
ar
X

iv
:2

50
6.

00
65

9v
1

 [
cs

.C
R

]
 3

1
M

ay
 2

02
5

PackHero: A Scalable Graph-based Approach for
Efficient Packer Identification

Marco Di Gennaro, Mario D’Onghia, Mario Polino, Stefano Zanero, and
Michele Carminati

Dipartimento di Elettronica, Informazione e Bioingegneria,
Politecnico di Milano, Milan, Italy

{marco.digennaro,mario.donghia,mario.polino,
stefano.zanero,michele.carminati}@polimi.it

Abstract. Anti-analysis techniques, particularly packing, challenge mal-
ware analysts, making packer identification fundamental. Existing packer
identifiers have significant limitations: signature-based methods lack flex-
ibility and struggle against dynamic evasion, while Machine Learning ap-
proaches require extensive training data, limiting scalability and adapt-
ability. Consequently, achieving accurate and adaptable packer identifica-
tion remains an open problem. This paper presents PackHero, a scalable
and efficient methodology for identifying packers using a novel static ap-
proach. PackHero employs a Graph Matching Network and clustering to
match and group Call Graphs from programs packed with known pack-
ers. We evaluate our approach on a public dataset of malware and be-
nign samples packed with various packers, demonstrating its effectiveness
and scalability across varying sample sizes. PackHero achieves a macro-
average F1-score of 93.7% with just 10 samples per packer, improving
to 98.3% with 100 samples. Notably, PackHero requires fewer samples to
achieve stable performance compared to other Machine Learning-based
tools. Overall, PackHero matches the performance of State-of-the-art
signature-based tools, outperforming them in handling Virtualization-
based packers such as Themida/Winlicense, with a recall of 100%.

Keywords: Packer Identification · Graph Similarity · Graph ML.

1 Introduction

Code packing, a widely used anti-analysis technique [10], affects the performance
of both Machine Learning (ML)-based and traditional signature-based malware
detection systems [22]. Packers encrypt or compress executable code, render-
ing static analysis ineffective [34]. At runtime, an unpacking stub embedded in
the executable restores the original code by decrypting or decompressing it in
memory, allowing the program to execute. This ability to bypass static analy-
sis makes packing particularly appealing to malware authors. The prevalence of
packed malware can bias ML-based detectors into flagging all packed executables
as malicious [1]. However, this assumption is flawed, as many benign programs

https://arxiv.org/abs/2506.00659v1

2 M. Di Gennaro et al.

(goodware) are also packed to protect intellectual property. For instance, Rah-
barinia et al. [31] found that 54% of benign programs and 58% of malware sam-
ples in their study were processed with known packers, demonstrating a similar
distribution.

Recovering packed code might seem feasible through dynamic analysis, as
executing a packed program can trigger it to unpack itself. However, modern
malware increasingly employs dynamic evasive behaviors designed to detect anal-
ysis environments and prevent the program from exposing its true functionality
at runtime [10]. As a result, packed malware with evasive tactics often resists
dynamic-based analysis techniques. Additionally, incorporating dynamic analysis
mechanisms into commercial AVs presents challenges, such as requiring kernel-
level privileges to execute untrusted code [9,1] and introducing significant com-
putational overhead due to the virtualization infrastructure [22]. Alternatively,
static identification of the specific packer used in a malware sample could allow
AVs to retrieve the original code, if possible, by executing a corresponding un-
packer when available. Previous works in this area have applied signature-based
methods [13] or ML-based algorithms using static features [15,19,33]. While ef-
fective for known packers, these approaches demand substantial effort to accom-
modate new packers or variations of existing ones. This challenge is amplified by
the frequent emergence of custom packers in novel malware [33], necessitating
either extensive manual signature analysis (e.g., with Detect It Easy [13]) or
complete re-training of ML-based models. Recent work proposed PackGenome,
a tool that automates YARA rule generation from packed samples to detect
packed binaries [16]. While effective on large and heterogeneous datasets, it re-
lies on dynamic analysis, requiring packers to generate custom-packed samples,
limiting the integration of newly discovered packers. These limitations motivated
our research into new methodologies for code packer identification, focusing on
minimizing packer integration effort. The primary challenge lies in achieving a
balance between accuracy, rapid adaptability for integrating newly discovered
packers, resilience against dynamic evasion techniques, and overall scalability.

This paper presents PackHero, a packer identifier that leverages statically
extracted Call Graphs from packed programs. PackHero extracts the CG of a
given binary and identifies the packer by comparing it with previously labeled
graphs in a stored collection. The graph representation is inspired by the work of
X. Li et al. [17]. CGs enable a high level of abstraction and reveal that portions
of these graphs remain identical or similar for binaries packed with the same
packer. To leverage this, we introduce a heuristic to isolate the graph segment
corresponding to the unpacking stub, identifying unique patterns shared by bi-
naries processed by the same packer. To solve the graph similarity problem, we
use a specific Graph Neural Network (GNN) [11], known as a Graph Matching
Network (GMN) [18]. Additionally, PackHero incorporates a hierarchical clus-
tering approach to group similar graphs, enhancing identification accuracy while
ensuring constant inference time when integrating new packers.

We evaluate PackHero on a publicly available dataset of packed Windows
Portable Executables (PEs) [1], containing both malware and benign samples,

PackHero 3

repacked with various commercial and free packers, categorized by complexity
according to existing taxonomies [34]. PackHero achieves a macro-average F1-
score of 93.7% and an accuracy of 98.7% using only 10 programs per packer
during configuration. In its best configuration, utilizing 100 samples per packer,
it reaches a macro-average F1-score of 98.3% and an accuracy of 99.8%. The scal-
ability of PackHero, supported by its clustering approach, is validated through
comparisons with a non-clustering version in terms of both performance and
inference calls to the GMN. Once configured, PackHero requires significantly
fewer samples to converge and stabilize than existing ML-based tools, need-
ing just 10 samples versus 40 for the best-performing alternative. Moreover,
PackHero features a constant integration cost, whereas the integration cost of
other ML-based tools increases linearly with the number of packers recognized.
PackHero is a robust alternative to signature-based detection tools, achieving
performance aligned with SotA tools. Notably, it performs significantly better
against virtualization-based [32] packers like Themida/Winlicense, which employ
advanced dynamic evasive behaviors that hinder signature extraction in dynamic
analysis-based tools. Specifically, PackHero achieves a perfect recall of 100% on
this packer, compared to 92% for DIE and 31% for PackGenome.

In summary, the contributions are the following :

– A hybrid ML and graph signature-based approach for packer identification,
enabling automatic and scalable integration of both accessible and non-
accessible packers (e.g., custom or closed-source) directly from packed pro-
grams throughout the tool lifecycle.

– A heuristic to statically extract a Call Graph of an unpacking routine or a
part of it from a packed binary.

– A combination of Graph Matching Network (GMN) with hierarchical clus-
tering to enhance the accuracy and reduce the search space of similar graphs.

– We release PackHero’s source code1 for reproducibility.

2 Background and Motivation

Code packing is a widely used anti-analysis technique [24], where packers, acting
as third-party software, transform a program’s structure and content, recover-
ing the original software at runtime via a tail jump to the original entry point.
Initially intended for file compression, most packers now aim to obfuscate and
hinder program analysis in legitimate and malicious software. Packers are classi-
fied by runtime complexity [34] into six types (I–VI), with most common packers
falling within types I–III. Another taxonomy focuses on obfuscation methods,
distinguishing compressors, crypters, and virtualization-based packers, such as
Themida [32], which translate code into virtual instructions and implement ad-
vanced anti-dynamic analysis techniques. In our experiments, we consider pack-
ers from types I–III, with Themida representing the VM-based category.

