
ar
X

iv
:2

50
6.

01
07

2v
1

 [
cs

.C
R

]
 1

 J
un

 2
02

5
1

IDCloak: A Practical Secure Multi-party Dataset Join Framework

for Vertical Privacy-preserving Machine Learning
Shuyu Chen, Guopeng Lin, Haoyu Niu, Lushan Song, Chengxun Hong, Weili Han, Member, IEEE

Abstract—Vertical privacy-preserving machine learning
(vPPML) enables multiple parties to train models on their
vertically distributed datasets while keeping datasets private. In
vPPML, it is critical to perform the secure dataset join, which
aligns features corresponding to intersection IDs across datasets
and forms a secret-shared and joint training dataset. However,
existing methods for this step could be impractical due to: (1)
they are insecure when they expose intersection IDs; or (2) they
rely on a strong trust assumption requiring a non-colluding
auxiliary server; or (3) they are limited to the two-party setting.

This paper proposes IDCloak, the first practical secure
multi-party dataset join framework for vPPML that keeps
IDs private without a non-colluding auxiliary server. IDCloak
consists of two protocols: (1) a circuit-based multi-party private
set intersection protocol (cmPSI), which obtains secret-shared
flags indicating intersection IDs via an optimized communication
structure combining OKVS and OPRF; (2) a secure multi-party
feature alignment protocol, which obtains the secret-shared and
joint dataset using secret-shared flags, via our proposed efficient
secure shuffle protocol. Experiments show that: (1) compared
to the state-of-the-art secure two-party dataset join framework
(iPrivJoin), IDCloak demonstrates higher efficiency in the
two-party setting and comparable performance when the party
number increases; (2) compared to the state-of-the-art cmPSI
protocol under honest majority, our proposed cmPSI protocol
provides a stronger security guarantee (dishonest majority) while
improving efficiency by up to 7.78× in time and 8.73× in
communication sizes; (3) our proposed secure shuffle protocol
outperforms the state-of-the-art secure shuffle protocol by up to
138.34× in time and 132.13× in communication sizes.

Index Terms—Secure multi-party computation, private set
intersection, secure dataset join

I. INTRODUCTION

PRIVACY-PRESERVING machine learning (PPML) en-
ables multiple parties to cooperatively train machine

learning models on their datasets with privacy preservation.
Among various PPML paradigms, multi-party vertical PPML
(vPPML), where parties’ datasets are vertically distributed,
i.e. overlap in sample IDs but have distinct feature sets, has
extensive real-world applications across multiple fields such as
healthcare, finance [1]–[3]. Multi-party vPPML significantly
expands the feature dimension, thereby enhancing the per-
formance of the trained model. For instance, in a healthcare

This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version may
no longer be accessible.

This work was supported in part by the National Natural Science Foundation
of China under Grant 92370120, Grant 62172100. (Corresponding author:
Weili Han.)

Shuyu Chen, Guopeng Lin, Haoyu Niu, Lushan Song, Chengxun Hong, and
Weili Han are with the School of Computer Science, Fudan University, Shang-
hai 10246, China (e-mail: 23110240005@m.fudan.edu.cn; 17302010022@fu-
dan.edu.cn; 23212010019@m.fudan.edu.cn; 19110240022@fudan.edu.cn;
22300240021@m.fudan.edu.cn; wlhan@fudan.edu.cn).

B
C

𝑭𝒐𝟏𝑰𝑫𝒐𝟏

2A
8B
9C

𝑭𝒐𝟐𝑰𝑫𝒐𝟐

3B
7F
5C

𝑭𝒐𝒏𝑰𝑫𝒐𝒏

1E
5B
2C

(1) Compute the intersection IDs

Vertically distributed datasets

Secure
dataset join

𝑃% 𝑃& 𝑃'

𝒟

Secure training

The secret-shared and joint dataset

𝑃% 𝑃' 𝑃&

...

I
5…38
2…59

...

(2) Align features

𝒟 % 𝒟 & 𝒟 '

Fig. 1. Illustration of secure dataset join in vertical PPML. Multiple parties
P1, P2, . . . , Pn, sharing the intersection IDs B and C.

vPPML scenario, there are multiple organizations, e.g., a
hospital with patients’ health records, a research institute with
genetic data, and an insurance company with demographics.
They can apply multi-party vPPML to expand the feature
dimension, and jointly train a diagnostic model on their
vertically distributed datasets with privacy preservation.

A critical step in vPPML is the secure dataset join. As is
shown in Figure 1, this step typically involves two phases: (1)
computing the intersection IDs across datasets while keeping
IDs private; and (2) aligning features corresponding to these
intersection IDs while keeping the datasets private. After the
two phases, each party Pi (i ≥ 2) holds a secret-shared and
joint training dataset ⟨D⟩i consisting of the aligned features
corresponding to the intersection IDs. Then parties can train
a machine learning model on ⟨D⟩i with privacy preservation.

However, there remains a critical gap in providing a practi-
cal secure multi-party dataset join framework for vPPML due
to at least one of the following reasons. (1) Most existing
secure multi-party dataset join methods for vPPML are inse-
cure since these methods expose the intersection IDs [4]–[7].
Specifically, exposing intersection IDs could disclose sensitive
information about individuals. For example, in the healthcare
scenario above, exposing intersection IDs discloses patient
lists of the hospital. Besides, exposing intersection IDs could
suffer from reconstruction attacks, potentially recovering the
original training data, as highlighted by Jiang et al. [8]. (2)
Although Gao et al. [9] propose a secure multi-party dataset
join method Peafowl for vPPML that keeps intersection
IDs private, this method relies on a strong trust assumption
requiring a non-colluding auxiliary server. This assumption
could be impractical in real-world multi-party vPPML settings,
where such server typically does not exist. (3) While Liu et
al. [10] propose a secure dataset joins method iPrivJoin

https://arxiv.org/abs/2506.01072v1

2

for vPPML that keeps intersection IDs private without requir-
ing a non-colluding auxiliary server, it is limited to the two-
party setting.

We note that the secure dataset join in the multi-party setting
is notoriously harder to tackle than in the two-party setting:
(1) the multi-party setting introduces difficulty in preserving
the privacy of intersection IDs across any subset of parties; (2)
the multi-party setting introduces the risk of collusion among
subsets of parties, which is absent with only two parties;
and (3) the multi-party setting increases considerable costs
when supporting three or more parties compared to two-party
settings [4].

As a result, there remains a critical challenge: How to
achieve practical secure multi-party dataset join for vPPML
without a non-colluding auxiliary server?

A. Our Approaches

To address the above challenge, we propose IDCloak,
the first practical secure dataset join framework for multi-
party vPPML that keeps IDs private without a non-colluding
auxiliary server.
High-level Idea. To preserve the privacy of intersection IDs
across any subset of parties while resisting collusion attacks
by up to n− 1 parties in semi-honest settings, where n is the
number of parties, IDCloak consists of our two proposed
protocols. (1) An efficient circuit-based multi-party private
set intersection protocol (cmPSI), which leverages oblivious
key-value store (OKVS) and oblivious pseudorandom function
(OPRF) to enable each party to obtain secret-shared flags
⟨Φb×1⟩i while keeping IDs private, where b is the size of
the input dataset. Specifically, for j ∈ b, if the party P1’s
ID vector ID1[j] is in the intersection, the plaintext flag Φ[j]
is 0, and randomness otherwise. (2) A secure multi-party
feature alignment protocol (smFA), which enables each party
to obtain the secret-shared and joint dataset while keeping
datasets private. Initially, parties use OKVS and secret sharing
to obtain a secret-shared dataset consisting of aligned features
and redundant data. Specifically, for j ∈ [b], if the party P1’s
ID vector ID1[j] is in the intersection, the data in the j-th
row of the dataset is aligned features, and redundant data
otherwise. To remove redundant data, parties execute a secure
shuffle protocol on the secret-shared dataset concatenating
secret-shared flags ⟨Φ⟩, reconstruct shuffled ⟨Φ̂⟩ into plaintext
flags Φ̂, and remove redundant data from the dataset based on
whether corresponding entries in Φ̂ are randomness. As the
secure shuffle disrupts the original order of flags Φ̂ and each
plaintext value in Φ̂ is 0 or randomness, Φ̂ does not disclose
the original IDs themselves, ensuring that no party can infer
the original intersection IDs.

To enhance the efficiency while ensuring the security of
our IDCloak, we introduce the following optimizations: (1)
for optimizing the cmPSI protocol, we propose an optimized
communication structure for transmitting OKVS tables, dy-
namically configured according to parameters, i.e. the number
of parties n, dataset size m, bit length l, network bandwidth,
and network latency; and (2) for optimizing the smFA proto-
col, we propose a novel secure shuffle protocol, which reduces

the communication sizes for one party from O(ndlm logm)
to O(ndlm) compared to the SOTA, where d is the feature
dimension. Since secure multi-party shuffle dominates the
communication and time costs (over 99% in our experiments)
in smFA, our novel secure shuffle protocol significantly boosts
the practicality of smFA in the multi-party setting.

Overall, IDCloak follows a workflow similar to the
SOTA two-party framework iPrivJoin [10]: first hashes the
dataset, securely generates a secret-shared dataset that includes
aligned features and redundant data, and finally removes the
redundant data through a secure shuffle protocol. The main
difference is that we designed a multi-party protocol for
each step. Additionally, by reusing the results of OPRF and
employing a more lightweight OKVS primitive compared to
the oblivious programmable pseudorandom function (OPPRF)
used by the iPrivJoin, our IDCloak achieves lower com-
munication costs and fewer communication rounds, making it
more efficient than iPrivJoin in two-party settings.

B. Contributions
Our contributions are summarized below:
• To our best knowledge, we propose the first practical se-

cure multi-party dataset join framework for vPPML with-
out a non-colluding auxiliary server, IDCloak, which
preserves the privacy of intersection IDs across any subset
of parties while resisting collusion attacks by up to n−1
parties.

• We propose two efficient protocols for IDCloak: (1) a
cmPSI protocol, which obtains secret-shared flags indi-
cating intersection IDs via an optimized communication
structure; and (2) a secure multi-party feature alignment
protocol, which obtains the secret-shared and joint dataset
using the secret-shared flags via our proposed efficient
secure multi-party shuffle protocol.

We evaluate IDCloak across various party numbers (2 ∼
6) using six real-world datasets, with feature dimensions
between 10 and 111 and total dataset sizes between 1353
and 253680. The experimental results show that: (1) in
the two-party setting, IDCloak outperforms the SOTA se-
cure two-party dataset join framework iPrivJoin [10] by
1.69× ∼ 1.92× and 1.50× ∼ 1.72× in terms of time and
communication sizes, respectively. Meanwhile IDCloak still
achieves comparable efficiency to the two-party iPrivJoin
even as the number of parties increases; (2) our proposed
cmPSI protocol with a stronger security guarantee (resists
against up to n− 1 colluding parties) outperforms the SOTA
cmPSI protocol [11] (resists against up to n/2 − 1 colluding
parties) by 1.39× ∼ 7.78× and 5.58× ∼ 8.73× in terms of
time and communication sizes, respectively. (3) our proposed
secure multi-party shuffle protocol outperforms the SOTA
secure shuffle protocol [12] by 21.44× ∼ 138.34× and
105.69× ∼ 132.13× in terms of time and communication
sizes, respectively.

