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Abstract

Graph unlearning methods aim to efficiently remove the impact of sensitive data
from trained GNNs without full retraining, assuming that deleted information
cannot be recovered. In this work, we challenge this assumption by introducing the
graph unlearning inversion attack: given only black-box access to an unlearned
GNN and partial graph knowledge, can an adversary reconstruct the removed
edges? We identify two key challenges: varying probability-similarity thresholds
for unlearned versus retained edges, and the difficulty of locating unlearned edge
endpoints, and address them with TrendAttack. First, we derive and exploit
the confidence pitfall, a theoretical and empirical pattern showing that nodes
adjacent to unlearned edges exhibit a large drop in model confidence. Second, we
design an adaptive prediction mechanism that applies different similarity thresholds
to unlearned and other membership edges. Our framework flexibly integrates
existing membership inference techniques and extends them with trend features.
Experiments on four real-world datasets demonstrate that TrendAttack significantly
outperforms state-of-the-art GNN membership inference baselines, exposing a
critical privacy vulnerability in current graph unlearning methods.

1 Introduction

Graph-structured data is prevalent in numerous real-world applications, such as recommender sys-
tems [73, 28, 94], social media platforms [23, 63, 46], and financial transaction networks [20, 51, 75].
Graph Neural Networks (GNNs) [27, 69, 79] have emerged as powerful tools for modelling such data,
leveraging their ability to capture both node attributes and graph topology. The effectiveness of GNNs
relies on the message-passing mechanism [26, 24], which iteratively propagates information between
nodes and their neighbors. This enables GNNs to generate rich node representations, facilitating key
tasks like node classification [36, 45], link prediction [96, 76], and graph classification [38, 25].

Despite their success, GNNs raise significant concerns about privacy risks due to the sensitive nature
of graph data [62, 18]. Real-world datasets often contain private information, such as purchasing
records in recommender systems [95, 83] or loan histories in financial networks [60, 72]. During
training, GNNs inherently encode such sensitive information into their model parameters. When
these trained models are shared via model APIs, privacy breaches may occur. These risks have led
to regulations like the GDPR [52], CCPA [56], and PIPEDA [57], which enforce the right to be
forgotten, allowing users to request the removal of their personal data from systems and models. This
demand has necessitated the development of methods to remove the influence of specific data points
from trained GNNs, a process known as graph unlearning [12, 10, 80].

A straightforward way of graph unlearning is to retrain the model from scratch on a cleaned training
graph. However, this approach is computationally infeasible for large-scale graphs, such as purchase
networks in popular e-commerce platforms [71, 34] and social networks on social media [2, 13], which
may involve billions of nodes and edges. To address this, a wide range of recent graph unlearning
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Figure 1: Illustration of the unlearning inversion attack. Considering an online social network
Gorig, where a user requests the deletion of sensitive friendship information, resulting in a cleaned
graph Gun and updated model parameters θun. The GNN model may be shared with third-parties via
black-box APIs. If an attacker, leveraging the model API and auxiliary information about Gun, can
reconstruct the removed knowledge ∆G through an unlearning inversion attack, sensitive relationships
may be exposed, severely compromising user privacy.

methods focus on efficient parameter manipulation techniques [80, 81, 78], which approximate the
removal of data by adjusting model parameters based on their influence. These techniques are often
regarded as privacy-preserving, assuming that the unlearned data cannot be reconstructed .

In this paper, we challenge the assumption that existing graph unlearning methods are robust to
privacy attacks. Specifically, we investigate a novel and important problem of whether unlearned
information can be recovered through an emerging family of membership inference attacks, namely
unlearning inversion attacks [32] (Figure 1). This attack is important because it reveals critical privacy
vulnerabilities in graph unlearning methods and shows a concerning scenario where “forgotten” user
information on the Web can be reconstructed through carefully designed attacks. Our central research
question is: Can third-parties exploit model APIs of unlearned GNNs to recover sensitive information
that was meant to be forgotten?

Although several pioneering studies have examined the privacy risks of unlearned ML models [9,
67, 32, 3], conducting an unlearning inversion attack on GNNs presents unique technical challenges.
Specifically, we argue that the following prior works may not fully resolve the proposed research
question: (i) General-purpose unlearning inversion attacks [32, 3] often assume attacker’s access
to model parameters [3] or probability predictions [32] before and after unlearning. However, this
assumption may not hold in real-world settings, as the pre-unlearning model is highly sensitive and
may not be accessible to third parties. (ii) Training a link prediction model directly on Gun is
an intuitive way to recover unlearned edges from the cleaned graph. However, due to API query
limitations imposed by many model-serving platforms and online social networks (e.g., see query
limitation policies of Twitter 1 and TikTok 2), such direct link prediction techniques are less practical
in real-world settings, where only partial access to Gun is available. (iii) Membership inference
attack (MIA) [30, 29, 58, 103] methods designed for GNNs are another possible alternative. However,
they are tailored to extract knowledge that is clearly “memorized” by the model, which is insufficient
for unlearned GNNs that retain only minimal residual information of such sensitive knowledge.

In this work, we study the link-level unlearning inversion attack problem for black-box unlearned
GNN models, aiming to accurately recover unlearned links using black-box GNN outputs and partial
knowledge of the unlearned graph Gun. We identify two key technical challenges for such attacks: (i)
the output probabilities for two unlearned nodes may not exhibit sufficiently high similarity, which
may require different prediction thresholds when inferring their membership compared to inferring
other edges; (ii) it is highly non-trivial to determine whether a node is connected to an unlearned
edge, since we only have access to the post-unlearning model, with no reference to pre-unlearning
models. In response to these challenges, we propose a novel link-level unlearning inversion attack
for black-box unlearned GNN models, namely TrendAttack. To address challenge (i), we design
an adaptive prediction mechanism that applies different thresholds to infer two types of training
graph edges: unlearned edges and other membership edges, enhancing TrendAttack’s flexibility to

1https://developer.x.com/en/docs/x-api
2https://developers.tiktok.com/doc/research-api-faq
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accommodate varying similarity levels. For challenge (ii), we identify a key phenomenon called the
confidence pitfall, which enables the distinction between nodes connected to unlearned edges and
others, using only black-box model outputs. This phenomenon describes how the model’s confidence
in nodes near unlearned edges tends to decrease, and is supported by both empirical and theoretical
evidence, as detailed in Section 5.1. By jointly incorporating the adaptive treatment of different
edge types and the confidence trend pattern, TrendAttack achieves strong membership inference
performance for both unlearned and other membership edges.

Our main contributions are: (i) We study a novel problem of graph unlearning inversion attack,
pointing out the vulnerability of existing graph unlearning; (ii) We identify a simple yet effective
pattern, the confidence pitfall, which distinguishes nodes connected to unlearned edges, supported
by both empirical and theoretical evidence; (iii) We introduce a novel unlearning inversion attack
TrendAttack that leverages confidence trend features in an adaptive membership inference framework,
which can accurately identify unlearned edges and be flexibly integrated to existing GNN MIA
methods; and (iv) Comprehensive evaluation on four real-world datasets shows that our method
consistently outperforms state-of-the-art GNN MIA baselines in membership inference accuracy.

2 Related Works

Graph Unlearning. Graph Unlearning enables the efficient removal of unwanted data’s influence
from trained graph ML models [10, 61, 22]. This removal process balances model utility, unlearning
efficiency, and removal guarantees, following two major lines of research: retrain-based unlearning
and approximate unlearning. Retrain-based unlearning partitions the original training graph into
disjoint subgraphs, training independent submodels on them, enabling unlearning through retraining
on a smaller subset of the data. Specifically, GraphEraser [10] pioneered the first retraining-based
unlearning framework for GNNs, utilizing balanced clustering methods for subgraph partitioning
and ensembling submodels in prediction with trainable fusion weights to enhance model utility.
Subsequently, many studies [70, 43, 93, 42] have made significant contributions to improving
the Pareto front of utility and efficiency in these methods, employing techniques such as data
condensation [42] and enhanced clustering [43, 93]. Approximate unlearning efficiently updates
model parameters to remove unwanted data. Certified graph unlearning [12] provides an important
early exploration of approximate unlearning in SGC [79], with provable unlearning guarantees.
GraphGuard [78] introduces a comprehensive system to mitigate training data misuse in GNNs,
featuring a significant gradient ascent unlearning method as one of its core components. GIF [80]
presents a novel influence function-based unlearning approach tailored to graph data, considering
feature, node, and edge unlearning settings. Recent innovative works have further advanced the
scalability [59, 39, 89, 86, 92] and model utility [41, 97] of approximate unlearning methods. In this
paper, we explore the privacy vulnerabilities of graph unlearning by proposing a novel membership
inference attack tailored to unlearned GNN models, introducing a new defense frontier that graph
unlearning should consider from a security perspective.

Membership Inference Attack for GNNs. Membership Inference Attack (MIA) is a privacy attack
targeting ML models, aiming to distinguish whether a specific data point belongs to the training
set [65, 31]. Recently, MIA has been extended to graph learning, where a pioneering work [21]
explored the feasibility of membership inference in classical graph embedding models. Subsequently,
interest has shifted towards attacking graph neural networks (GNNs), with several impactful and
innovative studies revealing GNNs’ privacy vulnerabilities in node classification [30, 29, 58, 103]
and graph classification tasks [77], covering cover node-level [30, 58], link-level [29], and graph-
level [77, 103] inference risks. Building on this, GroupAttack [91] presents a compelling advancement
in link-stealing attacks [29] on GNNs, theoretically demonstrating that different edge groups exhibit
varying risk levels and require distinct attack thresholds, while a label-only attack has been proposed
to target node-level privacy vulnerabilities [15] with a stricter setting. Another significant line
of research involves graph model inversion attacks, which aim to reconstruct the graph structure
using model gradients from white-box models [102] or approximated gradients from black-box
models [101].

Despite the impressive contributions of previous MIA studies in graph ML models, existing ap-
proaches overlook GNNs containing unlearned sensitive knowledge and do not focus on recovering
such knowledge from unlearned GNN models. Additional related works are in Appendix A.
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3 Preliminaries

In this section, we present the notations used in this paper and give preliminaries on graph unlearning.