1 https://github.com/necst/packhero

https://github.com/necst/packhero

4 M. Di Gennaro et al.

2.1 Packer Identification

Packer identification is a multi-label classification task aimed at determining
the specific packer used to compress or obfuscate a program. This capability
allows AV tools to statically unpack programs, thereby enhancing malware de-
tection [22]. In contrast, packer detection identifies whether a program is packed,
often employing static methods such as similarity comparisons [14,28] or entropy
analysis [12,2]. However, these methods are less effective against low-entropy
packers [22]. This paper focuses on packer identification and categorizes existing
approaches into two main families: signature-based methods, which rely on man-
ually or automatically generated signatures, and pattern recognition techniques,
predominantly driven by ML-based algorithms.
Signature-based Methods. Packers often leave specific artifacts that can be
used to create signature databases. Detect It Easy (DIE) is a well-known tool
for packer identification via signature matching [13], outperforming tools like
PEiD [27] with its open architecture that allows users to add JavaScript-like
scripts for packer detection. However, it requires the manual creation of signa-
ture scripts for new packers and their variants, making it challenging to integrate
new packers, especially with limited analyzable packed samples. A key limitation
of signature-based detection is the need to analyze many samples to identify
invariant byte sequences that can be used as signatures. To address this, re-
searchers have explored automating the signature extraction process. Raff et al.
propose a method to automatically generate YARA rules [30], a format for defin-
ing malware characteristics [3]. Nevertheless, code packing can still easily defeat
these rules, similar to other signature schemes. To the best of our knowledge,
the State-of-the-art (SotA) tool for signature generation in packed programs is
PackGenome [16]. Inspired by biological processes, PackGenome identifies sig-
nificant instructions in the first unpacking layer (the only statically visible one).
It uses Intel Pintool [21] to monitor packed programs in a controlled environ-
ment, recording and labeling instructions that write “unpacked” instructions.
By analyzing multiple executions of programs packed with the same packer and
applying similarity metrics, PackGenome extracts packer-specific “genes” to gen-
erate YARA rules. However, this approach relies on dynamic analysis, making it
vulnerable to evasive techniques that hinder the extraction of relevant genes, as
empirically confirmed in our experimental evaluation (Subsection 4.5). Accurate
packer identification often requires generating a large number of signatures. For
instance, PackGenome recommends using the actual packer to create extensive
variations of the unpacking stub. However, this approach is impractical in real-
world scenarios where malicious software frequently employs custom packers that
are inaccessible to analysts. Additionally, the limited availability of samples for
such packers makes it infeasible to build a comprehensive signature database.
ML-based Packer Identification. The second family of identification meth-
ods relies on pattern recognition algorithms, particularly Machine Learning tech-
niques. Proposed approaches include constructing randomness profiles for packed
samples [33], applying binary diffing [15], extracting features from the topology
of CGs [19], and evaluating the similarity of Consistently-Executing Graphs

PackHero 5

Table 1: Packer identifiers and compliance with requirements R1–R4.
Work Analysis Type Approach Code Replicable R1 R2 R3 R4

PackGenome [16] Static + Dynamic Signature ✓ ✓ ✓ ✓ ✓
Detect It Easy (DIE) [13] Static Signature ✓ ✓ ✓ ✓ ✓
Randomness Profiles [33] Static ML ✓ ✓ ✓ ✓
Binary Diffing [15] Static ML ✓ ✓ ✓ ✓
2SPIFF [19] Static ML ✓ ✓ ✓ ✓
CEG [17] Static Signature ✓ ✓ ✓

PackHero (our approach) Static ML + Signature ✓ ✓ ✓ ✓ ✓ ✓

(CEGs) [17]. S. Li et al. observed that while most packers significantly affect
binary entropy, individual packers exhibit distinctive randomness patterns [33].
They used sliding windows [8] to build randomness profiles, training a k-nearest
neighbor classifier. Kim et al. employed an SVM classifier with binary diffing
measures as kernels, achieving the best performance using the longest common
substring computed from the first 15 bytes at each program’s entry point [15].
This method leverages the similarity of initial instructions in unpacking stubs
from the same packer, but its effectiveness is lowered by code obfuscation [16,37].
Hao et al. represented packed programs as CGs and trained an SVM classifier
using topological features (e.g., entry point indegree) and general file information
like size or section count [19]. While we draw on this idea to represent packed
programs through CGs, our methodology directly uses graphs, offering better
generalization and results. X. Li et al. [17] proposed a similar approach by com-
paring graphs using a Weisfeler-Lehman shortest path kernel. Instead of employ-
ing CGs, they introduce CEGs to simulate static execution points by traversing
procedures, locating branch instructions, and forming flow paths. However, they
do not address the challenge posed by the increasing number of graphs that must
be compared during identification due to the introduction of new packers. To
the best of our knowledge, none of these works have released their code. How-
ever, three of the four approaches were straightforward to implement, enabling
their comparison with our method (results in Subsection 4.4). The fourth, CEG,
relies on a heuristic for graph extraction, making reimplementation challenging
without significant assumptions. Therefore, it was excluded from our study.

2.2 Motivation

Given the limitations of current works, we define key requirements for a novel
packer identifier. Table 1 shows that existing SotA approaches only partially
meet these requirements, highlighting the need for our solution.

Requirement 1 - High Identification Accuracy. It must achieve high ac-
curacy and low false positives across diverse packer types.

Requirement 2 - Efficient Packer Integration. It must efficiently integrate
packers using a limited number of real-world samples, addressing challenges such
as inaccessible packers and variations within a single packer family. It should
rapidly update its identification capabilities without requiring extensive or fre-
quent retraining. To achieve this, the system should leverage robust algorithms

6 M. Di Gennaro et al.

Unpacking Stub Call Graphs Collection

...

Training Set

Graph Matching Network

radare2

Unpacking Stub Call Graph Generator

Heuristic

Graph Extraction Graph Similarity SetupPacked Program Collection

...

...

...

Clusters of Unpacking Stub Call Graphs

1c 2c 3c

Accessible Packers

...

Packer 1(Program) Packer n (Program)

Inaccessible Packers

Different versions &
configurations

...

...

Packer 1

Packer n

...

Program

Packer (Program)

Fig. 1: PackHero Configuration Workflow.

that generalize from existing data, enabling the detection of new variations by
integrating them using limited samples with minimal manual intervention.
Requirement 3 - Dynamic Evasive Behavior Management. It must effec-
tively handle evasive behaviors encountered during the collection of wild samples
for integration. Wild samples may employ dynamic evasion techniques or be so
damaged or corrupted that execution is impossible [35], thereby complicating
dynamic signature extraction performed by state-of-the-art tools [16]. To ad-
dress this challenge, a static analysis-based approach can mitigate these issues
by extracting valuable information and artifacts independently of execution.
Requirement 4 - Scalability. It must handle a growing number of packers
without performance degradation, integrating new ones seamlessly without ma-
jor architectural changes or resource demands. In other words, it must handle
many/several packer families in parallel.

3 PackHero

PackHero is a packer identifier that determines the specific packer used for a
given packed program. Its approach mirrors the workflow of signature-based de-
tection mechanisms but uses graph “signature” to represent packed programs,
with matches determined by similarity rather than exact matching. PackHero
leverages a specialized Graph Neural Network (GNN) called Graph Matching
Network (GMN) [18]. It operates on Call Graphs (CGs) extracted using heuris-
tics. CGs, which represent the invocation relationships between functions in an
executable program [6], are chosen for their compact structure and high level of
abstraction. Compared to other binary graph representations (e.g., Control-Flow
Graph (CFG) and Data Dependence Graph (DDG)), CGs enable an efficient res-
olution of the similarity problem with GMNs. We divide our approach into two
main phases: configuration and inference.

3.1 Configuration

As depicted in Fig. 1, this phase involves three main step.