II. RELATED WORK

A. Private Set Intersection
1) Multi-party PSI (mPSI): mPSI enables multiple parties

to compute the intersection of their ID sets while keeping non-

3

intersection IDs private. In mPSI-based secure dataset join,
parties use mPSI to obtain intersection IDs in plaintext. They
can then locally sort the features according to the lexico-
graphical order of these intersection IDs and secretly share
these ordered features with other parties. By merging each row
of these features, the parties can obtain a secret-shared and
joint dataset. Despite significant advances in efficient mPSI
protocols [4], [6], [13]–[16], existing mPSI solutions usually
expose intersection elements, leading to privacy leakage.

2) Circuit-based PSI (cPSI): The initial cPSI protocol
introduced by Huang et al. [17] allows two parties to securely
obtain the secret-shared intersection of their ID sets while
keeping the IDs private. Subsequent research on two-party
cPSI [11], [18]–[21] explores leveraging OPPRF or private set
membership techniques to extend cPSI for obtaining secret-
shared aligned features corresponding to intersection IDs,
making it suitable for secure dataset join in vPPML. However,
cPSI outputs a joint dataset that includes both features corre-
sponding to intersection IDs and redundant data (i.e. secret-
shared zeros). According to the literature [10], training on the
joint dataset output by cPSI can lead to a 3× increase in both
training time and communication sizes, compared with training
on the joint dataset without redundant data.

3) Circuit-based Multi-party PSI (cmPSI): Existing cmPSI
protocols [21]–[23] enable parties to obtain secret-shared
intersection IDs but do not consider obtaining aligned features
corresponding to the intersection IDs.

B. Secure Two-party Dataset Join

Liu et al. [10] propose a secure two-party dataset join frame-
work for vPPML, iPrivJoin. Similar to cPSI, iPrivJoin
first employs the OPPRF to construct a secret-shared and joint
dataset that includes both aligned features corresponding to
intersection IDs and redundant data. To eliminate redundant
data, iPrivJoin utilizes a secure shuffle protocol. However,
iPrivJoin is inherently designed for the two-party setting.

C. Secure Multi-party Dataset Join with Non-colluding Aux-
iliary Server

Gao et al. [9] propose Peafowl, a secure multi-party
dataset join solution, but Peafowl requires an auxiliary
server to protect intersection IDs and assumes this auxiliary
server never colludes with any parties, which is a strong trust
assumption. This assumption could be impractical in real-
world multi-party vPPML settings, where such server typically
does not exist. In contrast to Peafowl, our IDCloak does
not require a non-colluding auxiliary server, thereby achieving
stronger security guarantees.

As is shown in Table I, we summarize the strengths and
limitations of the representative secure dataset join methods.

III. OVERVIEW OF IDCLOAK

We summarize the frequently used notations in Table II.

TABLE I
COMPARISON OF VARIOUS SECURE DATASET JOIN METHODS. HERE,

‘PARTIES’ DENOTES THE NUMBER OF SUPPORTED PARTIES, ‘ID-PRIVATE’
DENOTES WHETHER INTERSECTION IDS ARE KEPT PRIVATE, ‘NO

REDUNDANT’ DENOTES WHETHER REDUNDANT DATA IS AVOIDED IN THE
JOINT DATASET, AND ‘NO SERVER’ DENOTES WHETHER A

NON-COLLUDING AUXILIARY SERVER IS NOT REQUIRED. THE BETTER
SETTINGS WITHIN EACH COLUMN ARE HIGHLIGHTED IN GREEN.

Method Parties ID-Private No Redundancy No Server
mPSI n ≥ 2 no yes yes
cPSI n = 2 yes no yes

Peafowl n ≥ 2 yes yes no
iPrivJoin n = 2 yes yes yes

Ours n ≥ 2 yes yes yes

TABLE II
NOTATION TABLE.

Symbol Description
n The number of parties.

[x1, x2] The set {x1, ..., x2}.
[x] The set {1, 2, ..., x}.
Pi The i-th party for i ∈ [n].
Xi The data belonging to Pi.
IDi The IDs in hash table of Pi.
F i The features corresponding to IDi.
Iid The intersection IDs (Iid =

⋂n
i=1 IDi).

Φ The flags indicating intersection IDs Iid.
D The dataset consisting of aligned features corresponding to Iid.
m The size of dataset held by each party.
b The number of bins in hash table.
di The feature dimension of datasets held by Pi.
d The total feature dimension (d =

∑n
i=1 di).

c The size of I or D.
h The number of hash functions.
Z2l Ring of size l bits; l = 64 in this paper.

⟨x⟩i
The secret-shared value of x ∈ Z2l held by Pi

s.t. x =
∑n

i=1⟨x⟩i.
x∥y The concatenation of x and y.
X∥Y The row-by-row concatenation of X and Y .
|X| The size of X .
Xa×b The matrix X with size a× b.
X[i] The i-th element or i-th row of X .

X[i][j] The j-th element in the i-th row of X .
κ The computational security parameter.
λ The statistical security parameter.

A. Problem Statement

As is shown in figure 2, the secure multi-party dataset
join functionality FsmDJoin takes as input from each party Pi

(i ∈ [n]) a dataset (IDi
o∥F i

o), where IDi
o is an m-element

vector of IDs and F i
o is an m × di feature matrix. Here,

“∥” indicates the row-by-row concatenation of sample IDs and
their corresponding features. Once FsmDJoin is executed, each
Pi obtains a secret-shared and joint dataset ⟨D⟩i that consists
of the aligned features corresponding to the intersection IDs.

B. Security Model

In this paper, we adopt a semi-honest security model with
a dishonest majority. That is, a semi-honest adversary A can
corrupt up to n−1 parties and aims to learn extra information
from the protocol execution while correctly executing the
protocols. We establish semi-honest security in the simulation-
based model, with our construction involving multiple sub-

4

Functionality FsmDJoin

Parameters: The number of parties n, the size of the dataset held
by each party m, the feature dimension of the dataset held by each
party di (i ∈ [n]), the total feature dimension d, and the bit length
of element l.
Inputs: For each i ∈ [n], Pi holds dataset IDi

o||F i
o .

Functionality:
1. Compute intersection Iid =

⋂n
i=1 IDi

o. Let c = |Iid|.
2. Set D[j] = {F 1

o [j1][1], . . . , F
1
o [j1][d1], . . . , F

n
o [jn][1],

. . . , Fn
o [jn][dn]}∀j∈[c], where F i

o[ji][u] for u ∈ [di] is the
corresponding feature value of ID[ji] = I[j] from Pi for
ji ∈ [m], i ∈ [n].

3. Sample ⟨D⟩i ← Zc×d
2l

such that
∑n

i=1⟨D⟩i = D.
4. Return ⟨D⟩i to Pi for i ∈ [n].

Fig. 2. Ideal functionality of secure dataset join.

protocols described using the hybrid model [24]. We give the
formal security definition as follows:

DEFINITION 1 (Semi-honest Model). Let viewΠ
C(x, y) be the

views (including the input, random tape, and all received
messages) of C in a protocol Π, where C is the set of
corrupted parties, x is the input of C and y is the input of
the uncorrupted party. Let out(x, y) be the protocol’s output
of all parties and F(x, y) be the functionality’s output. Π is
said to securely compute a functionality F in the semi-honest
model if for any adversary A there exists a simulator SimC

such that for all inputs x and y,

{viewΠ
C(x, y), out(x, y)} ≈c {SimC(x,FC(x, y)),F(x, y)}.

IV. PRELIMINARY

A. Cuckoo Hashing & Simple Hashing

Cuckoo hashing [25] relies on h hash functions, denoted
{Hk : {0, 1}σ 7→ [b]}k∈[h], to map each of m elements
{xj}j∈[m],xj∈Z2σ

to one of h potential bins {Hk(xj)}∀k∈[h],
where b = ωm. While cuckoo hashing ensures that each bin
holds at most one element, some elements may not find an
available bin. Traditional cuckoo hashing employs a stash for
these overflow elements. However, Pinkas et al. [5] introduce
a stash-free variant of Cuckoo hashing that removes the need
for this storage. Their findings indicate that with h = 3 hash
functions and a table size b = 1.27m, the probability of failure
for an element failing to find an available bin is at most 2−40.
We utilize these parameters to implement Cuckoo hashing
without a stash.

In contrast, simple hashing uses h hash functions
{Hk : {0, 1}σ 7→ [b]}k∈[h] to map each of m elements
{xj}j∈[m],xj∈Z2σ

into all bins Hk(xj)∀k∈[h]. Thus, unlike
Cuckoo hashing, simple hashing allows each bin to hold
multiple elements.

B. Oblivious Key-Value Store

Oblivious key-value store [19] (OKVS) is designed to en-
code m pairs of key-value pairs where the values are random,
such that an adversary cannot determine the original input keys
from the encoding. This makes the encoding oblivious to the
input keys. The definition is as follows:

DEFINITION 2 (Oblivious Key-Value Store). An OKVS is
parameterized by a key universe K, a value universe V , input
length m, output length m′ and consists of the two functions:

• S = Encode(I): The encode algorithm receives a set of
m key-value pairs I = {(ki, vi)}∀i∈[m],(ki,vi)∈(K×V)

and outputs the encoding S ∈ Vm′ ∪ {⊥}.
• v = Decode(S, k): The decode algorithm receives the

encoding S ∈ Vm′
, a key k ∈ K and outputs the

associated value v ∈ V .

An OKVS is computationally oblivious [19], if for any two
sets of m distinct keys {ki}∀i∈[m],ki∈K and {k′i}∀i∈[m],k′

i∈K
and m values {vi}i∈[m] each drawn uniformly at random
from V , a computational adversary is not able to distin-
guish between S = Encode({(ki, vi)}i∈[n]) and S′ =
Encode({(k′i, vi)}i∈[m]). Additionally, OKVS has the doubly
oblivious [18]–[20] property where the output of the encoding
is a uniformly random element from Vm′

. In addition, another
critical property is random decoding, where the decoded
value for any non-input key must be indistinguishable from
a uniformly random element from V . These properties are
particularly useful for our IDCloak.

C. Oblivious Pseudorandom Function

As is shown in Figure 3, oblivious pseudorandom function
(OPRF) [26] allows S to learn a pseudorandom function (PRF)
key k, while R learns Fk(x1), . . . , Fk(xβ) for the inputs
(x1, . . . , xβ). During the OPRF, neither S nor R can learn
any additional information. Specifically, S does not learn any
input xi(i ∈ [β]) from R and R does not learn PRF key k.

Functionality FOPRF

Parameters: The number of elements β and the bit length of
element l. A PRF F(·)(·).
Receiver’s inputs: {xi}∀i∈[β],xi∈{0,1}l

Funcitionality:
- Sender S obtains the PRF key k.
- Receiver R obtains {Fk(xi)}∀i∈[β].

Fig. 3. Ideal functionality of OPRF

D. Additive Secret Sharing

Additive secret sharing (ASS) [3], [27] is a cryptographic
technique that splits a private value into multiple shares,
allowing the original value to be reconstructed by summing
these shares. It is formally defined as follows:
• Secret-shared values: an l-bit value x is additively secret-

shared among n parties as shares ⟨x⟩1, . . . , ⟨x⟩n, where
each ⟨x⟩i ∈ Z2l for i ∈ [n]. The value x can be recon-
structed as:

∑n
i=1⟨x⟩i ≡ x (mod 2l).

