four functions of HashDH

(i.e.,PR(),BL(),OPR(), andUBL()), actually work as F𝐴𝑐𝑐𝑡∗ (),
F𝑃𝐼𝐷𝑅𝑃

(), F𝐼𝐷𝑈
(), and F𝐴𝑐𝑐𝑡 () in UppreSSO, respectively.

However, not every OPRF is ready to work as the identity trans-

formations in privacy-preserving SSO. More properties of these

functions of an OPRF protocol are required [30] to work as the

identity transformations in privacy-preserving SSO, and these ex-

tended properties (see Sections 4.3 and 4.4 for details) have not

been investigated in the literature [10].

Next, we construct identity transformations qualified for privacy-

preserving SSO, based on OPRF protocols other than HashDH. This

construction explains the extended properties well.

Given an OPRF protocol conforming to the formalization in Sec-

tion 4.1, SSO services are built as below. During the registrations,

𝐼𝐷𝑈 = 𝑘 and 𝐼𝐷𝑅𝑃 = 𝑥 are assigned to a user and an RP, respec-

tively. 𝐴𝑐𝑐𝑡 = F𝐴𝑐𝑐𝑡∗ (𝐼𝐷𝑈 , 𝐼𝐷𝑅𝑃) = PR(𝑘, 𝑥) = 𝑧 is automati-

cally assigned to a user at each RP. 𝐼𝐷𝑅𝑃 = 𝑥 is publicly-known,

while 𝐼𝐷𝑈 = 𝑘 is kept secret and known to only the IdP; other-

wise, RP unlinkability is broken [30]: Colluding RPs could calculate

𝐴𝑐𝑐𝑡 = F𝐴𝑐𝑐𝑡∗ (𝐼𝐷𝑈 , 𝐼𝐷𝑅𝑃) = PR(𝑘, 𝑥) for each known 𝐼𝐷𝑈 at

these RPs and accordingly link the accounts.

Table 3 lists the corresponding variables and functions. Note

that 𝜔 sometimes depends on 𝑘 , but not disclosing any information

on 𝑘 , and it plays different roles in these protocols: (a) 𝜔 does not

exist in HashDH; (b) in NRHE 𝜔 = 𝑔𝑎0

∏𝑛
𝑖=1

1/𝑟𝑖
is an argument of

UBL(), (c) in DYHE 𝜔 = 𝐸𝑛𝑐 (𝑘) is processed only inBL(); and (d)
in 2HashRSA, 𝜔 = (𝑁, 𝑒) is processed in both BL() andUBL().

The IdP, RPs, and users follow these specifications in a login.

1. The IdP sends 𝜔 to a user, who is visiting an RP identified as

𝐼𝐷𝑅𝑃 = 𝑥 , if needed.

2. The user requests an identity token for 𝑃𝐼𝐷𝑅𝑃 from the

IdP, after randomly selecting 𝑡 and calculating 𝑃𝐼𝐷𝑅𝑃 =

F𝑃𝐼𝐷𝑅𝑃
(𝐼𝐷𝑅𝑃 , 𝑡, 𝜔) = BL(𝑥, 𝑡, 𝜔) = 𝑥 ′. Meanwhile, it sends

𝑡 to the RP (as well as 𝜔 , if 𝜔 is an argument ofUBL()).
3. After authenticating the user as 𝑘 , the IdP calculates 𝑃𝐼𝐷𝑈 =

F𝑃𝐼𝐷𝑈
(𝐼𝐷𝑈 , 𝑃𝐼𝐷𝑅𝑃) = OPR(𝑘, 𝑥 ′) = 𝑧′, and signs𝑇𝐾 bind-

ing 𝑃𝐼𝐷𝑅𝑃 and 𝑃𝐼𝐷𝑈 (i.e., 𝑥 ′ and 𝑧′).
4. 𝑇𝐾 is forwarded by the user to the RP in the implicit flow

of OIDC, or in the authorization code flow it is retrieved by

the RP after anonymously authenticated to the IdP.

5. Base on 𝑇𝐾 , the RP derives 𝐴𝑐𝑐𝑡 = F𝐴𝑐𝑐𝑡 (𝑃𝐼𝐷𝑈 , 𝑡, 𝜔) =

UBL(𝑧′, 𝑡, 𝜔) = 𝑧.

4.3 SSO-Related Properties of OPRFs

First of all, in an SSO system built as above, correctness of OPRFs,
i.e., UBL(𝑧′, 𝑡, 𝜔) = PR(𝑘, 𝑥), ensures that F𝐴𝑐𝑐𝑡 (𝑃𝐼𝐷𝑈 , 𝑡, 𝜔) =
F𝐴𝑐𝑐𝑡∗ (𝐼𝐷𝑈 , 𝐼𝐷𝑅𝑃), i.e., correct accounts are always derived at hon-
est RPs in the case of no attack.

In such a secure SSO system, an identity token 𝑇𝐾 requested by

a user to visit an RP, enables only this user to log into only this

honest target RP as her account at this RP. 𝑇𝐾 binding 𝑃𝐼𝐷𝑅𝑃 =

F𝑃𝐼𝐷𝑅𝑃
(𝐼𝐷𝑅𝑃 , 𝑡) and 𝑃𝐼𝐷𝑈 = F𝑃𝐼𝐷𝑈

(𝐼𝐷𝑈 , 𝑃𝐼𝐷𝑅𝑃), (a) designates
only the RP with 𝐼𝐷𝑅𝑃 and (b) identifies only the user with 𝐼𝐷𝑈 at

this designated RP. This produces two properties for SSO security,

user identification and RP designation.
An RP may derive accounts based on (a) any signed identity

tokens, as demonstrated in UppreSSO [30] and explained in Section

Table 3: Identity Transformations in SSO vs. OPRFs

Identity Transformation in SSO OPRF

Variable

𝐼𝐷𝑈 𝑘

𝐼𝐷𝑅𝑃 𝑥

Function

𝐴𝑐𝑐𝑡 = F𝐴𝑐𝑐𝑡∗ (𝐼𝐷𝑈 , 𝐼𝐷𝑅𝑃) 𝑧 = PR(𝑘, 𝑥)
𝑃𝐼𝐷𝑅𝑃 = F𝑃𝐼𝐷𝑅𝑃

(𝐼𝐷𝑅𝑃 , 𝑡, 𝜔) 𝑥 ′ = BL(𝑥, 𝑡, 𝜔)
𝑃𝐼𝐷𝑈 = F𝑃𝐼𝐷𝑈

(𝐼𝐷𝑈 , 𝑃𝐼𝐷𝑅𝑃) 𝑧′ = OPR(𝑘, 𝑥 ′)
𝐴𝑐𝑐𝑡 = F𝐴𝑐𝑐𝑡 (𝑃𝐼𝐷𝑈 , 𝑡, 𝜔) 𝑧 = UBL(𝑧′, 𝑡, 𝜔)