PackHero 7

1c Collecting Packed Programs. The first step consists of collecting pro-
grams for the packers we want to integrate into the tool. It is important to
distinguish between an accessible and non-accessible packer. The former enables
the use of the actual code packer to generate packed samples, including all possi-
ble versions and configurations. This case is, therefore, ideal. Hence, we consider
the “non-accessible packers” scenario to be the general case.
2c Graphs Extraction. PackHero extracts a Call Graph for each collected
program. Our implementation relies on radare2 [29] to analyze and extract the
CGs. Each vertex of a CG consists of 12 features extracted using radare2 (shown
in Table 2). Furthermore, a heuristic designed to filter the unpacking stub part
of the CG is applied to simplify the topology of each graph (details in Subsec-
tion 3.3). PackHero collects the generated CGs into a Database (DB) of graphs.
3c Graph Matching Network Training. PackHero identifies intrinsic simi-
larities between extracted CGs using a Graph Matching Network (GMN) [18], a
specialized Graph Neural Network (GNN). The GMN processes pairs of graphs
and outputs a numeric vector (embedding) for each graph. These embeddings
result from information propagation between the two graphs, differing from tra-
ditional embedding techniques [11] that compute embeddings solely from individ-
ual graphs. To train the GMN, we label graph pairs as “similar” if they originate
from the same packer and “dissimilar” otherwise. The network is trained to min-
imize the distance between embeddings of similar graph pairs while maximizing
the distance for dissimilar pairs. The loss function is defined as L(G1, G2) =
E(G1,G2,l) [max{0, γ − l(1− cos(G1, G2))}], where l ∈ {−1, 1} is the label associ-
ated with the pair of graphs < G1, G2 >,γ is a margin parameter and cos is the
cosine similarity [38] between the two graphs. In this case, the cos is intended as
the cosine similarity between the two embeddings of size 256 extracted from the
two graphs via the GMN. Lastly, E is the empirical risk we want to minimize,
which can be done through stochastic gradient descent. The overall GMN design
follows the original implementation of the paper that introduced it [18]. Finally,
we propose a clustering approach to stabilize the number of matches required
to identify each packer and improve the overall performance of the framework.
Therefore, we also store the clusters and their respective medoids. Finally, we
compute a cluster-specific threshold tc =

1
n2

∑n
i=1

∑n
j=1 cos(Gi, Gj)−σ. Namely,

Table 2: Node features.
Feature Description
type Whether it is an internal function, a library imported function, or an entry point

containing function.
size The size of the function in bytes.
real size The function size in bytes, including any padding.
is pure Indicates whether the function has any side effects such as modifying external vari-

ables or writing to files.
calling conventions The number of calling conventions used by the function.
number of basic blocks The number of basic blocks in the function.
number of instructions The total number of instructions in the function.
number of local variables The number of local variables declared within the function.
number of arguments The number of arguments of the function.
edges The number of edges between basic blocks.
indegree The in-degree of the function in the call graph.
outdegree The in-degree of the function in the call graph.

8 M. Di Gennaro et al.

Unpacking Stub Call Graphs Collection

Graph Matching Network

Clusters of Unpacking Stub Call Graphs

radare2

Similarity Evaluation Packer IdentificationGraph Extraction

Similarity of pairs
(Input Graph, Collection Graph)

Packer

Unpacking Stub Call Graph Generator

Heuristic

...

1i 2i 3i

Fig. 2: PackHero Inference Workflow.

the average cosine distance between pairs of graphs belonging to the cluster mi-
nus the standard deviation. Such a threshold will then be used at inference time.

3.2 Inference

This phase comprises three steps, depicted in Fig. 2.
1i Graph Extraction. PackHero must first obtain the CG specific to the
unpacking stub extracted through the previously mentioned heuristic.
2i Similarity Evaluation. The second step consists of evaluating the simi-
larity between the embeddings computed by the GMN for the input graph and
the graphs in the DB. Comparing the input graph against all graphs in the
DB may be computationally expensive and decrease the general identification
performance. Hence, PackHero computes the cosine similarity between the in-
put graph and the medoids associated with each computed cluster to select the
“closer” clusters. In other words, each PackHero identification corresponds at
least to m GMN inferences, where m is the number of clusters. PackHero selects
clusters represented by medoids with a positive cosine similarity with the input
graph. Once the clusters are selected, PackHero evaluates the similarity between
the input graph and each graph contained in the selected clusters.
3i Packer Identification. Now, up to m clusters are identified as potential
matches, and the similarity between the input graph and all graphs within these
m clusters is computed. PackHero identifies the packer with the highest score
sp :=

∑
C∈Cp

∑
Gc∈C 1(cos(Ginput,Gc)≥tc)

maxp∈P
∑

C∈Cp
|C| , where Ginput is the graph extracted from

the input program, Cp the set of selected clusters for a packer p, Gc indicates a
graph in cluster C, and tc the threshold for cluster C. 1(cos(Ginput, Gc) > tc) is
a membership function that outputs 1 if the cosine similarity cos(Ginput, Gc) is
greater or equal to the threshold tc, and 0 otherwise. Moreover, P is the set of
all included packers in the selected clusters. Lastly,

∑
C∈Cp |C| is the cardinality

of samples in the selected clusters from a packer p. If no cluster is sufficiently
“close” to the input CG, PackHero labels the packer as “unknown”.

3.3 Extracting the CG of the Unpacking Stub

The Call Graph (CG) is a widely adopted structure [23]. It is also used in
security-related tasks such as malware detection [20]. Our approach is based
on a principle of “same packer, similar CGs” [19]. To the best of our knowledge,

PackHero 9

Algorithm 1 Extract Unpacking Stub Call Graph
1: F : Set of all functions with call references, E: Set of entry points in the binary
2: procedure UnpackingStubCG(F, E)
3: G ← directed global call graph from F , C ← ∅
4: for e ∈ E do
5: if G.hasEdges(e) then
6: C ← C ∪ getConnectedComponent(G, e)
7: end if
8: end for
9: G ← C ̸= ∅ ? C : getComponent(G, E) ∪ E
10: if G.isEmpty() then
11: G ← E ∪ externalLibraries()
12: end if
13: return G
14: end procedure

we are the first to exploit this similarity directly. The adoption of CGs offers
several advantages. Their structure is straightforward to obtain [6]. Moreover,
unlike other binary graph representations, a CG represents the program at a
higher level of abstraction. This makes it a compact yet information-rich program
representation, which is particularly well-suited for a GMN [18].

To better represent the logic behind a packer, it is necessary to filter the graph
to get the unpacking stub. To systematically obtain this filtered CG, we design
a heuristic shown in Algorithm 1. The intuitions behind it are: (i) the unpacking
stub, or part of it (case of a multilayer packer), must be the first part of the
code to be executed, and (ii) except for further obfuscation of the unpacking
stub, a part of this routine is always statically visible. Therefore, the heuristic
extracts the unpacking stub by exploiting the concept of connected components
in undirected graphs, i.e., a subgraph where each pair of nodes is connected
via a path [7]. Notice that CGs are directed graphs, but the algorithm requires
undirected ones, thereby we convert the CGs into undirected graphs. Given the
packer could disrupt links between functions, it should create multiple connected
components in the CG. Thus, the idea is to extract the connected component
containing the program entry point. At the same time, some packers affect the
program entry point to make the analysis harder. For instance, analyzing Call
Graphs extracted from binaries packed with ASPack [5], we noticed the common
part among all the graphs was a second connected component in addition to the
single entry function node, which appears to be isolated. Thus, when the entry
function is not connected to any other node, a second connected component is
maintained in the graph along with the entry function. Otherwise, if the graphs
have no edges (UPX [36]), we keep only the program entry functions and any
functions from external libraries. As the heuristic suggests, we do not consider
a fixed number of functions for each graph. In our experimental evaluation, the
average number of functions in the unpacking stubs is ≈ 3.