• Sharing Shr(x, i,Q): party Pi randomly samples rj ∈ Z2l

for all j ∈ [|Q|−1], sets its own share ⟨x⟩i = x−
∑|Q|−1

j=1 rj
and sends rj to party PQ[j], who sets ⟨x⟩Q[j] = rj .

• Reconstruction Rec(x): each party Pi (∀i ∈ [n]) sends its
share ⟨x⟩i to all other parties. Once all shares are gathered,
each party Pi (∀i ∈ [n]) reconstruct the original value by
computing x =

∑n
i=1⟨x⟩i.

5

E. Oblivious Shuffle & Secure Shuffle

As is shown in Figure 4, the oblivious shuffle allows one
party P1 who holds an matrix Xm×d and receives ⟨X̂⟩1,
while the other party P2 who holds a random permutation
π : [m] → [m] and obtains ⟨X̂⟩2, ensuring that X̂ = π(X).
During this oblivious shuffle process, the permutation provider
P2 learns nothing about X , and the data provider P1 learns
nothing about π. In this paper, we adopt the oblivious shuffle
protocol ΠO−Shuffle proposed in [10], which realizes FO-Shuffle

with the same security guarantees as ours.

Functionality FO-Shuffle

Parameters: The rows of matrix m, the columns of matrix d, the
bit length of element l.
Inputs: P1 holds X . P2 holds a permutation π : [m]→ [m].
Functionality:
1. Sample ⟨X̂⟩1 ← Zm×d

2l
, ⟨X̂⟩2 ← Zm×d

2l
satisfying

⟨X̂[π[i]]⟩1 + ⟨X̂[π[i]]⟩2 = X[i]

2. Return ⟨X̂⟩1 to P1 and ⟨X̂⟩2 to P2.

Fig. 4. Ideal functionality of oblivious shuffle

As is shown in Figure 5, the secure shuffle allows the
random permutation of share matrix ⟨X⟩ from all parties,
resulting in refreshed secret-shared matrix ⟨X ′⟩ = ⟨π(X)⟩,
while keeping the permutation π unknown to the parties.

Functionality FsmShuffle

Parameters: The number of parties n, the rows of matrix m, the
columns of matrix d, The bit length of element l.
Inputs: For each i ∈ [n], Pi holds ⟨Xm×d⟩i.
Functionality:
1. Sample a random permutation π : [m] → [m]. For ∀i ∈

[n],∀j ∈ [m], sample ⟨X ′⟩i ← Zm×d
2l

satisfying
n⊕

i=1

⟨X ′[π[j]]⟩i =

(
n⊕

i=1

⟨X⟩i

)
2. Return ⟨X ′⟩i to Pi for i ∈ [n].

Fig. 5. Ideal functionality of secure multi-party shuffle

V. DESIGN

A. Setup Phase

During the setup phase, a randomly selected party, denoted
as P1, applies stash-less cuckoo hashing on its dataset ID1

o∥F 1
o ,

while the remaining parties, denoted as Pi(i ≥ 2) apply simple
hashing on their respective dataset IDi

o∥F i
o . Each party maps

its dataset based on the unique id ∈ IDi
o using h public hash

functions {Hk : {0, 1}l 7→ [b]}k∈[h] along with a hash table
(B1, . . . , Bb). The specific hashing operations are as follows:
• P1 applies cuckoo hashing using h hash functions {Hk :
{0, 1}l 7→ [b]}k∈[h], where b = ωm and ω > 1, that maps
each row (id1j , f

1
j,1, . . . , f

1
j,d1

) ∈ ID1
o∥F 1

o for j ∈ [m] to
one of the bins {BHk(id1

j)
}k∈[h]. After hashing, P1 obtains

ID1∥F 1, where ID1[j] = (id1∥j) for j ∈ {Hk(id
1)}k∈[h] ∩

id1 ∈ ID1
o and F 1[j] is the feature matrix corresponding to

ID1. Since b > m (where m = |ID1
o|), P1 fills each empty j-

th bin with uniformly random values: ID1[j] = rx∥ri where

rx ∈ Z2l , ri ∈ Z2l \ [b] and F 1[j] = (r1, . . . , rd1) where
r1, . . . , rd1 ∈ Z2l .

• Each Pi(i ≥ 2) applies simple hashing using h hash
functions {Hk : {0, 1}l 7→ [b]}k∈[h] that maps each
row (idij , f

i
j,1, . . . , f

i
j,di

) ∈ IDi
o∥F i

o for j ∈ [m] to all
bins {BHk(idi

j)
}k∈[h]. After hashing, Pi obtains IDi∥F i,

where IDi[j] = {(idi∥j)}idi∈IDi
o,j∈{H1(idi),...,Hh(idi)} and

F i represents the features corresponding to IDi.
In particular, for cuckoo hashing, we follow the approach

in [5], [28], which guarantees that each element x ∈ X is
placed in the hash table with an overwhelming probability.
After hashing, each bin in P1’s hash table holds exactly
one unique transformed ID, whereas each bin in Pi’s (for
i ≥ 2) hash table may contain zero or multiple transformed
IDs. Furthermore, rather than storing the original ID directly,
parties store its concatenation with the bin index j (i.e., id∥j).

B. Private ID Intersection

1) Definition: As is shown in Figure 6, functionality FcmPSI

enables each party Pi (i ∈ [n]) to hold IDi processed by
hashing and to obtain secret-shared flags ⟨Φb×1⟩i. For each
j ∈ [b], Φ[j] (=

∑n
i=1⟨Φ⟩i) indicates whether idj(= ID1[j])

is an element in intersection IDs Iid. In particular, Φ[j] is 0
if idj ∈ Iid. Or, Φ[j] is a randomness if idj /∈ Iid.

Functionality FcmPSI

Parameters: The number of parties n, the size of dataset b, the
bit length of element l.
Inputs: For each i ∈ [n], Pi holds dataset IDi with size b.
Functionality:
1. Compute Iid = ∩ni=1(ID

i).
2. For each j ∈ [b], if ID1[j] ∈ Iid, set Φ[j] = 0, else sample Φ[j]

uniformly from Z2l .
3. Sample ⟨Φ⟩i ← Zb×1

2l
satisfying Φ =

∑n
i=1⟨Φ⟩i.

4. Return ⟨Φ⟩i to Pi for i ∈ [n].

Fig. 6. Ideal functionality of circuit-based multi-party PSI

To illustrate the core concept, we first present our proposed
cmPSI protocol in a ring-based communication structure. We
then demonstrate how substantial performance gains can be
achieved by optimizing the communication structure while
maintaining security guarantees.

2) cmPSI with Ring-based Communication Structure:
Holding ID1 or IDi (with size b) processed by hashing,
each pair P1 and Pi (i ∈ [2, n]) invokes an OPRF instance.
Specifically, in each OPRF instance, P1 is the receiver
and gets yij = Fki

(ID1[j]) for ∀j ∈ [b], while Pi(i ≥ 2)
is the sender, gets the PRF key ki and computes PRF
values U i[j] = {Fki(ID

i[j][u])}∀u∈[|IDi[j]|] for ∀j ∈ [b].
Subsequently, parties adopt a ring-based communication
structure to iteratively transmit the OKVS tables from Pn to
P1 while preserving privacy. Concretely, each party Pi(i ≥ 2)
generates independent randomness rij ∈ Z2l for ∀j ∈ [b]. The
transmission begins with Pn, who encodes the key-value pairs
In = {(IDn[j][u], Un[j][u] + rnj)}∀j∈[b],∀u∈[|IDn[j]|] into an
OKVS table Sn = Encode(In). In our construction, each row
of PRF values Un[j] (for row j ∈ [b]) is masked by the same
random value rnj . Crucially, due to the OPRF interaction

6

between P1 and Pn, party P1 can learn at most one PRF
output per row j, if and only if ID1[j] matches idn

j,u ∈ IDn[j].
Consequently, values {Un[j][u] + rnj)}j∈[b],u∈[|Un[j]|] are
indistinguishable from uniformly random. Furthermore, under
the obliviousness guarantees of the OKVS, no other party
gains additional information from Sn = Encode(In). Thus
Pn can sends Sn to Pn−1 with privacy preservation.
After receiving Sn, Pn−1 decodes Sn to retrieve
V n−1[j] = {vij,u = Decode(Sn, IDn−1[j][u])}∀u∈[|IDn−1[j]|]
for ∀j ∈ [b], then constructs new key-value pairs
In−1 = {(IDn−1[j][u], Un−1[j][u] + V n−1[j][u] +
rn−1
j)}∀j∈[b],∀u∈[|IDn−1[j]|]. Pn−1 then encodes new key-

value pairs into the OKVS table Sn−1 = Encode(In−1)
and sends Sn−1 to the next party Pn−2. By the
same obliviousness property, other parties cannot infer
additional information from Sn−1. This process is repeated
iteratively from Pn−1 to P2, with each Pi (i ≥ 2)
receiving an OKVS table Si+1, decoding it to retrieve the
intermediate results V i, constructing new key-value pairs
Ii = {(IDi[j][u], U i[j][u] + V i[j][u] + rij)}∀j∈[b],∀u∈[|IDi[j]|],
encoding the OKVS table Si = Encode(Ii) and sending Si to
the next party Pi−1. Finally, upon receiving S2 from P2, P1

decodes S2 to retrieve V 1 = {v1j = Decode(S2, ID1[j])}∀j∈[b]

and computes its output ⟨Φb×1⟩1 by subtracting V 1

from the sum of all received yij values, that is
⟨Φ⟩1 = (

∑n
i=2 y

i
1 − V 1[1], . . . ,

∑n
i=2 y

i
b − V 1[b]). Each

other party Pi(∀i ≥ 2) sets its output ⟨Φ⟩i = (ri1, r
i
2, . . . , r

i
b).

The key security points of the cmPSI protocol are summa-
rized as follows: (1) using independent random masks per bin
for secret sharing: for each j (j ∈ [b]), an independent random
mask rij is introduced into the key-value pairs Ii used by Pi

(i ≥ 2) when encoding the OKVS table. This ensures that
each party obtains secret-shared flags indicating intersection
elements without exposing the underlying IDs; (2) storing
transformed IDs id∥j in IDi and using OPRF on IDi to prevent
collusion-based brute force attacks: adding the PRF value of
id∥j within the values of key-value pairs Ii, and P1 invokes
OPRF with each other party Pi (i ≥ 2) to remove the PRF
values of intersection IDs, preventing colluding parties from
inferring other parties’ ID values. For example, if IDs store
the original IDs instead of id∥j, consider parties P1, P2, and
P3, where P1 holds IDs a, e, P2 holds ID a, and P3 holds IDs
a, e, with IDs a and e hashed into the same bin for P3. If P1

and P2 collude, they can infer whether P3 has e by verifying
that Decode(S3, a)− Fk3(a) equals Decode(S3, e)− Fk3(e).
However, by using OPRF on the concatenated value id∥j, the
above attack is effectively prevented, since each hash table
bin of P1 has only one element, P1 obtains Fk3

(a∥j) and
Fk3

(e∥j′) for j′ ̸= j but does not obtain Fk3
(e∥j).

