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ABSTRACT

Autoregressive (AR) image generation models have gained increasing attention for their breakthroughs
in synthesis quality, highlighting the need for robust watermarking to prevent misuse. However,
existing in-generation watermarking techniques are primarily designed for diffusion models, where
watermarks are embedded within diffusion latent states. This design poses significant challenges
for direct adaptation to AR models, which generate images sequentially through token prediction.
Moreover, diffusion-based regeneration attacks can effectively erase such watermarks by perturbing
diffusion latent states. To address these challenges, we propose Lexical Bias Watermarking (LBW), a
novel framework designed for AR models that resists regeneration attacks. LBW embeds watermarks
directly into token maps by biasing token selection toward a predefined green list during generation.
This approach ensures seamless integration with existing AR models and extends naturally to post-hoc
watermarking. To increase the security against white-box attacks, instead of using a single green list,
the green list for each image is randomly sampled from a pool of green lists. Watermark detection is
performed via quantization and statistical analysis of the token distribution. Extensive experiments
demonstrate that LBW achieves superior watermark robustness, particularly in resisting regeneration
attacks.

1 Introduction

Recent diffusion models have demonstrated remarkable success across a wide range of generative tasks, including text-
to-image synthesis[1, 2, 3], controllable generation[4, 5, 6], image editing[7, 8, 9, 10, 11, 12], and video generation[13,
14, 15, 16]. While diffusion models [17, 18] have dominated the landscape, autoregressive (AR)-based frameworks have
emerged as a compelling alternative, achieving state-of-the-art image quality [19, 20, 21]. Moreover, AR-based image
modeling can be seamlessly integrated with AR-based language modeling frameworks, enabling powerful multimodal
applications [22, 23]. However, their ability to generate highly realistic images concerns potential misuse, including
deep-fakes and misinformation. To ensure traceability and prevent abuse, it is crucial to develop effective watermarking
techniques for images generated by AR models.
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Existing watermarking techniques can be categorized into post-hoc and in-generation approaches. Post-hoc watermark-
ing embeds watermarks into pre-generated images via imperceptible perturbations [24, 25, 26], whereas in-generation
watermarking integrates watermarks directly into the diffusion-based image synthesis process by modifying intermediate
states [27, 28, 29]. While effective in diffusion models, in-generation methods are incompatible with AR models, which
generate images sequentially via token prediction rather than refining continuous latent representations. Consequently,
watermarking within AR-based image generation remains an open challenge. Moreover, regeneration attacks pose
a significant threat to diffusion-based in-generation watermarking by disrupting their latent representations where
watermarks are embedded [30, 31]. In contrast, AR models, which generate images through discrete token prediction,
offer a fundamentally different mechanism that may enhance robustness against such attacks. This motivates the
development of a watermarking method specifically tailored for AR models.

The primary challenge in embedding watermarks in AR-generated images is determining where to introduce the
watermark so that it remains detectable. A key observation is that AR models quantize images into token maps,
and when an AR-generated image is re-encoded, a significant portion of the original tokens can be recovered (see
Fig 1). This suggests that watermark information can be embedded in the token map, and subsequently detected
by re-quantizing the watermarked image and analyzing the token distribution. Additionally, we observe that minor
perturbations within a controlled range on the token map do not significantly degrade image quality (see Fig 2, 3).
These observations motivate us to embed watermarks in token maps of AR models.

In this paper, drawing inspiration from text watermark techniques, we propose a novel framework called Lexical Bias
Watermarking (LBW), which embeds watermarks in the token map by introducing a controlled bias in token selection
during the autoregressive prediction process. Specifically, we partition the token vocabulary into red and green lists and
encourage the model to favor green tokens during prediction by applying a soft token biasing strategy, which increases
the logits of green tokens with a constant to enhance their likelihood of being sampled. Instead of utilizing dynamic
green list [32, 33], we adopt a global token partition strategy, which maintains a predetermined green list throughout
the entire token generation process. This design ensures compatibility with random token prediction processes [34, 21]
and enhances robustness against global image watermark removal attacks. Furthermore, our method naturally extends
to post-hoc watermarking by leveraging the VQ-VAE-based image reconstruction process. After an image is quantized
into a token map, we embed the watermark by replacing red tokens with their nearest green counterparts. The modified
token map is then used to reconstruct the image, effectively embedding the watermark in a post-hoc manner.

To further enhance resistance against white-box attacks, we introduce a multi-green-list strategy rather than relying on
a single green list. During watermarking, one green list is randomly selected from multiple green lists, and these green
lists are predefined such that each token has an equal probability of being a green token across the entire green list pool.
Empirical results in Figure 5 confirm that our multi-list strategy produces token distributions nearly indistinguishable
from those of clean images, whereas the single-list strategy exhibits detectable biases that can be easily inferred by an
adversary.

For watermark detection, we apply a z-score hypothesis test to evaluate the proportion of green tokens in the token
map quantized from watermarked images. Specifically, we evaluate each green list in the pool by computing the
proportion of its tokens present in the token map. Given the high token consistency in AR-generated images (see
Fig 1), any statistically significant deviation from the expected green token ratio provides strong evidence of watermark
presence. This detection method is lightweight, requiring only VQ-VAE without access to transformer-based generative
models, making it suitable for both in-generation and post-hoc watermarking. Experimental results demonstrate that our
approach achieves state-of-the-art robustness against both conventional and regeneration watermark removal attacks,
particularly CtrlRegen [31], a strong attack designed to erase watermarks embedded in diffusion models. This highlights
the effectiveness of our method in providing resilient watermarking for AR-generated images.

In this work, we make the following key contributions:

• To the best of our knowledge, this is the first study to explore watermarking for the AR image generation
process, ensuring seamless integration without disrupting the iterative token prediction mechanism.

• We propose LBX, a unified framework that introduces lexical bias in AR-based image generation and
reconstruction processes. We also introduce a multi-green-list strategy to increase the security against white-
box attacks.

• Extensive experiments demonstrate that our method achieves comparable robustness to baseline watermarking
techniques against conventional attacks while exhibiting superior resilience against regeneration attacks.

2 Related Works

Image watermarking methods.
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Image watermarking ensures digital content authenticity and security, typically categorized as post-hoc or in-generation
watermarking. Post-hoc methods embed watermarks into pre-generated images via pixel-based (e.g., LSB [35]) or
frequency-based techniques (e.g., DwtDct and DwtDctSvd [36]), with recent approaches leveraging deep learning (e.g.,
RivaGAN [25], SSL [37], StegaStamp [38]). In-generation methods integrate watermarks into the image synthesis
process by modifying intermediate states, particularly in diffusion models[27, 28, 29] or VAE decoders[39, 40].
However, these methods are incompatible with AR models, which generate images via sequential token prediction.
Besides, they are vulnerable to diffusion-based regeneration attacks. We firstly explores in-generation watermarking for
AR image generation, demonstrating superior robustness against regeneration attacks.