3.4 Graphs Clustering

Integrating a new packer requires collecting additional graphs. Without clus-
tering, identifying a packer involves matching against all graphs in the DB,
increasing inference time as new packers are added. To ensure scalability, we

10 M. Di Gennaro et al.

Algorithm 2 Packer Call Graphs Clustering
1: DB: a collection of unpacking stub call graphs,M: GMN trained model P: Mapping from graphs

to their respective packers
2: procedure GetClustering(DB,M,P)
3: C ← ∅ ▷ Initialize clustering result
4: for each unique packer p ∈ P do
5: DBp ← {G ∈ DB | P(G) = p}
6: D ← initialize empty distance matrix for DBp

7: for Gi, Gj ∈ DBp, i ̸= j do
8: d← cosineSimilarity(M(Gi, Gj))
9: D.update(d) ▷ Update distance matrix with similarity
10: end for
11: Cp ← hierarchicalClustering(D)
12: for Cj ∈ Cp do
13: Cj .representative← medoid(Cj)
14: end for
15: C.update(Cp)
16: end for
17: return C
18: end procedure

introduce a clustering approach that reduces inference time and improves iden-
tification performance, as demonstrated in our Experimental Validation. Each
cluster contains graphs from only a single packer, allowing the identification
of potential sub-groups within the same packer. This packer unicity is ensured
by constructing the distance matrix in an intra-packer manner, as expressed in
Algorithm 2. This approach can mitigate variations in unpacking stubs due to
different configurations or versions of the same packer [16]. PackHero employs
hierarchical clustering with a single linkage merge criterion, using a distance
matrix derived from the trained GMN as input. The silhouette score [38] de-
termines the optimal number of flat clusters for each packer. Finally, PackHero
computes a medoid for each cluster, representing the graph with the minimal
sum of dissimilarities to all other graphs in the cluster [38].

4 Experimental Validation

We evaluate PackHero through the following four research questions:
RQ1. What is the minimum number of programs required for PackHero’s config-
uration to recognize packers effectively? In addition, once configured, is PackHero
able to recognize different packers?
RQ2. How does the clustering-based approach impact PackHero’s performance
and scalability compared to its non-clustering version?
RQ3. Given an already configured PackHero, how many samples does it require
to successfully integrate a new, unseen packer, and how does this integration
compare to other ML-based tools?
RQ4. Does PackHero perform better than signature-based tools?

4.1 Experimental Setup

Dataset. We use the lab dataset from H. Aghakhani et al.[1], created by repack-
ing Portable Executables (PEs) from benign and malicious Windows x86 soft-

PackHero 11

10 20 30 40 50 60 70 80 90 100
Configuration Samples per Packer

0.92

0.94

0.96

0.98

1.00

M
et

ric

Metrics
Precision
F1-score
Recall
Accuracy

10 20 30 40 50 60 70 80 90 100
Configuration Samples per Packer

0.00

0.02

0.04

0.06

FP
R

10 20 30 40 50 60 70 80 90 100
Configuration Samples per Packer

U
nk

no
w

n
R

at
e

Fig. 3: Metrics trends varying the number of programs to configure PackHero.

ware collected from a commercial anti-malware vendor and the EMBER dataset[4].
The samples were repacked using nine widely recognized packers: kkrunchy,
MPRESS, Obsidium, PECompact, PELock, Petite, tElock, Themida, and UPX.
The dataset includes different packer families. Following a SotA taxonomy [34], it
covers Type-I (e.g., UPX), Type-III (e.g., PECompact), and VM-based packers
(e.g., Themida). To replicate Experiment II from the original work, we apply the
same undersampling strategy, resulting in 15,353 samples per packer. We ran-
domly select 10% of the undersampled dataset while preserving the distribution
of malware, benign programs, and packers. This subset, referred to as the lab-10
dataset, excludes 10 outliers (CGs with more than 500 nodes). In Section 4.2,
we test PackHero with the RGD dataset from PackGenome [16], which consists
of three manually constructed programs, compiled from 2-5 lines of C code and
packed with several versions and configurations of 20 off-the-shelf packers. To
assess transferability, we select only the RGD packers also present in lab-10.
Hyperparameter Tuning. We optimize the hyperparameters of the GMN by
maximizing intra-packet similarity using a grid search approach.
Evaluation Metrics. We evaluate PackHero using metrics [38] such as preci-
sion, recall, F1-score, accuracy, False Positive Rate (FPR), and the unknown
rate, which indicates how often PackHero fails to recognize a packer. We also
measure the Average Number of Inference Calls, representing the average calls
PackHero makes to the GMN during identification.

4.2 Effective Identification (RQ1)

Configuration. PackHero requires a configuration phase starting with the step
of collecting programs. If the packer is accessible, i.e., we can use it to craft
new samples, the configuration becomes trivial and we can obtain as many pro-
grams as we need. However, if the packer is not accessible, we need to collect
packed programs in the wild. These programs can be malware or benign, and
it is uncertain whether we can find them in large quantities. Therefore, we test
PackHero in a scenario with a limited number of programs, defining the num-
ber of programs needed for each packer to achieve a good average performance.
From the lab-10, we select 100 programs for each packer to configure PackHero,
maintaining the original distribution of malware and benign programs. We use

12 M. Di Gennaro et al.

the remaining programs for testing. Starting from the 100 programs for each
packer, we gradually eliminate 10 programs and create 10 different collections
of gradually smaller sizes. We use these 10 collections to configure PackHero.
Then, we test our approach, configured with different “training” sizes, using the
same test dataset. The metrics we use to evaluate PackHero in this experiment
are precision, recall, F1-score, accuracy, FPR, and the unknown rate. Each plot
in Fig. 3 shows the macro-average results, i.e., the average results among the 9
packers in the dataset. Looking at the precision, F1-score, recall, and accuracy,
the tool does not perform badly even with only 10 programs per packer. Fur-
thermore, starting from 30 samples per packer, PackHero maintains all metrics
above 0.96. In addition, the plot shows precision and recall converge in the long
run. We also notice that from the configuration of 70 samples for packers, Pack-
Hero achieves a good balance between precision and recall, which means a good
tradeoff between False Positives (FPs) and False Negatives (FNs). As regards the
FPR and the unknown rate trends, they follow all the other metrics. The FPR is
overall low and always below 0.00418, i.e., 0.41% of FPs. We also observe higher
unknown rates for lower “training sizes”, which means PackHero becomes more
confident in his choices as the “training” size increases. The plot fluctuations are
because the experiment was done with a single run due to the computational
cost of training and testing with 10 different configurations. However, a single
run places PackHero in a realistic scenario with limited samples and no ability
to select the most suitable ones for tool configuration.

