
ar
X

iv
:2

50
6.

00
56

6v
1

 [
cs

.C
R

]
 3

1
M

ay
 2

02
5

Communication Efficient Multiparty Private Set Intersection from
Multi-Point Sequential OPRF

Xinyu Feng†‡∗, Yukun Wang†∗, Cong Li§B, Wu Xin¶, Ming Yao†, Dian Zhang†, Wanwan Wang† and Hao He†
†InsightOne Tech Co., Ltd.

‡Zhonghe Tech (Xiong’an) Co., Ltd.
§School of Software and Microelectronics, Peking University

¶School of Economics, Peking University
BCorresponding Author

∗The two authors contributed equally to this work.

Abstract—Multiparty private set intersection (MPSI) allows
multiple participants to compute the intersection of their
locally owned data sets without revealing them. MPSI protocols
can be categorized based on the network topology of nodes,
with the star, mesh, and ring topologies being the primary
types, respectively. Given that star and mesh topologies domi-
nate current implementations, most existing MPSI protocols
are based on these two topologies. However, star-topology
MPSI protocols suffer from high leader node load, while mesh
topology protocols suffer from high communication complexity
and overhead. In this paper, we first propose a multi-point
sequential oblivious pseudorandom function (MP-SOPRF) in
a multi-party setting. Based on MP-SOPRF, we then develop an
MPSI protocol with a ring topology, addressing the challenges
of communication and computational overhead in existing
protocols. We prove that our MPSI protocol is semi-honest
secure under the Hamming correlation robustness assump-
tion. Our experiments demonstrate that our MPSI protocol
outperforms state-of-the-art protocols, achieving a reduction
of 74.8% in communication and a 6% to 287% improvement
in computational efficiency.

1. Introduction

Private set intersection (PSI) is a versatile cryptographic
instrument that facilitates two participants, each with distinct
local data sets, in determining the common elements of their
datasets without exposing the nonintersecting components.
As an extension of PSI, multiparty PSI (MPSI) enables
multiple participants to ascertain their common data ele-
ments without revealing nonintersecting data, in a similar
manner. MPSI has numerous practical applications across
various domains. In particular, within vertical federated
learning (VFL), MPSI is employed for data alignment based
on the local data identifiers of each participant, serving
as an essential prerequisite [1]. In the domain of medical
data collection, MPSI presents a promising technology for
consolidating medical data from numerous disparate entities
while ensuring the privacy of sensitive data [2]. Furthermore,

in the field of cybersecurity protection, MPSI is instrumental
for multiple organizations to collaboratively identify mali-
cious intrusions on public networks without compromising
the confidentiality of other users’ information [3], [4].

(a) Star Topology (b) Mesh Topology

(c) Ring Topology

Figure 1. Network Topologies of MPSI

Within existing MPSI protocols, there are primarily three
types of topological structures from a communication model
perspective, namely, star topology, mesh topology, and ring
topology 1, as depicted in Fig. 1. The star topology is char-
acterized by multiple assistants engaging with a sole leader,
which is predominantly observed among MPSI protocols
such as public-key-based MPSI [6]–[8], or those utilizing
oblivious programmable pseudorandom functions (OPPRF)
and oblivious key-value stores (OKVS) [9], [10]. Neverthe-
less, this “centralized” configuration results in substantial
bandwidth and computational demands on the leader. The
mesh topology serves as an enhancement to the star topology
by mitigating the communication load and computational

1. In various academic works, the ring topology is occasionally referred
to as the ring topology [5].

https://arxiv.org/abs/2506.00566v1

pressure on the leader, bearing resemblance to a binary tree
structure. This topology is adopted by several of the most
efficient MPSI protocols [3], [11]. However, the complexity
of this network increases, necessitating a robust overall
network and sufficient bandwidth for nodes to possibly
engage with multiple other nodes. Ring topology, originally
proposed by Kavousi et al. [12], involves the sequential
transmission of messages among all participants, with both
the leader and the assistants assuming comparable proto-
col roles. In this configuration, the responsibility for the
determination of the intersection resides exclusively with
the leader at the end of the protocol. Unlike the other two
topological frameworks, the ring topology offers distinct ad-
vantages: (1) It equitably allocates the communication load
among all participants, thus preventing potential bottlenecks
associated with a single leader in the star topology. (2)
The ring structure reduces the dependency on any single
node, thereby improving the resilience of the system to
node failures and dropout attacks. (3) It supports scalability
for larger networks by minimizing communication overhead,
which increases exponentially within the mesh topology as
the number of participants increases.