3) cmPSI with Optimized Communication Structure: Based
on our earlier security analysis, an adversary cannot recon-
struct the original IDs from an encoded OKVS table via
brute-force attacks. Therefore, it is secure to transmit OKVS
tables to any party, enabling efficient parallel transmissions
that ultimately converge at P1.

As is shown in Figure 7, a scenario for cmPSI involving
5 parties. The leftmost diagram in Figure 7 illustrates a ring-
based communication structure for transmitting OKVS tables

Protocol 1: ΠcmPSI

Parameters: The number of parties n, the size of hash table
b, the bit length of element l, the security parameter κ and the
statistical security parameter λ. An OKVS scheme Encode(·),
Decode(·, ·). An OPRF functionality Foprf. A PRF F(·)(·).
Inputs: Pi holds IDi for i ∈ [n].
Outputs: Pi obtains ⟨Φ⟩i, such that if ID1[j] ∈ Iid(∀j ∈ [b]),
Φ[j] is zero; otherwise Φ[j] is randomness.
Offline: Pi(i ≥ 2) samples uniformly random and independent
values (ri1, r

i
2, . . . , r

i
b) ∈ Z2l .

Online:
1. Performing OPRF:

1) For i ∈ [2, n], each (P1, Pi) pair invokes an instance of
FOPRF, where:
- Pi(i ≥ 2) is the sender and gets PRF key ki.
- P1 is the receiver, inputs ID1 and receives Y i =
(yi

1, · · · , yi
b) where yi

j = Fki(ID
1[j]) for ∀j ∈ [b].

2) For i ∈ [2, n], each Pi computes U i[j] =
{Fki(ID

i[j][u])}∀u∈[|IDi[j]|] for ∀j ∈ [b].
2. Transmiting OKVS tables:

1) Each Pi(i ∈ [n]) uses the optimized communication
structure generation algorithm1 to obtain the set of child
parties Pi.children and its parent party Pi.parent (the
child party sends the OKVS table to the parent party).

2) For i = n to 2:
i) If Pi.children ̸= ∅, Pi receives {Si∗}∀i∗∈Pi.children

from all child parties and gets V i,i∗ = {vi,i
∗

j,u =

Decode(Si∗ , IDi[j][u])}∀j∈[b],∀u∈[|IDi[j]|] for ∀i∗ ∈
Pi.children.

ii) If i ≥ 2, Pi sets Ii =
{(IDi[j][u],

∑
i∗∈Pi.children

V i,i∗ [j][u] + U i[j][u] +

rij)}∀j∈[b],∀u∈[|IDi[j]|]. Pi builds OKVS table
Si = Encode(Ii) and sends Si to Pi.parent.

3. Setting outputs:
- P1 sets ⟨Φ⟩1 = (

∑n
i=2 y

i
1 − V 1[1], . . . ,

∑n
i=2 y

i
b − V 1[b]).

- Pi(i ≥ 2) sets ⟨Φ⟩i = (ri1, r
i
2, . . . , r

i
b).

in our proposed cmPSI protocol. We denote the transmission
time for an OKVS table (excluding latency) as ts and the
network latency as tl. The total time required to transmit
all the OKVS tables via a ring-based structure is 4(ts + tl),
assuming that the local encoding and decoding times are
negligible. The middle part of Figure 7 illustrates the simplest
star-based parallel structure, in which every party Pi(i ≥ 2)
sends its OKVS table Si to P1. The total time required
to transmit all the OKVS tables via the star-based structure
is 4ts + tl, which is (n − 2)tl less than that of the ring-
based structure. We notice that if P1 first receives P4’s
OKVS table, then parties P2,P3, and P5 remain idle. As
is shown in the rightmost part of Figure 7, this idle time
can be effectively leveraged by having P5 send its OKVS
table to P2. P2 subsequently decodes the OKVS table S5 to
retrieve V 2,5[j] = {v2,5j,u = Decode(S5, U2[j][u])}∀u∈[|U2[j]|]
for ∀j ∈ [b], and add the retrieved values into values
of its own key-value pairs, constructing new pairs I2 =
{(ID2[j][u], U2[j][u] + V 2,5[j][u] + r2j)}∀j∈[b],∀u∈[|ID2[j]|]. P2

encodes the OKVS table S2 = Encode(I2) and sends S2 to
party P1. As all parties possess datasets of equal size, P1 and
P2 simultaneously receive the OKVS table from P4 and P5,
respectively. Subsequently, P1 receives the OKVS tables S3

and S2 from P3 and P2, respectively. The time required to

7

transmit all the OKVS tables via this optimized structure is
3ts + tl, which is ts less than that of the star-based structure.

3

45

21

(a) Ring-based structure

1

4

5

3

2

(b) Star-based structure

1

3
5

2 4

(c) Optimized structure

Fig. 7. Comparison of different communication structures for transmitting
OKVS tables. Each circle denotes a party and the number i in the circle
denotes Pi (i ∈ [n]). Arrow indicates the transmission direction of the OKVS
table. Each party must finish receiving the OKVS tables before sending.

We propose an optimized communication structure gener-
ation algorithm (detailed in Algorithm 1 in the Appendix)
that takes as input the number of parties n, the number of
designated root party leader num (leader num is 1 in our
proposed cmPSI protocol), the time required to send one
OKVS table ts, and the network delay tl. It outputs the root
node of the optimized communication structure, where each
node represents a party and contains its identifier, parent, and
children. Each party must finish receiving all the OKVS tables
from its child party before it sends the OKVS table to the
parent party. The algorithm follows a greedy approach to max-
imize communication utilization while minimizing the latency
for each party. As is shown in Protocol 1, we construct the
final cmPSI protocol by using this optimized communication
structure to efficiently transmit the OKVS tables in step 2.

THEOREM 1. The protocol ΠcmPSI (Protocol 1) securely
realizes FcmPSI (Figure 6) in the random oracle and FOPRF-
hybrid model, against semi-honest adversary A who can
corrupt n− 1 parties.

Proof. We exhibit simulators SimC for simulating the view of
the corrupt parties including P1 and excluding P1, respectively,
and prove that the simulated view is indistinguishable from the
real one via standard hybrid arguments. Let C be the set of
corrupted n− 1 parties.
Case 1 (P1 ∈ C). The SimC samples randomness y′j ← Z2l

for ∀j ∈ [b] and invokes the OPRF receiver’s simulator
SimR

OPRF(Y
i, Y ′i), where Y ′i = {y′1, . . . , y′b} and sends Y ′i

to P1 on behalf of Pi(/∈ C). If Pi(/∈ C) has child parties,
SimC receives the OKVS table from Pi’s child parties. Next,
SimC samples uniformly random OKVS table S′i ← Zm′×1

2l

where m′ is the size of the OKVS table when encoding h ·m
elements. And SimC sends S′i to Pi(/∈ C)’s parent party. We
argue that the view output by SimC is indistinguishable from
the real one. First, we define three hybrid transcripts T0,T1,T2,
where T0 is the real view of C, and T2 is the output of SimC .

1. Hybrid0.The first hybrid is the real interaction in Protocol 1.
Here, an honest party Pi uses real inputs and interacts with
corrupt parties C. Let T0 denote the real view of C.

2. Hybrid1. Let T1 be the same as T0, except that the OPRF
execution is replaced by the OPRF receiver’s simulator.
SimR

OPRF(Y
i, Y ′i), where Y ′i has b elements {y′1, . . . , y′b}.

The simulator security of OPRF guarantees that this view
is indistinguishable from T0.

3. Hybrid2. Let T2 be the same as T1, except that the
OKVS table S′i for Pi(/∈ C) is sampled uniformly
from ← Zm′×1

2l
. In real execution, Pi(/∈ C) sets

Ii = {(IDi[j][u],
∑

Pi∗∈Pi.children
V i∗ [j][u] + U i[j][u] +

rij)}∀j∈[b],∀u∈[|IDi[j]|] and builds the OKVS table Si =

Encode(Ii). If x = IDi[j][u] is not the intersection element
of P1 and Pi(/∈ C), the value Ii(x) is uniformly random
from Z2l because it contains the PRF value U i[j][u] =
Fki(x). If x is the intersection element of P1 and Pi, P1

holds U i[j][u] = Fki
(x), but rij is a uniform sample by Pi,

so the values Ii(x) are still uniformly at random from Z2l .
Owing to the double obliviousness and random decoding
property of the OKVS, the simulated S′i has the same
distribution as S in the real protocol. Hence, T1 and T2

are statistically indistinguishable. This hybrid is exactly the
view output by the simulator.

Case 2 (P1 /∈ C). For each Pi(i ≥ 2), SimC generates ran-
dom key ki. It then invokes the OPRF sender’s simulator
SimS

OPRF(ki) and appends the output to the view. SimC receives
the OKVS table from P1’s children parties on behalf of P1.
We argue that the view output by SimC is indistinguishable
from the real one. We first define two hybrid transcripts T0,T1,
where T0 is the real view of C, and T1 is the output of SimC .

1. Hybrid0.The first hybrid is the real interaction in Protocol 1.
Here, an honest party Pi uses real inputs and interacts with
the corrupt parties C. Let T0 denote the real view of C.

2. Hybrid1. Let T1 be the same as T0, except that the OPPF
execution is replaced by the OPRF sender’s simulator
SimS

OPRF(ki) for every i ∈ [2, n]. The simulator security
of OPRF guarantees this view is indistinguishable from T0.
This hybrid is exactly the view output by the SimC .

C. Secure Feature Alignment

1) Definition: We formally define secure feature alignment
functionality FsmFA in Figure 8. Using the secure feature align-
ment protocol, each party Pi(i ∈ [n]) holds (⟨Φ⟩i, IDi, F i) and
obtains secret-shared and joint training dataset ⟨D⟩i consisting
of aligned features.

Functionality FsmFA

Parameters: The number of parties n, the bit length of element
l, the feature dimension of dataset held by each party di (i ∈ [n]).
Inputs: For each i ∈ [n], Pi holds (⟨Φ⟩i, IDi, F i).
Functionality:
1. Initialize empty D.
2. For j = 0 to b:

If Φ[j] == 0: D.append(F 1[j][1], . . . , F 1[j][d1], . . . ,
Fn[j][jn][1], . . . , F

n[j][jn][dn]) for ji ∈ [|IDi[j]|], where
IDi[j][ji] = ID1[j].

3. Return ⟨D⟩i to Pi for i ∈ [n].

Fig. 8. Ideal functionality of secure multi-party feature alignment

2) Construction: Protecting intersection IDs in IDCloak
introduces a significant challenge because without revealing
which IDs are in the intersection, parties cannot directly
determine which features need to be aligned or how they
should be ordered. To address this issue, the smFA protocol

8

has two milestones. First, parties use OKVS and secret sharing
to obtain a secret-shared dataset consisting of aligned fea-
tures and redundant data. Second, parties use a secure multi-
party shuffle to remove redundant data corresponding to non-
intersection IDs, thus yielding a secret-shared and joint dataset
consisting of aligned features. The smFA protocol ΠsmFA is
described formally in Protocol 3.