Effectiveness on different packers. Here, we zoom in on the results obtained
from the best configuration in the previous experiment, namely the one with 100
samples for packers. The test set is the remaining part of the dataset. Table 3
shows that PackHero performs very well on each packer in the dataset. We
have a near-maximum accuracy in general and equally good results in all other
metrics for other packers. The only exception is tElock, which is found to have
a higher FPR than the others. This result has chain effects on precision and
F1-score. An answer can be found by looking at the clusters’ composition. In
particular, tElock produces two clusters of 1 and 99 samples. In its current
version, PackHero merges single-sample clusters with the nearest one. As a result,
for tElock, we obtain a single cluster consisting mostly of similar samples, along
with one slightly different sample, which lowers intra-cluster similarity. This
leads to a reduced threshold (≈ 0.10 lower than others) and lower confidence

Table 3: PackHero performance on lab-10. UR denotes the Unknown Rate.
Packer #Samples UR FPR Prec Rec F1 Acc
kkrunchy 1435 0.0 0.0001 1.00 0.99 1.00 1.00
MPRESS 1435 0.0 0.0018 0.99 0.98 0.98 1.00
Obsidium 1435 0.0 0.0031 0.98 0.98 0.98 0.99
PECompact 1434 0.0 0.0012 0.99 1.00 0.99 1.00
PELock 1435 0.0 0.0002 1.00 0.96 0.98 1.00
Petite 1434 0.0 0.0001 1.00 0.99 0.99 1.00
tElock 1432 0.0 0.0107 0.92 0.98 0.95 0.99
Themida 1433 0.0 0.0007 0.99 1.00 0.99 1.00
UPX 1432 0.0 0.0006 1.00 0.98 0.99 1.00
macro-avg - 0.0 0.0021 0.986 0.984 0.983 0.998

PackHero 13

in the choice. This observation suggests that treating single-element clusters as
outliers and excluding them could enhance PackHero’s performance.
Different versions and configurations. The lab-10 dataset includes only
one configuration and version per packer. To evaluate transferability, we test
PackHero’s best configuration (lab-10) on the RGD dataset [16], which contains
multiple versions and configurations for each packer—except for tElock, which is
not included in the PackGenome evaluation. Table 4 presents the configurations
identified by PackHero for each version in RGD. An “identified configuration”
occurs when PackHero recognizes all samples, while non-identified configurations
show a 0% identification rate, likely due to differences in the unpacking stub.
Overall, PackHero generalizes across 16 out of 19 different versions, despite being
configured with only a single version and configuration per packer.
Answer to RQ1. The number of packed programs required to configure Pack-
Hero depends on the desired performance level. With just 10 samples per packer,
PackHero achieves a minimum macro-average F1 score of 93.7% and accuracy of
98.7%. Increasing the sample size to 30 can further improve recall and F1-score
while maintaining high precision and accuracy. Table 3 demonstrates PackHero’s
ability to effectively identify multiple packers from different families. Given the
dataset’s composition, PackHero successfully integrates and recognizes packers
of varying complexity in both packed malware and benign programs. Specifically,
based on the taxonomy by Ugarte-Pedrero et al. [34], PackHero performs well
on Type-I (UPX), VM-based (Themida), and Type-III (PECompact) packers.

4.3 Clustering Effectiveness (RQ2)

We evaluate the impact of the clustering approach on PackHero’s performance
and scalability. To do this, we replicate the experiment from Section 4.2 without
the clustering layer: PackHero evaluates similarity with all graphs in the DB
and computes packer-specific thresholds instead of cluster-specific ones. Fig. 4
illustrates the performance gap between PackHero with and without clustering.
This gap is more pronounced for smaller training set sizes and narrows as the
training set size increases. Without clustering, the unknown rate consistently
drops to 0, as the unknown classification (explained in Section 3) depends on
the similarity step involving clusters’ medoids. However, the absence of clustering
increases False Positives. These results demonstrate that incorporating clustering

Table 4: PackHero performance on RGD. A configuration is considered identified
if all samples from that configuration are correctly classified.

Packer Versions (#Identified Configurations/#Configurations)
kkrunchy v0.23alpha (0/2), v0.23alpha2 (1/1)
MPRESS v1.27 (1/1), v2.18 (1/1), v2.19 (1/1)
Obsidium v1.5 (7/7)
PEcompact v3.02.2 (18/19), v3.11 (10/12)
PElock v1.06 (0/5)
Petite v2.4 (5/5)
Themida v2.37 (8/9), v2.39 (Winlicense) (8/9) v3.04 (0/5)
UPX v1.00 (4/4), v1.20 (8/8), v1.25 (4/4), v2.00 (5/5), v3.09 (8/8), v3.96 (8/8)

14 M. Di Gennaro et al.

10 20 30 40 50 60 70 80 90 100
Configuration Samples per Packer

0.8

0.9

1.0

Pr
ec

is
io

n
Clustering No Clustering

10 20 30 40 50 60 70 80 90 100
Configuration Samples per Packer

R
ec

al
l

Clustering No Clustering

10 20 30 40 50 60 70 80 90 100
Configuration Samples per Packer

0.8

0.9

1.0

F1
-s

co
re

Clustering No Clustering

10 20 30 40 50 60 70 80 90 100
Configuration Samples per Packer

A
cc

ur
ac

y

Clustering No Clustering

10 20 30 40 50 60 70 80 90 100
Configuration Samples per Packer

0.00

0.02

0.04

0.06

FP
R

Clustering No Clustering

10 20 30 40 50 60 70 80 90 100
Configuration Samples per Packer

U
nk

no
w

n
R

at
e Clustering No Clustering

Fig. 4: Comparison between PackHero with and without clustering.

into PackHero’s workflow is effective and that the chosen medoids are good
representatives of subgroups within the same packer.

Table 5 shows the average number of inference calls to the GMN during the
identification, i.e., the average number of matched graphs needed to identify a
packer from a program. Removing the clustering approach, the similarity with
the input graph is evaluated with the entire collection. Thus, the metric is always
equal to the size of the entire collection. In contrast, the values we empirically
obtain with the use of the clustering approach show are close to the ideal number
of inference calls to identify the packer. The ideal number of inference calls in
the presence of the clustering approach is represented by the sum of m (number
of clusters) and the number of programs per packer stored in the DB. Thus,
we can state that, involving the clustering approach, the PackHero’s number of
inference calls does not depend on the number of packers but only on the number
of samples for each packer stored in the DB. To further emphasize the significance
of the results shown in Table 5, it is important to consider the inference time
for our GMN. Indeed, while this network’s expressive power surpasses that of
its alternatives, it comes with the trade-off of increased temporal complexity.
In this experiment, the average single inference time recorded was 1.76ms. The

Table 5: Average number of inference calls made by PackHero to the Graph
Matching Network (GMN) during packer identification of a single sample.

Configuration #Clusters Clustering No Clustering
Ideal Values Real Values

10 14 24.00 24.14 ± 1.33 90.00 ± 0.00
20 13 33.00 33.02 ± 0.17 180.00 ± 0.00
30 17 47.00 47.03 ± 1.19 270.00 ± 0.00
40 16 56.00 60.59 ± 4.68 360.00 ± 0.00
50 13 63.00 64.31 ± 2.65 450.00 ± 0.00
60 14 74.00 82.68 ± 7.48 540.00 ± 0.00
70 11 81.00 83.71 ± 3.84 630.00 ± 0.00
80 16 96.00 107.54 ± 13.35 720.00 ± 0.00
90 13 103.00 107.30 ± 3.57 810.00 ± 0.00
100 17 117.00 124.47 ± 7.78 900.00 ± 0.00

PackHero 15

5 10 20 30 40 50 60 70 80 90 100
Integration Samples

0.00

0.25

0.50

0.75

1.00

R
ec

al
l

Approach
PH (Fine-Tuning)
PH (No Fine-Tuning)
BD (LCS-SVM)
2SPIFF
RP

Fig. 5: Recall trend increasing the number of integration samples; Pack-
Hero (Fine-Tuned and Not) vs ML-based Tools.

time difference observed in the tests conducted on 9 packers is not substantial
between the version with and without clustering. However, in a scenario with
200 packers and 100 samples in the DB for each packer, the time required for
identification would be ≈ 35s without clustering but only 21ms with it.
Answer to RQ2. The clustering approach improves PackHero’s performance,
especially with limited samples per packer, while its effectiveness remains unaf-
fected by the number of recognized packers, ensuring scalability.