1.1. Motivation

In ring topology, embedding multi-party data in a secure
end efficient way is quite challenging since each node
merely performs two information transmissions, that is,
receiving data from the previous node and sending data
to the next node. For this reason, each party is required
to assemble their own data and received data, then pass it
to the next party. Hence, it is critical to carefully ensure
that the leader’s capability, only determining the overall
intersection of all participants’ data without revealing any
partial intersection.

There are currently two main approaches to build MPSI
protocols, partially homomorphic encryption (PHE)-based
MPSI and OT-based MPSI. PHE-based protocols typically
leverage polynomials or bloom filters to conceal the data sets
and then share the coefficients among the participants to cal-
culate the intersection. And PHE is employed to safeguard
the security of coefficients throughout the sharing process.
However, the coefficient sharing process depends on inter-
actions among multiple participants, inherently forming a
mesh topology, thus making the implementation of a ring
communication topology be a tough task. On the other
hand, most of the existing OT-based MPSI protocols rely
on fundamental cryptographic primitives to obfuscate the
data sets of the parties, such as oblivious pseudorandom
function (OPRF) [13], oblivious programmable PRF (OP-
PRF) [3], and oblivious key-value stores (OKVS) [9]. These
cryptographic primitives are inherently based on a two-
party setup. As a result, to compute the intersection, it is
essential to share the intermediate results produced by these
primitives among various parties. The secret sharing scheme
is leveraged to protect the sharing process. Unfortunately, it
is still a protocol within a mesh topology, thereby becoming

TABLE 1. COMPARISON OF SIMILAR MPSI PROTOCOLS, n IS THE
NUMBER OF PARTIES, t IS THE NUMBER OF MAXIMUM COLLUSION

PARTIES, N IS THE SIZE OF INPUT SETS, h IS THE NUMBER OF HASH
FUNCTIONS.

Protocol
Communication Computation

Topology Leader Assistant Leader Assistant

KMPRT [3] Mesh O(nN) O(tN) O(n) O(tN)

KMS [12] Ring O(nN) O(hN) O(nN) O(hN)

NTY [11] Mesh O(tN) O(N) O(nN − tN) O(tN)

VCE [8] Star O(tN) O(N) O(nhN) O(N)

Ours Ring O(N) O(N) O(N) O(N)

a bottleneck in realizing the ring topology. Consequently, we
raise the following issue:

Can we design an efficient MPSI protocol equipped with
ring topology?

1.2. Contribution

To cope with the aforementioned issue, in this paper, we
design a novel MPSI protocol employing the ring topology,
which significantly decreases communication and compu-
tational overhead compared to the existing state-of-the-art
(SOTA) protocols. Table 1 shows a brief comparison be-
tween our MPSI and the SOTA ones on communication and
computational overhead. Our contributions are summarized
as follows.
• We for the first time propose the MPSI protocol with

the ring topology alone. Unlike the existing MPSI pro-
tocols, Ours maintains identical and independent asymp-
totic complexities of communication and computation (i.e.
O(N) and N denotes the input set size) between the
leader and assistant. It effectively reduces the commu-
nication and computational burdens on the Leader, which
renders him operate at the same level with assistant in
regard to the bandwidth and computational capacity.

• To build the MPSI protocol with the ring topology, we
present the notion of multi-point sequential oblivious
pseudorandom function (MP-SOPRF). Our MP-SOPRF
leverages the output of the previous round of oblivious
transfer (OT) for each subsequent node and works in a
multi-party setting. Besides, all participants can compute
the auxiliary matrix and carry out operations of base OT
simultaneously in the initial step. Then in the final OT
step, the random OT (ROT) is introduced to substitute the
traditional OT for improving the efficiency of protocol.

• We conducted numerous experiments to validate the effec-
tiveness of our MPSI protocol. Results revealed that our
MPSI significantly outperforms the SOTA MPSI protocols
in both of communication and computational efficiencies.
Concretely, it achieves communication 74.8% reduction
and computational efficiency by up to 2.87× in contrast
to SOTA ones (15 parties and set size is 220).

2. Related work

Meadows [14] proposed the first PSI protocol. Then a
series of lituratures [13], [15]–[19] explored PSI with var-
ious features and better performance. Freedman et al. [20]
presented the first MPSI protocol, which is an extension
of PSI in the multi-party setting. Since then, numerous
efficient MPSI protocols have been proposed. They can be
primarily divided into three categories, namely, public key-
based MPSI, OT-based MPSI and other MPSI.