Text watermark methods for LLMs. Watermarking LLMs typically involves modifying logits or token sampling to
embed watermarks within the generated text. KGW[41] partitions the vocabulary into "green" and "red" lists using
a hash-based selection strategy, biasing token selection toward green-listed tokens. EWD[42] enhances detection by
assigning higher weights to low-entropy tokens. To minimize text distortion, SWEET[43] and Adaptive Watermark[44]
avoid embedding watermarks in low-entropy positions, while BOW [45] selectively skips red tokens with high
probabilities. WinMax[32] applies a sliding window approach to defend against text mixing attacks, while semantic
grouping techniques[46, 47] cluster similar tokens to resist semantic-invariant modifications. Unlike these adaptive
methods, our approach utilizes a globally fixed green list, ensuring compatibility with AR models, which generate
tokens in any order. This design enhances robustness against global image watermark removal attacks, including
blurring and DiffPure[30].

Autoregressive visual models. Early research on autoregressive (AR) image generation[48, 49, 50] modeled 2D images
as 1D pixel sequences, generating pixels in a row-wise raster scan order. Recent advancements leverage VQ-VAE-based
tokenization[51], where models like VQGAN[52] employ decoder-only transformers to predict sequences of discrete
latent tokens. Similar paradigms include VQVAE-2[53] and RQ-Transformer [54]. To overcome the limitations
of unidirectional raster-scan generation, VAR[19] introduced a multi-scale residual token map, improving spatial
coherence. Further refinements, such as RAR[21] and RandAR [34], shuffle token generation orders during training,
facilitating bidirectional token dependencies and enhancing contextual coherence. Our proposed LBW could be
seamlessly integrated with AR models that employ both single-scale and multi-scale token maps as well as predefined
and randomized token generation orders.

3 Method

In this section, we provide a detailed explanation of LBW, which embeds watermarks into token maps through both
in-generation and post-hoc approaches, along with the corresponding watermark detection process. Section 3.1 provides
an overview of the image quantization and token prediction processes fundamental to AR-based image synthesis.
Section 3.2 presents two key properties of AR models that enable robust watermark embedding while preserving image
quality. Section 3.3 details our in-generation and post-hoc watermarking methods, along with their detection process.

3.1 Preliminary

Tokenization. Current AR image models [52, 19, 21] leverage VQ-VAE [55] to represent continuous images x ∈
RH×W×3 as discrete tokens (x1, x2, ..., xT ) in latent space, where each xi ∈ [V ] is an integer from a vocabulary of size
V . Given an input image x, it is first encoded in a feature map f ∈ Rh×w×C = E(x), where E(·) is the encoder. The
quantizer Q(·) with a learnable codebook Z ∈ RV×C then maps the feature map to a discrete token map q ∈ [V ]h×w

or a stack of token maps {qk}Kk=1 | qk ∈ [V ]hk×wk , based on the single-scale or multi-scale quantization process they
introduce. The single-scale quantization process q = Q(f) maps each feature vector f (i,j) to a code index q(i,j) by
finding the nearest code in the codebook Z using Euclidean distance:

q(i,j) = argmin
v∈[V ]

||lookup(Z, v)− f (i,j)||2, (1)

where lookup(Z, v) fetches the v-th vector from the codebook Z. This process produces the approximated feature map
f̂ , which is decoded by D(·) to generate the reconstructed image x̂:

f̂ = lookup(Z, q), x̂ = D(f̂). (2)

The multi-scale quantization process {qk}Kk=1 = QK(f) progressively derives token maps at each scale. A set of
scale parameters (hk, wk)

K
k=1 defines the map resolutions in ascending order, with hK = h and wK = w representing

the largest scale. The token map qk for scale k is computed by quantizing the residual feature map rk, which is derived
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Figure 1: Observation 1: Token consistency for VQ-GAN, VAR, and RAR across various codebook ratios ranging
from 0.1 to 1.0.

by subtracting the aggregated sum of the reconstructed residual feature maps from preceding scales (each upscaled to
the maximum resolution) from the original feature map:

rk =f −
k−1∑
i=1

interpolate(r̂i, hK , wK),

r̂k =lookup(Z, qk),

(3)

where r̂k denotes the approximated residual feature map at scale k. Finally, the image is reconstructed by decoding f̂ :
x̂ = D(f̂).

Token prediction. AR models synthesize images through sequential token prediction after modeling images as
sequences of discrete latent tokens. They utilize transformers to model the conditional probability distribution of token
generation, formulated as:

pθ(xt|Xt) = softmax(lθ(Xt)), (4)

where lθ(Xt) ∈ RV is the generated logit at step t, and Xt ⊆ {x1, ..., xt−1} is the subset of previous generated tokens.
The token sequence is generated through iterative sampling from the conditional probability. For simplicity, we use lt
to denote the logits lθ(Xt) in the rest of the paper. For single-scale token prediction, tokens in Xt are generated either
in a predefined order (e.g., raster-scan) or in a randomly permuted sequence. Multi-scale token prediction conditions
token generation on all tokens from preceding scales, while allowing tokens within the same scale to be generated in
parallel. For a more comprehensive discussion on multi-scale quantization and token prediction, please refer to [19]
and [54].

3.2 Observations

To investigate the behavior of VQ-VAE and evaluate its potential for embedding robust watermarks, we conducted two
primary analyses. Observation 1 examines the consistency between token maps obtained by quantizing the original
images and those derived from their reconstructed counterparts, providing insights into the feasibility of watermark
embedding and detection in AR visual models. Observation 2 investigates the VQ-VAE codebook by analyzing the
impact of vocabulary size reduction on image reconstruction quality. This analysis determines whether a compact
codebook can facilitate watermarking while preserving image fidelity.

Experiments were performed on three AR models featuring different vocabulary sizes: VQ-GAN [52] (13,678 tokens),
VAR [19] (4,096 tokens), and RAR [21] (1,024 tokens). The evaluation dataset comprises 5,000 images randomly
sampled from 100 ImageNet classes, with 50 images per class.