The first milestone corresponds to steps 1–3 of ΠsmFA

(Protocol 3). In the offline phase, each party Pi (i ≥ 2)
samples a matrix of uniformly random and independent values
Ri

b×di
= [rij,k]∀j∈[b],∀k∈[di],rij,k∈Z

2l
. In the online phase, P1

secret shares its feature matrix F 1 with all other parties
Pi (i ≥ 2) (step 1). Next, each Pi (i ∈ [2, n]) secret
shares Ri among all parties except P1, denoted as ⟨Ri⟩ =
Shr(Ri, i, [n] \ {1}) (step 2-(1)). Subsequently, each party
Pi(i ≥ 2) constructs an OKVS table Si

f = Encode(Iif),
where Iif = {(U i[j][u], Ho(U

i[j][u]) ⊕ ((F i[j][u][1] −
rij,1)∥ . . . ∥(F i[j][u][di] − rij,di

)))}∀j∈[b],∀u∈[|IDi[j]|] (step 2-
(2)). Here, U i = Fki

(IDi) is Pi’s PRF value (obtained from
ΠcmPSI), and Ho : {0, 1}κ → {0, 1}∗ is public random oracles
whose output bit length ‘∗’ is l · di. Each Pi(i ≥ 2) sends
the OKVS table Si

f to P1 (step 2-(2)). After receiving Si
f ,

P1 encodes Si
f using the OPRF values Y i (obtained from

ΠcmPSI) to retrieve V i
f = {vij = Decode(Si

f , Y
i[j])}∀j∈[b]

(step 2-(3)). P1 XORs these result with Ho(Y
i) to derive

masked features V i
f = V i

f ⊕ Ho(Y
i). In step 3, P1 sets

⟨Z⟩1 = (⟨F 1⟩1, V 2
f , V

3
f , . . . , V

n
f), while each Pi (i > 2)

sets ⟨Z⟩i = (⟨F 1⟩i, ⟨R2⟩i, . . . , ⟨Rn⟩i). Through these steps,
the parties collectively obtain a secret-shared dataset ⟨Z⟩ that
includes aligned features and redundant data.

𝑃! 𝑃"		𝑖𝑑#𝑃# 	𝑖𝑑#! 	𝑖𝑑!! 	𝑖𝑑$! 	𝑖𝑑#% 	𝑖𝑑!" 𝑃& 	𝑖𝑑!&	𝑖𝑑#&……

𝑓#" 𝑓!"

	𝑣! = (Decode(𝑆,𝐹"!(𝑖𝑑
#| 𝑗)⨁𝐻$(𝐹"!(𝑖𝑑

#| 𝑗) 𝐹"!(𝑖𝑑#
! ||𝑗), 𝐻$(𝐹"!(𝑖𝑑#

! | 𝑗)⨁(𝑓#! − 𝑟!)
𝐹"!(𝑖𝑑%

! ||𝑗), 𝐻$(𝐹"!(𝑖𝑑%
! | 𝑗)⨁(𝑓%! − 𝑟!)

Secret
Share

𝒓𝒊 𝟐 𝒓𝒊 &𝒓𝒊 𝒊

𝑟!

S
Encode OKVS Table S

S←Encode

𝑃! 	send S to 𝑃#
𝑃#	𝑟𝑒𝑐𝑒𝑖𝑣𝑒 S from 𝑃&	𝒗𝒊 S …

= 6	𝑓#
!−𝑟! , 𝑖𝑓	𝑖𝑑 = 𝑖𝑑'!

	𝑟	 ∈ 0,1 (, 𝑒𝑙𝑠𝑒						

Compute v

Fig. 9. Examples of sharing features of party Pi(i ≥ 2) in j-th bin (index
j omitted for simplicity) with privacy-preserving. Pi’s bin contains two ids
idi1, id

i
2 and the corresponding features are f i

1, f
i
2. Pi samples a random value

ri locally and secretly shares ri to Pj(∀j ∈ [2, n]), who each obtain share
⟨ri⟩j . Pi sends the OKVS table S to P1, who decodes S and computes
vi. The dashed boxes highlight computations corresponding directly to the
adjacent text, and ellipses indicate outputs held by each party.

To analyze the correctness of the above steps, consider the
j-th bin in Figure 9. For simplicity, we omit the index j.
Party Pi’s dataset has a single feature dimension, containing
two ID values idi1, id

i
2 in the j-th bin. If id1 = idiu for some

u ∈ [|IDi[j]|], P1 computes

vi = (Decode(S, Fki
(id1∥j))⊕ (Ho(Fki

(id1))

= (Decode(S, Fki(id
i
u∥j))⊕ (Ho(Fki(id

i
u))

= Ho(Fki
(idiu))⊕ (f i

u − ri)⊕ (Ho(Fki
(idiu))

= f i
u − ri (1)

Adding the shares ⟨ri⟩(held by P2, . . . , Pn) to vi (held by
P1) reconstructs f i

u, meaning that all parties hold a share
⟨z⟩1 of Pi’s feature f i

u for intersection ID. If id1 ̸= idiu, the
decoded output is a random value. Adding shares ⟨ri⟩ (held by
P2, . . . , Pn) to vi reconstructs a random value, implying that
each party obtains a secret-shared random value ⟨z⟩. Thus, all
parties obtain ⟨Zb×d⟩i, where if ID1[j] ∈ I , the j-th row of
⟨Z⟩ consists of secret-shared aligned features from all parties
corresponding to this ID; otherwise, redundant data.

Regarding security, note that for the key-value pairs Iif
encoded into Pi’s OKVS table Si

f (i ≥ 2), party Pi set U i =
Fki

(idiu) as the keys of Iif . And Pi mask each feature value
using a random number and Ho(U

i), thus forming the val-
ues {Ho(U

i[j][u])⊕ ((F i[j][u][1]− rij,1)∥ . . . ∥(F i[j][u][di]−
rij,di

))}∀j∈[b],∀u∈[|IDi[j]|] of Iif . This design prevents P1 from
inferring whether any decoded entry from Si

f is a random
value or a masked feature. Moreover, since Pi uses OKVS to
encode the entire dataset F i across the simple hash table, Si

f

does not reveal the number of elements in each hash bin.
For the second milestone for removing redundant data in

step 4 of ΠsmFA, parties employ our proposed secure shuffling
protocol (Protocol 2) on ⟨Z⟩∥⟨Φ⟩, reconstruct shuffled flags
⟨Φ̂⟩ into plaintext Φ̂, and then remove redundant data from
⟨Z⟩ if the corresponding entries in Φ̂ are randomness.

Protocol 2: ΠsmShuffle

Inputs: Pi holds a secret-shared matrix ⟨X⟩i with size b× d.
Outputs: Pi obtains a shuffled secret-shared matrix ⟨X ′⟩i,
such that X ′ = π(X). where π : [b] → [b] is an unknown
permutation to all parties.
Offline: Pi(∀i ∈ [n]) samples uniformly random independent
values Ri,i′ = [ri,i

′

j,u]∀j∈[b],∀u∈[d],r
i,i′
j,u ∈Z

2l
for ∀i′ ∈ [n] \ {i})

and a random permutation πi : [b] → [b]. Each pair of Pi and
Pi′ (∀i, i′ ∈ [n], i ̸= i′) invokes ΠO−Shuffle:
- Pi inputs πi and obtains ⟨R̂i′,i⟩i.
- Pi′ inputs Ri′,i and obtains ⟨R̂i′,i⟩i′ .
Online:
1. Pi(∀i ∈ [n]) sets ⟨X̂⟩i = ⟨X⟩i.
2. For i = 1 to n:

1) Pi′ (∀i′ ∈ [n]\{i}) computes W i′,i = ⟨X̂⟩i′ −Ri′,i and
sends W i′,i to Pi. Pi′ updates ⟨X̂⟩i′ = ⟨R̂i′,i⟩i′ .

2) Upon receiving all W i′,i from Pi′ (i′ ∈ [n] \ {i}), Pi

computes W i =
∑

i′∈[n]\{i} W
i′,i + ⟨X̂⟩i. Then, Pi

applies its permutation πi to obtain Ŵ i = πi(W i) and
updates ⟨X̂⟩i = Ŵ i +

∑
i′∈[n]\{i}⟨R̂

i′,i⟩i.

In our proposed secure multi-party shuffle ΠsmShuffle (Proto-
col 2), each party Pi(i ∈ [n]) samples a private random permu-
tation πi and generates random masks Ri,i′(i′ ∈ [n] \ {i}) for
each other party in the offline phase. Then, through a two-party
protocol ΠO−Shuffle, parties convert these masks into secret-
shared, permuted forms ⟨R̂i,i′⟩(i′ ∈ [n] \ {i}). In the online
phase, the parties iteratively update their shares in n rounds.
In each round, a designated party Pi (i ∈ [n]) collects masked
inputs W i′,i = ⟨X̂⟩i′−Ri′,i from all others Pi′(i

′ ∈ [n]\{i}),
applies its private permutation πi to the aggregated value

1Here, vi is V i
f [j], z is Z[j][

∑i−1
i′=1

di′], ri is rij , idi is idij , as we omit
j for simplicity.

9

Ŵ i = πi(W i) = πi(
∑

i′∈[n]\{i} W
i′,i + ⟨X̂⟩i), and updates

its share ⟨X̂⟩i = Ŵ i +
∑

i′∈[n]\{i}⟨R̂i′,i⟩i, while the others
Pi′ update their shares ⟨X̂⟩i′ = ⟨R̂i′,i⟩i′ . After all rounds, the
joint output is a secret-shared matrix, which is a randomly
shuffled version of the original input, with the shuffle pattern
and data remaining completely hidden from all the parties.

Since the secure shuffle disrupts the original order of flags
Φ̂ and each plaintext entry in Φ̂ is either 0 or randomness,
ensuring that no party can infer the original intersection IDs
from Φ̂. Then, the parties can remove redundant data: if Φ̂[j] =
0, it indicates that the corresponding row ⟨Z[j]⟩ belongs to an
intersection ID, and thus ⟨Z[j]⟩ is appended in final secret-
shared dataset ⟨D⟩. Finally, each party Pi obtains the secret-
shared and joint dataset ⟨Dc×d⟩i consisting of secret-shared
and aligned features corresponding to the intersection IDs Iid.

Protocol 3: ΠsmFA

Parameters: The number of parties n, the size of input dataset
b, the bit length of element l, and the feature dimension
di for party Pi(i ∈ [n]), the security parameter κ and the
statistical security parameter λ. An OKVS scheme Encode(·),
Decode(·, ·). Random oracles Ho : {0, 1}κ → {0, 1}∗.
Inputs: Pi holds (⟨Φ⟩i, IDi, F i) for i ∈ [n]. P1 holds OPRF
values {Y i = Fki(ID

1)}∀i∈[2,n] and Pi(i ≥ 2) holds PRF
values U i = Fki(ID

i) from ΠcmPSI.
Outputs: Pi obtains ⟨Dc×d⟩i consisting of aligned features.
Offline:
- Each Pi(i ≥ 2) uniformly and independently samples each

element of matrix Ri
b×di

= [rij,k]∀j∈[b],∀k∈[di],r
i
j,k

∈Z
2l

.
- Pi(∀i ∈ [n]) executes offline operation in ΠsmShuffle.
Online:
1. Sharing features of P1: ⟨F 1⟩ = Shr(F 1, 1, [n]).
2. Sharing features of Pi(i ≥ 2):

1) For i ∈ [2, n], ⟨Ri⟩ = Shr(Ri, i, [n] \ {1}).
2) Pi(i ≥ 2) builds OKVS table Si

f = Encode(Iif),
where Iif = {(U i[j][u], Ho(U

i[j][u]) ⊕ ((F i[j][u][1] −
rij,1)∥ . . . ∥(F i[j][u][di] − rij,d1)))}∀j∈[b],∀u∈[|Ui[j]|] and
sends Si

f to P1.
3) After receiving Si

f from Pi(i ≥ 2), P1 gets V i
f =

{vij = Decode(Si
f , Y

i[j])}∀j∈[b] and computes V i
f =

V i
f ⊕Ho(Y

i) for ∀i ∈ [2, n].
3. Merging features:

- P1 sets ⟨Z⟩1 = (⟨F 1⟩1, V 2
f , V

3
f , . . . , V

n
f).