4.4 Integration of New Packers (RQ3)

As discussed in Subsection 4.2, to demonstrate the integration is always feasi-
ble we have to deal with a scenario in which we need to collect programs in
the wild to integrate the new packer. Thus, we have to face the possibility that
these programs are not numerous. We have already tested PackHero in a sce-
nario with few samples for its configuration. Here, we aim to evaluate how many
samples PackHero needs to “integrate” a new packer with the entire system al-
ready configured. The process of integration corresponds to the “configuration”
of PackHero described in Subsection 1. Since the workflow includes a Graph
Matching Network (GMN), we can avoid re-training the model from scratch.
Indeed, given that we use a Neural Network (NN), it can be updated through
fine-tuning, i.e., partially re-training on new samples. At the same time, Pack-
Hero may even allow us to avoid fine-tuning the model altogether. Specifically,
a new packer can be integrated into PackHero without re-training the GMN,
simply by adding its corresponding graphs to the DB. However, this approach is
feasible only if the collected graphs for the packer are sufficiently homogeneous.
Currently, we assume that manual intervention was previously performed on the
packer samples to be integrated, which we assume are always correctly labeled.

We evaluate PackHero with and without fine-tuning the GMN. We train a
GMN for each packer, excluding it from the training set, which consists of 100
samples per remaining packer. Then, we integrate samples from the “unseen”
packer. In the version without fine-tuning, we add the new packer’s graphs di-
rectly to the DB. In the fine-tuned version, we fine-tune the GMN using the
new graphs before integration. To compare PackHero with SotA tools, we repli-
cate the experiment using three ML-based approaches from Table 1: Random-
ness Profiles [33], Binary Diffing [15] (best-performing version: LCS-SVM), and
2SPIFF [19]. As implementations of these tools are unavailable, we reimplement
them to the best of our ability and validate the implementations by compar-
ing the achieved accuracy on the remaining packers in this experiment. For a

16 M. Di Gennaro et al.

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
Packers (n + m)

0

2000

4000

6000

8000

Sa

m
pl

e
fo

r M
od

el
 U

pd
at

e

Others
PH

Fig. 6: # Samples involved in the integration (m = 10 new packers, l = 40
samples per packer, n already integrated packers).

fair evaluation, we train them using a stratified 80-20 split of the lab-10 dataset.
Therefore, for each ML-based tool, we train each model by excluding one packer,
using 80% of the dataset. This subset includes the 100 samples per packer used
to train PackHero. However, none of these approaches utilize a NN. Therefore,
we are required to entirely re-train their models each time we want to integrate
a new packer. Ultimately, both our method and the other approaches are tested
using the test set from the 80-20 split, which corresponds to the stratified 20%
of lab-10, equal to 307 samples for each packer. Results specific to each packer
are obtained by testing the samples from that particular packer on the updated
tools. By evaluating separately for each packer, the metric we use is recall, which
is equivalent to accuracy in this experimental setup. In Fig. 5, we show the aver-
age recall trends for PackHero with and without fine-tuning and compare them
against all other ML-based packer identifiers. As the figure shows, 2SPIFF and
Randomness Profiles (RP) perform very badly, even in the best configuration. In
contrast, both the fine-tuned PackHero and Binary Diffing (BD) with LCS-SVM
achieve very good performance and consistency using a small number of sam-
ples. Starting from the 40 samples, their performance is aligned, except for small
fluctuations due to the single run. However, as the plot shows, PackHero reaches
a high recall before BD. Indeed, using 5, 10, 20, and 30 samples to integrate
the new packer, PackHero performs better. Similarly, PackHero without fine-
tuning also exhibits good performance, although not as good as the other two
methods. However, the average performance hides the results for single-packers.
Indeed, removing two packers out of nine (Obsidium and Petite) the non-fine-
tuned PackHero achieves performance very close to the fine-tuned version and
BD starting from 50 integration samples. This result shows that fine-tuning the
GMN is unnecessary for low-heterogeneity graphs, saving computation.

Additionally, all ML-based approaches require complete retraining to inte-
grate new packers, a scalability issue PackHero avoids. To demonstrate this, we
simulate packer integration during the tool lifecycle. Assuming integration cost
depends on the number of samples used, we define the cost function f(n,m, l),
where n is the number of known packers, m the new packers, and l the samples
per packer. For other tools, f(n,m, l) = (n + m) · l, while PackHero ’s cost is
f(n,m, l) = m · l, as it only depends on new packers. Fig. 6 simulates m = 10
and l = 40, showing PackHero ’s constant integration cost, unlike other tools,
where cost grows linearly with the number of recognized packers. This result
demonstrates that PackHero scales effectively in realistic scenarios where new
packers must be integrated over time.

PackHero 17

Answer to RQ3. PackHero achieves strong results in integrating a new “unseen”
packer with as few as 10 samples. Among 9 tested packers, PackHero outperforms
the three other selected ML-based tools for integration sample counts less than
30. Furthermore, a simulation comparing retraining and fine-tuning shows that
PackHero ’s integration cost function remains constant as new packers are added,
unlike other ML-based approaches, whose integration costs grow linearly with
the number of recognized packers.

4.5 Signature-Based Tool Comparison (RQ4)

In this experiment, we compare the performance of PackHero with State-of-the-
art signature-based methods (Detect It Easy (DIE) and PackGenome). DIE [13]
is currently the best-performing and most signature-rich packer identifier. Here,
we use its latest available version (v3.10). PackGenome [16] is the best tool for au-
tomating the extraction of signatures for packer detection, generating YARA [3]
rules that can be later used to identify packers. The authors of PackGenome
have already compared their framework against DIE, but we include the re-
sults for both approaches for completeness. To compare the three frameworks,
we use the False Positive Rate (FPR) and recall. We focus on recall because
it is the most representative metric when comparing tools designed not just
for identification but also for detection (as for DIE and PackGenome). We ex-
tract all results from the lab-10 dataset, removing only the 100 samples for each
packer used to configure PackHero. We test DIE using its command-line version,
while we test PackGenome by loading the YARA rules provided in the orig-
inal work. Since DIE does not include PELock signatures and PackGenome’s
authors did not perform experiments on PELock and tElock, we discard these
two packers for this comparison. In Table 6, we show the comparison results.
Starting with the recall, the three tools perform very similarly, although the two
signature-based tools generally exhibit the highest recall. Attention must partic-
ularly be directed towards Themida, which poses significant challenges for both
DIE and PackGenome, as depicted in the table. An interesting observation is
that the matched signatures from DIE are related to the same version of Winli-
cense/Themida, specifically Themida with Trial/Licensing options [25]. Despite
PackGenome including signatures for the same version of this packer, it shows a
recall of 0.31. This result motivates the entire work. Indeed, Themida/Winlicense
employs advanced (dynamic) evasive behaviors in its packed programs. Further-
more, it is the VM-based packer used during our evaluation. As explained in

Table 6: PackHero vs DIE vs PackGenome on lab-10.
Recall FPR

#Samples PH DIE PG PH DIE PG
kkrunchy 1435 0.99 1.0 1.0 0.0001 0.0 0.0
MPRESS 1435 0.98 1.0 1.0 0.0018 0.0008 0.0034
Obsidium 1435 0.98 1.0 1.0 0.0031 0.0002 0.0000

PECompact 1434 1.0 1.0 1.0 0.0012 0.0 0.0005
Petite 1434 0.99 0.99 0.99 0.0001 0.0 0.0

Themida 1433 1.0 0.92 0.31 0.0007 0.0 0.0499
UPX 1432 0.98 1.0 1.0 0.0006 0.0002 0.0011

18 M. Di Gennaro et al.

Section 2.1, PackGenome extracts YARA rules by tracing instructions during
their execution. Consequently, it is likely to struggle with the evasive behaviors
introduced by Themida into the binary during the packing process. Additionally,
PackGenome appears to face challenges due to the inherent nature of this packer.
Indeed, the result suggests that both the signature itself and its automatic extrac-
tion encounter difficulties when dealing with this packer family. Finally, looking
at FPR, PackGenome confirms its issues with Themida/Winlicense but shows
in-line results for the other packers. PackHero demonstrates a low FPR on av-
erage, while DIE generates the fewest FPR.
Answer to RQ4. PackHero matches SotA signature-based tools in accuracy
and significantly outperforms them on VM-based packers with advanced evasive
behaviors like Themida/Winlicense, demonstrating our approach’s effectiveness.