Observation 1: Token consistency. To evaluate the potential for watermark embedding and detection, we reconstructed
images from the evaluation dataset and compared the token maps produced by quantizing both the input image x and
its reconstruction x̂, yielding token maps q and q̂, respectively. The token consistency is defined as the proportion
of matching tokens between these token maps. Notably, this consistency was assessed while progressively reducing
the vocabulary size during the reconstruction process. For VAR, which employs a multi-scale quantization process,
token consistency was evaluated at its largest scale. As illustrated in Fig 1, token consistency remains robust across
various codebook sizes. However, RAR exhibits a more pronounced decline in consistency as the vocabulary decreases,
likely due to its smaller codebook (1024) being more susceptible to quantization errors. These findings indicate that
AR models employing VQ-VAEs maintain sufficient token consistency to preserve a substantial portion of the original
token sequence even under significant vocabulary reduction. Consequently, watermark information can be reliably
embedded into token maps and subsequently detected by quantizing images into these maps again.
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Figure 2: Observation 2: Image quality metrics (PSNR, SSIM, and FID) for AR reconstructed images across various
codebook sizes, ranging from 0.1 to 1.0.
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Figure 3: Reconstructed images using only 10% of the original codebook size.

Observation 2: Codebook redundancy. To further assess the influence of codebook reduction on image quality, we
decreased the codebook ratio during image reconstruction and evaluated PSNR, SSIM, and FID metrics of reconstructed
images. As shown in Fig 2, a moderate degradation in image quality is observed as the codebook size decreases, and
the overall performance remains stable. Notably, even when the vocabulary of VAR was reduced to just 10%, the
reconstructed images exhibited minimal quality loss relative to those produced using the full codebook. This finding
indicates that a compact codebook is viable for watermarking applications without substantially compromising image
quality. Additionally, Fig 3 presents the reconstructed images obtained using only 10% of the vocabulary, further
demonstrating the feasibility of this approach.

3.3 Watermarking through lexical biasing

Building on our previous analysis, we observe that tokens used for image generation can be recovered by encoding and
quantizing AR-generated images into token maps again (see Fig 1). This finding suggests that if watermark information
is embedded in the token map, it should be preserved and detected through this re-quantization process. In this paper,
drawing inspiration from text watermarking techniques, we aim to embed the watermark information through biasing
AR models to use specific tokens during the autoregressive token prediction process.

A direct approach. Formally, the codebook of AR models can be partitioned into a green list G and a red list R. We
aim to bias the model toward selecting tokens from G during AR image synthesis. A simple yet effective approach
is to mask the logits of red list tokens while retaining those of the green list. Specifically, at each timestep t, the
model predicts logits lt based on previously generated tokens Xt, which are then converted into a discrete probability
distribution for sampling the next token xt. To enforce token selection from G, the logits of red list tokens are set to
negative infinity, modifying the logit vector l̂t as follows:

l̂t(i) =

{
−∞, i ∈ R

lt(i), i ∈ G.
(5)

This modification ensures that the softmax function assigns zero probability to tokens in R, thereby restricting
the model to sample xt exclusively from the green list G. Unlike text watermarking, where the green and red
lists dynamically adjust based on a hash of previously generated tokens, we employ a global token partitioning
strategy, in which the same green and red lists are uniformly applied to all tokens. This approach is driven by three
considerations. 1) Re-quantization Loss: The re-quantization process introduces token variations. When a previously
generated token changes, the corresponding green list for subsequent tokens would also shift, which hampers the
robustness. 2) Vulnerability to image watermarking attacks: Unlike local text removal attacks, image watermarking
attacks—such as blurring or CtrlRegen [31]—impact the entire image, leading to substantial token variations across
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the token map, which also weakens the robustness of token-dependent hashing schemes. 3) Compatibility with AR
models: Certain AR models generate tokens in a non-sequential, randomized order [34, 21] rather than following a
strictly predefined sequence. In such cases, if the token generation order is unknown, dynamically determining the
green lists becomes impractical.

Watermark detection. Watermark presence is verified by statistically assessing the occurrence of specific tokens
in the quantized token map, requiring only VQ-VAE and the predefined green list G without access to transformer
models. We formulate the verification process as a hypothesis-testing problem. We define the null hypothesis:
H0 : The image was generated without any bias toward the green list. To evaluate this hypothesis, we perform
a one-proportion z-test on the number of green tokens in the quantized token map. Let γ represent the proportion of
green tokens used for watermarking. Under H0, the expected number of green tokens in a token map q ∈ Rh×w follows
a binomial distribution with mean γ ·h ·w and variance γ(1− γ) ·h ·w. Denoting the observed number of green tokens
in the token map as |s|G, the z-score for watermark detection is computed as:

z =
|s|G − γ · h · w√
γ · (1− γ) · h · w

. (6)

By setting a threshold zth, we reject H0 and confirm watermark presence if z > zth.

Enhancing watermark via soft biasing. The direct approach enforces the exclusive use of green-listed tokens during
token prediction. However, when the green list is overly constrained, the limited token vocabulary reduces the expressive
capacity of AR models, leading to declined image quality or even generation failures (Fig 9). Moreover, restricting
token selection disrupts the natural token distribution expected by VQ-VAE, thereby reducing token consistency, which
in turn compromises watermark detectability and robustness (Fig 8). To address these limitations, we employ a soft
token biasing strategy that encourages the selection of green tokens without completely excluding red tokens. After
predicting logits, instead of forcing red token logits to negative infinity, we introduce a bias constant σ to increase the
logits of green tokens as:

l̂t(i) =

{
lt(i), i ∈ R

lt(i) + σ, i ∈ G.
(7)

This ensures that when the transformer model exhibits high logits on the red list (high urge of using a red token), the
added bias minimally influences token selection, preserving the natural AR generation process. As a result, this method
maintains image quality and results in better token consistency and detectability. We also compute the z-score of the
total number of green tokens in the re-encoded token map and compare it against a predefined threshold to determine
the presence of a watermark.

Post-hoc watermarking via token substitution. Our approach could be extended to support post-hoc watermarking
for existing images by simply substituting quantized red tokens with green tokens. Formally, given an input image
x, we first quantize it into a token map q. The watermark is then embedded by replacing each red token q(i) with its
nearest green token, determined by the Euclidean distance in the token embedding space, ensuring minimal distortion:

q′(i) = argmin
g∈G

∥lookup(Z, g)− lookup(Z, q(i))∥2. (8)

Multiple green lists. To prevent our method against white-box attacks, we propose a multiple green list strategy.
Concretely, a set of N green lists {Gi}Ni=1 is established, from which one green list is randomly selected for watermark
encoding. This set of green lists can be represented as a binary matrix M ∈ {0, 1}N×V as

Mij =

{
1, if j ∈ Gi,

0, otherwise,
∀i,∀j, s.t.