- For i ≥ 2, Pi sets ⟨Z⟩i = (⟨F 1⟩i, ⟨R2⟩i, . . . , ⟨Rn⟩i).
4. Removing redundant data:

1) ⟨Ẑ⟩∥⟨Φ̂⟩ = ΠsmShuffle(⟨Z⟩∥⟨Φ⟩).
2) Φ̂ = Rec(⟨Φ̂⟩).
3) For j = 0 to b: If Φ̂[j] == 0: ⟨D⟩.append(⟨Ẑ[j]⟩).

THEOREM 2. The protocol ΠsmFA (Protocol 3) is securely
realized FsmFA in random oracle model, against a semi-honest
adversary A who can corrupt n− 1 parties.

Proof. We exhibit simulators SimC for simulating the view of
the corrupt parties, including P1 and excluding P1, respec-
tively, and prove that the simulated view is indistinguishable
from the real one via standard hybrid arguments. Let C be the
set of corrupted n− 1 parties.
Case 1 (P1 ∈ C). The corrupted parties obtain shares in steps
1, 2-(1), and 4, thus SimC can pick shares of random value
on behalf of Pi (/∈ C) in these steps. SimC samples uniformly

random OKVS table S′i ← Zm′×di

2l
where m′ is the size of

OKVS table when encoding h ·m number of elements. And
SimC sends S′i to P1 in step 2-(2). We argue that the view
output by SimC is indistinguishable from the real one. We first
define three hybrid transcripts T0,T1,T2, where T0 is the real
view of C, and T2 is the output of SimC .
1. Hybrid0.The first hybrid is the real interaction in Protocol 3.

Here, an honest party Pi uses real inputs and interacts with
the corrupt parties C. Let T0 denote the real view of C.

2. Hybrid1. Let T1 be the same as T0, except that the OKVS
table S′i for Pi(/∈ C) is sampled uniformly from← Zm′×di

2l
.

By the double obliviousness and random decoding property
of OKVS, the simulated S′i has the same distribution as
S in the real protocol. Hence, T1 and T0 are statistically
indistinguishable.

3. Hybrid2. Let T1 be the same as T0, except that the secret
sharing operation is replaced by the secret share simulator.
The underlying secret sharing guarantee T2 is indistinguish-
able from T1.This hybrid is exactly the view output by the
simulator SimC .

Case 2 (P1 /∈ C). The corrupted parties obtain shares in steps
1, 2-(1), and 4, thus the SimC can pick shares of random value
to the view on behalf of P1 in these steps. SimC receive OKVS
table from Pi on behalf of P1 in step 2-(3). We argue that the
view output by SimC is indistinguishable from the real one.
We first define two hybrid transcripts T0, T2, where T0 is the
real view of C, and T1 is the output of SimC .

1. Hybrid0.The first hybrid is the real interaction in Protocol 3.
Here, an honest party Pi uses real inputs and interacts with
the corrupt parties C. Let T0 denote the real view of C.

2. Hybrid1. Let T1 be the same as T0, except that the secret
sharing operation is replaced by the secret share simulator.
The underlying secret sharing guarantees that T1 is indis-
tinguishable from T0.This hybrid is exactly the view output
by the simulator SimC .

D. Communication Complexity
As is shown in Table III, we compare the communication

costs of our IDCloak with iPrivJoin.Thee communi-
cation costs of key cryptographic primitives are defined as
follows: Coprf, Cokvs,Copprf are O(m(λ+ logm)), O(κm) and
O(m(λ+ logm+ κ)), respectively.

TABLE III
COMPARISON OF COMMUNICATION SIZES BETWEEN OUR IDCLOAK VS.

THE SOTA IPRIVJOIN , WHERE n REPRESENTS THE NUMBER OF
PARTICIPATING PARTIES, di DENOTES THE FEATURE DIMENSION OF PARTY

Pi , d DENOTES THE TOTAL FEATURE DIMENSION, m DENOTES THE
DATASET SIZE AND l DENOTES THE BIT LENGTH.

Framework Communication Sizes
iPrivJoin O(Coprf + (1 + d2)Copprf + (d1 + 2d + 1)ml)

Ours (n = 2) O(Coprf + (1 + d2)Cokvs + (d1 + 2d + 1)ml)

Ours O(Coprf + (n − 1 +
∑n

i=2(di))Cokvs + (d1 + n2d − nd + 1)ml)

VI. EVALUATION

A. Experiment Setting
1) Environment: We perform all experiments on a single

Linux server equipped with 20-core 2.4 GHz Intel Xeon CPUs

10

and 1T RAM. We used a single process to simulate a single
party. Additionally, we apply tc tool2 to simulate LAN setting
with a bandwidth of 1GBps and sub-millisecond round-trip
time (RTT) latency and WAN setting with 40Mbps bandwidth
and 40ms RTT latency, following prior work [29]. Without
specifications, the default network is the WAN setting.

2) Implementation: We implement IDCloak in C++, in-
tegrating essential components such as OPRF, OKVS, cuckoo
hashing, and simple hashing from [20]. In particular, for OPRF
and OKVS, we leverage the optimized 3H-GCT algorithm
from [20], setting the cluster size to 214 and the weight
parameter to 3. For hashing, we configure the hash table size
as b = 1.27m and utilize h = 3 hash functions. Additionally,
we set the bit-length parameter to l = 64 and define the
computational ring as Z264 . The protocol operates with a
computational security parameter of κ = 128 and statistical
security parameter of λ = 40. The source code of IDCloak
is publicly available3.

3) Baseline: To the best of our knowledge, iPrivJoin is
the only framework with identical functionality to IDCloak,
except that it is limited to the two-party setting. iPrivJoin,
like our scheme, first computes the intersection IDs, aligns
the features, and uses shuffle to remove redundant data. Since
iPrivJoin is not open-sourced, we re-implement it4. Both
iPrivJoin and IDCloak are evaluated under identical
experimental settings, except for the number of parties n = 2
for iPrivJoin. We do not include mPSI-based dataset join
methods as our baselines because they expose intersection
IDs in plaintext, whereas IDCloak keeps them private for
stronger privacy protection.

4) Datasets: As is shown in Table IV, we employ six
widely-used real-world datasets, phishing, myocardial infarc-
tion complications, Appliances energy prediction, bank mar-
keting, Give me some credit, Health Indicators all of which
are available in the UCI Machine Learning Repository [30]
or Kaggle [31]. These datasets have 10 to 111 features and
contain between 1353 and 253680 samples. We partition each
dataset vertically, ensuring that all parties hold the same num-
ber of samples as in the original dataset, but with uniformly
distributed disjoint feature subsets. Specifically, 80% of the
samples retain randomly selected intersection IDs, whereas the
remaining 20% consist of randomly generated samples.

TABLE IV
DATASETS USED FOR END-TO-END EXPERIMENTS

Datasets #Features (d) Dataset size (m)
Phishing 10 1353
Myocardial 111 1700
Energy 29 19735
Bank 17 45211
Credit 12 150000
Health 21 253680

2https://man7.org/linux/man-pages/man8/tc.8.html
3IDCloak is available at: https://github.com/chenshuyuhhh/IDCloak.git.
4iPrivJoin is available at: https://github.com/chenshuyuhhh/iPrivJoin.git.

B. Evaluation of IDCloak on Real-world Datasets

We first conduct end-to-end online efficiency experiments
by varying the number of parties (n) from 2 to 6. As is shown
in Table V, we can summarize the following:
• In the two-party setting, IDCloak outperforms
iPrivJoin by 1.69× ∼ 1.92× and 1.50× ∼ 1.72×
in terms of time and communication sizes, respectively.
This efficiency gain primarily stems from IDCloak using
lightweight OKVS, whereas iPrivJoin relies on the
more communication-expensive OPPRF (Section V-D
provides a detailed comparison of the communication
complexity).

• In multi-party settings involving 3 to 6 parties, IDCloak
maintains efficiency comparable to iPrivJoin. This is at-
tributed to the scalability of our multi-party protocol, which
preserves performance as the number of parties increases.
Notably, IDCloak demonstrates linear scalability with
respect to the number of parties, highlighting its practicality
for multi-party settings.

C. Evaluation of cmPSI Protocol

1) Evaluation of Optimization for cmPSI Protocol: We
conduct experiments to evaluate the performance of our
proposed cmPSI protocol using an optimized communica-
tion structure, comparing it against ring-based and star-based
communication structures under varying network conditions
of 10Mbps, 40Mbps, and 100Mbps bandwidth, with a fixed
network latency of 40ms. As is shown in Figure 10, the
cmPSI protocol with optimized communication structure out-
performs the ring-based communication structure and the
star-based communication structure by 1.14× ∼ 1.80× and
1.14× ∼ 1.41×, respectively. Furthermore, the performance
advantage of the optimized communication structure becomes
increasingly significant as the number of parties increases.

5 8 10
Number of parties (n)

200

300

400

500

Ti
m

es
 (s

)

Ring
Star
Opt

(a) 10Mbps bandwidth

5 8 10
Number of parties (n)

50

75

100

125

150

Ti
m

es
 (s

)

Ring
Star
Opt

(b) 40Mbps bandwidth

5 8 10
Number of parties (n)

20

30

40

50

Ti
m

es
 (s

)

Ring
Star
Opt

(c) 100Mbps bandwidth

Fig. 10. Comparison of time (in seconds) for different communication
structures in cmPSI protocol under different network settings. ‘Ring’, ‘Star’,
and ‘Opt’ denote a ring-based communication structure, a star-based commu-
nication structure, and optimized communication structure, respectively.

2) Evaluation of SOTA Comparison for cmPSI Protocol:
We conduct experiments to compare our proposed cmPSI
protocol with the SOTA cmPSI protocol [23], which also keeps
the intersection IDs private. Our experiments configure each
protocol to resist the maximum number of colluding parties
that it can tolerate. Specifically, our proposed cmPSI protocol
provides stronger security (resists against up to n−1 colluding
parties), whereas [23] only resists against up to n/2 colluding
parties. Moreover, to align its output representation with [23],
we add a secure zero-equality operator [12] to the output of
our proposed cmPSI protocol. Specifically, in our protocol,

https://man7.org/linux/man-pages/man8/tc.8.html

11

TABLE V
IDCLOAK VS. THE TWO-PARTY FRAMEWORK IPRIVJOIN [10] ON SIX REAL-WORLD DATASETS.