5 Limitations and Future Work

PackHero relies on heuristics to extract filtered CGs. Unpacking stubs play a
crucial role in the analysis but other code segments might also contribute to the
CG’s structure. Even if this work demonstrates that a few statically visible func-
tions are often sufficient to determine the packer’s identity, the exact number of
functions considered for each CG remains an open aspect. PackHero directly ex-
ploits disassembly and function identification, which are inherently challenging
problems, especially in the context of malware due to obfuscation techniques,
indirect branch resolution, and evasive behaviors. Furthermore, PackHero is po-
tentially vulnerable to adversarial attacks that manipulate the CG to evade
identification. An adversary could, for instance, obfuscate the CG by inserting
bogus functions, modifying calls, or hiding call targets, significantly complicat-
ing packer identification. Additionally, different dynamic evasive behaviors im-
plemented by malware could further impact the accuracy of the extracted CG.
Hence, future work may study heuristics to resist adversarial attacks by eval-
uating CG obfuscation to identify which aspects of our heuristics and features
are most susceptible to evasion. In our study, we selected radare2 as the dis-
assembler due to its ease of use and integration. However, recent research has
demonstrated that several other open-source disassemblers outperform radare2
performance [26]. This reliance, while currently effective, necessitates further in-
vestigation, particularly in scenarios involving adversarial manipulation of the
unpacking stub or CG structure. Finally, PackHero currently focuses on packer
identification but does not determine whether a sample is packed (detection).
Preliminary analyses revealed a notable number of False Positives when analyz-
ing non-packed samples, indicating the need for further improvements in this
area. Therefore, future work will also address the packer detection problem.

6 Conclusion

This paper introduced PackHero, a packer identifier that leverages a heuristic to
extract a Call Graph (CG) representing the unpacking routine of a program. Us-

PackHero 19

ing a clustering approach to enhance performance and reduce the search space,
PackHero evaluates the similarity between the extracted CG and labeled CGs
stored in a DB, employing a Graph Matching Network (GMN) to compute these
similarities and identify the packer. Evaluated on a public dataset of packed be-
nign and malicious programs re-packed multiple times, PackHero meets all key
requirements for a novel packer identifier: high accuracy, efficient packer integra-
tion, evasive behavior management, and scalability. Relying exclusively on static
analysis, PackHero integrates new packers effectively, achieving strong perfor-
mance with as few as 10 samples, while eliminating the limitations of dynamic
analysis, particularly against dynamic evasive behaviors. For some packers, it
avoids fine-tuning the GMN, and when fine-tuning is needed, it converges faster
than other ML-based tools. Its integration cost remains constant throughout
its lifecycle, unlike other methods, where costs grow linearly with the number of
packers recognized. PackHero performs comparably to signature-based tools, the
current best-performing solutions for packer identification, and significantly out-
performs SotA approaches on Themida, a VM-based packer employing advanced
dynamic evasive behaviors.
Acknowledgements. This work was partially supported by Project FARE (PNRR
M4.C2.1.1 PRIN 2022, Cod. 202225BZJC, CUP D53D23008380006, Avviso D.D 104
02.02.2022) and Project SETA (PNRR M4.C2.1.1 PRIN 2022, Cod. P202233M9Z, CUP
F53D23009120001, Avviso D.D 1409 14.09.2022) under the Italian NRRP MUR pro-
gram, and by Project SERICS (PE00000014) under the MUR National Recovery and
Resilience Plan, all funded by the European Union - NextGenerationEU.

References

1. Aghakhani, H., Gritti, F., Mecca, F., Lindorfer, M., Ortolani, S., Balzarotti, D.,
Vigna, G., Kruegel, C.: When Malware is Packin’ Heat; Limits of Machine Learning
Classifiers Based on Static Analysis Features. In: Proceedings of Symposium on
Network and Distributed System Security (NDSS) (Feb 2020)

2. Al-Anezi, D.M.M.K.: Generic packing detection using several complexity analy-
sis for accurate malware detection. International Journal of Advanced Computer
Science and Applications 5(1) (2014). https://doi.org/10.14569/IJACSA.2014.
050102

3. Alvarez, V.M.: Yara. https://virustotal.github.io/yara/ (2024), accessed:
2024-04-15

4. Anderson, H.S., Roth, P.: Ember: an open dataset for training static pe malware
machine learning models. arXiv preprint arXiv:1804.04637 (2018)

5. ASPack Software: ASPack Software - Application for compression, packing and
protection of software. http://www.aspack.com/ (2024), accessed: 2024-04-15

6. Callahan, D., Carle, A., Hall, M., Kennedy, K.: Constructing the procedure call
multigraph. IEEE Transactions on Software Engineering 16(4), 483–487 (1990).
https://doi.org/10.1109/32.54302

7. Diestel, R.: Graph Theory. Springer, 5th edn. (2017)
8. Ebringer, T., Sun, L., Boztas, S.: A fast randomness test that preserves local detail.

In: Proceedings of the 18th Virus Bulletin International Conference. pp. 34–42.
Virus Bulletin Ltd (2008)

https://doi.org/10.14569/IJACSA.2014.050102
https://doi.org/10.14569/IJACSA.2014.050102
https://doi.org/10.14569/IJACSA.2014.050102
https://doi.org/10.14569/IJACSA.2014.050102
https://virustotal.github.io/yara/
http://www.aspack.com/
https://doi.org/10.1109/32.54302
https://doi.org/10.1109/32.54302

20 M. Di Gennaro et al.

9. Egele, M., Scholte, T., Kirda, E., Kruegel, C.: A survey on automated dynamic
malware-analysis techniques and tools. ACM Comput. Surv. 44(2) (mar 2008).
https://doi.org/10.1145/2089125.2089126

10. Galloro, N., Polino, M., Carminati, M., Continella, A., Zanero, S.: A Systematical
and longitudinal study of evasive behaviors in windows malware. Computers & Se-
curity 113, 102550 (Feb 2022). https://doi.org/10.1016/j.cose.2021.102550

11. Hamilton, W.L.: Graph Representation Learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning 14(3), 1–159 (2020), publisher: Morgan and
Claypool

12. Hamrock, J., Lyda, R.: Using entropy analysis to find encrypted and packed mal-
ware. IEEE Security & Privacy 5(02), 40–45 (mar 2007). https://doi.org/10.
1109/MSP.2007.48

13. Horsicq: Detect it easy. https://github.com/horsicq/Detect-It-Easy (2024),
accessed: 2024-04-15

14. Jacob, G., Comparetti, P., Neugschwandtner, M., Kruegel, C., Vigna, G.: A static,
packer-agnostic filter to detect similar malware samples. In: International Con-
ference on Detection of intrusions and malware, and vulnerability assessment.
vol. 7591 (01 2010). https://doi.org/10.1007/978-3-642-37300-8_6

15. Kim, Y., Paik, J.Y., Choi, S., Cho, E.S.: Efficient svm based packer identification
with binary diffing measures. In: 2019 IEEE 43rd Annual Computer Software and
Applications Conference (COMPSAC). vol. 1, pp. 795–800 (2019). https://doi.
org/10.1109/COMPSAC.2019.00117

16. Li, S., Ming, J., Qiu, P., Chen, Q., Liu, L., Bao, H., Wang, Q., Jia, C.: PackGenome:
Automatically Generating Robust YARA Rules for Accurate Malware Packer De-
tection. In: Proceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security. pp. 3078–3092. CCS ’23, Association for Computing
Machinery (2023). https://doi.org/10.1145/3576915.3616625