3.2, or (b) only tokens binding matching 𝑃𝐼𝐷𝑅𝑃 , as implied by the

original OIDC protocol [57] and other privacy-preserving SSO solu-

tions [22, 23, 27, 28, 31, 43, 61] where only tokens binding matching

RP (pseudo-)identities are accepted. These different operations re-

quire two alternative definitions of RP designation: RP designation
w/o 𝑃𝐼𝐷𝑅𝑃 checking and RP designation w/ 𝑃𝐼𝐷𝑅𝑃 checking.

That is, if RP designation w/o 𝑃𝐼𝐷𝑅𝑃 checking is ensured, an

RP accepts any signed tokens to derive accounts; alternatively, if

RP designation w/ 𝑃𝐼𝐷𝑅𝑃 checking is ensured, an RP accepts only
signed tokens binding matching 𝑃𝐼𝐷𝑅𝑃 .

We analyze these two definitions (or variations) of RP desig-

nation, and the corresponding definitions of user identification.

Secure privacy-preserving SSO services can be built based on an

OPRF with any variations of these properties, if the corresponding

RP operations are specified. Anyway, the more efficient protocol

operations are recommended, when stronger properties (i.e., user

identification and RP designation w/o 𝑃𝐼𝐷𝑅𝑃 checking) are ensured.

Let ID𝑅𝑃 = {𝐼𝐷𝑅𝑃 𝑗=1,· · · ,𝑝 }, ID𝑈 = {𝐼𝐷𝑈𝑖=1,...,𝑠
},x = {𝑥1, · · · , 𝑥𝑝 }

and k = {𝑘1, · · · , 𝑘𝑠 }. Therefore,A𝑐𝑐𝑡 = {𝐴𝑐𝑐𝑡𝑖, 𝑗=1,· · · ,𝑝 |𝑖=1,· · · ,𝑠 } =
{F𝐴𝑐𝑐𝑡∗ (𝐼𝐷𝑈𝑖

, 𝐼𝐷𝑅𝑃 𝑗
)} andz= {𝑧𝑖, 𝑗=1,· · · ,𝑝 |𝑖=1,· · · ,𝑠 } = {PR(𝑘𝑖 , 𝑥 𝑗)}.

4.3.1 Recommended security properties. Firstly, the recommended

security properties w/o 𝑃𝐼𝐷𝑅𝑃 checking are analyzed.

User Identification w/o 𝑃𝐼𝐷𝑅𝑃 Checking: Based on 𝑇𝐾 , the

designated honest RP derives only the account corresponding to the

user requesting𝑇𝐾 and not any other meaningful accounts. For any

𝐼𝐷𝑅𝑃 , (a) if 𝐼𝐷𝑈̂ ≠ 𝐼𝐷
𝑈̌
, F𝐴𝑐𝑐𝑡∗ (𝐼𝐷𝑈̂ , 𝐼𝐷𝑅𝑃) ≠ F𝐴𝑐𝑐𝑡∗ (𝐼𝐷𝑈̌ , 𝐼𝐷𝑅𝑃)

as we have F𝐴𝑐𝑐𝑡 (𝑃𝐼𝐷𝑈 , 𝑡, 𝜔) = F𝐴𝑐𝑐𝑡∗ (𝐼𝐷𝑈 , 𝐼𝐷𝑅𝑃), and (b) given
known ID𝑅𝑃 , knownA𝑐𝑐𝑡 , unknown ID𝑈 , and any 𝑇𝐾 binding

𝑃𝐼𝐷𝑅𝑃 = F𝑃𝐼𝐷𝑅𝑃
(𝐼𝐷𝑅𝑃 , 𝑡, 𝜔̂) and 𝑃𝐼𝐷𝑈̂ = F𝑃𝐼𝐷𝑈

(𝐼𝐷
𝑈̂
, 𝑃𝐼𝐷𝑅𝑃),

malicious RPs and users cannot find 𝑡 and 𝜔̌ which satisfy that

F𝐴𝑐𝑐𝑡 (𝑃𝐼𝐷𝑈̂ , 𝑡, 𝜔̌) = F𝐴𝑐𝑐𝑡∗ (𝐼𝐷𝑈̌ , 𝐼𝐷𝑅𝑃), where 𝐼𝐷𝑈̌ ≠ 𝐼𝐷
𝑈̂

and

𝐼𝐷
𝑈̌
, 𝐼𝐷

𝑈̂
∈ ID𝑈 .

We list the corresponding requirement for OPRFs: For any 𝑥 ,

(a) if ˆ𝑘 ≠ ˇ𝑘 , then PR(ˆ𝑘, 𝑥) ≠ PR(ˇ𝑘, 𝑥), and (b) given known x,

known z, unknown k, and any protocol instance (𝑥, 𝑥 ′, 𝑧′, 𝑡, 𝜔̂, 𝑧)
generated with unknown

ˆ𝑘 , malicious OPRF users cannot find 𝑡

and 𝜔̌ satisfying thatUBL(𝑧′, 𝑡, 𝜔̌) = PR(ˇ𝑘, 𝑥), where ˇ𝑘 ≠ ˆ𝑘 and

ˇ𝑘, ˆ𝑘 ∈ k.
RP Designation w/o 𝑃𝐼𝐷𝑅𝑃 Checking: At any honest RPs other

than the designated one, based on𝑇𝐾 no meaningful account is de-

rived. That is, given known ID𝑅𝑃 , knownA𝑐𝑐𝑡 and unknown ID𝑈 ,

malicious adversaries cannot find 𝑗1, 𝑗2, 𝑖1, 𝑖2, 𝑡1, 𝑡2, 𝜔1 and 𝜔2 sat-

isfying that F𝐴𝑐𝑐𝑡 (F𝑃𝐼𝐷𝑈
(𝐼𝐷𝑈𝑖

1

, F𝑃𝐼𝐷𝑅𝑃
(𝐼𝐷𝑅𝑃 𝑗

1

, 𝑡1, 𝜔1)), 𝑡2, 𝜔2) =
F𝐴𝑐𝑐𝑡∗ (𝐼𝐷𝑈𝑖

2

, 𝐼𝐷𝑅𝑃 𝑗
2

) where 𝑗1 ≠ 𝑗2, 1 ≤ 𝑗1, 𝑗2 ≤ 𝑝 , and 1 ≤
𝑖1, 𝑖2 ≤ 𝑠 .