Notations. In this paper, bold uppercase letters (e.g., X) denote matrices, bold lowercase letters
(e.g., x) denote column vectors, and normal letters (e.g., x) indicate scalars. Let eu ∈ Rd be the
column vector with the u-th element as 1 and all others as 0. We use || to denote concatenating two
vectors. We define the weighted inner product with a PSD matrix H as ⟨x,y⟩H := x⊤Hy. We use
A \ B := {x : x ∈ A, x /∈ B} to denote the set difference between sets A and B. Let G = (V, E)
denote a graph, where V = {v1, · · · , vn} is the node set and E ⊆ V × V is the edge set. The node
feature of node vi ∈ V is denoted by xi ∈ Rd, and the feature matrix for all nodes is denoted by
X = [x1, · · · ,xn]

⊤ ∈ Rn×d. The adjacency matrix A ∈ {0, 1}n×n encodes the edge set, where
Ai,j = 1 if (vi, vj) ∈ E , and Ai,j = 0 otherwise. Specifically, D ∈ Rn×n is the degree matrix,
where the diagonal elements Di,i =

∑n
j=1 Ai,j . We use N (v) to denote the neighborhood of node

vi ∈ V , and use N̂ (v) to denote a subset of N (v). Specifically, N (k)(vi) represents all nodes in vi’s
k-hop neighborhood.

Semi-supervised Node Classification. We focus on a semi-supervised node classification task in a
transductive setting, which is common in real-world applications [36, 82]. In this setting, the training
graph G includes a small subset of labeled nodes VL = {u1, · · · , u|VL|} ⊆ V , where each node is
annotated with a label y ∈ Y . The remaining nodes are unlabeled and belong to the subset VU , where
VU ∩ VL = ∅. The test set VT is a subset of the unlabeled nodes, represented as VT ⊆ VU . We
denote the GNN output for a specific target node v ∈ V as fG(v;θ), where G is the graph used for
neighbor aggregation and θ is the model parameters.

Graph Unlearning. Graph unlearning aims to remove the impact of some undesirable training data
from trained GNN models under limited computational overhead [10, 80]. Specifically, consider
the original training graph Gorig := (Vorig, Eorig) including both desirable data and undesirable data.
Normally, the parameters θorig of the GNN model trained on the original graph is given as:

θorig := argmin
θ

∑
v∈VL

L(fGorig (v;θ), yv), (1)

where VL ⊆ Vorig is the set of labeled nodes, and L is an loss function (e.g., cross-entropy [104]).

Let the undesirable knowledge be a subgraph ∆G := (∆V,∆E) of the original graph, where
∆V ⊆ Vorig and ∆E ⊆ Eorig. The unlearned graph is defined as Gun := (V \ ∆V, E \ ∆E),
which excludes the undesirable knowledge. The goal of graph unlearning is to obtain parameters
θun using an efficient algorithm UNLEARN (e.g., gradient ascent [78, 105], or influence function
computation [80, 81]), such that θun closely approximates the retrained parameters θre from the
cleaned graph Gun, while being significantly more efficient than retraining from scratch. Formally,
the unlearning process is defined as:

θun := UNLEARN(f,θorig,Gorig,∆G) ≈ argmin
θ

∑
v∈VL/∆V

L(fGorig/∆G(v;θ), yv), (2)

where the right optimization problem denotes retrain from scratch on the unlearned graph.

We focus on the edge unlearning setting [81], where ∆V = ∅, i.e., only edges are removed. This
setting captures practical scenarios such as users requesting the removal of private friendship links
from social media or the deletion of sensitive purchase records from recommender systems.

4 Problem Formulation

4.1 Threat Model

Attacker’s Goal. The adversary aims to recover links in the original training graph Gorig, i.e., Eorig. It
includes both the unlearned edges ∆E and the remaining membership edges Eorig \∆E . As both types
of edges can reveal private user information, with unlearned edges typically being more sensitive,
the attacker’s goal is to accurately infer both. Specifically, given any pair of nodes vi, vj ∈ V , the
attacker aims to determine whether the edge (vi, vj) existed in Eorig, i.e., whether (vi, vj) ∈ Eorig.
We leave the study of node-level and feature-level unlearning inversion as future work.
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Figure 2: Illustration of the proposed TrendAttack.

Attacker’s Knowledge and Capability. We consider a black-box setting, motivated by the
widespread deployment of machine learning models as a service via APIs [65, 68]. The attacker
can query the unlearned GNN to obtain output probabilities fGun

(·;θun) for target nodes in V . Ad-
ditionally, the attacker has partial access to the unlearned graph Gun. For any pair of target nodes
vi, vj ∈ V , the attacker has access to the following information: (i) The model output probabilities
fGun(vi;θun) and fGun(vj ;θun); (ii) The input features xi and xj ; and (iii) A subset of the k-hop
neighborhood of vi and vj , i.e., N̂ (k)(vi) and N̂ (k)(vj). Despite extending the typical probability-
only black-box attack setting in (i), this level of access is realistic in practice, since (ii) can be obtained
from users’ public profiles on online social platforms, and (iii) can be retrieved by querying public
friend lists or social connections. Furthermore, due to the wide availability of public social network
datasets [17, 1, 55], we assume that the attacker also has access to a shadow dataset Gsha with a
distribution similar to Gorig. This shadow graph can be used to train a surrogate model to support the
unlearning inversion attack.

4.2 Graph Unlearning Inversion

With the threat model presented in Section 4.1, we now formalize the graph unlearning inversion
attack under concrete conditions and attack objectives. We begin by defining the query set and the
adversary’s partial knowledge.
Definition 4.1 (Query Set). The query set is a set of Q node pairs of interest, defined as Q :=

{(vik , vjk) : vik , vjk ∈ V}
Q
k=1.

Definition 4.2 (Partial Knowledge of Query Set). Let fGun
(·;θun) be an unlearned GNN model

where the parameters θun are obtained from Eq. (2), and ∆E denotes the unlearned edge set. For
a given query set Q, the adversary’s partial knowledge on the unlearned graph Gun is defined as a
tuple KQ := (PQ,FQ), where: (i) Probability set PQ := {fGun(vi;θun) : vi ∈ N̂ (k)(vj), vj ∈ Q}
represents the model output probabilities for nodes in the k-hop neighborhood of the query nodes;
and (ii) Feature set FQ := {xi : vi ∈ Q} contains the input features of nodes in the query pairs.

With the above definition, the graph unlearning inversion problem is defined as
Definition 4.3 (Graph Unlearning Inversion Problem). LetQ be the adversary’s node pairs of interest
(Definition 4.1), with partial knowledge KQ on the unlearned graph Gun (Definition 4.2). Suppose
the adversary also has access to a shadow graph Gsha drawn from a distribution similar to Gorig.
The goal of the graph unlearning inversion attack is to predict, for each (vi, vj) ∈ Q, whether
(vi, vj) ∈ Eorig (label 1) or (vi, vj) /∈ Eorig (label 0).

More specifically, the query set Q can be divided into three disjoint subsets: (i) Q+
un := {(vi, vj) :

(vi, vj) ∈ ∆E}, representing the positive unlearned edges; (ii) Q+
me := {(vi, vj) : (vi, vj) ∈ Eorig \

∆E}, representing the remaining membership edges in the original graph; and (iii) Q− := {(vi, vj) :
(vi, vj) /∈ Eorig}, denoting non-member (negative) pairs. The goal of this work is to distinguish both
Q+

un and Q+
me from Q−, enabling accurate membership inference on both positive subsets. This

highlights a key difference between our work and prior MIA methods for GNNs [30, 29, 91], which
focus solely on distinguishing Q+

me from Q− and may fall short of inferring Q+
un.

5 Proposed Method

In this section, we first present the key motivation behind our method, focusing on the adaptive
threshold and confidence pitfalls. We then introduce our proposed TrendAttack framework. An
illustration of design motivation and attack process of TrendAttack is in Figure 2.

5



5.1 Design Motivation

As discussed in Section 4.2, a primary challenge that differentiates graph unlearning inversion attacks
from traditional MIA on GNNs is the need to distinguish both unlearned edges in Q+

un and other
membership edges in Q+

mem from non-member node pairs in Q−. To address this, we identify two
key observations: one explaining why existing MIA methods fall short, and another guiding how to
improve upon them using insights from confidence trends.

Probability Similarity Gap. Existing MIA methods infer the presence of a link between vi and
vj by evaluating the similarity between their input features sim(xi,xj) [29] and/or the similarity
between their predicted probabilities sim(pi,pj) [29, 58], where pi is shorthand for the GNN output
fGun

(vi;θun). In the link unlearning setting, since input features remain unchanged after removing
∆E from Gorig and deriving θun from θorig, feature similarity sim(xi,xj) provides a consistent signal
for identifying both unlearned and other membership edges. This suggests that existing feature-based
MIA techniques remain applicable.

However, it is essential to carefully examine how probability similarity sim(pi,pj) behaves across
different edge types. For a removed edge (vi, vj) ∈ Q+

un, which is excluded from the training graph
(i.e., (vi, vj) /∈ Gun) and unlearned from the parameters θun, the link’s influence on model predictions
tends to be weaker than that of other membership edges in Q+

mem. Due to approximation errors that
are inherent in practical unlearning techniques [12, 80], some residual signal from (vi, vj) may still
persist in the model’s predictions. These observations lead to the following hypothesis:
Claim 5.1 (Probability Similarity Gap). The average similarity between predicted probabilities
across the three query subsets follows the order:

ProbSim(Q−) < ProbSim(Q+
un) < ProbSim(Q+

mem),

where ProbSim(Q0) := |Q0|−1
∑

(vi,vj)∈Q0
sim(pi,pj) denotes the average probability similarity

over a query subset Q0.

This claim is empirically verified by our preliminary study in Appendix E.

Confidence Pitfall. Our analysis of the probability similarity gap (Claim 5.1) suggests that unlearned
edgesQ+

un and remaining membership edgesQ+
mem require different probability-similarity thresholds

for accurate inference. The challenge, however, is that the attacker cannot directly tell whether a
given query (vi, vj) belongs to Q+

un or Q+
mem. To resolve this problem, we present the following

intuition:
Claim 5.2 (Confidence Pitfall). The average model confidence of nodes appearing in unlearned
edges is lower than that of other nodes, i.e., AvgConf(VQ+

un
) < AvgConf(V \ VQ+

un
), where

VQ0
:= {vi : (vi, vj) ∈ Q0 or (vj , vi) ∈ Q0} is the set of all nodes involved in query subset Q0,

and AvgConf(V0) := 1
|V0|

∑
vi∈V0

maxℓ pi,ℓ is the average model confidence within a node set V0.

For this claim, we provide a detailed theoretical analysis in Appendix C, and then show the empirical
evidence and preliminary experiments supporting the claim in Appendix E.

5.2 The Proposed TrendAttack

Based on the two key design principles established in Claim 5.1 and Claim 5.2 for enabling graph
unlearning inversion, we now instantiate these principles through concrete model components,
resulting in a simple, flexible, and effective inversion framework, named TrendAttack.