Kissner and Song [21] presented an MPSI protocol based
on the polynomial root representation. In their protocol,
After encoding the sets using the roots of a polynomial,
each party encrypts the coefficients using an additive ho-
momorphic encryption system, such as Paillier encryption.
Li and Wu [22] employed the secret sharing scheme to
replace the homomorphic encryption. Subsequently, a series
of works [23], [24] made efforts to improve the Li and
Wu [22]’s protocol. Ruan et al. [25] put forward the first
bitset-based PSI protocol. Bay et al. [6], [7] further extended
Ruan’s protocol [25] to support a multi-party setting, en-
abling to resist the collusion attack among up to n−1 parties.
In 2022, Vos et al. [8] strengthened the ’AND’ operation for
private set elements based on elliptic curves, making MPSI
protocols sutiable for both of the small and large sets.

OT-based MPSI protocols utilize OT as the fundamental
tool during the protocol execution. More specific, there are
two types for these MPSI protocols according to the role
of OT in the entire protocol. Fristly, OT works a underling
building block to construct other cryptographic tools such
as OPRF, OPPRF, OKVS, etc. Then these tools are involved
in the MPSI protocol. Secondly, OT combined with garbled
bloom filter (GBF) is utilized to build the MPSI protocol.
In 2017, Kolesnikov et al. [3] brought forward an efficient
MPSI protocol and provided an implementation of it. It
is the first coded MPSI protocol, which is significant in
the development of MPSI protocols. Chandran et al. [9]
strengthened Kolesnikov et al.’s [3] protocol, removing the
expensive XOR-based secret sharing scheme and then re-
placing it with the efficient Shamir’s secret sharing scheme.
Garimella et al. [10] proposed OKVS to reduce the com-
munication costs required in OPPRF-based protocols. Nevo
et al. [11] designed novel MPSI protocols based on OKVS.
Their protocols consider the condition that the participants
collude after being corrupted by a malicious adversary.
Inbar et al. [4] provided three protocols that extend the PSI
protocol based GBF [26] to a multi-party setting. Recently,
Ben-Efraim et al. [27] further extended Inbar et al’s protocol
[4] to achieve security in the malicious model.

Apart from the aforementioned traditional MPSI proto-
cols, there also exist MPSI protocols focusing on achieving
special functionalities. Extensive works [28]–[31] explored
to threshold MPSI, which adds threshold constraints to
traditional multi-party PSI. In the meantime, some other
works [32]–[36] studied on MPSI with cardinality (MPSI-
CA), supporting multiple parties to collaboratively calculate
the size of their set intersection without revealing the actual
intersection elements.

3. Preliminaries

3.1. Notation

We use λ, σ to denote the computational and statistical
security parameters, and use [n] to represent the set of pos-
itive integers less than n, i.e., {1, 2, 3, . . . , n}. The symbols
P1, . . . , Pn denote the set of n parties, where each party
owns the input set Xi for i ∈ [n]. P1 is assumed to be the
leader who calculates the final intersection results, while
other parties are regarded as assistants. For a vector v, we
use v[j] to denote its j-th element. For n ×m size matrix
M , we use Mj to denote its j-th column where j ∈ [m]. M i

represents the matrix M belongs to party Pi and ||x||H de-
notes the hamming weight of string x. The symbol negl(λ)
denotes a negligible function that negl(λ) < 1/p(λ) holds
for any polynomial p(·).

3.2. Random oblivious transfer

Oblivious Transfer (OT) [37], [38] is a fundamental
cryptographic protocol allowing the sender to transfer one
of multiple messages to the receiver without revealing which
message was sent, and the receiver learns nothing about the
other messages. Fig. 2 depicts the functionality of 1-out-of-
2 OT, where the sender inputs two messages (m0,m1) and
the receiver inputs a chosen bit c. As a result, the receiver
learns mc without knowing any information about m1−c and
the sender learns nothing about c. In our MPSI protocol,
we introduce a variant of 1-out-of-2 OT, i.e., random OT
(ROT) [39], where the sender inputs noting and the receiver
inputs a chosen bit c, then the sender gets two random
string (m0,m1) and the receiver gets mc, thus reducing the
communication overhead. Fig. 3 shows the functionality of
ROT.

Parameters: Message length ℓ.
Input: The sender inputs two message (m0,m1) and the
receiver inputs a choice bit c ∈ {0, 1}.
Output: the sender gets nothing and the receiver gets mc.