Framework n
Time (s) Communication sizes (MB)

Phishing Myocardial Energy Bank Credit Health Phishing Myocardial Energy Bank Credit Health
iPrivJoin 2 3.13 8.36 22.82 31.62 70.61 192.53 2.88 13.13 42.14 62.35 146.46 401.53

IDCloak

2 1.73 4.37 12.49 16.50 41.72 109.13 1.82 8.74 25.91 36.29 89.38 240.14
3 2.05 5.61 17.99 21.68 60.74 162.79 3.82 19.96 59.42 83.06 205.11 560.17
4 2.37 7.22 23.63 28.96 79.93 212.31 6.09 34.45 104.18 145.91 356.62 975.59
5 2.64 8.97 29.20 37.76 99.36 265.19 8.69 52.63 159.00 223.02 540.55 1502.14
6 3.02 10.85 35.49 47.59 120.60 328.47 11.41 74.42 225.85 314.31 772.74 2129.98

when an ID in P1’s hash bin belongs to the intersection, all
other parties receive a secret-shared flag of 0; otherwise, they
receive a secret-shared flag of random values. In contrast, [23]
assigns a secret-shared flag of 1 indicating intersection IDs.

TABLE VI
OUR CMPSI VS. SOTA CMPSI PROTOCOL [23] ON DATASETS WITH SIZES
m ∈ {216, 220}, AND INVOLVING 3 TO 10 PARTIES. ‘COMM’ IS SHORT

FOR COMMUNICATION.

m Protocol 3 5 8 10

LAN
Time

(s)

216
[23] 1.46 2.04 2.89 3.47

Our cmPSI 1.05 1.43 1.99 2.34

220
[23] 22.40 33.62 48.12 57.60

Our cmPSI 16.09 19.16 26.16 28.35

WAN
Time

(s)

216
[23] 16.74 30.78 49.87 63.72

Our cmPSI 6.60 8.47 11.37 13.08

220
[23] 278.95 518.67 875.99 1130.24

Our cmPSI 56.27 84.90 118.53 145.25

Comm
Sizes
(MB)

216
[23] 82.09 171.49 312.14 414.87

Our cmPSI 14.72 29.44 51.52 66.25

220
[23] 1412.08 2941.12 5339.59 8158.22

Our cmPSI 207.66 415.31 726.80 934.45

As is shown in Table VI, we can summarize the following:
Our proposed cmPSI protocol, which offers stronger security,
outperforms SOTA cmPSI [23] by 2.54× ∼ 7.78× and
1.39× ∼ 2.03× in the WAN and LAN settings, respectively,
in terms of time. These improvements primarily stem from
the reduced communication overhead in our protocol, which
achieves a 5.58× ∼ 8.73× reduction compared to cmPSI [23].
Specifically, cmPSI [23] relies on PSM primitives, which
impose higher communication costs than the OKVS and OPRF
primitives used in our protocol. In addition, whereas the SOTA
cmPSI protocol employs a star communication structure,
our proposed protocol adopts an optimized communication
structure that enhances the efficiency without compromising
security. Notably, as the number of parties n increases or the
dataset size m grows, the advantages of our protocol become
even more pronounced.

D. Evaluation of smFA Protocol

1) Evaluation of SOTA Comparison for Secure Shuffle
Protocol: We evaluate the efficiency of our proposed secure
multi-party shuffle protocol, a core component of the smFA
protocol, against the SOTA secure multi-party shuffle protocol
implemented by MP-SPDZ [12]. As shown in Table VII, our
proposed secure shuffle protocol achieves 21.44× ∼ 41.47×
and 61.62× ∼ 138.34× speedup over the SOTA protocol [12]

in the LAN and WAN settings, respectively. These improve-
ments primarily stem from significantly lower communication
sizes and rounds, precisely, a 105.69× ∼ 132.13× reduction
in communication sizes compared to [12]. Specifically, our
proposed secure shuffle protocol incurs the communication
sizes of O(ndlm) per party over n communication rounds,
whereas the SOTA secure shuffle protocol [12] leverages
Waksman networks [32] for shuffling, resulting in larger
communication sizes of O(ndlm logm) and a requirement
of O(logm) rounds per party. Consequently, our protocol
demonstrates a more pronounced efficiency advantage as the
number of parties and the dataset size increase. For instance,
in the WAN setting with n = 5, increasing m from 216 to 220

results in an efficiency improvement over [12] from 104.50×
to 138.34×. Similarly, when m = 220, increasing n from 3 to
5 boosts the efficiency improvement from 81.89× to 138.34×.

TABLE VII
THE ONLINE TIME (IN SECONDS) AND COMMUNICATION SIZE (IN MBS)

OF OUR PROPOSED SECURE MULTI-PARTY SHUFFLE PROTOCOL VS. SOTA
SECURE MULTI-PARTY SHUFFLE PROTOCOL [12] ON DATASETS WITH SIZES
m ∈ {216, 220}, AND INVOLVING 3 AND 5 PARTIES. ‘PRO’ AND ‘COMM’

ARE SHORT FOR PROTOCOL AND COMMUNICATION. RESPECTIVELY.

m Pro LAN Time (s) WAN Time (s) Comm sizes (MB)
3 5 3 5 3 5

216
[12] 38.79 144.37 2154.36 11204.60 12484.92 68456.40
Ours 1.81 6.49 34.96 107.22 118.11 647.70

220
[12] 1330.87 3316.92 46267.61 239100.02 249687.80 1369105.00
Ours 32.09 113.24 564.98 1728.33 1889.76 10363.20

2) Evaluation of Efficiency Improvement for smFA using
our secure shuffle: We evaluate the efficiency improvements
of the smFA protocol from using the SOTA secure multi-party
shuffle provided by MP-SPDZ [12] to use our proposed secure
shuffle protocol. As is shown in Figure 11, our proposed secure
shuffle protocol significantly reduces the time and communi-
cation sizes of the smFA protocol by 40.54× ∼ 53.58× and
65.63× ∼ 81.29× respectively, compared with integrating the
SOTA secure shuffle in the smFA protocol. The improvements
occur because the shuffle operation alone contributes to over
99% of the total time and communication sizes when using
the SOTA secure multi-party shuffle protocol.

3) Evaluation of Efficiency for smFA Protocol: We evaluate
the efficiency of our proposed smFA protocol under vary-
ing numbers of parties (n), dataset sizes (m), and feature
dimensions (d). As is shown in Figure 12, the time and
communication sizes of the smFA protocol exhibit linear
growth with respect to the number of parties, dataset size, and

12

0 1000 2000
Time (s)

Ours_smFA
MPSPDZ_smFA

(a) Time (m = 216)

0 5000 10000
Communication (MB)

Ours_smFA
MPSPDZ_smFA

(b) Communication (m = 216)

0 20000 40000
Time (s)

Ours_smFA
MPSPDZ_smFA

(c) Time (m = 220)

0 100000 200000
Communication (MB)

Ours_smFA
MPSPDZ_smFA

(d) Communication (m = 220)

MP-SPDZ-based smFA Our smFAMP-SPDZ-based smShuffle Our smShuffle

Fig. 11. Online time (in seconds) and communication sizes (in MBs) of
the smFA protocol using our proposed secure multi-party shuffle vs. the
smFA protocol using the SOTA secure multi-party shuffle [12]. Evaluations
are conducted on datasets with varying dataset sizes m ∈ {216, 220}, fixed
feature dimension di = 10(i ∈ [n]), and a fixed number of parties n = 3.

feature dimensions. These results highlight the practicality of
the smFA protocol in multi-party settings.

3 4 5 6
Number of parties n

50

100

150

200

Ti
m

e
(s

)

(a) Parties numbers

212 218 219 220

Dataset size m

0

250

500

750

Ti
m

e
(s

)

(b) Dataset sizes

10 200 400 600 800 1000
Feature dimension d

0

1k

2k

3k

4k

5k

Ti
m

e
(s

)

(c) Feature Dimensions

3 4 5 6
Number of parties n

0

0.5k

1k

1.5k

C
om

m
un

ic
at

io
n

(M
B

)

(d) Parties numbers

212 218 219 220

Dataset size m

0

1k

2k

3k

C
om

m
un

ic
at

io
n

(M
B

)

(e) Dataset sizes

10 200 400 600 800 1000
Feature dimension d

0
10k
20k
30k
40k
50k

C
om

m
un

ic
at

io
n

(M
B

)

(f) Feature Dimensions

Fig. 12. Online Time (in seconds) and communication sizes (in MB) of
our smFA protocol under varying parameters. When varying n, parameters
di = 10 and m = 216 are fixed; when varying m, parameters n = 3 and
di = 10 are fixed; when varying di, parameters n = 3 and m = 216 are
fixed. Note: ‘k’ denotes 1000.

VII. DISCUSSION

Revealing the Size of the Intersection Set. Although
IDCloak reveals the intersection size c, this information
is essential for practical applications [33], [34]. In vPPML,
parties often rely on c to decide whether to continue training;
if c is below a certain threshold (e.g., c < 50% · n), they
can terminate early to avoid wasting effort. Thus, revealing
c in IDCloak is reasonable. Moreover, IDCloak provides
c in the cmPSI protocol, allowing parties to end the process
promptly if the intersection size is too small.
Supporting vPPML Frameworks with Different Schemes.
Our IDCloak generates training dataset in ASS, a commonly
used scheme in vPPML frameworks [3], [12]. However, prac-
tical applications may require other schemes, such as boolean
secret sharing or homomorphic encryption, depending on the
training setup. To address this, IDCloak can use existing
conversion protocols [27], [29] to transform ASS dataset into
the required scheme.

VIII. CONCLUSION

In this paper, we investigate that existing frameworks for
secure dataset join in vPPML could be impractical because
they are insecure when they expose the intersection IDs;
or they rely on a strong trust assumption requiring a non-
colluding auxiliary server; or they are limited to the two-party
setting. To resolve the problem, we propose IDCloak, the
first practical secure multi-party dataset join framework for
vPPML without a non-colluding auxiliary server. IDCloak
consists of two efficient protocols. First, our proposed circuit-
based multi-party private set intersection (cmPSI) protocol
securely computes secret-shared flags indicating intersection
IDs. Second, our proposed secure multi-party feature align-
ment protocol leverages our proposed secure multi-party shuf-
fle protocol to construct the secret-shared and joint dataset
based on these secret-shared flags. Our experiments show that
in the two-party setting, IDCloak outperforms iPrivJoin,
a state-of-the-art secure two-party dataset join framework, and
maintains comparable efficiency even as the number of parties
increases. Furthermore, compared to the SOTA protocol, our
proposed cmPSI protocol offers a stronger security guarantee
while improving efficiency by up to 7.78× in time and 8.73×
in communication sizes. Additionally, our secure multi-party
shuffle protocol outperforms the SOTA protocol by up to
138.34× in time and 132.13× in communication sizes.

REFERENCES

[1] C. Chen, J. Zhou, L. Wang, X. Wu, W. Fang, J. Tan, L. Wang, A. X. Liu,
H. Wang, and C. Hong, “When homomorphic encryption marries secret
sharing: Secure large-scale sparse logistic regression and applications in
risk control,” in Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, 2021, pp. 2652–2662.

[2] G. Lin, W. Han, W. Ruan, R. Zhou, L. Song, B. Li, and Y. Shao,
“Ents: An efficient three-party training framework for decision trees
by communication optimization,” in Proceedings of the 2024 on ACM
SIGSAC Conference on Computer and Communications Security, 2024,
pp. 4376–4390.