V∑
j=1

Mij = γV, ∀i, and
N∑
i=1

Mij = γN, ∀j. (9)

Each row of M corresponds to a green list pool, with the first constraint ensuring that each green list maintains a
consistent green token ratio γ, while the second guarantees that each token is selected as a green token with equal
probability across the green lists. This design aligns the token distribution of watermarked images with that of clean
images, thereby reducing the risk of reverse-engineering the watermark. However, finding such a matrix exactly
satisfying the above constraints requires solving the 0-1 integer programming problem, which is generally NP-hard and
may have no feasible solution. To efficiently generate a matrix that approximately meets these constraints, we employ
the following algorithm:

In our experiments, we use N = 32 green lists and find it suffices to defend green list estimation attacks 5. During
detection, the green token ratio is computed with respect to each green list in the pool, and the maximum observed
ratio is used to calculate a z-score to justify the presence of the watermark. Notably, the detection requires only a
convolutional image encoder to extract token maps, enabling efficient detection even when multiple green lists are
employed.
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Algorithm 1: Generate Green List Matrix M
Input: Number of green lists N , green token ratio γ, vocabulary size V
Output: Binary matrix M ∈ {0, 1}N×V

1 Randomly initialize matrix M such that each row i satisfies
∑

j=1 Mij = γV ;
2 Set threshold θ ← γN ;
3 repeat
4 for i← 1 to N do
5 Compute token frequency vector f : f [j]←

∑
i=1 Mij ;

// Identify indices for tokens with excessively high frequency
6 one_to_zero← {j | token_frequency[j] > θ and Mij = 1};

// Identify indices for tokens with too low frequency
7 zero_to_one← {j | token_frequency[j] < θ and Mij = 0};
8 K ← min(|one_to_zero|, |zero_to_one|);
9 for k ← 1 to K do

10 Set Mi,zero_to_one[k] ← 1;
11 Set Mi,one_to_zero[k] ← 0;
12 end
13 end
14 until convergence or maximum iterations reached;
15 return M

4 Experiments

4.1 Experimental Setting

We evaluate our watermarking methods using VQ-GAN, RAR, and VAR. For VAR, watermarks are embedded in
the largest-scale token map. We apply three watermarking variants: LBW-Hard (strict green token enforcement),
LBW-Soft (soft bias toward green tokens), and LBW-Post (post-hoc token substitution). Green token ratios γ are
set to 0.1 for LBW-Post and LBW-Soft on VAR and RAR, and 0.2 for LBW-Hard on VQ-GAN. LBW-Soft uses bias
constants σ of 7, 4, and 8 for VAR, VQ-GAN, and RAR, respectively. To further improve the generation quality,
LBX-Soft adopts a bias constant σ of 7, 4, and 8 for VAR, VQ-GAN, and RAR. We use N = 32 green lists for
embedding and detection, with consistent green list configurations across in-generation and post-hoc methods. We
compare against state-of-the-art watermarking methods: DwtDct [56], DwtDctSvd [36], RivaGAN [25], SSL [37],
Tree-Ring [27], and WatermarkDM [57]. Conventional attacks include Gaussian noise and blur, ColorJitter, geometric
transformations (crop, resize, rotation), and JPEG compression. Regeneration attacks comprise VAE reconstruction
(Stable Diffusion 1.5), DiffPure [23], and CtrlRegen [31]. Detailed attack settings can be found in the appendix D.
We evaluate performance on the ImageNet dataset. For post-hoc watermarking, 1,000 images (10 per 100 classes) are
watermarked. For in-generation methods, 1,000 watermarked and 1,000 clean images are generated conditionally on
class labels aligned with post-hoc experiments. Detection is evaluated by ROC-AUC and TPR@1%FPR, averaged over
five runs with different seeds to ensure robustness and reproducibility.

4.2 Main Results

Table 1 presents a comprehensive evaluation of watermarking methods under conventional and regeneration attacks,
where our approach demonstrates strong robustness across all attacks. Notably, LBW achieves state-of-the-art perfor-
mance against regeneration attacks; for instance, LBW-Post on RAR attains an AUC of 0.995 and TPR@1FPR of 0.937,
significantly outperforming WatermarkDM. LBW-Soft further surpasses LBW-Hard in robustness. While our method
is effective across different AR architectures, VAR shows slightly reduced robustness. This can be attributed to the
multiscale quantization process of VAR, where high-frequency information is primarily captured by the largest-scale
token map[54, 19]. CtrlRegen preserves semantic structures while suppressing fine-grained details, which makes
large-scale token maps more vulnerable to such attacks.

4.3 Ablation Studies

Figures 4 (top rows) show that the robustness of LBW-Post and LBW-Hard generally improves as γ decreases. An
exception occurs for LBW-Hard on VQ-GAN, where γ = 0.2 outperforms γ = 0.1. This is because at very low γ
values, the model frequently fails to generate images, leading to reduced token consistency and sub-optimal robustness
(see appendix B for detailed analyses). Based on these findings, we set the default values of γ to 0.2, 0.1, and 0.1 for
VQ-GAN, VAR, and RAR, respectively. Note that when evaluating the effect of σ for LBW-Soft, the γ is set to the
default values. As shown in the bottom row of Figure 4, the robustness of LBW-Soft initially improves with increasing
σ and eventually saturated. The results indicate that robustness initially improves with increasing values of σ and
eventually becomes saturated. While larger σ values enhance watermark detectability, excessively high values can

7
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Table 1: Comparative evaluation of watermarking methods under conventional and regeneration attacks. The table
presents AUC and TPR@1FPR metrics, where TPR@1FPR is abbreviated as T@1F. Best results are bolded. Our
proposed method exhibits superior robustness, particularly against regeneration attacks.

Method Metric Clean Conventional Attack Regeneration Attack
Gaus Color Geo JPEG AVG VAE Diff Ctrl AVG

dwtDct AUC 0.978 0.906 0.333 0.631 0.520 0.598 0.521 0.485 0.496 0.501
T@1F 0.920 0.714 0.091 0.055 0.005 0.216 0.020 0.010 0.020 0.017

dwtDctSvd AUC 1.000 0.949 0.286 0.600 0.649 0.621 0.797 0.597 0.487 0.627
T@1F 1.000 0.850 0.017 0.025 0.020 0.228 0.320 0.010 0.010 0.113

rivaGan AUC 1.000 1.000 0.671 0.776 0.939 0.847 0.931 0.747 0.527 0.735
T@1F 1.000 1.000 0.657 0.600 0.780 0.759 0.510 0.150 0.050 0.237

watermarkDM AUC 1.000 1.000 0.724 0.515 0.999 0.810 0.999 0.915 0.671 0.862
T@1F 1.000 1.000 0.656 0.112 0.991 0.690 0.920 0.340 0.000 0.420

SSL AUC 1.000 1.000 0.992 0.991 0.621 0.901 0.959 0.695 0.750 0.801
T@1F 1.000 1.000 0.971 0.970 0.312 0.813 0.840 0.160 0.090 0.363

TreeRing AUC 1.000 0.945 0.937 0.938 0.991 0.962 1.000 0.599 0.838 0.812
T@1F 1.000 0.902 0.747 0.708 0.952 0.862 1.000 0.000 0.150 0.383

VAR
(Ours)