Figure 2. Ideal functionality for Oblivious Transfer FOT

Parameters: Message length ℓ.
Input: The sender inputs nothing and the receiver inputs a
choice bit c ∈ {0, 1}.
Output: the sender gets message (m0,m1) where mi ∈
{0, 1}ℓ and the receiver gets mc.

Figure 3. Ideal functionality for Random Oblivious Transfer FROT

3.2.1. Hamming correlation robustness. The security of
our MPSI protocol relies on the correlation robustness as-
sumption [15], [16], we extend this assumption to a new
definition which we call t-party correlation robustness as-
sumption to support the security of our protocol.

Definition 1 (Hamming Correlation Robustness). A hash
function H with input length n is d-hamming correla-
tion robust if for any a1, . . . , am, b1, . . . , bm ∈ {0, 1}n
with ||bj ||H ≥ d where j ∈ [m], the following dis-
tribution induced by s

$← {0, 1}n is pseudorandom.
Namely, for a random function F , we have (H(a1⊕ [b1 ·
s]), . . . ,H(am⊕[bm·s])) c≈ (F (a1⊕[b1·s]), . . . , F (am⊕
[bm · s])), where · denotes bit-wise AND and ⊕ denotes
bit-wise XOR.

Corollary 1 (t-party Hamming Correlation Robustness).
A hash function H with input length n and t ≥ 2
parties is t-party d-hamming correlation robust if for
any a1, . . . , am, b

i
1, . . . , b

i
m ∈ {0, 1}n with ||bij ||H ≥ d

where j ∈ [m] and i ∈ [t−1], the following distribution
induced by random sampling of si

$← {0, 1}n where
i ∈ [t − 1] is pseudorandom. Namely, for a random
function F , we have

(H(a1 ⊕ [b11 · s1]⊕ [b21 · s2] . . .⊕ [bt−1
1 · st−1]), . . . ,

H(am ⊕ [b1m · s1]⊕ [b2m · s2] . . .⊕ [bt−1
m · st−1]))

c≈ (F (a1 ⊕ [b11 · s1]⊕ [b21 · s2] . . .⊕ [bt−1
1 · st−1]), . . . ,

F (am ⊕ [b1m · s1]⊕ [b2m · s2] . . .⊕ [bt−1
m · st−1])),

where · denotes bit-wise AND and ⊕ denotes bit-wise
XOR.

Proof 1. Let a1, . . . , am, b
i
1, . . . , b

i
m ∈ {0, 1}n where

∀j ∈ [m] and ∀i ∈ [t − 1], ||bij ||H ≥ d holds, set

si
$← {0, 1}n. For j ∈ [m], calculate cj = aj ⊕

[b1j · s1] ⊕ [b2j · s2] . . . ⊕ [bt−2
j · st−2], then we have

c1, . . . , cm, b
t−1
1 , . . . , bt−1

m ∈ {0, 1}n with ||bt−1
j ||H ≥ d

for j ∈ [m] and st−1
$← {0, 1}n. This satisfies the selec-

tion range of each parameter in Definition 1. Therefore,
through Definition 1, we have

(H(c1 ⊕ [bt−1
1 · st−1]), . . . ,H(cm ⊕ [bt−1

m · st−1]))
c≈ (F (c1 ⊕ [bt−1

1 · st−1]), . . . , F (cm ⊕ [bt−1
m · st−1])).

By expanding cj (j ∈ [m]) we can yield the equivalence
relationships that follow

(H(a1 ⊕ [b11 · s1]⊕ [b21 · s2] . . .⊕ [bt−1
1 · st−1]), . . . ,

H(am ⊕ [b1m · s1]⊕ [b2m · s2] . . .⊕ [bt−1
m · st−1]))

c≈ (F (a1 ⊕ [b11 · s1]⊕ [b21 · s2] . . .⊕ [bt−1
1 · st−1]), . . . ,

F (am ⊕ [b1m · s1]⊕ [b2m · s2] . . .⊕ [bt−1
m · st−1])),

and this concludes the proof.