Shadow Victim Model Training. To construct an attack model g(vi, vj) that accurately predicts
membership information given partial knowledge of the unlearned graph KQ = (PQ,FQ), we
first simulate the victim model’s behavior using a shadow dataset Gsha and a shadow victim GNN
f ′
Gsha
un

(·;θ′
un). This model is trained on a node classification task and then unlearns a small subset of

edges ∆Gsha. Specifically, the pre- and post-unlearning parameters are obtained similarly via Eq. (1)
and Eq (2) in Section 3.

This training setup explicitly models unlearning behavior, in contrast to prior MIA approaches that
rely solely on the original model f ′

Gsha
orig

(·;θ′
orig) and do not account for the effects of unlearning.

Using this shadow victim model, we construct a shadow query set Qsha and its associated partial

6



knowledgeKQsha
= (PQsha

,FQsha
) from the features, connectivity, and outputs of f ′ on Gsha, which

are then used to train the attack model.

Attack Model. It is well established that membership between vi and vj can be inferred from
the similarity between their features and output probabilities [58, 29]. Since prior MIA methods
have developed a variety of similarity computation frameworks for this task, we adopt a general
formulation that computes a scalar similarity score between vi and vj as ϕ([xi || pi], [xj || pj ]).

This formulation is flexible and covers several existing MIA methods. For example, when
ϕ([xi || pi], [xj || pj ]) = h⊤ · MLP(pi,pj), the model recovers MIA-GNN [58]. It can also
recover the StealLink attack [29] by incorporating manually defined similarity features into ϕ. This
flexible structure allows our attack model to incorporate any existing MIA method as the backbone,
ensuring it performs at least as well as prior approaches.

In addition, as indicated by Claim 5.1 and Claim 5.2, a key challenge in graph unlearning inversion is
to distinguish nodes associated with unlearned edges from others and to apply an adaptive similarity
threshold. Therefore, relying solely on ϕ(·, ·) may be insufficient to capture this complexity. Thus, to
explicitly capture confidence trends and address Claim 5.2, we define scalar-valued confidence trend
features for each node vi ∈ V:

τ
(0)
i := Conf(vi), τ

(k)
i :=

∑
vj∈N̂ (1)(vi)

Ãi,jτ
(k−1)
i (k ≥ 1), (3)

where Ã := D−0.5AD−0.5 is the normalized adjacency matrix and Ãi,j denotes its (i, j)-th entry.

We define the confidence difference between orders as ∆τ
(k)
i := τ

(k)
i − τ

(k−1)
i for k ≥ 1. Based on

Claim 5.2, the sign of these differences (e.g., between zeroth and first order, and first and second
order) serves as a useful signal for identifying nodes that are endpoints of unlearned edges. Thus, we
define the following binary-valued trend feature for each node vi:

τ̃ i :=
[
1{∆τ

(1)
i < 0},1{∆τ

(1)
i > 0},1{∆τ

(2)
i < 0},1{∆τ

(2)
i > 0}

]
. (4)

The final attack model is defined as:

g(vi, vj) := σ(ϕ([xi || pi], [xj || pj ])︸ ︷︷ ︸
MIA

+h⊤[τ̃ i || τ̃ j ]︸ ︷︷ ︸
Trend

). (5)

In the equation above, the MIA term estimates membership from similarity in features and probabili-
ties, and the trend term compensates for the similarity gap by distinguishing node types as indicated
by Claim 5.1. The sigmoid function σ(·) maps the output to [0, 1], with 0 indicating non-member and
1 indicating member. This design allows the attack model to incorporate an adaptive threshold based
on node-specific trend features, while leveraging any existing MIA framework as its base.

Unlearning-Aware Attack Model Training. We train the attack model g on the shadow dataset
Gsha using the outputs of the shadow victim model f ′. Given the shadow query set Qsha with known
membership labels, we optimize a link-prediction loss:

Lattack(Qsha) := −
∑

(vi,vj)∈Q+
sha

log g(vi, vj)−
∑

(vi,vj)∈Q−
sha

log
(
1− g(vi, vj)

)
. (6)

Performing TrendAttack. After training, we transfer g to the target unlearned graph Gun by
computing, for each query pair (vi, vj) ∈ Q, the feature-probability similarity and trend features
from the real model output fGun

(·;θun) and partial graph knowledge K. We then evaluate g(vi, vj)
on predicting whether (vi, vj) ∈ Eorig. By combining both similarity and trend signals learned on the
shadow graph, g effectively supports unlearning inversion on the real unlearned graph.

6 Experiments

In this section, we describe our experimental setup and present the main empirical results.

6.1 Experiment Settings

Datasets. We evaluate our attack method on four standard graph ML benchmark datasets: Cora [87],
Citeseer [87], Pubmed [87], and LastFM-Asia [87]. To construct the shadow dataset Gsha and the real
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Unlearn method Attack Cora Citeseer Pubmed LastFM-Asia
Unlearned Original All Unlearned Original All Unlearned Original All Unlearned Original All

GIF GraphSAGE 0.5356 0.5484 0.5420 0.5275 0.5216 0.5246 0.6503 0.6457 0.6480 0.6914 0.6853 0.6884
NCN 0.7403 0.7405 0.7404 0.6750 0.6872 0.6811 0.6661 0.6718 0.6690 0.7283 0.7273 0.7278
MIA-GNN 0.7547 0.7916 0.7732 0.7802 0.8245 0.8023 0.7028 0.7902 0.7465 0.5955 0.5744 0.5850
StealLink 0.7841 0.8289 0.8065 0.7369 0.8404 0.7887 0.8248 0.8964 0.8606 0.8472 0.9037 0.8755
GroupAttack 0.7982 0.8053 0.8018 0.7771 0.7618 0.7695 0.6497 0.6554 0.6525 0.7858 0.7850 0.7854
TrendAttack-MIA 0.8240 0.8448 0.8344 0.8069 0.8078 0.8073 0.8950 0.9171 0.9060 0.7795 0.7649 0.7722
TrendAttack-SL 0.8309 0.8527 0.8418 0.8410 0.8430 0.8420 0.9524 0.9535 0.9529 0.9078 0.9134 0.9106

CEU GraphSAGE 0.5356 0.5484 0.5420 0.5275 0.5216 0.5246 0.6503 0.6457 0.6480 0.6914 0.6853 0.6884
NCN 0.7403 0.7405 0.7404 0.6750 0.6872 0.6811 0.6661 0.6718 0.6690 0.7283 0.7273 0.7278
MIA-GNN 0.7458 0.7810 0.7634 0.7718 0.8248 0.7983 0.6626 0.6561 0.6593 0.6004 0.5811 0.5908
StealLink 0.7901 0.8486 0.8193 0.7643 0.8450 0.8046 0.8467 0.9088 0.8777 0.8416 0.9021 0.8719
GroupAttack 0.7941 0.7976 0.7958 0.7557 0.7458 0.7508 0.6388 0.6430 0.6409 0.7845 0.7817 0.7831
TrendAttack-MIA 0.8194 0.8333 0.8263 0.7933 0.8041 0.7987 0.8982 0.9184 0.9083 0.7676 0.7576 0.7626
TrendAttack-SL 0.8467 0.8612 0.8539 0.8514 0.8400 0.8457 0.9550 0.9579 0.9565 0.9037 0.9088 0.9062

GA GraphSAGE 0.5356 0.5484 0.5420 0.5275 0.5216 0.5246 0.6503 0.6457 0.6480 0.6914 0.6853 0.6884
NCN 0.7403 0.7405 0.7404 0.6750 0.6872 0.6811 0.6661 0.6718 0.6690 0.7283 0.7273 0.7278
MIA-GNN 0.7676 0.8068 0.7872 0.7798 0.8353 0.8076 0.7242 0.8039 0.7641 0.6200 0.6057 0.6129
StealLink 0.7862 0.8301 0.8082 0.7479 0.8431 0.7955 0.8203 0.8898 0.8550 0.8342 0.8947 0.8644
GroupAttack 0.7945 0.8042 0.7993 0.7662 0.7563 0.7613 0.6458 0.6493 0.6475 0.7746 0.7760 0.7753
TrendAttack-MIA 0.8193 0.8397 0.8295 0.8080 0.8249 0.8165 0.8932 0.9158 0.9045 0.7255 0.7099 0.7177
TrendAttack-SL 0.8270 0.8382 0.8326 0.8628 0.8614 0.8621 0.9531 0.9537 0.9534 0.9041 0.9119 0.9080

Table 1: Main Comparison Results. We present the AUC scores for attack methods across different
edge groups. The best results are highlighted in bold, while the second-best results are underlined.

attack dataset Gorig, which should share similar distributions, we use METIS to partition the entire
training graph into two balanced subgraphs, one for shadow and one for attack. Following the setting
in GIF [80], we use 90% of the nodes in each subgraph for training and the remaining for testing. All
edges between the two subgraphs are removed, and there are no shared nodes, simulating real-world
scenarios where shadow and attack datasets are disconnected.

Victim Model. We adopt a two-layer GCN [36] as the victim model, trained for node classifica-
tion. Our GCN implementation follows the standard settings used in GIF [80] for consistency and
reproducibility. After training the GCN on both the shadow and attack datasets, we perform edge
unlearning on 5% of randomly selected edges using standard graph unlearning methods, including
GIF [80], CEU [81], and Gradient Ascent (GA) [78]. We follow the official settings from each
method’s paper and codebase to ensure faithful reproduction.

Baselines. We do not compare with unlearning inversion attacks [32] that require access to pre-
unlearning models, which is unrealistic under our setting. To demonstrate that unlearning inversion
cannot be solved by naive link prediction, we evaluate a simple GraphSAGE model and a state-
of-the-art link prediction method, NCN [74]. For membership inference attacks (MIAs) under
the same black-box assumption as ours, we consider three widely used methods: StealLink [29],
MIA-GNN [58], and GroupAttack [91]. We follow their official hyperparameter settings from their
respective papers and repositories. All experiments are run five times, and we report the mean and
the standard error.

Evaluation Metrics. We evaluate our attack on the attack dataset using a specific query set Q. We
randomly select 5% of the edges as unlearned edgesQ+

un (label 1), and another 5% of remaining edges
as regular member edgesQ+

mem (label 1). We then sample an equal number of non-existent (negative)
edgesQ− (label 0) such that |Q−| = |Q+

un|+ |Q+
mem|. We use AUC as the primary evaluation metric.

Since both unlearned edges and regular member edges are important for membership inference, we
compute the overall AUC on the full query set Q = Q+

un ∪Q+
mem ∪Q−.

More experimental details, including model parameters, baselines, and datasets, are in Appendix F.