LBW-Post AUC 0.997 0.988 0.989 0.659 0.981 0.923 0.997 0.933 0.650 0.860
T@1F 0.980 0.943 0.948 0.287 0.912 0.814 0.972 0.780 0.080 0.611

LBW-Hard AUC 0.999 0.995 0.994 0.660 0.988 0.927 0.991 0.896 0.623 0.837
T@1F 0.995 0.967 0.969 0.281 0.932 0.829 0.903 0.526 0.000 0.476

LBX-Soft AUC 1.000 0.995 0.994 0.665 0.989 0.929 0.995 0.892 0.626 0.838
T@1F 0.997 0.977 0.966 0.275 0.934 0.830 0.930 0.480 0.010 0.473

VQ-GAN
(Ours)

LBW-Post AUC 0.978 0.972 0.856 0.773 0.948 0.905 0.969 0.922 0.665 0.852
T@1F 0.760 0.728 0.329 0.274 0.699 0.558 0.704 0.660 0.140 0.501

LBW-Hard AUC 0.998 0.969 0.858 0.939 0.921 0.922 0.993 0.973 0.857 0.941
T@1F 0.993 0.909 0.700 0.641 0.745 0.749 0.978 0.870 0.370 0.739

LBX-Soft AUC 0.999 0.990 0.934 0.966 0.995 0.977 0.998 0.994 0.915 0.969
T@1F 0.998 0.977 0.770 0.776 0.977 0.900 0.998 0.990 0.610 0.866

RAR
(Ours)

LBW-Post AUC 1.000 1.000 0.995 0.991 0.999 0.996 1.000 0.998 0.988 0.995
T@1F 1.000 0.999 0.956 0.918 0.995 0.967 1.000 0.960 0.850 0.937

LBW-Hard AUC 1.000 1.000 0.997 0.964 0.999 0.990 1.000 1.000 0.978 0.993
T@1F 1.000 0.998 0.973 0.846 0.993 0.953 1.000 1.000 0.800 0.933

LBX-Soft AUC 1.000 1.000 0.999 0.961 1.000 0.990 1.000 1.000 0.978 0.993
T@1F 1.000 1.000 0.981 0.844 0.999 0.956 1.000 0.990 0.760 0.917
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Figure 4: Impact of γ and σ in robustness against Conventional (Con) and Regeneration (Reg) attacks.
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Figure 5: Comparison of token frequency distributions with varying green list number N .

compromise image quality by overly restricting token generation. To achieve a balance between robustness and image
fidelity, we adopt σ = 7, 4, and 8 for VAR, VQ-GAN, and RAR. To prevent green tokens from being inferred, we
introduce N multiple green lists for watermark embedding. Using RAR with γ = 0.1, we vary N ∈ {1, 2, 8, 32, 128}
and generate 10,000 post-hoc watermarked images per setting to study the impact of N on the token frequency
distribution of watermarked images. Figure 5 shows that when N is small (e.g., 1 or 2), the token frequency distribution
deviates significantly from that of clean images, enabling white-box attacks. However, as N increases to 32 and beyond,
the token frequency distribution converges closely to that of clean images, effectively eliminating distinguishable
statistical cues and rendering frequency-based attacks. Consequently, we choose N = 32 in this work.

More experiments, including visual quality analysis, token consistency analysis or other visual results can be
found in the appendix.

5 Conclusion

In this work, we present LBW, a novel watermarking framework for AR-based image generation that introduces a
controlled bias in token selection during the generation process to embed a robust and detectable watermark. Our method
can be seamlessly integrated into current AR image generation pipelines, achieving state-of-the-art robustness against
regeneration attacks. Additionally, we extend LBW to a post-hoc watermarking scheme, showcasing its adaptability in
both in-generation and post-hoc scenarios. The multiple green list strategy is further introduced to enhance robustness
against white-box attacks.
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Figure 6: Quantitative evaluation of visual quality for our LBW with varying γ and σ. Subfigures (a), (b), and (c)
present PSNR, SSIM, and FID metrics for the LBW-Post watermark applied on VQ-GAN, VAR, and RAR models,
while (d) and (e) show FID for our LBW-Hard and LBW-Soft, respectively.
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A Visual Quality Analysis

This section presents a comprehensive analysis of the visual quality of the proposed watermarking methods—LBW-Post,
LBW-Hard, and LBW-Soft—through both quantitative and qualitative evaluations.

Figure 6 reports FID scores for our watermark methods with varying γ and σ. PSNR and SSIM are reported exclusively
for LBW-Post, as it is the only method with access to ground-truth images. The results indicate that increasing γ
consistently enhances image quality across all models, evidenced by improved PSNR and SSIM scores for LBW-Post,
and by reduced FID values of both LBW-Post and LBW-Hard. Conversely, for LBW-Soft, FID scores increase with
larger σ, indicating a degradation in perceptual quality. Compared to LBW-Hard at γ = 0.1, LBW-Soft achieves lower
FID scores across a large range of σ, reflecting its superior capability to balance watermark robustness with image
fidelity. Notably, compared to VQ-GAN and RAR, VAR exhibits superior robustness to variations in both γ and σ.
This robustness stems from watermark embedding exclusively within its largest-scale token map, which encodes rich
high-frequency information, thereby mitigating perceptual degradation.

Quantitative results

Qualitative results Figure 7 offers a visual comparison of watermarked images generated by VQ-GAN under the three
watermarking schemes. The first two rows illustrate the results of LBW-Post and LBW-Hard, respectively, while the last

12
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Figure 7: Qualitative evaluation of visual quality for our LBW with varying γ and σ

presents the results of LBW-Soft. The image quality improves with increasing γ for both LBW-Post and LBW-Hard.
For LBW-Soft, reducing the noise parameter σ enhances image quality. When γ is low (e.g., 0.1), the LBW-Hard often
suffers from degraded image quality and occasionally fails to produce class-relevant images. This limitation arises
because LBW-Hard enforces strict token selection constrained solely to the green list, which significantly restricts
the model’s expressive capacity. In contrast, LBW-Soft permits sampling outside the green list with moderated bias,
thereby demonstrating greater robustness and superior visual quality under low green token ratios.

In summary, these quantitative and qualitative analyses corroborate that higher green token ratios γ and lower logit
bias constant σ correlate with improved image quality, and our LBW-Soft effectively achieves a trade-off between
watermark robustness and visual fidelity.

B Token Consistency

Figure 8 presents a comparative analysis of the token consistency of our method for VQ-GAN, VAR, and RAR under
different green list ratios γ and logits biasing constant σ. Overall, the token consistency of the LBW-Post method
increases with γ, whereas in-generation methods (LBW-Hard & LBW-Soft) are insensitive to γ and σ. This suggests
that in-generation watermarking could improve detectability by increasing γ and σ without worrying about the token
exchanges during detection.