3.3. Multi-Point OPRF

Oblivious Pseudorandom Function (OPRF) combines
the concepts of OT and pseudorandom function (PRF),
in OPRF, the sender inputs nothing and the receiver in-
puts y1, . . . , yn ∈ Y , as a result, the sender obtains
a PRF key k and the receiver obtains the PRF values
OPRFk(y1), . . . ,OPRFk(yn) about its input. The sender

learns nothing about the receiver’s input y1, . . . , yn and
the receiver learns nothing about the PRF key k. Based
on OPRF, multi-point OPRF (MP-OPRF) [16] is achieved
through the following approaches: The sender with the input
set X picks a random bit string s $← {0, 1}w of length w and
the receiver with the input set Y generates two binary m×w
matrices A and B. A is a random matrix, and B = A⊕D
where D embeds the information of the input set Y . After
running w OTs between parties where the sender acts as the
OT receiver, the sender obtains a m×w matrix C with each
column of C being Ai or Bi depending on the chosen bit si.
The PRF key is the matrix C and the OPRF value ψ is calcu-
lated as ψ = H(C1[v[1]]|| . . . ||Cw[v[w]]) where v = Fk(x),
then the sender sends ψ it to the receiver. The receiver eval-
uates the OPRF value as ϕ = H(A1[v[1]]|| . . . ||Aw[v[w]])
where v = Fk(y). Consequently, ψ = ϕ indicates x = y
as Ai[v[i]] = Bi[v[i]] = Ci[v[i]]. Otherwise, from receiver’s
perspective, the value of ψ appears pseudorandom.

3.4. Security model

We adopt a semi-honest security model to assess the
security of our proposed MPSI protocol. Fig. 4 shows the
ideal functionality of our MPSI.

Parameters: Party number n and the upper bound of
party input set size N .
Input: Each party Pi has an input set

Xi = {xi1, . . . , xini
},

where xij ∈ {0, 1}∗ for j ∈ [ni].
Output: Party P1 obtain the intersection

I = X1 ∩ · · · ∩Xn.

Figure 4. Ideal functionality for MPSI FMPSI

3.4.1. Adversary model. In the semi-honest security model,
the adversary will adhere to all protocol specifications while
attempting to maximize its understanding of the informa-
tion it observes. The adversary’s goal is to gather details
regarding other participants’ local data or the outcomes
of the protocol. It is important to note that the leader is
not colluding with any assistants, a standard condition in
existing literature [40], [41]. Under this assumption, our
protocol demonstrates resilience against corruption up to
n− 1.
Definition 2 (Semi-Honest Security). Let the view

of Pi in protocol Π be as viewΠ
i (X1, . . . , Xn).

Let F(X1, . . . , Xn) be the output of P1 in ideal
functionality. Let outΠ(X1, . . . , Xn) be the output of
P1 in the protocol. The protocol Π is semi-honest secure
if there exist PPT simulators S1 and S2 such that for all
inputs X1, . . . , Xn, {S2(λ,Xi), (X1, · · · , Xn)}

c
≈

{viewΠ
i (X1, . . . , Xn), out

Π(X1, . . . , Xn)}, and
for i ∈ [2, n], S1(λ,X1, (X1, · · · , Xn))

c
≈

viewΠ
1 (X1, . . . , Xn).

4. Construction

4.1. Technical overview

To construct a novel MPSI protocol with ring topology,
we first extend the MP-OPRF protocol to the MP-SOPRF
protocol to fit the multi-party setting. As MP-OPRF relies on
the basic 1-out-of-2 OT, and in multi-party setting, Pi have
to wait P1, . . . , Pi−2 to complete before it can interact with
Pi−1. Thus, to minimize the waiting time in the protocol
execution, we replace traditional OT with ROT. Through
ROT, both parties initiate a set of random bits r0, r1 based
on a random bit b, where the sender gets r0, r1 and the
receiver gets rb, and no further interaction is needed. After
that, the sender masks its own messages m0,m1 with r0, r1
as r0 ⊕ m0, r1 ⊕ m1 and sends the masked values to the
receiver. Since the receiver only has rb, it can only reveal
one of the two messages mb = rb⊕ cb. As the initialization
process is independent of the messages, all participants are
able to execute this process in advance (or in parallel). We
use two forms of ROT here. The first form is conducted
between P1 and P2, where P1 is the leader. In the subsequent
process, P1 chooses a random message m0 as the input of
OT. In our approach, P1 directly utilizes the output r0 of
ROT as m0, making the communication overhead halved at
the beginning of the protocol (P1 only needs to send c1 to
P2). On the other hand, P2, . . . , Pn just execute the normal
ROT protocol.