6.2 Comparison Experiments

In this study, we present a comprehensive comparison of all our baselines mentioned in Section 6.1,
and the results are shown in Table 1. Specifically, to demonstrate that our method better captures
unlearned edges, we evaluate AUC across three groups: Unlearned (Q+

un ∪ Q−), Original (Q+
mem ∪

Q−), and All (the entire Q). A small gap between Unlearned and Original AUCs indicates a better
balance in the model’s predictions. The full table with standard deviation can be found in Appendix G.

We consider two variants of our method, TrendAttack-MIA and TrendAttack-SL, which adopt MIA-
GNN [58] and StealLink [29] as their respective backbone models. From the table, we make the
following observations: (i) Compared with their MIA prototypes, both variants of TrendAttack
significantly improve the gap between Unlearned and Original AUCs, as well as the overall AUC.
This demonstrates the effectiveness of our proposed trend-based attack and unlearning-aware training
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(a) Cora results. (b) Citeseer results. (c) Pubmed results.
Figure 3: Ablation study on the impact of victim models.

design. (ii) Overall, our proposed attack, especially TrendAttack-SL, achieves the best performance
on most datasets and unlearning methods. The only failure case is on Citeseer + CEU + Original,
where the gap to StealLink is small. This does not undermine our contribution, as our primary focus
is on the unlearned sets, and this case is a special exception. TrendAttack-MIA achieves the second-
best results across many settings, while its relatively lower performance is mainly due to the weak
backbone model (MIA-GNN), not the attack framework itself. (iii) Among all baselines, attack-based
methods consistently outperform link prediction methods, showing that link prediction alone cannot
effectively solve the unlearning inversion problem. Among the attack baselines, StealLink is the
strongest, while MIA-GNN performs poorly as it only uses output probabilities and ignores features.

6.3 Ablation Studies

Impact of Victim Models. From Table 1, we observe that the proposed attack remains stable
against unlearning methods. In this study, we further investigate whether TrendAttack’s performance
maintains stability with respect to changes in victim models. Specifically, we fix the unlearning
method to GIF and use TrendAttack-SL as our model variant. We compare it against the best-
performing baseline, StealLink, with results shown in Figure 3. From the figure, we see that our
proposed model consistently outperforms the baseline, demonstrating stability across different victim
models. An interesting observation is that performance significantly improves on GAT compared to
other baselines, suggesting that GAT may be more vulnerable to model attacks.

(a) Cora results. (b) Pubmed results. (c) LastFM-Asia results.
Figure 4: Ablation study on the impact of unlearning ratio.

Impact of Unlearning Ratio. In this study, we examine whether the victim model’s randomly
selected unlearning edge ratio affects the overall attack AUC. Specifically, we fix the unlearning
method to GIF and use TrendAttack-SL as our model variant, with results presented in Figure 4. From
the figure, we find that compared to our most important baseline, StealLink, TrendAttack consistently
performs better with less fluctuation. This indicates that our model remains relatively stable across
different unlearning ratios, making it more universally applicable to various attack settings.

Due to space limitations, more experiments can be found in Appendix G.

7 Conclusion

In this work, we study a novel and challenging problem of graph unlearning inversion attack, which
aims to recover unlearned edges using black-box GNN outputs and partial knowledge of the unlearned
graph. To tackle this problem, we identify two key intuitions, probability gap and confidence pitfall,
which motivate a simple yet effective attack framework, TrendAttack, revealing a potential privacy
risk of current graph unlearning methods. Despite the effectiveness of TrendAttack, it has several
limitations. First, our method focuses solely on link-level inference, and does not consider to node-
level or feature-level membership inference. Second, while we provide empirical evidence for the
probability gap intuition in the appendix, we do not offer a formal theoretical justification. These
limitations highlight important directions for future research.
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Appendix

List of Contents

In this appendix, we provide the following additional information:

• Section A: Additional Related Works.

• Section B: Model Details.

• Section C: Theoretical Motivation of the Confidence Pitfall.

• Section D: Missing Proofs in Section C.

• Section E: Preliminary Experiments.

• Section F: Experimental Settings.

• Section G: Additional Experiments.

• Section H: Impact Statement.

A Additional Related Works

In this section, we present additional related works for this paper. We first review prior works on
general-purpose machine unlearning and the privacy vulnerabilities of unlearning. Next, we provide
a comprehensive list of related works on graph unlearning and membership inference attacks (MIA)
on GNNs, supplementing our earlier discussion in Section 2.

A.1 Machine Unlearning

Machine unlearning aims to remove the influence of specific training samples from a trained model,
balancing utility, removal guarantees, and efficiency [4, 50]. Unlike full retraining, unlearning seeks
practical alternatives to efficiently revoke data. These methods can help removing data effect in
simple learning settings like statistical query learning [6], and recently have broad applications in
LLMs [88, 47, 49], generative models [40, 99, 100], e-commerce [7, 43, 98], and graph learning [10,
80, 19].

Existing machine unlearning methods broadly fall into two categories: exact and approximate
unlearning. Exact unlearning methods, such as SISA [4], partition data into shards, train sub-
models in each shard independently, and merge them together, which allows targeted retraining for
removing certain data from a shard. ARCANE [85] improves this by framing unlearning as one-class
classification and caching intermediate states, enhancing retraining efficiency. These ideas have been
extended to other domains, including graph learning [10, 70] and ensemble methods [5]. However,
exact methods often degrade performance due to weak sub-models and straightforward ensembling.

Approximate unlearning methods update model parameters to emulate removal effects with better
efficiency-performance trade-offs. For instance, Jia et al. [33] uses pruning and sparsity-regularized
fine-tuning to approximate exact removal. Tarun et al. [66] propose a model-agnostic class removal
technique using error-maximizing noise and a repair phase. Liu et al. [48] tackle adversarially
trained models with a closed-form Hessian-guided update, approximated efficiently without explicit
inversion.

A.2 Privacy Vulnerabilities of Machine Unlearning

A growing line of research investigates the privacy vulnerabilities of machine unlearning. Chen et
al. [9] show that if an adversary has access to both the pre- and post-unlearning black-box model
outputs, they can infer the membership status of a target sample. A recent work [67] highlights
the limitations of approximate unlearning by arguing that unlearning is only well-defined at the
algorithmic level, and parameter-level manipulations alone may be insufficient. Unlearning inversion
attacks [32] go further by reconstructing both features and labels of training samples using two
model versions, while Bertran et al. [3] provide an in-depth analysis of such reconstruction attacks in
regression settings.
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These findings motivate our investigation into unlearned GNNs, where we aim to capture residual
signals left by the unlearned data. While prior attacks mostly target general-purpose models and
focus on red-teaming under strong assumptions, such as access to both pre- and post-unlearning
models [9, 32, 3], our work considers a more practical black-box setting motivated by real-world
social network scenarios. Furthermore, our attack explicitly accounts for the unique structural and
relational properties of graphs, in contrast to prior work primarily focused on i.i.d. data.

A.3 Graph Unlearning

Graph Unlearning enables the efficient removal of unwanted data’s influence from trained graph
ML models [10, 61, 22]. This removal process balances model utility, unlearning efficiency, and
removal guarantees, following two major lines of research: retrain-based unlearning and approximate
unlearning.

Retrain-based unlearning partitions the original training graph into disjoint subgraphs, training
independent submodels on them, enabling unlearning through retraining on a smaller subset of the
data. Specifically, GraphEraser [10] pioneered the first retraining-based unlearning framework for
GNNs, utilizing balanced clustering methods for subgraph partitioning and ensembling submodels
in prediction with trainable fusion weights to enhance model utility. GUIDE [70] presents an
important follow-up by extending the retraining-based unlearning paradigm to inductive graph
learning settings. Subsequently, many studies [70, 43, 93, 42] have made significant contributions to
improving the Pareto front of utility and efficiency in these methods, employing techniques such as
data condensation [42] and enhanced clustering [43, 93].

Approximate unlearning efficiently updates model parameters to remove unwanted data. Certified
graph unlearning [12] provides an important early exploration of approximate unlearning in SGC [79],
with provable unlearning guarantees. GraphGuard [78] introduces a comprehensive system to mitigate
training data misuse in GNNs, featuring a significant gradient ascent unlearning method as one of its
core components. These gradient ascent optimization objectives can be approximated using Taylor
expansions, inspiring several beautiful influence function-based methods [37, 80, 81]. Specifically,
GIF [80] presents a novel influence function-based unlearning approach tailored to graph data,
considering feature, node, and edge unlearning settings, while CEU [81] focuses on edge unlearning
and establishes theoretical bounds for removal guarantees. Building on this, IDEA [19] proposes
a theoretically sound and flexible approximate unlearning framework, offering removal guarantees
across node, edge, and feature unlearning settings. Recent innovative works have further advanced the
scalability [59, 39, 89, 86, 92] and model utility [41, 97] of approximate unlearning methods, pushing
the boundaries of promising applications. Additionally, a noteworthy contribution is GNNDelete [11],
which unlearns graph knowledge by employing an intermediate node embedding mask between GNN
layers. This method offers a unique solution that differs from both retraining and model parameter
modification approaches.

In this paper, we explore the privacy vulnerabilities of graph unlearning by proposing a novel
membership inference attack tailored to unlearned GNN models, introducing a new defence frontier
that graph unlearning should consider from a security perspective.

A.4 Membership Inference Attack for GNNs

Membership Inference Attack (MIA) is a privacy attack targeting ML models, aiming to distinguish
whether a specific data point belongs to the training set [65, 31, 16]. Such attacks have profoundly
influenced ML across various downstream applications, including computer vision [8, 14], NLP [53,
54], and recommender systems [95, 90]. Recently, MIA has been extended to graph learning,
where a pioneering work [21] explored the feasibility of membership inference in classical graph
embedding models. Subsequently, interest has shifted towards attacking graph neural networks
(GNNs), with several impactful and innovative studies revealing GNNs’ privacy vulnerabilities in node
classification [30, 29, 58, 103] and graph classification tasks [77, 44], covering cover node-level [30,
58], link-level [29], and graph-level [77, 103] inference risks. Building on this, GroupAttack [91]
presents a compelling advancement in link-stealing attacks [29] on GNNs, theoretically demonstrating
that different edge groups exhibit varying risk levels and require distinct attack thresholds, while a
label-only attack has been proposed to target node-level privacy vulnerabilities [15] with a stricter
setting. Another significant line of research involves graph model inversion attacks, which aim to
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reconstruct the graph structure using model gradients from white-box models [102] or approximated
gradients from black-box models [101].

Despite the impressive contributions of previous MIA studies in graph ML models, existing ap-
proaches overlook GNNs containing unlearned sensitive knowledge and do not focus on recovering
such knowledge from unlearned GNN models.