17. Li, X., Shan, Z., Liu, F., Chen, Y., Hou, Y.: A Consistently-Executing Graph-
Based Approach for Malware Packer Identification. IEEE Access 7, 51620–51629
(2019). https://doi.org/10.1109/ACCESS.2019.2910268

18. Li, Y., Gu, C., Dullien, T., Vinyals, O., Kohli, P.: Graph Matching Networks for
Learning the Similarity of Graph Structured Objects. In: Chaudhuri, K., Salakhut-
dinov, R. (eds.) Proceedings of the 36th International Conference on Machine
Learning. Proceedings of Machine Learning Research, vol. 97, pp. 3835–3845.
PMLR (Jun 2019)

19. Liu, H., Guo, C., Cui, Y., Shen, G., Ping, Y.: 2-SPIFF: a 2-stage packer identifica-
tion method based on function call graph and file attributes. Applied Intelligence
51(12), 9038–9053 (2021). https://doi.org/10.1007/s10489-021-02347-w

20. Liu, Z., Wang, R., Japkowicz, N., Gomes, H.M., Peng, B., Zhang, W.: Segdroid: An
android malware detection method based on sensitive function call graph learning.
Expert Syst. Appl. 235(C) (Jan 2024), https://doi.org/10.1016/j.eswa.2023.
121125

21. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood, K.: Pin: building customized program analysis tools with
dynamic instrumentation. SIGPLAN Not. 40(6), 190–200 (jun 2005). https://
doi.org/10.1145/1064978.1065034

22. Mantovani, A., Aonzo, S., Ugarte-Pedrero, X., Merlo, A., Balzarotti, D.: Prevalence
and impact of low-entropy packing schemes in the malware ecosystem. Proceedings
2020 Network and Distributed System Security Symposium (2020)

23. Muchnick, S.S.: Advanced Compiler Design and Implementation. Morgan Kauf-
mann, San Francisco, CA (1997)

https://doi.org/10.1145/2089125.2089126
https://doi.org/10.1145/2089125.2089126
https://doi.org/10.1016/j.cose.2021.102550
https://doi.org/10.1016/j.cose.2021.102550
https://doi.org/10.1109/MSP.2007.48
https://doi.org/10.1109/MSP.2007.48
https://doi.org/10.1109/MSP.2007.48
https://doi.org/10.1109/MSP.2007.48
https://github.com/horsicq/Detect-It-Easy
https://doi.org/10.1007/978-3-642-37300-8_6
https://doi.org/10.1007/978-3-642-37300-8_6
https://doi.org/10.1109/COMPSAC.2019.00117
https://doi.org/10.1109/COMPSAC.2019.00117
https://doi.org/10.1109/COMPSAC.2019.00117
https://doi.org/10.1109/COMPSAC.2019.00117
https://doi.org/10.1145/3576915.3616625
https://doi.org/10.1145/3576915.3616625
https://doi.org/10.1109/ACCESS.2019.2910268
https://doi.org/10.1109/ACCESS.2019.2910268
https://doi.org/10.1007/s10489-021-02347-w
https://doi.org/10.1007/s10489-021-02347-w
https://doi.org/10.1016/j.eswa.2023.121125
https://doi.org/10.1016/j.eswa.2023.121125
https://doi.org/10.1145/1064978.1065034
https://doi.org/10.1145/1064978.1065034
https://doi.org/10.1145/1064978.1065034
https://doi.org/10.1145/1064978.1065034

PackHero 21

24. Muralidharan, T., Cohen, A., Gerson, N., Nissim, N.: File packing from the mal-
ware perspective: Techniques, analysis approaches, and directions for enhance-
ments. ACM Comput. Surv. 55(5) (dec 2022). https://doi.org/10.1145/3530810

25. Oreans Technologies: Winlicense. https://www.oreans.com/WinLicense.php, ac-
cessed: 2024-07-08

26. Pang, C., Yu, R., Chen, Y., Koskinen, E., Portokalidis, G., Mao, B., Xu, J.: Sok:
All you ever wanted to know about x86/x64 binary disassembly but were afraid to
ask. In: 2021 IEEE Symposium on Security and Privacy (SP). pp. 833–851 (2021)

27. PEiD: Peid. https://www.aldeid.com/wiki/PEiD (2024), accessed: 2024-04-15
28. Perdisci, R., Lanzi, A., Lee, W.: Classification of packed executables for accurate

computer virus detection. Pattern Recognition Letters 29(14), 1941–1946 (2008).
https://doi.org/10.1016/j.patrec.2008.06.016

29. radare2: radare2: Unix-like reverse engineering framework and command-line tools
(2024), https://github.com/radareorg/radare2, accessed: 2024-04-15

30. Raff, E., Zak, R., Lopez Munoz, G., Fleming, W., Anderson, H.S., Filar, B.,
Nicholas, C., Holt, J.: Automatic yara rule generation using biclustering. In: Pro-
ceedings of the 13th ACM Workshop on Artificial Intelligence and Security. p.
71–82. AISec’20, Association for Computing Machinery, New York, NY, USA
(2020). https://doi.org/10.1145/3411508.3421372

31. Rahbarinia, B., Balduzzi, M., Perdisci, R.: Exploring the Long Tail of (Malicious)
Software Downloads. In: 2017 47th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). pp. 391–402 (2017). https://doi.
org/10.1109/DSN.2017.19

32. Rolles, R.: Unpacking virtualization obfuscators. In: Proceedings of the 3rd
USENIX Conference on Offensive Technologies. p. 1. WOOT’09, USENIX Associ-
ation, USA (2009)

33. Sun, L., Versteeg, S., Boztaş, S., Yann, T.: Pattern recognition techniques for the
classification of malware packers. In: Steinfeld, R., Hawkes, P. (eds.) Information
Security and Privacy. pp. 370–390. Springer Berlin Heidelberg, Berlin, Heidelberg
(2010)

34. Ugarte-Pedrero, X., Balzarotti, D., Santos, I., Bringas, P.G.: SoK: Deep Packer
Inspection: A Longitudinal Study of the Complexity of Run-Time Packers. In:
2015 IEEE Symposium on Security and Privacy. pp. 659–673 (2015). https://
doi.org/10.1109/SP.2015.46

35. Ugarte-Pedrero, X., Graziano, M., Balzarotti, D.: A close look at a daily dataset
of malware samples 22(1) (Jan 2019)

36. UPX: UPX – the ultimate packer for executables. https://upx.github.io/
(2024), accessed: 2024-04-15

37. Yadegari, B., Debray, S.: Symbolic execution of obfuscated code. In: Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security.
p. 732–744. CCS ’15, Association for Computing Machinery, New York, NY, USA
(2015). https://doi.org/10.1145/2810103.2813663

38. Zaki, M.J., Meira Jr, W.: Data mining and machine learning: fundamental concepts
and algorithms. Cambridge University Press, 2 edn. (2020)

https://doi.org/10.1145/3530810
https://doi.org/10.1145/3530810
https://www.oreans.com/WinLicense.php
https://www.aldeid.com/wiki/PEiD
https://doi.org/10.1016/j.patrec.2008.06.016
https://doi.org/10.1016/j.patrec.2008.06.016
https://github.com/radareorg/radare2
https://doi.org/10.1145/3411508.3421372
https://doi.org/10.1145/3411508.3421372
https://doi.org/10.1109/DSN.2017.19
https://doi.org/10.1109/DSN.2017.19
https://doi.org/10.1109/DSN.2017.19
https://doi.org/10.1109/DSN.2017.19
https://doi.org/10.1109/SP.2015.46
https://doi.org/10.1109/SP.2015.46
https://doi.org/10.1109/SP.2015.46
https://doi.org/10.1109/SP.2015.46
https://upx.github.io/
https://doi.org/10.1145/2810103.2813663
https://doi.org/10.1145/2810103.2813663

	PackHero: A Scalable Graph-based Approach for Efficient Packer Identification