4.2. Construction of MP-SOPRF

We regard multi-point sequential oblivious pseudoran-
dom function (MP-SOPRF) as a special MP-OPRF protocol
for multi-party scenarios. Let Xi denote the data set of
party Pi where i ∈ [n − 1]. The input of MP-SOPRF is
no longer a single party’s data set, but multiple parties’ data
sets, i.e., {X1, . . . , Xn−1}. After MP-SOPRF, P1 receives
the OPRF values corresponding to the data in X1 and Pn

receives the OPRF key. Let I = {X1 ∩ · · · ∩Xn−1}, each
value obtained by P1 is meaningful only when x ∈ I ,
otherwise it is a random string. Note that P1 cannot dis-
tinguish whether the obtained values are meaningful values
or random values. Assuming matrix C is a PRF key. The
pseudorandom function can be computed as OPRFC(x) =
H(C1[v[1]]|| . . . ||Cw[v[w]]). Finally, P1 obtains a matrix
A and computes the output values by OPRFA(x). On the
other hand, Pn obtains the PRF key C. For x ∈ I , we
have OPRFA(x) = OPRFC(x), otherwise if x ∈ X1 \ I ,
OPRFC(x) should be a random string in P1’s view. The
functionality of MP-SOPRF is defined in Fig. 5.

In MP-SOPRF, the intersection determination method is
reusable, and regardless of how the random seed of the OT
receiver is chosen, if the data is in the intersection, the value
at position M0 of the OT sender’s inputs (M0 and M1) will
be obtained, because when designing the OT input matrices
M0 and M1, the values at corresponding positions in M0 and
M1 for data mapped from the OT sender are the same. This
ensures that in the OT results obtained by the OT receiver, as

Input: Each party Pi has an input set Xi for i ∈ [n−1].
Output: Party Pn obtain the MP-OPRF key k. Party P1

obtain the MP-OPRF value set V (x) for each x in his
input set X1. If and only if x ∈ {X1∩· · ·∩Xn−1}, there
is OPRFk(x) = V (x)

Figure 5. Ideal functionality for MP-SOPRF FMP-SOPRF

long as the data used belongs to the OT sender, the computed
results will match the values in M0 at the corresponding
positions.

Thus, when identifying intersections, the OT sender
(who acts as the PSI receiver in PSI protocols) only needs to
compute and judge through its self-selected random number.
This approach is also feasible in a multi-party structure.
Only when the data is in the intersection of all parties,
regardless of how any party’s OT random seed is selected,
the outcome of the entire OT link will be m0. Finally, the
leader (also referred to as the receiver in two-party PSI)
only needs to match its generated random matrix A with the
matrix C sent by Pn during the final intersection matching.
When the leader’s data x is in the intersection of all parties
will occur A(x) = C(x).

4.3. Construction of our MPSI protocol

We first give a highlight overview of our MPSI protocol
consisting of 4 parties, as is shown in Fig. 6, P1 is the leader
with data set x. P2, P3, P4 are assistants and the data sets
are {y1, y2}, {z1, z2}, {w}. P1 prepare an all-ones binary
matrix D and compute a vector v = Fk(x). Subsequently,
based on the vector v, the corresponding elements in D
are set to 0 and the result is denoted as D1. P2 and P3

generate matrices D2 and D3 using the method described
above based on their own datasets. It should be noted that
if a corresponding position in the matrix is already 0, no
further action is needed. Firstly, P1 randomly generates a
binary matrix A and runs OT with P2, where the OT input is
A,B = A⊕D1. Let C2 be the OT result obtained by P2 and
then P2 runs OT with P3, where the OT input is C2, E2 =
C2⊕D2 and the OT output is C3 . Following this approach,
P3 and P4 continue to run OT, with the OT input being
C3, E3 = C3⊕D3 and the OT output being C4. Afteward,
P4 computes the vector ψ using C4 and its own data set
{w}, and sends it to P1. Finally P1 computes H(A(x))
using A and its own data set {x} and outputs x is in the
intersection if H(A(x)) = ψ. Regardless of how the random
seeds for the OT are selected by the participating parties,
there are the following relationships between the matrices.
A(x) = C2(y) if and only if x = y. C2(y) = C3(z) if
and only if y = z. C3(y) = C4(w) if and only if z = w.
Therefore, A(x) = C4(w) if and only if x = y = z = w
which means that x is in the set of {x}∩{y1, y2}∩{z1, z2}∩
{w}.

Generally, a multiparty PSI protocol involves n partic-
ipants P1, . . . , Pn, each having a dataset set Xi. They aim
to compute the intersection of theses datasets X1∩· · ·∩Xn

P1 P2 P3

OT

OT

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

base

1 0 0 1

1 1 1 0

1 1 1 1

0 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

base

1 0 0 1

1 1 1 0

0 1 1 1

0 1 0 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

base

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

base

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

base

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

base

1 0 0 1

1 1 1 0

0 1 1 1

0 1 0 1

P4data set data set data set data set

iff
, then

 is in the set of

OT

base

base

base

Figure 6. Overview of our MPSI protocol

without revealing any information beyond the common in-
tersection among the parties. We consider P1 as the leader
party that gets the intersected set. we describe the flow of
our protocol in Figure 7. In Step 6 and 8, involving the
execution of OT protocols between two parties, to enhance
efficiency, we can instantiate it using random OT. Specific
procedures are described in Figures 8 and 9, respectively.