B Model Details

In this section, we present the detailed computation of the TrendAttack, considering both the training
and attack processes.

B.1 Shadow Training Algorithm for TrendAttack

Algorithm 1 Attack Model Training

Input: Shadow dataset Gshaorig, GNN architecture f ′

Output: Attack model g(·, ·)
1: // Train and unlearn the victim model
2: Train the shadow victim model on Gshaorig with Eq. (1) to obtain θ′

orig ▷ Train victim model
3: Randomly select some unlearned edges ∆Esha from original edges Eshaorig

4: Unlearn ∆Esha with Eq. (2) to obtain θ′
un ▷ Unlearn victim model

5: Eshaun ← Eshaorig \∆Esha ▷ Remove the unlearned edges from Gshaorig
6: // Construct the query set Qsha

7: Randomly select some existing edges from Eshaun to obtain Q+
mem ▷ Q+

mem ⊆ Eshaun

8: Randomly select some negative edges Q− ▷ Q− ∩ Eshaun = ∅
9: Initialize the unlearned set of edges Q+

un ← ∆Esha
10: Initialize the entire query set Qsha ← Q+

un ∪Q+
mem ∪Q−

11: // Attack model training
12: Obtain the partial knowledge for the query set KQsha

= (PQsha
,FQsha

)
13: Train the attack model g on Qsha with KQsha

and Lattack in Eq. (6)
14: return Attack model g

In this algorithm, we first train and unlearn the shadow victim model f ′ (lines 1–5), and then construct
the query set Qsha (lines 6–10), which includes three different types of edges. Next, we train the
attack model with the link prediction objective Lattack in Eq. (6), with Qsha as the pairwise training
data (lines 11–13). Then, we return the attack model g for future attacks (line 14).

B.2 The Attack Process of TrendAttack

In this algorithm, we first request the partial knowledge KQ from the unlearned graph Gun and
the black-box victim model fGun

(·;θun) for our links of interest Q (lines 1–11). This process is
highly flexible and can effortlessly incorporate many different levels of the attacker’s knowledge. For
instance, the feature knowledge FQ (line 5) is optional if the model API owner does not respond to
node feature requests on the unlearned graph Gun.

Moreover, for the probability knowledge PQ (lines 6–10), the more we know about the neighborhood
N̂ (0), · · · , N̂ (k) of nodes of interest VQ, the more accurately we can construct our trend features.
This approach is fully adaptive to any level of access to the unlearned graph and model API. In the
strictest setting, where we only have access to the node of interest itself, we have k = 0, and our
model perfectly recovers previous MIA methods with no performance loss or additional knowledge
requirements. An empirical study on the impact of trend feature orders can be found in Figure 7.

After requesting the partial knowledge, we compute the trend features and then predict the membership
information (lines 12–18). In the end, we return our attack results (line 19).
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Algorithm 2 Attack Process

Input: Unlearned graph Gun, black-box unlearned model fGun
(·;θun), query set Q, trained attack

model g(·, ·), trend feature order k
Output: Membership predictions on the query set ŷ

1: // Request the partial knowledge KQ = (PQ,FQ)
2: Obtain the nodes of interest VQ ← {vi : (vi, vj) ∈ Q or (vj , vi) ∈ Q}
3: PQ ← ∅,FQ ← ∅
4: for vi ∈ VQ do
5: FQ ← FQ ∪ {(vi,xi)} ▷ Feature knowledge
6: Request the available neighborhood N̂ (0)(vi), · · · , N̂ (k)(vi) from Gun
7: for vj ∈

⋃k
r=0 N̂ (r)(vi) do ▷ Probability knowledge

8: pj ← fGun
(vj ;θun)

9: PQ ← PQ ∪ {(vj ,pj)}
10: end for
11: end for
12: // Membership inference
13: for vi ∈ VQ do ▷ Build trend features
14: Compute trend features τ̃ i for node vi with Eq. (3) and Eq. (4)
15: end for
16: for (vi, vj) ∈ Q do ▷ Predict with attack model g
17: Compute the model prediction ŷi,j ← g(vi, vj) with Eq. (5)
18: end for
19: return Membership predictions ŷ

C Theoretical Motivation of the Confidence Pitfall

In this section, we present our main theoretical results, offering a robust theoretical foundation for
our model design, with a specific focus on the confidence pitfall intuition in Section 5.1.

Our analysis of the probability similarity gap (Claim 5.1) suggests that unlearned edges Q+
un and

remaining membership edges Q+
mem require different probability-similarity thresholds for accurate

inference. The challenge, however, is that the attacker cannot directly tell whether a given query
(vi, vj) belongs to Q+

un or Q+
mem.

To address this, we analyze how removing a specific edge (vi, vj) affects model outputs, using the
widely used analytical framework of influence functions [37, 80, 81]. This analysis separates two
effects: (i) the immediate impact of dropping the edge from the training graph Gorig, and (ii) the
subsequent adjustment of model parameters by the unlearning procedure. We focus on a linear GCN
model, which, despite its simplicity, captures the core behavior of many GNN architectures (see
Remark D.2 in Appendix D).

Specifically, we first present the influence result of all the unlearned edges ∆E as follows:
Theorem C.1 (Closed-form Edge Influence, Informal). Let f(C,X;w⋆) be a linear GCN with
propagation matrix C ∈ Rn×n and parameters w⋆ obtained by least-squares on labels y ∈ Rd. If
we denote the matrix of all node predictions by P and let Ξ :=

∑
(vi,vj)∈∆E eie

⊤
j be the adjacency

matrix of the removed edges, then unlearning ∆E produces:

• Weight influence:

I(w⋆) = H−1(X⊤Ξ⊤y −X⊤Ξ⊤CXw⋆ −X⊤C⊤ΞXw⋆),

• Model output influence:

I(P) = ΞXw⋆ +CXH−1
(
X⊤Ξ⊤y −X⊤C⊤ΞXw⋆ −X⊤Ξ⊤CXw⋆

)
,

where H is the Hessian of the least squares loss evaluated at w⋆.

Proof. This follows directly from Theorem D.8 and Theorem D.9. See Appendix D for proofs.
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While Theorem C.1 characterizes the combined effect of all unlearned edges, we also need to
understand the effect of a single edge on a single node’s output. This finer-grained analysis reveals
why nodes adjacent to unlearned edges exhibit a distinctive drop in confidence compared to more
distant nodes.
Corollary C.2 (Single-Edge to Single-Node Influence, Informal). Under the same setup as Theo-
rem C.1, the influence of an undirected edge (vi, vj) ∈ ∆E on the output pk of node vk ∈ V can be
decomposed as follows:

I(pk) = 1{vk = vi} · (x⊤
i w

⋆) + 1{vk = vj} · (x⊤
j w

⋆)︸ ︷︷ ︸
edge influence

− ⟨(x⊤
j w

⋆)zi + (x⊤
i w

⋆)zj , zk⟩H−1︸ ︷︷ ︸
magnitude weight influence

+ ⟨(yj − z⊤j w
⋆)xi + (yi − z⊤i w

⋆)xj , zk⟩H−1︸ ︷︷ ︸
error weight influence

,

where Z := CX and zl is the l-th row of Z, and 1{·} denotes the indicator function.

Proof. Please see Corollary D.11 in Appendix D.

In the corollary above, the third error weight influence term is governed by the empirical residuals
at the optimal weight, (yi − z⊤i w

⋆) and (yj − z⊤j w
⋆). Under the assumption of a well-trained (i.e.,

learnable) graph ML problem, these residuals become negligibly small, making the error weight
influence term nearly zero.

Meanwhile, the first edge influence term activates only when vk coincides with one of the endpoints
vi or vj , producing a direct and large perturbation. The second magnitude weight influence term,
which depends on the inner-product similarity ⟨(x⊤

j w
⋆)zi + (x⊤

i w
⋆)zj , zk⟩H−1 , is also relatively

larger when vk ∈ {vi, vj} and smaller otherwise. As a result, for vk = vi or vj , the sum of a
substantial positive edge influence and a significant negative magnitude weight influence yields a
dramatic net effect on the model output. Therefore, the influence on the endpoints of unlearned edges
may be more significant than on other nodes. Based on this, we reasonably assume their confidence
will drop and make the following claim:
Claim C.3 (Confidence Pitfall, Restatement of Claim 5.2). The average model confidence of nodes
appearing in unlearned edges is lower than that of other nodes, i.e.,

AvgConf(VQ+
un
) < AvgConf(V \ VQ+

un
),

where VQ0 := {vi : (vi, vj) ∈ Q0 or (vj , vi) ∈ Q0} is the set of all nodes involved in query subset
Q0, and AvgConf(V0) := 1

|V0|
∑

vi∈V0
maxℓ pi,ℓ is the average model confidence within a node set

V0.

Further empirical evidence supporting this claim can be found in Appendix E.

D Missing Proofs in Section C

In this section, we provide formal definitions for all concepts introduced in Section C and supplement
the missing technical proofs. We begin by describing the architecture and training process of linear
GCN, and then compute the edge influence on model weights. Next, we analyze how edge influence
affects the model output, considering both the direct impact from the edge itself and the indirect
influence mediated through model weights.

D.1 Linear GCN

In this analysis, we consider a simple but effective variant of GNNs, linear GCN, which is adapted
from the classical SGC model [79].
Definition D.1 (Linear GCN). Let C ∈ [0, 1]n×n be the propagation matrix, Xb ∈ Rn×d be the
input feature matrix, and w ∈ Rd denote the learnable weight vector. Linear GCN computes the
model output as follows:

fLGN(C,X;w) := CXw.
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Remark D.2 (Universality of Linear GCN). The propagation matrix C is adaptable to any type of
convolution matrices, recovering multiple different types of GNNs, including but not limited to:

• One-layer GCN: C1-GCN := (D+ I)−0.5(A+ I)(D+ I)−0.5;

• k-layer SGC: Ck-SGC := Ck
1-GCN;

• Infinite layer PPNP: CPPNP := (I− (1− α)C1-GCN)
−1;

• k-layer APPNP: Ck-APPNP := (1− α)kCk
1-GCN + α

∑k−1
l=0 (1− α)lCl

1-GCN;

• One-layer GIN: CGIN := A+ I.

To analyze the output of a single node, we state the following basic result without proof.
Fact D.3 (Single Node Output). The output of Linear GCN for a single node vi ∈ V is

fLGN(C,X;w)i = (CXw)i =

n∑
j=1

Cj,i(x
⊤
i w).