C Visual Comparison between LBW-Hard and LBW-Soft

Figure 9 presents a comparative analysis of watermarked images synthesized using our LBW-Hard and LBW-Soft
approaches, integrated with RAR and VQ-GAN. The results demonstrate that LBW-Hard results in reduced image
quality when applied to RAR and even fails to generate class-relevant content in the case of VQ-GAN. In contrast,
LBW-Soft produces images with finer details and realistic content. These findings highlight the efficacy of LBW-Soft in
striking a balance between watermark robustness and image fidelity, making it a more suitable approach for AR image
models.

D Numerical Robustness Results

To assess watermark robustness, we evaluate conventional and regeneration attacks. Conventional attacks include
(1) Gaussian attacks randomly apply Gaussian Noise with variation 0.1 and Gaussian Blur using an 8× 8 filter) (2)
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Figure 8: Token consistency with varying γ.

ColorJitter perturbations involving randomly applying hue adjustments (0.3), saturation scaling (3.0), and contrast scal-
ing (3.0), (3) Geometric transformations (Crop&Resize: 0.7, Random Rotation: 0◦-180◦), and (4) JPEG compression
(25% ). Regeneration attacks include (1) VAE reconstruction via the VAE of Stable Diffusion 1.5, (2) DiffPure [23]
with timestep t = 0.15, and (3) CtrlRegen [31].

In this section, we illustrate the numerical robustness of our proposed Lexical Bias Watermarking (LBW)
methods—LBW-Post, LBW-Hard, and LBW-Soft—against the above watermark removal attacks in Table 2, Ta-
ble 3, and Table 4, respectively. The evaluation is conducted on three different AR image models: VAR, VQ-GAN,
and RAR, across varying watermark embedding strengths, denoted by the parameter γ, ranging from 0.1 to 0.9. For
LBW-Soft, we evaluate the effect of bias constant σ under γ = 0.1, 0.2, and 0.1 for VAR, VQ-GAN, and RAR,
respectively. We assess performance using AUC (Area Under Curve) and T@1F (True Positive Rate at 1% False
Positive Rate), which indicate the detectability of the watermark under different attack conditions.

E More Visual Results

Comparison between LBW-Post and other post-hoc methods.

Figure 10 compares the watermarking performance of LBW-Post and traditional Post-hoc methods across different
generative models (VQ-GAN, VAR, and RAR). In this comparison, LBW-Post employs a green word ratio of γ = 0.1.
Experimental results indicate that in multi-scale token map models (e.g., VAR), LBW-Post achieves image quality
comparable to traditional Post-hoc methods. In single-scale generative models (e.g., VQ-GAN and RAR), LBW-Post
also has a minimal impact on image quality, effectively maintaining visual consistency.
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Figure 9: Comparison between watermark images produced by LBW-Hard and LBW-Soft.
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Figure 10: Visual comparison between our LBW-Post and other Post-hoc methods.
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γ Metric Clean Gaus Color Geom JPEG VAE Diff Ctrl