[3] P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-
preserving machine learning,” in 2017 IEEE symposium on security and
privacy (SP). IEEE, 2017, pp. 19–38.

[4] V. Kolesnikov, N. Matania, B. Pinkas, M. Rosulek, and N. Trieu, “Practi-
cal multi-party private set intersection from symmetric-key techniques,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 1257–1272.

[5] B. Pinkas, T. Schneider, and M. Zohner, “Scalable private set intersection
based on ot extension,” ACM Transactions on Privacy and Security
(TOPS), vol. 21, no. 2, pp. 1–35, 2018.

[6] A. Bay, Z. Erkin, M. Alishahi, and J. Vos, “Multi-party private set
intersection protocols for practical applications.” in SECRYPT, 2021,
pp. 515–522.

[7] M. Wu, T. H. Yuen, and K. Y. Chan, “O-Ring and K-Star: Efficient multi-
party private set intersection,” in 33rd USENIX Security Symposium
(USENIX Security 24). Philadelphia, PA: USENIX Association, Aug.
2024, pp. 6489–6506.

[8] X. Jiang, X. Zhou, and J. Grossklags, “Comprehensive analysis of
privacy leakage in vertical federated learning during prediction.” Proc.
Priv. Enhancing Technol., vol. 2022, no. 2, pp. 263–281, 2022.

[9] Y. Gao, H. Deng, Z. Zhu, X. Chen, Y. Xie, P. Duan, and P. Chen,
“Peafowl: Private entity alignment in multi-party privacy-preserving
machine learning,” IEEE Transactions on Information Forensics and
Security, vol. 20, pp. 2706–2720, 2025.

[10] Y. Liu, B. Zhang, Y. Ma, Z. Ma, and Z. Wu, “iprivjoin: An id-private
data join framework for privacy-preserving machine learning,” IEEE
Transactions on Information Forensics and Security, 2023.

[11] N. Chandran, D. Gupta, and A. Shah, “Circuit-psi with linear complexity
via relaxed batch opprf,” Cryptology ePrint Archive, 2021.

13

[12] M. Keller, “MP-SPDZ: A versatile framework for multi-party computa-
tion,” in Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, 2020.

[13] R. Inbar, E. Omri, and B. Pinkas, “Efficient scalable multiparty private
set-intersection via garbled bloom filters,” in Security and Cryptography
for Networks: 11th International Conference, SCN 2018, Amalfi, Italy,
September 5–7, 2018, Proceedings 11. Springer, 2018, pp. 235–252.

[14] A. Kavousi, J. Mohajeri, and M. Salmasizadeh, “Efficient scalable
multi-party private set intersection using oblivious prf,” in Security and
Trust Management: 17th International Workshop, STM 2021, Darmstadt,
Germany, October 8, 2021, Proceedings 17. Springer, 2021, pp. 81–99.

[15] A. Bay, Z. Erkin, J.-H. Hoepman, S. Samardjiska, and J. Vos, “Practical
multi-party private set intersection protocols,” IEEE Transactions on
Information Forensics and Security, vol. 17, pp. 1–15, 2021.

[16] M. Wu, T. H. Yuen, and K. Y. Chan, “O-ring and k-star: Efficient multi-
party private set intersection,” in 33rd USENIX Security Symposium
(USENIX Security 24). USENIX Association, 2024.

[17] Y. Huang, D. Evans, and J. Katz, “Private set intersection: Are garbled
circuits better than custom protocols?” in NDSS, 2012.

[18] P. Rindal and P. Schoppmann, “Vole-psi: fast oprf and circuit-psi
from vector-ole,” in Advances in Cryptology–EUROCRYPT 2021: 40th
Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, October 17–21, 2021, Pro-
ceedings, Part II. Springer, 2021, pp. 901–930.

[19] G. Garimella, B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai, “Obliv-
ious key-value stores and amplification for private set intersection,”
in Advances in Cryptology–CRYPTO 2021: 41st Annual International
Cryptology Conference, CRYPTO 2021, Virtual Event, August 16–20,
2021, Proceedings, Part II 41. Springer, 2021, pp. 395–425.

[20] P. Rindal and S. Raghuraman, “Blazing fast psi from improved okvs and
subfield vole.” IACR Cryptol. ePrint Arch., vol. 2022, p. 320, 2022.

[21] J. P. Ma and S. S. Chow, “Secure-computation-friendly private set
intersection from oblivious compact graph evaluation,” in Proceedings
of the 2022 ACM on Asia Conference on Computer and Communications
Security, 2022, pp. 1086–1097.

[22] Y. Li, D. Ghosh, P. Gupta, S. Mehrotra, N. Panwar, and S. Sharma,
“Prism: Private verifiable set computation over multi-owner outsourced
databases,” in Proceedings of the 2021 International Conference on
Management of Data, 2021, pp. 1116–1128.

[23] N. Chandran, N. Dasgupta, D. Gupta, S. L. B. Obbattu, S. Sekar, and
A. Shah, “Efficient linear multiparty psi and extensions to circuit/quorum
psi,” in Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, 2021, pp. 1182–1204.

[24] R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols,” in Proceedings 42nd IEEE Symposium on
Foundations of Computer Science. IEEE, 2001, pp. 136–145.

[25] R. Pagh and F. F. Rodler, “Cuckoo hashing,” in Algorithms—ESA 2001:
9th Annual European Symposium Århus, Denmark, August 28–31, 2001
Proceedings. Springer, 2001, pp. 121–133.

[26] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold, “Keyword search
and oblivious pseudorandom functions,” in Theory of Cryptography:
Second Theory of Cryptography Conference, TCC 2005, Cambridge,
MA, USA, February 10-12, 2005. Proceedings 2. Springer, 2005, pp.
303–324.

[27] D. Demmler, T. Schneider, and M. Zohner, “Aby-a framework for
efficient mixed-protocol secure two-party computation.” in NDSS, 2015.

[28] D. Demmler, P. Rindal, M. Rosulek, and N. Trieu, “Pir-psi: scaling
private contact discovery,” Cryptology ePrint Archive, 2018.

[29] P. Mohassel and P. Rindal, “Aby3: A mixed protocol framework for
machine learning,” in Proceedings of the 2018 ACM SIGSAC conference
on computer and communications security, 2018, pp. 35–52.

[30] M. Kelly, R. Longjohn, and K. Nottingham, “The uci machine learning
repository,” 2023. [Online]. Available: https://archive.ics.uci.edu

[31] W. C. Credit Fusion, “Give me some credit,” 2011. [Online]. Available:
https://kaggle.com/competitions/GiveMeSomeCredit

[32] A. Waksman, “A permutation network,” Journal of the ACM (JACM),
vol. 15, no. 1, pp. 159–163, 1968.

[33] S. Ghosh and M. Simkin, “The communication complexity of threshold
private set intersection,” in Advances in Cryptology–CRYPTO 2019: 39th
Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 18–22, 2019, Proceedings, Part II. Springer, 2019, pp. 3–29.

[34] S. Badrinarayanan, P. Miao, S. Raghuraman, and P. Rindal, “Multi-
party threshold private set intersection with sublinear communication,”
in Public-Key Cryptography–PKC 2021: 24th IACR International Con-
ference on Practice and Theory of Public Key Cryptography, Virtual
Event, May 10–13, 2021, Proceedings, Part II. Springer, 2021, pp.
349–379.

APPENDIX

A. Algorithm for optimized communication structure of cmPSI

As is shown in algorithm 1, it aims to construct an efficient
communication structure for our cmPSI protocol, based on
the parameters, i.e. the number of parties n, the number of
designated root party leader num, the time for sending one
OKVS table ts, and the network delay (tl). The core idea is
to maximize node utilization while minimizing communication
delay. Node is a data structure that has the num, children, and
parent, where the ‘num’ indicates the identifier of a party, the
‘parent’ indicates the parties to whom this Node will send
data, the ‘child’ indicates the parties whose data this Node
will receive. The algorithm begins by computing k, which
determines the number of children each node should have
in the structure. Nodes are then grouped into sets of size k,
with the last node in each group acting as the parent for the
others. This grouping process is iterated until a single root
node remains, which represents the leader. If the resulting root
does not match the designated leader, a breadth-first search is
used to locate and swap in the correct leader node.

Algorithm 1 Optimized communication structure generation
Input: The number of parties n, the number of root party

leader num, the time for sending one OKVS table ts,
the time of network delay tl.

Output: Root node node of the communication structure.
1: k = ⌈ tlts ⌉+ 1, c = n mod k, nodes, nodes2 = ∅
2: for i = 0 to n− 1 do
3: nodes.append(Node(i))
4: end for
5: while n > 1 do
6: c = n mod k
7: for i = 0 to n− k − c step k do
8: for j = 0 to k − 1 do
9: nodes[i+ k − 1].add child(nodes[i+ j])

10: nodes[i+ j].parent = nodes[i+ k − 1]
11: end for
12: nodes2.append(nodes[i+ k − 1])
13: end for
14: for i = n− k − c to n− 1 do
15: nodes[n− 1].add child(nodes[i])
16: nodes[i].parent = nodes[n− 1]
17: end for
18: nodes2.append(nodes[n− 1])
19: nodes = nodes2, nodes2 = ∅
20: n = len(nodes)
21: end while
22: node = nodes[0]
23: if node.num == leader num then
24: Return
25: end if
26: queue = deque([node]), t node = None
27: while queue ̸= ∅ do
28: current = queue.popleft()
29: if current.num == leader num then
30: t node = current; Break
31: end if
32: for child ∈ current.child do
33: queue.append(child)
34: end for
35: end while
36: if t node ̸= None then
37: node.num, t node.num = t node.num, node.num
38: end if
39: Return node

https://archive.ics.uci.edu
https://kaggle.com/competitions/GiveMeSomeCredit

	Introduction
	Our Approaches
	Contributions

	Related work
	Private Set Intersection
	Multi-party PSI (mPSI)
	Circuit-based PSI (cPSI)
	Circuit-based Multi-party PSI (cmPSI)

	Secure Two-party Dataset Join
	Secure Multi-party Dataset Join with Non-colluding Auxiliary Server

	Overview of IDCloak
	Problem Statement
	Security Model

	Preliminary
	Cuckoo Hashing & Simple Hashing
	Oblivious Key-Value Store
	Oblivious Pseudorandom Function
	Additive Secret Sharing
	Oblivious Shuffle & Secure Shuffle

	Design
	Setup Phase
	Private ID Intersection
	Definition
	cmPSI with Ring-based Communication Structure
	cmPSI with Optimized Communication Structure

	Secure Feature Alignment
	Definition
	Construction

	Communication Complexity

	Evaluation
	Experiment Setting
	Environment
	Implementation
	Baseline
	Datasets

	Evaluation of IDCloak on Real-world Datasets
	Evaluation of cmPSI Protocol
	Evaluation of Optimization for cmPSI Protocol
	Evaluation of SOTA Comparison for cmPSI Protocol

	Evaluation of smFA Protocol
	Evaluation of SOTA Comparison for Secure Shuffle Protocol
	Evaluation of Efficiency Improvement for smFA using our secure shuffle
	Evaluation of Efficiency for smFA Protocol

	Discussion
	Conclusion
	References
	Algorithm for optimized communication structure of cmPSI