In the training process of Linear GCNs, we consider a general least squares problem [64], which
applies to both regression and binary classification tasks.
Definition D.4 (Training of Linear GCNs). Let y ∈ Rd denote the label vector, training the linear
GCN in Definition D.1 is equivalent to minimize the following loss function:

L(C,X,w,y) :=
1

2
∥y −CXw∥22.

Proposition D.5 (Closed-form Solution for Linear GCN Training). The following optimization
problem:

min
w
L(C,X,w,y)

has a closed-form solution

w⋆ = (X⊤C⊤CX)−1X⊤C⊤y.

Proof. The loss function L is convex. Following the first-order optimality condition, we can set the
gradient to zero and solve for w, which trivially yields the desired result.

D.2 Edge Influence on Model Weight

In this section, we examine how a specific set of edges ∆E influences the retrained model weights
w⋆. We first define the perturbation matrix, which is the adjacency matrix for an edge subset ∆E ,
and can be used to perturb the original propagation matrix C for influence evaluation.
Definition D.6 (Perturbation Matrix). For an arbitrary edge subset ∆E , the corresponding perturba-
tion matrix Ξ∆E is defined as:

Ξ∆E :=
∑

(vi,vj)∈∆E

eie
⊤
j .

For notation simplicity, we sometimes ignore ∆E and use Ξ as a shorthand notation for Ξ in this
paper.

Next, we begin with a general case of edge influence that does not address the linear GCN architecture.

Lemma D.7 (Edge Influence on Model Weight, General Case). Let Ξ∆E ∈ Rn×n be a perturbation
matrix as defined in Definition D.6. Let ϵ ∈ R be a perturbation magnitude and w⋆(ϵ) be the optimal
model weight after perturbation. Considering an edge perturbation C(ϵ) := C + ϵΞ∆E on the
original propagation matrix C, the sensitivity of the model weight w⋆ can be characterized by:

Iϵ(w⋆) :=
dw⋆(ϵ)

dϵ

∣∣∣
ϵ=0

= −H−1 ∂

∂ϵ
∇wL(C+ ϵΞ∆E ,X,w⋆,y)

∣∣∣
ϵ=0

,

where H := ∇2
wL(C,X,w⋆,y).

15



Proof. For notation simplicity, we use Ξ as a shorthand notation for Ξ∆E in this proof. Since w⋆(ϵ)
is the minimizer of the perturbed loss function L(C(ϵ),X,w,y), we have:

w⋆(ϵ) = argmin
w

L(C+ ϵΞ,X,w,y).

Examining the first-order optimality condition of the minimization problem, we have:

∇wL(C+ ϵΞ,X,w⋆(ϵ),y) = 0. (7)

Let us define the change in parameters as:

∆w := w⋆(ϵ)−w⋆.

Therefore, since w⋆(ϵ)→ w⋆ as ϵ→ 0, we expand Eq. (7) with multi-variate Taylor Series at the
local neighborhood of (w⋆, 0) to approximate the value of∇wL at (w⋆ +∆w, ϵ):

0 = ∇wL(C+ ϵΞ,X,w⋆(ϵ),y)

= ∇wL(C+ ϵΞ,X,w⋆ +∆w,y)

= ∇wL(C+ ϵΞ,X,w⋆,y) +∇2
wL(C+ ϵΞ,X,w⋆,y)∆w

+ ϵ
∂

∂ϵ
∇wL(C+ ϵΞ,X,w⋆,y)

∣∣∣
ϵ=0

+ o(∥∆w∥+ |ϵ|)

= ∇wL(C,X,w⋆,y) +∇2
wL(C,X,w⋆,y)∆w

+ ϵ
∂

∂ϵ
∇wL(C+ ϵΞ,X,w⋆,y)

∣∣∣
ϵ=0

+ o(∥∆w∥+ |ϵ|)

= ∇2
wL(C,X,w⋆,y)∆w + ϵ

∂

∂ϵ
∇wL(C+ ϵΞ,X,w⋆,y)

∣∣∣
ϵ=0

+ o(∥∆w∥+ |ϵ|)

(8)

where the first equality follows from Eq. (7), the second equality follows from the definition of ∆w,
the third equality follows from Taylor Series, the fourth equality follows from ϵ → 0, and the last
equality follows from the fact that w⋆ is the minimizer of loss function L.

Let the Hessian matrix at w⋆ be H := ∇2
wL(C,X,w⋆,y). Ignoring the remainder term and

rearrange Eq. (8), we can conclude that:

∆w = −ϵH−1 ∂

∂ϵ
∇wL(C+ ϵΞ,X,w⋆,y)

∣∣∣
ϵ=0

.

Dividing both sides by ϵ and taking the limit ϵ→ 0, we have:

dw⋆(ϵ)

dϵ

∣∣∣
ϵ=0

= −H−1 ∂

∂ϵ
∇wL(C+ ϵΞ,X,w⋆,y)

∣∣∣
ϵ=0

.

This completes the proof.

Afterward, we extend the general case of edge influence on model weights to the Linear GCN
framework, providing a closed-form solution for the edge-to-weight influence in this model.

Theorem D.8 (Edge Influence on Model Weight, Linear GCN Case). Given an arbitrary edge
perturbation matrix Ξ as defined in Definition D.6, the influence function for the optimal model
weight w⋆ is:

Iϵ(w⋆) :=
dw⋆(ϵ)

dϵ

∣∣∣
ϵ=0

= H−1(X⊤Ξ⊤y −X⊤Ξ⊤CXw⋆ −X⊤C⊤ΞXw⋆).

Proof. We start from the general result in Lemma D.7 which states that

Iϵ(w⋆) :=
dw⋆(ϵ)

dϵ

∣∣∣∣∣
ϵ=0

= −H−1 ∂

∂ϵ
∇wL(C+ ϵΞ,X,w⋆,y)

∣∣∣∣∣
ϵ=0

,

where H = ∇2
wL(C,X,w⋆,y) is the Hessian of the loss with respect to w evaluated at w⋆.
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Recalling the loss function in Definition D.4, when we introduce the perturbation C(ϵ) = C+ ϵΞ,
the loss becomes

L(C+ ϵΞ,X,w,y) =
1

2
∥y − (C+ ϵΞ)Xw∥22.

Thus, the gradient with respect to w is

∇wL(C+ ϵΞ,X,w,y) = −X⊤(C+ ϵΞ)→P
[
y − (C+ ϵΞ)Xw

]
.

Evaluating at w = w⋆ yields

∇wL(C+ ϵΞ,X,w⋆,y) = −X⊤(C+ ϵΞ)→P
[
y − (C+ ϵΞ)Xw⋆

]
.

We now differentiate this expression with respect to ϵ and evaluate at ϵ = 0. Writing the gradient as
the sum of two terms, we have:

∇wL(C+ ϵΞ,X,w⋆,y) = −X⊤(C+ ϵΞ)⊤y︸ ︷︷ ︸
:=T1

+X⊤(C+ ϵΞ)⊤(C+ ϵΞ)Xw⋆︸ ︷︷ ︸
:=T2

= −T1 +T2.

Now we differentiate each term with respect to ϵ. Specifically, for the first term T1, we have the
following result:

dT1

dϵ
=

d

dϵ

[
−X⊤(C+ ϵΞ)⊤y

]
= −X⊤Ξ⊤y.

For the second term, we can conclude by basic matrix algebra that:
dT2

dϵ
=

d

dϵ

[
X⊤(C+ ϵΞ)⊤(C+ ϵΞ)Xw⋆

]
= X⊤(C⊤Ξ+Ξ⊤C+ 2ϵΞ⊤Ξ)Xw⋆

Combining both terms, we obtain

∂

∂ϵ
∇wL(C+ ϵΞ,X,w⋆,y)

∣∣∣∣∣
ϵ=0

= −X⊤Ξ⊤y +X⊤(C⊤Ξ+Ξ⊤C)Xw⋆.

Substituting back into the expression for Iϵ(w⋆) gives:

Iϵ(w⋆) = −H−1

(
−X⊤Ξ⊤y +X⊤(C⊤Ξ+Ξ⊤C)Xw⋆

)
= H−1

(
X⊤Ξ⊤y −X⊤C⊤ΞXw⋆ −X⊤Ξ⊤CXw⋆

)
.

This finishes the proof.

D.3 Edge Influence on Model Output

In this section, we compute the influence function for edges on the final model output, considering
both direct edge influence and the effect of model parameters on the output. First, we calculate the
influence on all model outputs.
Theorem D.9 (Edge Influence on Model Output, Linear GCN Case). Let Ξ∆E ∈ Rn×n be a
perturbation matrix as defined in Definition D.6. Let ϵ ∈ R be a perturbation magnitude and
w⋆(ϵ) be the optimal model weight after perturbation. Considering an edge perturbation C(ϵ) :=
C + ϵΞu,v on the original propagation matrix C, the sensitivity of the Linear GCN model output
fLGN(C+ ϵΞ,X;w⋆(ϵ)) as defined in Definition D.1 can be characterized by:

Iϵ(fLGN) :=
dfLGN(C+ ϵΞ,X;w⋆(ϵ))

dϵ

∣∣∣
ϵ=0

= ΞXw⋆ +CXH−1
(
X⊤Ξ⊤y −X⊤C⊤ΞXw⋆ −X⊤Ξ⊤CXw⋆

)
,

where H = ∇2
wL(C,X,w⋆,y) is the Hessian of the loss with respect to w evaluated at w⋆.
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Proof. The edge perturbation ϵΞ influences fLGN from two different aspects: propagation matrix
and optimal model weights. Thus, the influence function can be derived by chain rule as follows:

Iϵ(fLGN) =
dfLGN(C+ ϵΞ,X;w⋆(ϵ))

dϵ

∣∣∣
ϵ=0

= (
∂fLGN(C+ ϵΞ,X;w⋆(ϵ))

∂(C+ ϵΞ)
· ∂(C+ ϵΞ)

∂ϵ
)
∣∣∣
ϵ=0

+ (
∂fLGN(C+ ϵΞ,X;w⋆(ϵ))

∂w⋆(ϵ)
· ∂w

⋆(ϵ)

∂ϵ
)
∣∣∣
ϵ=0

= ΞXw⋆ + (
∂fLGN(C+ ϵΞ,X;w⋆(ϵ))

∂w⋆(ϵ)
· ∂w

⋆(ϵ)

∂ϵ
)
∣∣∣
ϵ=0

= ΞXw⋆ +CX(
∂w⋆(ϵ)

∂ϵ
)
∣∣∣
ϵ=0

= ΞXw⋆ +CXH−1
(
X⊤Ξ⊤y −X⊤C⊤ΞXw⋆ −X⊤Ξ⊤CXw⋆

)
.

where the first equality follows from the definition of the influence function, the second equality
follows from the chain rule, the third and fourth equality follow from basic matrix calculus, and the
last equality follows from Theorem D.8.