4.4. Correctness

At a high level, for each x ∈ X1, let v = Fk(H1(x),
we can get Aj [v[j]] = Bj [v[j]] for all j ∈ [ω]. After OT
between P1 and P2, regardless of what P2 choose for s2,
Aj [v[j]] = Bj [v[j]] = C2

j [v[j]] for all j ∈ [ω] iff x ∈
X1 ∩X2. Through a similar analysis, we can conclude that
after OT between Pi and Pi+1, let v = Fk(H1(x) regardless
of what Pi+1 choose for si+1, Ci

j [v[j]] = Ei
j [v[j]] =

Ci+1
j [v[j]] for all j ∈ [ω] iff x ∈ Xi ∩ Xi+1 for all

i ∈ {2, 3, . . . , n−1}. At the end of the entire protocol flow,
Pn will get matrix Cn. By transitivity, let v = Fk(H1(x) we
can deduce Cn

j [v[j]] = En−1
j [v[j]] = Cn−1

j [v[j]] = · · · =
E2

j [v[j]] = C2
j [v[j]] = Bj [v[j]] = Aj [v[j]] for all j ∈ [ω] iff

x ∈ X1 ∩ · · · ∩Xn, which means that Cn
j [v[j]] = Aj [v[j]].

Then for each x ∈ X1, We can conclude x ∈ X1∩ · · ·∩Xn

iff ϕ ∈ Ψ.

5. Security analysis

As we assume the leader will not collude with any assis-
tant, we consider the security of our MPSI protocol under
two scenarios: 1) only the leader is corrupted, and 2) the
assistants are corrupted (i.e., the leader is not corrupted). Our
security analysis relies on the following two lemmas [16].
Lemma 1. If F is a pseudorandom function, H1(x) is differ-

ent for each x ∈ X1 ∪ · · · ∪Xn, the probability that the
number of “1”s in the sequence Di

1[v[1]], . . . , D
i
w[v[w]]

does not exceed d (the parameter of Hamming corre-
lation robustness defined in Corollary 1) is negligible.

Lemma 2. If H2 satisfies t-party Hamming corre-
lation robustness, for x ∈ X1, y ∈ Xn\I ,
x ̸= y, v = Fk(H1(x)), u = Fk(H1(y)),
the probability that H2(A1[v[1]]|| . . . ||Aw[v[w]]) =
H2(C

n
1 [u[1]]|| . . . ||Cn

w[u[w]) holds is negligible.

Theorem 1. If F is a pseudorandom function, H1 is a
collision resistant hash function, and H2 is a t-party
d-Hamming correlation robust hash function, then our
MPSI protocol securely realizes FMPSI (Figure 4) in
the semi-honest mode.

Proof 2 (P1 is not corrupted). We construct a probabilistic
polynomial time (PPT) simulator SZ where Z is a subset

Parameters: Parties P1, P2,. . . , and Pn agree on security parameters λ and σ, two hash functions H1 : {0, 1}∗ → {0, 1}ℓ1
and H2 : {0, 1}ω → {0, 1}ℓ2 , pseudorandom function F : {0, 1}λ×{0, 1}ℓ1 → [m]ω where ℓ1, ℓ2, m, and ω are protocol
parameters common to all parties.
Preprocessing Stage:

1) Each party Pi samples a random string si ←$ {0, 1}ω as the OT receiver inputs for i ∈ {2, 3, . . . , n}.
2) All participating parties share the PRF key k ←$ {0, 1}λ.
3) Each party Pi generates an m× ω matrix Di with all elements equal to 1 for all i ∈ [n].
4) For each x ∈ Xi, party Pi computes v = Fk(H1(x)) and set Di

j [v[j]] = 0 for all j ∈ [ω] where i ∈ [n− 1].
Wheeled Oblivious Transfer Interaction:

5) P1 samples a random binary matrix A $← {0, 1}m×ω. Computes matrix B = A⊕D1.
6) P1 as the OT sender with input {Aj , Bj}j∈ω and P2 as the OT receiver with input s2 run OT ω times. After all

OTs are completed, P2 obtains an m× ω matrix C2 whose column vectors is a m-bit OT result string.
7) P2 computes E2 = C2 ⊕D2.
8) Next each party Pi runs wheeled OT interaction for i ∈ {2, 3, . . . , n − 1}, which means that party Pi as the OT

sender runs OT with the next party Pi+1 as described in step 6. The OT result matrix for party Pi+1 is denoted as
Ci+1. When party Pi is the OT sender, his input is {Ci, Ei = Ci ⊕ Di} where matrix Ci is the outcome of OT
conducted between Pi as the OT receiver and Pi−1.