VAR

0.100 AUC 0.997 0.988 0.989 0.659 0.981 0.997 0.933 0.650
T@1F 0.980 0.943 0.948 0.287 0.912 0.972 0.780 0.080

0.200 AUC 0.998 0.989 0.985 0.655 0.977 0.995 0.923 0.645
T@1F 0.985 0.940 0.935 0.280 0.888 0.968 0.700 0.100

0.300 AUC 0.995 0.983 0.983 0.639 0.972 0.996 0.919 0.614
T@1F 0.973 0.920 0.906 0.274 0.852 0.948 0.580 0.030

0.400 AUC 0.994 0.977 0.977 0.641 0.967 0.986 0.868 0.605
T@1F 0.962 0.876 0.884 0.275 0.829 0.932 0.510 0.000

0.500 AUC 0.995 0.974 0.974 0.645 0.957 0.984 0.865 0.588
T@1F 0.961 0.848 0.867 0.273 0.772 0.890 0.410 0.020

0.600 AUC 0.991 0.969 0.967 0.629 0.950 0.981 0.886 0.586
T@1F 0.946 0.802 0.832 0.267 0.729 0.892 0.390 0.010

0.700 AUC 0.985 0.951 0.952 0.627 0.926 0.975 0.823 0.540
T@1F 0.911 0.721 0.745 0.255 0.646 0.796 0.350 0.000

0.800 AUC 0.979 0.932 0.934 0.636 0.906 0.945 0.765 0.525
T@1F 0.847 0.606 0.631 0.249 0.546 0.638 0.240 0.020

0.900 AUC 0.956 0.883 0.889 0.617 0.856 0.881 0.687 0.516
T@1F 0.659 0.367 0.451 0.193 0.378 0.230 0.050 0.020

VQ-GAN

0.100 AUC 0.978 0.972 0.856 0.773 0.948 0.969 0.922 0.665
T@1F 0.760 0.728 0.329 0.274 0.699 0.704 0.660 0.140

0.200 AUC 0.898 0.894 0.749 0.681 0.856 0.880 0.850 0.684
T@1F 0.493 0.433 0.155 0.171 0.366 0.434 0.280 0.010

0.300 AUC 0.871 0.864 0.715 0.661 0.821 0.866 0.800 0.687
T@1F 0.369 0.321 0.112 0.135 0.226 0.386 0.240 0.040

0.400 AUC 0.829 0.813 0.676 0.627 0.784 0.815 0.749 0.567
T@1F 0.320 0.264 0.095 0.102 0.170 0.262 0.210 0.040

0.500 AUC 0.786 0.774 0.648 0.617 0.741 0.771 0.690 0.510
T@1F 0.169 0.120 0.053 0.059 0.097 0.146 0.100 0.020

0.600 AUC 0.721 0.693 0.606 0.578 0.678 0.651 0.631 0.522
T@1F 0.101 0.068 0.020 0.023 0.059 0.056 0.110 0.020

0.700 AUC 0.648 0.648 0.582 0.556 0.623 0.605 0.642 0.508
T@1F 0.049 0.037 0.015 0.026 0.015 0.064 0.110 0.050

0.800 AUC 0.629 0.627 0.566 0.553 0.610 0.599 0.596 0.514
T@1F 0.047 0.031 0.012 0.017 0.019 0.040 0.070 0.070

0.900 AUC 0.547 0.554 0.535 0.514 0.546 0.510 0.561 0.483
T@1F 0.016 0.012 0.009 0.010 0.015 0.016 0.000 0.030

RAR

0.100 AUC 1.000 1.000 0.995 0.991 0.999 1.000 0.993 0.870
T@1F 1.000 0.999 0.956 0.918 0.995 1.000 0.920 0.240

0.200 AUC 1.000 1.000 0.987 0.984 0.999 1.000 0.988 0.815
T@1F 1.000 0.999 0.897 0.853 0.980 1.000 0.940 0.280

0.300 AUC 1.000 1.000 0.977 0.973 0.998 1.000 0.981 0.767
T@1F 1.000 0.998 0.834 0.764 0.960 1.000 0.830 0.220

0.400 AUC 0.999 0.999 0.966 0.959 0.994 1.000 0.977 0.715
T@1F 0.999 0.994 0.753 0.640 0.947 1.000 0.940 0.150

0.500 AUC 0.999 0.998 0.959 0.940 0.988 1.000 0.975 0.731
T@1F 0.999 0.986 0.652 0.553 0.903 1.000 0.550 0.110

0.600 AUC 0.999 0.997 0.940 0.918 0.984 1.000 0.966 0.734
T@1F 0.999 0.973 0.583 0.498 0.849 0.998 0.710 0.100

0.700 AUC 1.000 0.994 0.912 0.882 0.980 1.000 0.947 0.693
T@1F 0.998 0.951 0.488 0.384 0.817 0.990 0.650 0.070

0.800 AUC 0.999 0.983 0.876 0.834 0.960 0.998 0.928 0.660
T@1F 0.987 0.809 0.370 0.314 0.571 0.944 0.380 0.020

0.900 AUC 0.996 0.945 0.817 0.781 0.902 0.988 0.878 0.584
T@1F 0.911 0.485 0.193 0.281 0.343 0.812 0.320 0.060

Table 2: Robustness for LBW-Post for VAR, VQ-GAN and RAR across different γ, ranging from 0.1 to 0.9.
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γ Metric Clean Gaus Color Geom JPEG VAE Diff Ctrl

VAR

0.100 AUC 0.999 0.995 0.994 0.660 0.988 0.991 0.896 0.623
T@1F 0.995 0.967 0.969 0.281 0.932 0.903 0.526 0.000

0.200 AUC 0.998 0.992 0.992 0.645 0.982 0.983 0.819 0.542
T@1F 0.988 0.930 0.958 0.277 0.909 0.890 0.500 0.040

0.300 AUC 0.997 0.983 0.985 0.650 0.972 0.974 0.844 0.635
T@1F 0.978 0.903 0.908 0.269 0.826 0.838 0.420 0.020

0.400 AUC 0.994 0.975 0.977 0.629 0.955 0.954 0.775 0.638
T@1F 0.958 0.839 0.888 0.267 0.764 0.656 0.330 0.120

0.500 AUC 0.992 0.966 0.973 0.639 0.951 0.933 0.792 0.604
T@1F 0.947 0.775 0.824 0.260 0.708 0.519 0.340 0.090

0.600 AUC 0.988 0.953 0.960 0.637 0.929 0.910 0.742 0.572
T@1F 0.912 0.697 0.769 0.246 0.564 0.415 0.100 0.020

0.700 AUC 0.978 0.931 0.941 0.626 0.912 0.867 0.725 0.512
T@1F 0.830 0.557 0.654 0.229 0.497 0.273 0.270 0.070

0.800 AUC 0.966 0.898 0.917 0.619 0.867 0.828 0.696 0.609
T@1F 0.752 0.430 0.531 0.197 0.437 0.164 0.110 0.070

0.900 AUC 0.925 0.828 0.853 0.596 0.808 0.749 0.684 0.533
T@1F 0.535 0.243 0.351 0.144 0.267 0.076 0.070 0.000

VQ-GAN

0.100 AUC 0.998 0.969 0.858 0.903 0.921 0.993 0.973 0.857
T@1F 0.993 0.909 0.700 0.482 0.745 0.978 0.870 0.370

0.200 AUC 0.999 0.987 0.912 0.939 0.966 0.998 0.992 0.869
T@1F 0.998 0.970 0.714 0.641 0.849 0.996 0.990 0.440

0.300 AUC 1.000 0.994 0.902 0.871 0.964 1.000 0.984 0.842
T@1F 1.000 0.979 0.654 0.411 0.835 0.999 0.940 0.410

0.400 AUC 1.000 0.990 0.892 0.831 0.956 1.000 0.975 0.796
T@1F 0.999 0.963 0.547 0.371 0.827 1.000 0.890 0.330

0.500 AUC 1.000 0.991 0.881 0.793 0.950 0.999 0.967 0.764
T@1F 1.000 0.953 0.449 0.339 0.659 0.997 0.820 0.170

0.600 AUC 1.000 0.986 0.854 0.779 0.932 0.998 0.947 0.644
T@1F 0.997 0.921 0.367 0.299 0.591 0.987 0.660 0.020

0.700 AUC 0.998 0.970 0.820 0.751 0.908 0.993 0.913 0.695
T@1F 0.985 0.794 0.167 0.292 0.421 0.859 0.480 0.030

0.800 AUC 0.997 0.959 0.785 0.736 0.876 0.987 0.870 0.698
T@1F 0.974 0.666 0.168 0.277 0.327 0.867 0.251 0.080

0.900 AUC 0.989 0.917 0.727 0.706 0.809 0.966 0.792 0.641
T@1F 0.784 0.376 0.082 0.227 0.094 0.544 0.110 0.010

RAR

0.100 AUC 1.000 1.000 0.997 0.964 0.999 1.000 1.000 0.978
T@1F 1.000 0.998 0.973 0.846 0.993 1.000 1.000 0.800

0.200 AUC 1.000 1.000 0.996 0.951 0.999 1.000 1.000 0.951
T@1F 1.000 0.998 0.967 0.802 0.992 1.000 0.980 0.430

0.300 AUC 1.000 1.000 0.988 0.939 0.996 1.000 0.997 0.917
T@1F 1.000 0.995 0.890 0.725 0.964 1.000 0.960 0.420

0.400 AUC 0.999 0.998 0.976 0.913 0.982 1.000 0.999 0.844
T@1F 1.000 0.989 0.805 0.634 0.878 0.997 0.980 0.150

0.500 AUC 0.999 0.998 0.973 0.901 0.985 1.000 0.992 0.832
T@1F 1.000 0.976 0.759 0.534 0.879 0.997 0.840 0.060

0.600 AUC 0.999 0.994 0.952 0.878 0.979 0.999 0.982 0.785
T@1F 0.998 0.958 0.628 0.474 0.867 0.993 0.820 0.090

0.700 AUC 0.999 0.992 0.932 0.851 0.967 0.998 0.980 0.771
T@1F 0.998 0.935 0.556 0.395 0.741 0.978 0.810 0.130

0.800 AUC 0.997 0.981 0.891 0.806 0.946 0.994 0.966 0.669
T@1F 0.984 0.833 0.355 0.338 0.491 0.885 0.810 0.120

0.900 AUC 0.986 0.927 0.806 0.762 0.891 0.964 0.879 0.540
T@1F 0.880 0.481 0.203 0.261 0.348 0.559 0.190 0.020

Table 3: Robustness for LBW-Hard for VAR, VQ-GAN and RAR across different γ, ranging from 0.1 to 0.9.
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σ Metric Clean Gaus Color Geom JPEG VAE Diff Ctrl