Next, we present two immediate corollaries of this theorem and determine the influence of a single
edge on a single node’s output.

Corollary D.10 (Single Edge Influence on Model Output, Linear GCN Case). Let Z := CX and zl
is the l-th row of Z. Considering the influence of one specific edge (vi, vj) on undirected graphs (i.e.,
Ξ = eie

⊤
j + eje

⊤
i ), the influence function for the model output is:

Iϵ(fLGN) = (x⊤
j w

⋆)ei + (x⊤
i w

⋆)ej + (q⊗CX)vec(H−1),

where H = ∇2
wL(C,X,w⋆,y) is the Hessian of the loss with respect to w evaluated at w⋆ and

q := (yj − z⊤j w
⋆)xi + (yi − z⊤i w

⋆)xj − ((x⊤
j w

⋆)zi + (x⊤
i w

⋆)zj).

Proof. This follows from basic algebra and the fact that vec(AXB) = (B⊗A)vec(X).

Corollary D.11 (Single Edge Influence on Single Node’s Model Output, Linear GCN Case). Let
Z := CX and zl is the l-th row of Z. Considering the influence of one specific edge (vi, vj) on
undirected graphs (i.e., Ξ = eie

⊤
j + eje

⊤
i ), the influence function for the model output for specific

node vk is:

Iϵ(fLGN)k = 1{vk = vi} · (x⊤
v w

⋆) + 1{vk = vj} · (x⊤
uw

⋆) + q⊤H−1zk

= 1{vk = vi} · (x⊤
i w

⋆) + 1{vk = vj} · (x⊤
j w

⋆)︸ ︷︷ ︸
edge influence

− ⟨(x⊤
j w

⋆)zi + (x⊤
i w

⋆)zj , zk⟩H−1︸ ︷︷ ︸
magnitude weight influence

+ ⟨(yj − z⊤j w
⋆)xi + (yi − z⊤i w

⋆)xj , zk⟩H−1︸ ︷︷ ︸
error weight influence

,

where H = ∇2
wL(C,X,w⋆,y) is the Hessian of the loss with respect to w evaluated at w⋆.

Proof. This follows from basic algebra, the definition of z, and the definition of inner product w.r.t. a
PSD matrix (⟨·, ·⟩A).

E Preliminary Experiments

In this section, we present empirical evidence from preliminary experiments to support our main
claims, probability similarity gap (Claim 5.1) and confidence pitfall (Claim 5.2), in this paper.
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Dataset Unlearn Method ProbSim(Q−) ProbSim(Q+
un) ProbSim(Q+

mem)

Cora
GIF 0.1979 ± 0.3147 0.6552 ± 0.3457 0.8001 ± 0.2689
CEU 0.1997 ± 0.3172 0.6553 ± 0.3502 0.8122 ± 0.2528
GA 0.1955 ± 0.3119 0.6511 ± 0.3486 0.8101 ± 0.2625

Citeseer
GIF 0.2689 ± 0.2997 0.6446 ± 0.3046 0.8250 ± 0.2116
CEU 0.2492 ± 0.3145 0.6248 ± 0.3317 0.8251 ± 0.2311
GA 0.2695 ± 0.3071 0.6397 ± 0.3200 0.8340 ± 0.2051

Pubmed
GIF 0.5833 ± 0.3507 0.7450 ± 0.2752 0.8843 ± 0.1682
CEU 0.5799 ± 0.3677 0.7494 ± 0.2856 0.8954 ± 0.1741
GA 0.5997 ± 0.3687 0.7548 ± 0.2865 0.9031 ± 0.1677

LastFM-Asia
GIF 0.1608 ± 0.3413 0.8529 ± 0.3278 0.9308 ± 0.2234
CEU 0.1631 ± 0.3433 0.8564 ± 0.3224 0.9330 ± 0.2129
GA 0.1638 ± 0.3451 0.8439 ± 0.3411 0.9238 ± 0.2373

Table 2: Average black-box probability similarity between different types of edges. We consider
three types of edges: negative edges (Q−), unlearned edges (Q+

un), and other membership edges
(Q+

mem). The similarity measure is based on JS Divergence.

E.1 Probability Similarity Gap

To validate that different types of edges require different levels of similarity thresholds (Claim 5.1),
we present an important preliminary study in this section. Specifically, we adopt a GCN backbone
and define a specific query set Q = Q+

un ∪Q+
mem ∪Q−, which consists of 5% of edges marked as

unlearned (Q+
un), 5% of other membership edges (Q+

mem), and 10% of negative edges (Q−). For
any two nodes (vi, vj) ∈ Q, we compute the following similarity metric based on Jensen-Shannon
divergence:

ϕ(pi,pj) = 1− 1

2
[KL(pi ∥m) + KL(pj ∥m)] ,

where pi and pj are the predictive probability distributions of vi and vj from the unlearned victim
model, and m = 1

2 (pi + pj). The higher ϕ(pi,pj) is, the more similar the model’s black-box
predictions are on the two nodes.

We report the mean and standard deviation of the probability similarity for each group in Table 2.
The key observations are:

(i) There exists a clear and consistent gap in the probability similarity among the three edge types,
aligning with Claim 5.1:

ProbSim(Q−) < ProbSim(Q+
un) < ProbSim(Q+

mem).

This supports the need for an adaptive prediction mechanism that distinguishes between unlearned
and other membership edges, potentially improving prediction accuracy. Accordingly, our model
in Eq. (5) incorporates a learnable transformation on trend features to adjust predicted similarities
obtained from MIA methods.

(ii) The variance within each group is relatively large, indicating that although a similarity gap
exists, simple probability similarity computation may not be sufficient for membership inference.
For instance, on the Cora dataset, the average probability similarity in Q− is around 0.195, while
its standard variance is nearly 0.31. This effect arises because, although most edges in Q− have
similarity near 0, there are outliers with high similarity levels. To address this large variance, we
incorporate a broad range of probability-based similarity features, alongside node feature similarities
used in prior MIA methods. These additional features enhance similarity representation and help
stabilize membership inference.

E.2 Confidence Pitfall

To demonstrate that the confidence of nodes connected to unlearned edges drops significantly
compared to other nodes, we conduct a preliminary experiment. Specifically, we use GCN as the
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(a) GIF (b) CEU (c) GA

Figure 5: The relation between average model confidence and distance to unlearned edges on
Cora.

(a) GIF (b) CEU (c) GA

Figure 6: The relation between average model confidence and distance to unlearned edges on
Citeseer.

victim model. We randomly select 5% of the edges as unlearned edges ∆E and apply three unlearning
methods, GIF, CEU, and GA, to unlearn the trained GCN. The selected edges are also removed from
the graph.

We then perform inference on all nodes using the unlearned GNN and compute the average confidence
for nodes grouped by their shortest path distance to the endpoints of unlearned edges.

The results on two datasets are shown in Figure 5 and Figure 6. We summarize the following
observation:

For all datasets, nodes directly connected to unlearned edges (distance = 0) exhibit substantially lower
confidence than their immediate neighbors (distance ≥ 1). This aligns with our theoretical analysis in
Section C, which shows that the influence of edge unlearning on the endpoint is significantly greater
than on other nodes. This empirical finding suggests that the confidence gap between a node and its
neighborhood is a strong indicator of its connection to an unlearned edge. Consequently, an attacker
can adjust the similarity threshold accordingly to enhance membership inference accuracy.

F Experimental Settings

Model Parameters. All victim models use an embedding size of 16 and are trained for 100
epochs. For learning rates and weight decays, we follow the settings of GIF [80]. All models are
optimized using the Adam optimizer [35]. For all neural attack models, including StealLink [29],
MIA-GNN [58], and TrendAttack, we follow the settings of StealLink [29], using a hidden dimension
of 64 and a 2-layer MLP to encode features. All membership inference models are trained using
learning rate = 0.01, weight decay = 0.0001, and the Adam optimizer [35]. They are trained with the
binary cross-entropy loss.

Unlearning Method Settings. We now supplement the missing details of our unlearning methods.

• GIF [80]: The number of estimation iterations is 100 and the damping factor is 0. On the Cora and
Citeseer datasets, the scale factor λ is set to 500, following the official implementation. On the
Pubmed and LastFM-Asia datasets, we search λ in {101, 102, 103, 104, . . .}, following the original
search space. This ensures that the unlearned models maintain utility and produce meaningful
outputs. We select the smallest λ that results in a meaningful model and find that λ = 103 works
well for Pubmed and λ = 104 for LastFM-Asia.
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• CEU [81]: For a fair comparison, we use the same parameter search space as GIF for all influence-
function-related parameters, including iterations, damping factor, and λ. For the noise variance,
we search in {0.1, 0.5, 0.01, 0.005, 0.001, 0.0005, 0.0001} to ensure meaningful unlearning perfor-
mance.

• GA [78]: We follow the official GraphGuard settings and use 1 gradient ascent epoch. We tune the
unlearning magnitude α in {1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001} and find that α = 0.5 gives the
best results.

Baselines. Details for our baselines are as follows:

• GraphSAGE [27]: We use a simple link prediction model trained on the shadow graph to perform
link prediction on the unlearned graph. The embedding size is 64, with 2 layers. The negative-to-
positive link ratio is 1:1.

• NCN [74]: This is a state-of-the-art link prediction method. We follow the official settings from
their code repository. We search across the provided backbones: GCN [36], GIN [84], and
SAGE [70]. The embedding dimension is set to the default value of 256. The batch size is 16, the
learning rate is 0.01, and the number of training epochs is 100.

• MIA-GNN [58]: Since no official implementation is available, we follow the settings described
in the paper. We re-implement the model using a 2-layer MLP feature extractor with a hidden
dimension of 64. We use another 2-layer MLP with a dimension of 16 as the link predictor. Training
uses binary cross-entropy loss and the same setup as StealLink, ensuring a fair comparison.

• StealLink [29]: This is a representative membership inference attack. We use its strongest variant,
Attack-7, which has access to the shadow dataset and partial features and connectivity from
the target dataset. We follow the official codebase and use all 8 distance metrics (e.g., cosine,
Euclidean). For the probability metric, we search among entropy, KL divergence, and JS divergence,
and report the best result. The reference model is a 2-layer MLP with an embedding size of 16.

• GroupAttack [91]: This is a recent membership inference attack that relies solely on hard labels
and thresholding. We search the threshold hyperparameter α on the shadow dataset in the range
[0, 1] with a step size of 0.05.