This requirement is proposed for OPRFs: Given known x, known

z, and unknown k, malicious users cannot find 𝑗1, 𝑗2, 𝑖1, 𝑖2, 𝑡1, 𝑡2,𝜔1

and 𝜔2 satisfying thatUBL(OPR(𝑘𝑖1 ,BL(𝑥 𝑗1 , 𝑡1, 𝜔1)), 𝑡2, 𝜔2) =
PR(𝑘𝑖2 , 𝑥 𝑗2), where 𝑗1 ≠ 𝑗2, 1 ≤ 𝑗1, 𝑗2 ≤ 𝑝 and 1 ≤ 𝑖1, 𝑖2 ≤ 𝑠 .

4.3.2 Alternative security properties. The alternative security prop-
erties w/ 𝑃𝐼𝐷𝑅𝑃 checking in SSO services are defined as below.

Note that 𝑡 and 𝑃𝐼𝐷𝑅𝑃 are checked simultaneously (as well as 𝜔 , if

𝜔 is an argument of BL()), when 𝑃𝐼𝐷𝑅𝑃 = F𝑃𝐼𝐷𝑅𝑃
(𝐼𝐷𝑅𝑃 , 𝑡, 𝜔) =

BL(𝑥, 𝑡, 𝜔) is checked by the RP which receives a signed identity

token binding 𝑃𝐼𝐷𝑅𝑃 .

User Identification w/ 𝑃𝐼𝐷𝑅𝑃 Checking: Based on𝑇𝐾 , the desig-

nated honest RP derives only the account owned by the user request-
ing𝑇𝐾 . For any 𝐼𝐷𝑅𝑃 , (a) if 𝐼𝐷𝑈̂ ≠ 𝐼𝐷

𝑈̌
, then F𝐴𝑐𝑐𝑡∗ (𝐼𝐷𝑈̂ , 𝐼𝐷𝑅𝑃) ≠

F𝐴𝑐𝑐𝑡∗ (𝐼𝐷𝑈̌ , 𝐼𝐷𝑅𝑃), and (b) malicious adversaries cannot find 𝑡1, 𝑡2,

𝜔1 and𝜔2 satisfying thatF𝑃𝐼𝐷𝑅𝑃
(𝐼𝐷𝑅𝑃 , 𝑡1, 𝜔1) = F𝑃𝐼𝐷𝑅𝑃

(𝐼𝐷𝑅𝑃 , 𝑡2, 𝜔2)
where (𝑡1, 𝜔1) ≠ (𝑡2, 𝜔2).

The property for OPRFs is listed accordingly: For any given 𝑥 ,

(a) if ˆ𝑘 ≠ ˇ𝑘 , then PR(ˆ𝑘, 𝑥) ≠ PR(ˇ𝑘, 𝑥), and (b) malicious OPRF

users cannot find 𝑡1, 𝑡2, 𝜔1 and 𝜔2 satisfying that BL(𝑥, 𝑡1, 𝜔1) =
BL(𝑥, 𝑡2, 𝜔2), where (𝑡1, 𝜔1) ≠ (𝑡2, 𝜔2).
RPDesignationw/ 𝑃𝐼𝐷𝑅𝑃 Checking: There is no 𝑃𝐼𝐷𝑅𝑃 collision.

Given known ID𝑅𝑃 , adversaries cannot find 𝑗1, 𝑗2, 𝑡1, 𝑡2,𝜔1 and𝜔2

which satisfy that F𝑃𝐼𝐷𝑅𝑃
(𝐼𝐷𝑅𝑃 𝑗

1

, 𝑡1, 𝜔1) = F𝑃𝐼𝐷𝑅𝑃
(𝐼𝐷𝑅𝑃 𝑗

2

, 𝑡2, 𝜔2)
where 𝑗1 ≠ 𝑗2 and 1 ≤ 𝑗1, 𝑗2 ≤ 𝑝 .

The property is proposed for OPRF protocols: Given known x,

malicious OPRF users cannot find 𝑗1, 𝑗2, 𝑡1, 𝑡2, 𝜔1 and 𝜔2 satis-

fying that BL(𝑥 𝑗1 , 𝑡1, 𝜔1) = BL(𝑥 𝑗2 , 𝑡2, 𝜔2) where 𝑗1 ≠ 𝑗2 and

1 ≤ 𝑗1, 𝑗2 ≤ 𝑝 .

4.3.3 Privacy properties. User privacy of SSO services requires

two properties as below, against an honest-but-curious IdP and

malicious RPs, respectively.

IdP Untraceability: The honest-but-curious IdP learns nothing on

the visited RP (i.e., 𝐼𝐷𝑅𝑃) from the token request (i.e., 𝑃𝐼𝐷𝑅𝑃).

IdP untraceability of a privacy-preserving SSO system built in

Section 4.2, means that, the honest-but-curious server of the under-
lying OPRF learns nothing about 𝑥 from 𝑥 ′.
RPUnlinkability:Malicious RPs cannot link any login initiated by

an honest user visiting a malicious RP, to any subset of logins visit-

ing any other colluding RPs by honest users, even when colluding

with malicious users.

In an SSO system built based on an OPRF protocol, RP unlinkabil-

ity is equivalent to indistinguishability of keys of the OPRF: When

an OPRF protocol is initiated with different inputs, a malicious

user cannot tell whether the OPRF server uses different keys or not

across these protocol instances based on her collections, even if (a)

the OPRF user has collected some sets of protocol instances and (b)
the instances in each collection set are generated by a certain but

unknown key. Each protocol instance is composed of 𝑥 , 𝑥 ′ and the

arguments and output ofUBL(), i.e., (𝑥, 𝑥 ′, 𝑧′, 𝑡, 𝑧), along with 𝜔

if 𝜔 is an argument of UBL().3 Every set of protocol instances

collected by the malicious OPRF user, can be mapped to a user

colluding with malicious RPs in SSO systems.