VAR

1.000 AUC 0.927 0.852 0.873 0.505 0.844 0.745 0.632 0.543
T@1F 0.615 0.341 0.394 0.021 0.339 0.030 0.000 0.000

2.000 AUC 0.990 0.963 0.969 0.502 0.947 0.949 0.739 0.523
T@1F 0.940 0.764 0.833 0.022 0.751 0.450 0.120 0.000

3.000 AUC 0.997 0.984 0.986 0.507 0.977 0.979 0.846 0.575
T@1F 0.984 0.904 0.929 0.020 0.878 0.840 0.300 0.010

4.000 AUC 0.998 0.993 0.992 0.519 0.984 0.989 0.882 0.622
T@1F 0.993 0.945 0.953 0.027 0.915 0.870 0.400 0.000

5.000 AUC 0.999 0.995 0.993 0.650 0.988 0.992 0.844 0.620
T@1F 0.994 0.961 0.966 0.274 0.931 0.920 0.390 0.010

6.000 AUC 0.999 0.995 0.994 0.647 0.986 0.992 0.874 0.589
T@1F 0.995 0.961 0.969 0.274 0.933 0.920 0.470 0.010

7.000 AUC 1.000 0.995 0.994 0.665 0.989 0.995 0.892 0.626
T@1F 0.997 0.977 0.966 0.275 0.934 0.930 0.480 0.010

8.000 AUC 0.999 0.995 0.994 0.662 0.987 0.994 0.882 0.614
T@1F 0.995 0.966 0.968 0.283 0.933 0.920 0.460 0.000

9.000 AUC 0.999 0.994 0.993 0.665 0.986 0.990 0.879 0.617
T@1F 0.995 0.967 0.968 0.275 0.934 0.910 0.470 0.000

VQ-GAN

1.000 AUC 0.986 0.959 0.786 0.786 0.901 0.990 0.993 0.669
T@1F 0.952 0.733 0.303 0.360 0.539 0.918 0.980 0.060

2.000 AUC 1.000 0.993 0.899 0.911 0.988 1.000 0.988 0.758
T@1F 0.998 0.969 0.620 0.576 0.921 1.000 0.990 0.180

3.000 AUC 0.999 0.990 0.925 0.956 0.991 0.998 0.985 0.829
T@1F 0.999 0.976 0.735 0.709 0.960 0.996 0.940 0.380

4.000 AUC 0.999 0.990 0.934 0.966 0.995 0.998 0.994 0.915
T@1F 0.998 0.977 0.770 0.776 0.977 0.998 0.990 0.610

5.000 AUC 0.999 0.988 0.924 0.962 0.993 0.998 0.997 0.887
T@1F 0.998 0.976 0.749 0.773 0.969 0.998 0.980 0.470

6.000 AUC 0.999 0.986 0.917 0.966 0.991 0.998 0.990 0.889
T@1F 0.997 0.970 0.734 0.768 0.958 0.996 0.970 0.460

7.000 AUC 0.999 0.986 0.910 0.967 0.990 0.998 0.995 0.889
T@1F 0.997 0.968 0.719 0.773 0.947 0.996 0.960 0.460

8.000 AUC 0.999 0.986 0.907 0.965 0.990 0.998 0.986 0.879
T@1F 0.997 0.970 0.720 0.761 0.948 0.996 0.940 0.360

9.000 AUC 0.999 0.986 0.907 0.963 0.989 0.998 0.987 0.876
T@1F 0.997 0.970 0.720 0.768 0.947 0.996 0.930 0.360

RAR

1.000 AUC 0.961 0.912 0.802 0.758 0.865 0.925 0.799 0.632
T@1F 0.633 0.314 0.169 0.254 0.292 0.522 0.170 0.010

2.000 AUC 0.998 0.993 0.946 0.879 0.982 0.996 0.968 0.790
T@1F 0.986 0.930 0.639 0.522 0.800 0.981 0.720 0.130

3.000 AUC 1.000 0.999 0.984 0.929 0.998 1.000 0.994 0.915
T@1F 0.999 0.988 0.860 0.722 0.973 0.996 0.970 0.430

4.000 AUC 1.000 1.000 0.994 0.947 0.998 1.000 1.000 0.958
T@1F 0.999 1.000 0.940 0.794 0.980 0.999 1.000 0.620

5.000 AUC 1.000 1.000 0.997 0.953 1.000 1.000 1.000 0.958
T@1F 1.000 1.000 0.968 0.823 0.995 1.000 1.000 0.620

6.000 AUC 1.000 1.000 0.997 0.958 1.000 1.000 1.000 0.978
T@1F 1.000 1.000 0.971 0.842 0.998 1.000 1.000 0.770

7.000 AUC 1.000 1.000 0.998 0.958 1.000 1.000 1.000 0.961
T@1F 1.000 1.000 0.978 0.851 0.997 1.000 1.000 0.740

8.000 AUC 1.000 1.000 0.999 0.961 1.000 1.000 1.000 0.978
T@1F 1.000 1.000 0.981 0.844 0.999 1.000 0.990 0.760

9.000 AUC 1.000 1.000 0.998 0.957 1.000 1.000 1.000 0.976
T@1F 1.000 1.000 0.980 0.847 0.997 1.000 1.000 0.770

Table 4: Robustness for LBW-Soft for VAR, VQ-GAN and RAR across different σ, ranging from 1 to 9.
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Furthermore, LBW-Post introduces an adjustable hyperparameter γ (green word ratio) to regulate the trade-off between
watermark embedding strength and image quality. This allows users to fine-tune the embedding strategy according
to specific application requirements, balancing image quality and watermark robustness, thereby adapting to various
practical scenarios.

More Comparison between LBW-Hard and LBW-Soft.
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Figure 11: Comparison between LBW-Hard and LBW-Soft across VAR, VQ-GAN, and RAR.

Figure 11 compares the performance of LBW-Hard and LBW-Soft across different generative models. The results
indicate that for AR models utilizing multi-scale token maps (e.g., VAR), both methods yield visually comparable
results. However, for single-scale token map models (e.g., VQ-GAN and RAR), LBW-Soft outperforms LBW-Hard,
producing images with richer details and stronger class relevance.

Moreover, LBW-Soft demonstrates superior robustness when the green word ratio is low, a scenario in which LBW-Hard
may fail to generate meaningful images. This highlights LBW-Soft as a more adaptable solution that ensures stable
image synthesis even under challenging conditions.
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