Reproducibility. All experiments are conducted using Python 3.12.2, PyTorch 2.3.1+cu121, and
PyTorch Geometric 2.5.3. The experiments run on a single NVIDIA RTX A6000 GPU. The server
used has 64 CPUs, and the type is AMD EPYC 7282 16-Core CPU. All source code is provided in
the supplementary materials.

G Additional Experiments

Unlearn method Attack Cora Citeseer
Unlearned Original All Unlearned Original All

GIF GraphSAGE 0.5356± 0.0124 0.5484± 0.0180 0.5420± 0.0129 0.5275± 0.0452 0.5216± 0.0535 0.5246± 0.0474
NCN 0.7403± 0.0309 0.7405± 0.0222 0.7404± 0.0237 0.6750± 0.0881 0.6872± 0.0799 0.6811± 0.0816
MIA-GNN 0.7547± 0.0809 0.7916± 0.0939 0.7732± 0.0865 0.7802± 0.0251 0.8245± 0.0230 0.8023± 0.0210
StealLink 0.7841± 0.0357 0.8289± 0.0576 0.8065± 0.0395 0.7369± 0.0463 0.8404± 0.0360 0.7887± 0.0373
GroupAttack 0.7982± 0.0072 0.8053± 0.0190 0.8018± 0.0125 0.7771± 0.0092 0.7618± 0.0069 0.7695± 0.0051
TrendAttack-MIA 0.8240± 0.0209 0.8448± 0.0185 0.8344± 0.0189 0.8069± 0.0185 0.8078± 0.0284 0.8073± 0.0228
TrendAttack-SL 0.8309± 0.0250 0.8527± 0.0140 0.8418± 0.0188 0.8410± 0.0169 0.8430± 0.0276 0.8420± 0.0207

CEU GraphSAGE 0.5356± 0.0124 0.5484± 0.0180 0.5420± 0.0129 0.5275± 0.0452 0.5216± 0.0535 0.5246± 0.0474
NCN 0.7403± 0.0309 0.7405± 0.0222 0.7404± 0.0237 0.6750± 0.0881 0.6872± 0.0799 0.6811± 0.0816
MIA-GNN 0.7458± 0.0761 0.7810± 0.0928 0.7634± 0.0840 0.7718± 0.0262 0.8248± 0.0264 0.7983± 0.0219
StealLink 0.7901± 0.0224 0.8486± 0.0099 0.8193± 0.0068 0.7643± 0.0242 0.8450± 0.0257 0.8046± 0.0217
GroupAttack 0.7941± 0.0086 0.7976± 0.0137 0.7958± 0.0105 0.7557± 0.0092 0.7458± 0.0131 0.7508± 0.0107
TrendAttack-MIA 0.8194± 0.0170 0.8333± 0.0213 0.8263± 0.0178 0.7933± 0.0206 0.8041± 0.0261 0.7987± 0.0226
TrendAttack-SL 0.8467± 0.0229 0.8612± 0.0113 0.8539± 0.0149 0.8514± 0.0214 0.8400± 0.0216 0.8457± 0.0208

GA GraphSAGE 0.5356± 0.0124 0.5484± 0.0180 0.5420± 0.0129 0.5275± 0.0452 0.5216± 0.0535 0.5246± 0.0474
NCN 0.7403± 0.0309 0.7405± 0.0222 0.7404± 0.0237 0.6750± 0.0881 0.6872± 0.0799 0.6811± 0.0816
MIA-GNN 0.7676± 0.0584 0.8068± 0.0489 0.7872± 0.0531 0.7798± 0.0146 0.8353± 0.0175 0.8076± 0.0117
StealLink 0.7862± 0.0402 0.8301± 0.0667 0.8082± 0.0475 0.7479± 0.0512 0.8431± 0.0305 0.7955± 0.0332
GroupAttack 0.7945± 0.0133 0.8042± 0.0123 0.7993± 0.0122 0.7662± 0.0112 0.7563± 0.0080 0.7613± 0.0086
TrendAttack-MIA 0.8193± 0.0276 0.8397± 0.0219 0.8295± 0.0244 0.8080± 0.0135 0.8249± 0.0331 0.8165± 0.0227
TrendAttack-SL 0.8270± 0.0307 0.8382± 0.0308 0.8326± 0.0287 0.8628± 0.0131 0.8614± 0.0298 0.8621± 0.0209

Table 3: Main Comparison Results on Cora and Citeseer (with variance). We present the AUC
scores for attack methods across different edge groups, now including mean ± variance. The best
results are highlighted in bold, while the second-best results are underlined.
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Unlearn method Attack Pubmed LastFM-Asia
Unlearned Original All Unlearned Original All

GIF GraphSAGE 0.6503± 0.0114 0.6457± 0.0134 0.6480± 0.0118 0.6914± 0.0620 0.6853± 0.0613 0.6884± 0.0611
NCN 0.6661± 0.0321 0.6718± 0.0314 0.6690± 0.0312 0.7283± 0.0177 0.7273± 0.0120 0.7278± 0.0141
MIA-GNN 0.7028± 0.0069 0.7902± 0.0041 0.7465± 0.0044 0.5955± 0.0498 0.5744± 0.0751 0.5850± 0.0614
StealLink 0.8248± 0.0098 0.8964± 0.0027 0.8606± 0.0052 0.8472± 0.0099 0.9037± 0.0097 0.8755± 0.0089
GroupAttack 0.6497± 0.0021 0.6554± 0.0049 0.6525± 0.0033 0.7858± 0.0044 0.7850± 0.0033 0.7854± 0.0027
TrendAttack-MIA 0.8950± 0.0054 0.9171± 0.0039 0.9060± 0.0032 0.7795± 0.0690 0.7649± 0.0944 0.7722± 0.0814
TrendAttack-SL 0.9524± 0.0026 0.9535± 0.0025 0.9529± 0.0024 0.9078± 0.0069 0.9134± 0.0039 0.9106± 0.0050

CEU GraphSAGE 0.6503± 0.0114 0.6457± 0.0134 0.6480± 0.0118 0.6914± 0.0620 0.6853± 0.0613 0.6884± 0.0611
NCN 0.6661± 0.0321 0.6718± 0.0314 0.6690± 0.0312 0.7283± 0.0177 0.7273± 0.0120 0.7278± 0.0141
MIA-GNN 0.6626± 0.0237 0.6561± 0.0256 0.6593± 0.0243 0.6004± 0.0363 0.5811± 0.0568 0.5908± 0.0459
StealLink 0.8467± 0.0168 0.9088± 0.0102 0.8777± 0.0134 0.8416± 0.0163 0.9021± 0.0084 0.8719± 0.0114
GroupAttack 0.6388± 0.0052 0.6430± 0.0054 0.6409± 0.0053 0.7845± 0.0038 0.7817± 0.0010 0.7831± 0.0023
TrendAttack-MIA 0.8982± 0.0038 0.9184± 0.0025 0.9083± 0.0018 0.7676± 0.0722 0.7576± 0.0986 0.7626± 0.0850
TrendAttack-SL 0.9550± 0.0032 0.9579± 0.0028 0.9565± 0.0028 0.9037± 0.0062 0.9088± 0.0020 0.9062± 0.0040

GA GraphSAGE 0.6503± 0.0114 0.6457± 0.0134 0.6480± 0.0118 0.6914± 0.0620 0.6853± 0.0613 0.6884± 0.0611
NCN 0.6661± 0.0321 0.6718± 0.0314 0.6690± 0.0312 0.7283± 0.0177 0.7273± 0.0120 0.7278± 0.0141
MIA-GNN 0.7242± 0.0099 0.8039± 0.0128 0.7641± 0.0112 0.6200± 0.0636 0.6057± 0.0884 0.6129± 0.0756
StealLink 0.8203± 0.0128 0.8898± 0.0056 0.8550± 0.0080 0.8342± 0.0182 0.8947± 0.0040 0.8644± 0.0106
GroupAttack 0.6458± 0.0076 0.6493± 0.0111 0.6475± 0.0093 0.7746± 0.0069 0.7760± 0.0031 0.7753± 0.0048
TrendAttack-MIA 0.8932± 0.0052 0.9158± 0.0048 0.9045± 0.0037 0.7255± 0.0715 0.7099± 0.0778 0.7177± 0.0742
TrendAttack-SL 0.9531± 0.0027 0.9537± 0.0034 0.9534± 0.0029 0.9041± 0.0054 0.9119± 0.0034 0.9080± 0.0040

Table 4: Main Comparison Results on Pubmed and LastFM-Asia (with variance). We present
the AUC scores for attack methods across different edge groups, now including mean ± variance.
The best results are highlighted in bold, while the second-best results are underlined.

Variance of Comparison Results. Due to space limitations, the comparison results in Table 1 in
Section 6 do not include the standard variance from five repeated experiments. We now supplement
all variance results in Table 3 and Table 4. We make the following observations regarding the stability
of our proposed TrendAttack: Compared with the no-trend-feature counterparts MIA-GNN and
StealLink, our TrendAttack-MIA and TrendAttack-SL exhibit smaller variances, indicating better
stability. This highlights the effectiveness of the trend features, which not only improve attack
performance on both edge groups but also reduce variance, enhancing model stability.

(a) Cora (b) Citeseer (c) Pubmed
Figure 7: Ablation study on the impact of trend feature order. Overall attack AUC as a function
of the trend feature order (0–3) for three unlearn methods across three datasets.

Impact of Trend Feature Orders. We investigate the influence of trend feature orders on the
performance of the proposed TrendAttack framework. Following the experimental setup described
in Section 6.2, we employ the most effective variant, TrendAttack-SL, for this ablation study.
Specifically, we vary the trend feature order k (see Algorithm 2) to assess the trade-off between
incorporating additional neighborhood information and achieving high attack performance. The
results are presented in Figure 7, from which we make the following observations:

(i) Incorporating trend features of orders 1, 2, or 3 significantly improves attack performance compared
to the 0-th order (which corresponds to a degenerate form of TrendAttack that reduces to a simple
StealLink attack). This highlights the effectiveness of our proposed trend feature design.

(ii) The attack performance remains relatively stable across orders 1 to 3, indicating that the method
is robust to the choice of trend order. Notably, lower-order features (e.g., order 1) still have strong
performance while requiring less auxiliary neighborhood information, making them more practical in
real-world inversion attack scenarios.

H Impact Statement

In this work, we propose a novel membership inference attack targeting unlearned GNNs, revealing
critical privacy vulnerabilities in existing graph unlearning methods. Our goal is to raise awareness
about privacy protection in Web services and to inspire future research on privacy-preserving graph
machine learning. While our method introduces a new attack strategy, all experiments are conducted
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on publicly available benchmark datasets. Given the gap between this pioneering study and real-world
deployment scenarios, we do not foresee significant negative societal implications from this work.
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