Firstly, indistinguishability of keys implies pseudo-randomness;

otherwise, users could learn something on a key from 𝑧′ and 𝑧,
which might be exploited to distinguish different keys. On the other

hand, pseudo-randomness does not ensure indistinguishability of

keys, because existing OPRF protocols do not explicitly consider

indistinguishable multiple keys [10]. For example, 𝑁 is publicly

known in 2HashRSA and usually uniquely identifies a key, but it is

an argument ofUBL(𝑧′, 𝑡) = 𝐻2 (𝑥, 𝑧′/𝑡 mod 𝑁); or, even when

the server generates one HE key pair for multiple OPRF keys in

DYHE, 𝜔 = 𝐸𝑛𝑐 (𝑘) uniquely identifies a key unless a probabilistic

HE scheme is adopted.

Key-Identifier Freeness of OPRFs is proposed accordingly: A pro-

tocol instance, i.e., 𝑥 , 𝑥 ′, and the arguments and output ofUBL(),
cannot be exploited to distinguish an OPRF key from other keys.

Thus, indistinguishability of keys is equivalent to both pseudo-

randomness and key-identifier freeness of an OPRF tolerating mali-

cious users.

These extended properties of OPRFs, key-identifier freeness, RP
designation and user identification, have not been investigated in

the literature [10], and do not always hold in all existing OPRFs.

4.4 Proofs of SSO-Related Properties in OPRFs

First of all, IdP untraceability against an honest-but-curious IdP in

SSO is equivalent to the obliviousness property of an OPRFs working
with an honest-but-curious OPRF server. All OPRF protocols satisfy
this requirement.

RP unlinkability against malicious adversaries in SSO, is equiv-

alent to indistinguishability of keys (i.e., pseudo-randomness and

key-identifier freeness) of an OPRF tolerating malicious users. This

property is analyzed as below and some protocols are accordingly

revised.

• It holds in HashDH and NRHE where pseudo-randomness is

ensured with malicious users [24, 39], if there is an identical
finite field F𝑞 for all OPRF keys.

• Multiple keys are indistinguishable in DYHE, if (a) the server
adopts an identical finite field F𝑞 and (b) the adopted addi-

tively HE scheme is probabilistic or an ephemeral HE key

pair is generated in each protocol instance.
4

• Although pseudo-randomness is ensured with malicious

users [39], key-identifier freeness does not hold in 2HashRSA

because 𝑁 uniquely identifies an OPRF key and is an ar-

gument of UBL(). We slightly revise 2HashRSA as be-

low, denoted as 2HashRSA𝑁 in this paper: An OPRF server

generates multiple key pairs for an identical 𝑁 , i.e., 𝑒𝑖𝑘𝑖 =

1 mod 𝜙 (𝑁) for every key.

3
These data are received by an RP in SSO with identity transformations [29, 30].

4
Fortunately, the widely-used additively HE scheme, Paillier [53], is probabilistic. If a

deterministic HE scheme is adopted and the HE key pair is permanent, an RP restores

𝜔 = 𝐸𝑛𝑐 (𝑘) by calculating 𝑥 ′1/𝑡 /𝐸𝑛𝑐 (𝑥) and then it identifies an OPRF key.

Next, we analyze the properties for SSO security (i.e., user iden-

tification and RP designation) of these revised protocols.

Theorem 1. User identification w/o 𝑃𝐼𝐷𝑅𝑃 checking, is not en-
sured in NRHE or 2HashRSA𝑁 , but ensured in HashDH and DYHE.

Proof. This property does not hold in NRHE. Because |k| = 𝑞𝑛+1 but
|z| = 𝑞, 𝑧 is equal to 𝑧 sometimes when

ˆ𝑘 ≠ ˇ𝑘 . So user identification

does not hold in NRHE, either without or with 𝑃𝐼𝐷𝑅𝑃 checking.
5

In 2HashRSA𝑁 , (𝑒, 𝑘) $⇐ 𝑅𝑆𝐴(𝑁), 𝑥 $← Z𝑁 , and 𝑧 = 𝐻2 (𝑥, 𝑥𝑘).
For any 𝑥 , if ˆ𝑘 ≠ ˇ𝑘 , the probability that𝐻2 (𝑥, 𝑥

ˆ𝑘) = 𝐻2 (𝑥, 𝑥
ˇ𝑘) is neg-

ligible, due to collision-freeness of 𝐻2 () and security of RSA. It also

requires that OPRF users cannot find 𝑡 satisfying that 𝐻2 (𝑥, 𝑧′/𝑡) =
𝐻2 (𝑥, 𝑥

ˇ𝑘), where ˇ𝑘 ≠ ˆ𝑘 . This property does not hold, because

𝑡 = 𝑡𝑥
ˆ𝑘/𝑥 ˇ𝑘

satisfies that 𝐻2 (𝑥, 𝑧′/𝑡) = 𝐻2 (𝑥, 𝑥
ˇ𝑘).

In HashDH, 𝑘
$← F𝑞 , 𝑥

$← F𝑞 , and 𝑧 = 𝑥𝑘 . Because 𝑥 is a

generator of F𝑞 , 𝑧 is a bijective function of 𝑘 . It further requires

that, for any 𝑥 , adversaries cannot find 𝑡 satisfying that 𝑧′1/𝑡 = 𝑥
ˇ𝑘
,

i.e., 𝑥𝑡
ˆ𝑘/𝑡 = 𝑥

ˇ𝑘
, where

ˇ𝑘 ≠ ˆ𝑘 . When k is unknown, this problem is

equivalent to the discrete logarithm problem (DLP).

In DYHE, 𝑘
$← F𝑞 , 𝑥

$← F𝑞 , and 𝑧 = 𝑔
1/(𝑘+𝑥)

. Given 𝑥 , 1/(𝑘 +𝑥)
is a bijective function of 𝑘 . Because 𝑔 is a generator of F𝑞 , 𝑔

1/(𝑘+𝑥)

is also a bijective function of 𝑘 . It further requires that, for any

𝑥 , OPRF users cannot find 𝑡 satisfying that 𝑔𝑡/𝑡 (
ˆ𝑘+𝑥) = 𝑔1/(ˇ𝑘+𝑥)

,

where
ˇ𝑘 ≠ ˆ𝑘 . This problem is equivalent to the DLP. □

Next, we prove RP designation w/o 𝑃𝐼𝐷𝑅𝑃 checking but do not

consider NRHE and 2HashRSA𝑁 , for it is nonsense to discuss RP

designation without user identification.

Theorem 2. RP designation w/o 𝑃𝐼𝐷𝑅𝑃 checking, is ensured in
the OPRFs of HashDH and DYHE.

Proof. In HashDH, given known x, known z, and unknown k, if

malicious OPRF users could find 𝑗1, 𝑗2, 𝑖1, 𝑖2, 𝑡1 and 𝑡2 satisfying

that ((𝑥𝑡1

𝑗1
)𝑘𝑖1)1/𝑡2 = 𝑥

𝑘𝑖
2

𝑗2
where 𝑗1 ≠ 𝑗2, the DLP would be solved.

Thus, this property is ensured in HashDH.
6

In DYHE malicious OPRF users attempt to find 𝑡1 and 𝑡2 satisfying

that (𝑔1/𝑡1 (𝑘𝑖
1
+𝑥 𝑗

1
))𝑡2 = 𝑔1/(𝑘𝑖

2
+𝑥 𝑗

2
)
, i.e., 𝑔𝑡1/𝑡2 = 𝑔 (𝑘2+𝑥2)/(𝑘1+𝑥1)

,

where 𝑗1 ≠ 𝑗2. It is equivalent to the DLP, when k is unknown. □

As user identification and RP designation w/o 𝑃𝐼𝐷𝑅𝑃 checking

are ensured in the OPRFs of HashDH and DYHE, weaker properties

w/ 𝑃𝐼𝐷𝑅𝑃 checking are certainly ensured in HashDH and DYHE.

We omit these proofs in this paper.

Theorem 3. User identification w/ 𝑃𝐼𝐷𝑅𝑃 checking, holds in
2HashRSA𝑁 .

Proof. In 2HashRSA𝑁 , for any 𝑥 , if ˆ𝑘 ≠ ˇ𝑘 , the probability that

𝐻2 (𝑥, 𝑥
ˆ𝑘) = 𝐻2 (𝑥, 𝑥

ˇ𝑘) is negligible due to collision-freeness of𝐻2 ()
and security of RSA. For any 𝑥 , malicious OPRF users attempt to

5
The NR OPRF using obviously transfer (OT) [24, 34] does not strictly conform to the

formalization in Section 4.1, but this conclusion is also applicable to it.

6
As mentioned in Section 2.1, both 𝑘𝑖 and 𝑟 𝑗 are known to only the honest IdP, where

𝐼𝐷𝑈𝑖
= 𝑘𝑖 and 𝐼𝐷𝑅𝑃𝑗

= [𝑟 𝑗]𝐺 . In theF𝑞 versions of the identity transformations in

UppreSSO,𝑘𝑖 and 𝑟 𝑗 are kept unknown to adversaries where 𝑥 𝑗 = 𝑔
𝑟 𝑗
; otherwise, once

k or r = {𝑟 𝑗=1,· · · ,𝑝 } is leaked, it is easy for adversaries to solve (𝑥𝑡1

𝑗
1

)𝑘𝑖1 = (𝑥
𝑘𝑖

2

𝑗
2

)𝑡2 .

Table 4: Properties of Typical OPRFs

OPRF Property SSO-Related Property HashDH NRHE DYHE 2HashRSA𝑁

Correctness Correctness of Derived Accounts

√ √ √ √

Obliviousness

Privacy

IdP Untraceability

√ √ √ √

Indistinguishability of Keys
1

RP Unlinkability

√ √ √ √

Security

w/o 𝑃𝐼𝐷𝑅𝑃 Checking

User Identification

√ ⊥ √ ⊥
RP Designation

2
√ √

Security

w 𝑃𝐼𝐷𝑅𝑃 Checking

User Identification

√ ⊥ √ √

RP Designation
2

√ √ √
√
means a property is ensured, and ⊥ means not.

1. Indistinguishability of keys = Pseudo-randomness + Key-identifier freeness. Some protocols are slightly revised in Section 4.4, to

satisfy key-identifier freeness.

2. It is nonsense to discuss RP designation without user identification.

find 𝑡1, 𝑡2, 𝑒𝑖1 and 𝑒𝑖2 satisfying that 𝑥𝑡
𝑒𝑖

1

1
= 𝑥𝑡

𝑒𝑖
2

2
, i.e., 𝑡1 = (𝑡𝑒𝑖2

2
)𝑑𝑖1 ,

where (𝑡1, 𝑒𝑖1) ≠ (𝑡2, 𝑒𝑖2). It is equivalent to the decryption of given

messages without the RSA private key. □

Theorem 4. RP designation w/ 𝑃𝐼𝐷𝑅𝑃 checking, is ensured in
2HashRSA𝑁 .

Proof. Given known x, unknown k, and known e = {𝑒𝑖=1,· · · ,𝑠 },
malicious OPRF users attempt to find 𝑗1, 𝑗2, 𝑖1, 𝑖2, 𝑡1 and 𝑡2 which

satisfy that 𝑥 𝑗1𝑡
𝑒𝑖

1

1
= 𝑥 𝑗2𝑡

𝑒𝑖
2

2
, i.e., 𝑡1 (𝑥 𝑗1/𝑥 𝑗2)𝑘𝑖1 = (𝑡𝑒𝑖2

2
)𝑘𝑖1 , where

𝑗1 ≠ 𝑗2. This problem cannot be solved due to security of RSA. □

4.5 Summary

Table 4 lists the properties of OPRF protocols. In addition toHashDH,

DYHE and 2HashRSA𝑁 are qualified to work as the identity trans-

formations in OIDC-compatible privacy-preserving SSO. That is,

the identity-transformation approach proposed in UppreSSO can

also be instantiated based on DYHE and 2HashRSA𝑁 , one of which

does not require an RP to check 𝑃𝐼𝐷𝑅𝑃 before accepting an identity

token and the other does.

Finally, in the system utilizing 2HashRSA𝑁 , when the visited

RP checks whether 𝑃𝐼𝐷𝑅𝑃 enclosed in a received token is equal to

𝑥 𝑗 𝑡
𝑒𝑖
or not, 𝑒𝑖 leaks the user’s identity and then RP unlinkability is

broken. So only IdP untraceability is guaranteed in such a system, as

BrowserID [22] and Poidc [31] do. Meanwhile, both RP unlinkability

and IdP untraceability are guaranteed in the UppreSSO services

built based on DYHE. Note that some OPRF protocols, especially

DYHE, are slightly revised in Section 4.4, to satisfy key-identifier

freeness.

We do not explicitly define this requirement, i.e., the calculation

of 𝑥 ′ = BL(𝑥, 𝑡, 𝜔) cannot be exploited to distinguish an OPRF

key from others, as an extended property of OPRFs. It is necessary

for the visited RP to check whether 𝑃𝐼𝐷𝑅𝑃 is equal to BL(𝑥, 𝑡, 𝜔),
only in the case that user identification and RP designation w/

𝑃𝐼𝐷𝑅𝑃 checking are ensured but these security-related properties

w/o 𝑃𝐼𝐷𝑅𝑃 checking do not hold.

5 Related Work

Security and Privacy of SSO Protocols. Sufficient conditions of

secure SSO services are presented [21–23]: (a) An attacker cannot

log into an honest RP as an account owned by any honest users, and

(b) an honest user never log into an honest RP as an account not

owned by this user. When authenticity, confidentiality and integrity

of identity tokens are ensured, these conditions are equivalent to

RP designation and user identification. Security of the SSO services

with identity transformations has been proved as RP designation

and user identificationw/o 𝑃𝐼𝐷𝑅𝑃 checking [30] or as the properties

w/ 𝑃𝐼𝐷𝑅𝑃 checking [29], but these variations are compared and

analyzed only in this paper.

Dolev-Yao style models [21–23] are developed to analyze the

communications among entities in an SSO system, to ensure that

all messages including identity tokens are delivered as expected

in the system and then to prove security and privacy of services

based on the properties of traditional public-key and symmetric

cryptographic algorithms (e.g., RSA and AES). On the contrary,

security and privacy of SSO services are analyzed based on the

complicated properties of different cryptographic primitives (i.e.,

OPRFs), while secure communications among entities (especially,

authenticity, confidentiality and integrity of identity tokens) are

assumed in this paper.

Indistinguishability is defined to analyze user privacy in Spresso

[23], while privacy of SSO services integrating identity transfor-

mations is actually guaranteed by indistinguishability: All private

inputs are indistinguishable to the OPRF server, and different OPRF

keys are indistinguishable to users.

The identity transformations assume an honest IdP, while user

privacy in SSO systemswith amalicious IdP is considered in Spresso

[23] and ticket transparency [12, 47]. This paper analyzes the rela-

tionship between the identity-transformation approach in SSO and

OPRFs, and [4] discusses the mapping of security enhancements

between SSO and X.509 certificate services.

OPRFs and OPRF-Based Applications. OPRFs [24, 34, 39, 42,

51] are designed and applied for password verification [25, 41],

server-assisted encryption [6, 40], key recovery [3], computation

on private inputs [17, 24, 34, 36], and anonymous tokens [14, 60]. S.

Casacuberta, J. Hesse, and A. Lehmann systematized the knowledge

of OPRF protocols [10].

Extended properties of OPRFs are proposed in various applica-

tions, including verifiability [13, 19, 39], committed inputs/outputs

[8, 42], partial obliviousness [13, 19, 25], updateability [19], con-

vertability [45] and extendability [13], but the OPRF properties

related to privacy-preserving SSO (i.e., key-identifier freeness, RP

designation and user identification) are explicitly analyzed in this

paper for the first time.

Privacy-Preserving Identity Federation. Identity federation [15,

37, 38, 49, 54, 62] enables a user registered at an IdP to be accepted

by RPs, with different accounts, but it requires a user to maintain

an extra long-term secret protecting accounts across RPs. If such

an identity federation system is accessed from a browser, plug-ins

or extensions need to be installed to process this secret. Although

the same term “single sign-on (SSO)” was used [15, 49, 62], identity

federation are different from OIDC-compatible SSO where a COTS

browser acts as the user agent.

The solutions of identity federation prevent both IdP-based login

tracing and RP-based identity linkage [15, 37, 38, 49, 54, 62], as (a) an
IdP-issued anonymous credential does not encloses an RP’s identity

and (b) different pseudonyms are selected by a user to visit different

RPs. They even protect user privacy against collusive attacks by

the IdP and RPs, because the pseudonyms cannot be linked even if

the ownership of anonymous credentials [7, 9, 11] is proved to RPs

colluding with the IdP.

6 Conclusions and Future Work

In this paper, we investigate the identity-transformation approach

of OIDC-compatible privacy-preserving SSO in two aspects: (a)
The integration of identity transformations in an SSO system, with

several suggestions to improve performance, and (b) the relation-
ship between identity transformations in SSO and OPRFs, helping

us to construct new qualified identity transformations for privacy-

preserving SSO services constructed on top of OPRF protocols.

To the best of our knowledge, this is the first time to uncover the

relationship between identity transformations in OIDC-compatible

privacy-preserving SSO services and OPRFs, and prove the corre-

sponding properties (i.e., key-identifier freeness, RP designation

and user identification) of OPRFs, in addition to the basic properties

of correctness, obliviousness and pseudo-randomness. These results

greatly extend the understanding of both privacy-preserving SSO

protocols and OPRFs.

In the future, we plan to integrate more efficient mechanisms

(a) for a visited RP to be anonymously authenticated in the au-

thorization code flow of OIDC and (b) for a user to obtain 𝐼𝐷𝑅𝑃

of the visited RP. Meanwhile, we will study or design more OPRF

protocols, and analyze their SSO-related properties to build privacy-

preserving SSO services.

References

[1] M. Abdalla, M. Cornejo, A. Nitulescu, and D. Pointcheval. 2016. Robust password-

protected secret sharing. In 21st European Symposium on Research in Computer
Security (ESORICS).

[2] M. Asghar, M. Backes, and M. Simeonovski. 2018. PRIMA: Privacy-preserving

identity and access management at Internet-scale. In 52nd IEEE International
Conference on Communications (ICC).

[3] A. Bagherzandi, S. Jarecki, Y. Lu, and N. Saxena. 2011. Password-protected secret

sharing. In 18th ACM Conference on Computer and Communications Security (CCS).
433–444.

[4] X. Bao, X. Zhang, J. Lin, D. Chu, Q. Wang, and F. Li. 2019. Towards the trust-

enhancements of single sign-on services. In 3rd IEEE Conference on Dependable
and Secure Computing (DSC).

[5] A. Bender, J. Katz, and R. Morselli. 2006. Ring signatures: Stronger definitions, and

constructions without random oracles. In 3rd Theory of Cryptography Conference
(TCC). 60–79.

[6] J. Camenisch, A. de Caro, E. Ghosh, and A. Sorniotti. 2019. Oblivious PRF on

committed vector inputs and application to deduplication of encrypted data. In

23rd International Conference on Financial Cryptography and Data Security (FC).
[7] J. Camenisch and E. Herreweghen. 2002. Design and implementation of the

Idemix anonymous credential system. In 9th ACM Conference on Computer and
Communications Security (CCS).

[8] J. Camenisch and A. Lehmann. 2017. Privacy-preserving user-auditable pseudo-

nym systems. In 2nd IEEE European Symposium on Security and Privacy (EuroS&P).
[9] J. Camenisch and A. Lysyanskaya. 2001. An efficient system for non-transferable

anonymous credentials with optional anonymity revocation. In EUROCRYPT.
[10] S. Casacuberta, J. Hesse, and A. Lehmann. 2022. SoK: Oblivious pseudorandom

functions. In 7th IEEE European Symposium on Security and Privacy (EuroS&P).
[11] M. Chase, S. Meiklejohn, and G. Zaverucha. 2014. Algebraic MACs and keyed-

verification anonymous credentials. In 21st ACM Conference on Computer and
Communications Security (CCS).

[12] D. Chu, J. Lin, F. Li, X. Zhang, and Q. Wang. 2019. Ticket transparency: Account-

able single sign-on with privacy-preserving public logs. In 15th International
Conference on Security and Privacy in Communication Networks (SecureComm).

[13] P. Das, J. Hesse, and A. Lehmann. 2022. DPaSE: Distributed password-

authenticated symmetric-key encryption, or how to get many keys from one

password. In 17th ACM Asia Conference on Computer and Communications Secu-
rity (AsiaCCS).

[14] A. Davidson, I. Goldberg, N. Sullivan, G. Tankersley, and F. Valsorda. 2018. Priva-

cyPass: Bypassing Internet challenges anonymously. Privacy Enhancing Tech-
nologies 2018, 3 (2018), 164–180.

[15] A. Dey and S. Weis. 2010. PseudoID: Enhancing privacy for federated login. In

3rd Hot Topics in Privacy Enhancing Technologies (HotPETs).
[16] R. Dingledine, N. Mathewson, and P. Syverson. 2004. Tor: The Second-Generation

Onion Router. In 13th USENIX Security Symposium. 303–320.

[17] T. Duong and N. Trieu D.-H. Phan. 2020. Catalic: Delegated PSI cardinality with

applications to contact tracing. In ASIACRYPT.
[18] J. Ernstberger, S. Chaliasos, G. Kadianakis, S. Steinhorst, P. Jovanovic, A. Gervais,

B. Livshits, and M. Orru. 2024. zk-Bench: A toolset for comparative evaluation

and performance benchmarking of SNARKs. In 14th International Conference on
Security and Cryptography for Networks (SCN).

[19] A. Everspaugh, R. Chaterjee, S. Scott, A. Juels, and T. Ristenpart. 2015. The Pythia

PRF service. In 24th USENIX Security Symposium.

[20] A. Faz-Hernandez, S. Scott, N. Sullivan, R. Wahby, and C. Wood. 2022. draft-
irtf-cfrg-hash-to-curve-16: Hashing to elliptic curves. Internet Engineering Task
Force.

[21] D. Fett, R. Küsters, and G. Schmitz. 2014. An Expressive Model for the Web

Infrastructure: Definition and Application to the BrowserID SSO System. In 35th
IEEE Symposium on Security and Privacy (S&P).

[22] D. Fett, R. Küsters, and G. Schmitz. 2015. Analyzing the BrowserID SSO system

with primary identity providers using an expressive model of the Web. In 20th
European Symposium on Research in Computer Security (ESORICS).

[23] D. Fett, R. Küsters, and G. Schmitz. 2015. Spresso: A secure, privacy-respecting

single sign-on system for the Web. In 22nd ACM Conference on Computer and
Communications Security (CCS). 1358–1369.

[24] M. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. 2005. Keyword search and

oblivious pseudorandom functions. In 2nd Theory of Cryptography Conference
(TCC). 303–324.

[25] M. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. 2020. PESTO: Proactively

secure distributed single sign-on, or how to trust a hacked server. In 5th IEEE
European Symposium on Security and Privacy (EuroS&P).

[26] Google for Developers. [n. d.]. Google Identity: Integration considerations. https:

//developers.google.com/identity/gsi/web/guides/integrate/. Accessed January

13, 2025.

[27] P. Grassi, E. Nadeau, J. Richer, S. Squire, J. Fenton, N. Lefkovitz, J. Danker, Y.-Y.

Choong, K. Greene, andM. Theofanos. 2017. SP 800-63C: Digital identity guidelines:
Federation and assertions. National Institute of Standards and Technology.

[28] C. Guo, F. Lang, Q. Wang, and J. Lin. 2021. UP-SSO: Enhancing the user privacy

of SSO by integrating PPID and SGX. In International Conference on Advanced
Computing and Endogenous Security (ICACES).

[29] C. Guo, J. Lin, Q. Cai,W.Wang, F. Li, Q.Wang, J. Jing, and B. Zhao. 2022. UppreSSO:

Untraceable and unlinkable privacy-preserving single sign-on services (version

2). https://arxiv.org/abs/2110.10396.

[30] C. Guo, J. Lin, Q. Cai, W. Zhu, W. Wang, J. Jing, Q. Wang, B. Zhao, and F. Li.

2025. UppreSSO: Untraceable and unlinkable privacy-preserving single sign-on

services (version 3). https://arxiv.org/abs/2110.10396.

[31] S. Hammann, R. Sasse, and D. Basin. 2020. Privacy-preserving OpenID Connect. In

15th ACM Asia Conference on Computer and Communications Security (AsiaCCS).
277–289.

[32] T. Hardjono and S. Cantor. 2018. SAML v2.0 subject identifier attributes profile
version 1.0. OASIS.

[33] D. Hardt. 2012. RFC 6749: The OAuth 2.0 authorization framework. Internet

Engineering Task Force.

[34] C. Hazay and Y. Lindell. 2008. Efficient protocols for set intersection and pattern

matching with security against malicious and covert adversaries. In 5th Theory
of Cryptography Conference (TCC).

https://developers.google.com/identity/gsi/web/guides/integrate/
https://developers.google.com/identity/gsi/web/guides/integrate/
https://arxiv.org/abs/2110.10396
https://arxiv.org/abs/2110.10396

[35] J. He, L. Lei, Y. Wang, P. Wang, and J. Jing. 2024. ArpSSO: An OIDC-compatible

privacy-preserving SSO scheme based on RP anonymization. In 29th European
Symposium on Research in Computer Security (ESORICS).

[36] A. Heinrich, M. Hollick, T. Schneider, M. Stute, and C. Weinert. 2021. Private-

Drop: Practical privacy-preserving authentication for Apple AirDrop. In USENIX
Security Symposium.

[37] Hyperledger Fabric. [n. d.]. MSP implementation with Identity Mixer. https:

//hyperledger-fabric.readthedocs.io/en/release-2.2/idemix.html. Accessed July

20, 2022.

[38] M. Isaakidis, H. Halpin, and G. Danezis. 2016. UnlimitID: Privacy-preserving

federated identity management using algebraic MACs. In 15th ACM Workshop on
Privacy in the Electronic Society (WPES). 139–142.

[39] S. Jarecki, A. Kiayias, and H. Krawczyk. 2014. Round-optimal password-protected

secret sharing and T-PAKE in the password-only model. In AsiaCrypt.
[40] S. Jarecki, H. Krawczyk, and J. Resch. 2019. Updatable oblivious key management

for storage systems. In 26th ACM Conference on Computer and Communications
Security (CCS). 379–393.

[41] S. Jarecki, H. Krawczyk, and J. Xu. 2018. OPAQUE: An asymmetric PAKE protocol

secure against pre-computation attacks. In EUROCRYPT.
[42] S. Jarecki and X. Liu. 2009. Efficient oblivious pseudorandom function with

applications to adaptive OT and secure computation of set intersection. In 6th
Theory of Cryptography Conference (TCC). 577–594.

[43] M. Kroschewski and A. Lehmann. 2023. Save the implicit flow? Enabling privacy-

preserving RP authentication in OpenID Connect. Privacy Enhancing Technologies
2023, 4 (2023), 96–116.

[44] M. Lee and S. Cho. 2013. Web certificate API. World Wide Web Consortium

(W3C).

[45] A. Lehmann. 2019. ScrambleDB: Oblivious (Chameleon) Pseudonymization-as-a-

Service. Privacy Enhancing Technologies 2019, 3 (2019), 289–309.
[46] W. Li and C. Mitchell. 2016. Analysing the security of Google’s implementation

of OpenID Connect. In 13th International Conference on Detection of Intrusions
and Malware & Vulnerability Assessment (DIMVA).

[47] G. Liu, J. Lin, D. Chu, X. Zhang, Q. Wang, C. Ma, F. Li, and D. Ye. 2023. En-

hanced ticket transparency (eTT) framework for single sign-on services with

pseudonyms. In 22nd IEEE International Conference on Trust, Security and Privacy

in Computing and Communications (TrustCom).
[48] W. Ma, Q. Xiong, X. Shi, X. Ma, H. Jin, H. Kuang, M. Gao, Y. Zhang, H. Shen,

and W. Hu. 2023. GZKP: A GPU accelerated zero-knowledge proof system. In

28th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 340–353.

[49] G. Maganis, E. Shi, H. Chen, and D. Song. 2012. Opaak: Using mobile phones

to limit anonymous identities online. In 10th International Conference on Mobile
Systems, Applications, and Services (MobiSys).

[50] E. Maler and D. Reed. 2008. The venn of identity: Options and issues in federated

identity management. IEEE Security & Privacy 6, 2 (2008), 16–23.

[51] P. Miao, S. Patel, M. Raykova, K. Seth, and M. Yung. 2020. Two-sided malicious

security for private intersection-sum with cardinality. In CRYPTO.
[52] M. Naor and O. Reingold. 2004. Number-theoretic constructions of efficient

pseudo-random functions. J. ACM 51, 2 (2004), 231–262.

[53] P. Paillier. 1999. Public-key cryptosystems based on composite degree residuosity

classes. In EUROCRYPT.
[54] C. Paquin. 2013. U-Prove technology overview v1.1. Microsoft Corporation.

[55] D. Pointcheval and O. Sanders. 2016. Short randomizable signatures. In The
Cryptographers’ Track at the RSA Conference (CT-RSA).

[56] N. Sakimura, J. Bradley, and N. Agarwal. 2015. RFC 7636: Proof key for code
exchange by OAuth public clients. Internet Engineering Task Force.

[57] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, and C. Mortimore. 2014. OpenID
Connect core 1.0 incorporating errata set 1. The OpenID Foundation.

[58] M. Thomson and C. Wood. 2024. RFC 9458: Oblivious HTTP. Internet Engineering
Task Force.

[59] Uber Developers. [n. d.]. OIDC Web SDK. https://developer.uber.com/docs/

consumer-identity/oidc/web. Accessed April 10, 2025.

[60] Web Incubator CG. [n. d.]. TrustToken API. https://github.com/WICG/trust-

token-api. Accessed July 20, 2022.

[61] R. Xu, S. Yang, F. Zhang, and Z. Fang. 2023. Miso: Legacy-compatible privacy-

preserving single sign-on using trusted execution environments. In 8th IEEE
European Symposium on Security and Privacy (EuroS&P).

[62] Z. Zhang, M. Król, A. Sonnino, L. Zhang, and E. Rivière. 2021. EL PASSO: Ef-

ficient and lightweight privacy-preserving single sign on. Privacy Enhancing
Technologies 2021, 2 (2021), 70–87.

https://hyperledger-fabric.readthedocs.io/en/release-2.2/idemix.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/idemix.html
https://developer.uber.com/docs/consumer-identity/oidc/web
https://developer.uber.com/docs/consumer-identity/oidc/web
https://github.com/WICG/trust-token-api
https://github.com/WICG/trust-token-api

	Abstract
	1 Introduction
	2 Identity Transformations in UppreSSO
	2.1 System Model and Initialization
	2.2 The Implicit Flow of OIDC with Identity Transformations
	2.3 Security and Privacy of SSO Services

	3 OIDC-Compatible Privacy-Preserving SSO
	3.1 Comparison
	3.2 Integrating Identity Transformations in OIDC Services

	4 Constructing Identity Transformations Based on OPRFs
	4.1 Basic Properties of OPRFs
	4.2 Building SSO Services Based on OPRFs
	4.3 SSO-Related Properties of OPRFs
	4.4 Proofs of SSO-Related Properties in OPRFs
	4.5 Summary

	5 Related Work
	6 Conclusions and Future Work
	References