Intersection Result Calculation:
9) After Wheeled OT, party Pn will get a matrix Cn, then Pn computes v = Fk(H1(x)) for each x ∈ Xn and its

OPRF value ψ = H2(C
n
1 [v[1]]|| . . . ||Cn

ω [v[ω]]) and sends ψ to P1.
10) The set of elements received by P1 from Pn is denoted as Ψ. P1 computes v = Fk(H1(x)) for each x ∈ X1 and

his own OPRF value as ϕ = H2(A1[v[1]]|| . . . ||Aω[v[ω]]). If ϕ ∈ Ψ, P1 puts x into the intersection set I .
11) Party P1 output I as the intersection of all parties.

Figure 7. Our multiparty private set intersection protocol

1) Party P1 and P2 perform ω instances random OTs
with message length m where P2 is the OT receiver
with input bits s2 ∈ {0, 1}ω. At the end of random
OT, P1 obtains ω message pairs {r0j , r1j}j∈[ω]. P2

obtains ω random message {rj}j∈[ω] where rj =

r
s2[j]
j .

2) P1 constructs matrix A, set the column vectors of
A as {r0j}j∈[ω], then compute matrix B = A⊕D1.
Then it calculates matrix ∆j = Bj ⊕ r1j for all j ∈
[ω] and send ∆ = ∆1|| . . . ||∆ω to P2.

3) P2 constructs matrix C2 as:

for j ∈ [ω], C2
j =

{
rj , s2[j] = 0,
rj ⊕∆j , otherwise.

Figure 8. The instantiated using random OT in Step 6

of which the parties in P2, . . . , Pn are corrupted by the
adversary. Given {Xi}i∈Z , SZ can generate simulated
views, and these simulated views are computationally
indistinguishable from the views of the joint distribution
of corrupted parties in the real protocol. SZ generates
the random string {si

$← {0, 1}w}i∈Z honestly and
chooses the random matrix {Ci}i∈Z ∈ {0, 1}m×w. It
runs the OT simulator to simulate the view of the OT
receiver for the corrupted party Pi ∈ Z with inputs
si[1], . . . , si[w] and outputs Ci

1, . . . , C
i
w. Furthermore,

SZ sends a uniform random PRF key k to the corrupted
parties. Finally SZ outputs the view of corrupted parties.

1) Pi and Pi+1 perform ω instances ROTs with mes-
sage length m where Pi+1 is the OT receiver with
input bits si+1 ∈ {0, 1}ω. At the end of ran-
dom OT, Pi obtains ω message pairs {r0j , r1j}j∈[ω].
Pi+1 obtains ω random message {rj}j∈[ω] where
rj = r

si+1[j]
j .

2) Pi does following steps:
a) Construct matrix R0 which column vectors are
{r0j}j∈[ω] and matrix R1 which column vectors
are {r1j}j∈[ω]. Then compute matrix Ei = Ci ⊕
Di.

b) Compute matrix Γ = R0⊕Ci, ∆ = R1⊕Ei and
send ∆, Γ to Pi+1.

3) Pi+1 constructs matrix Ci+1 as:

for j ∈ [ω], Ci+1
j =

{
rj ⊕ Γj if si+1[j] = 0
rj ⊕∆j otherwise

Figure 9. The instantiated using random OT in Step 8

We prove that {SZ(λ, {Xi}i∈Z),F(X1, . . . , Xn)} c≈
{viewΠ

Z (X1, . . . , Xn), out
Π(X1, . . . , Xn)} via a se-

quence of computationally indistinguishable hybrid ar-
guments.

Hybrid0 : The view of corrupted parties {Pi}i∈Z and the
output of P1 in the real protocol.

Hybrid1 : Same as Hybrid0 except that for party P2,
for each j ∈ [w], if s2[j] = 0, P1 samples a random
column Aj

$← {0, 1}m and computes Bj = Aj ⊕ D1
j ;

otherwise it samples a random column Bj
$← {0, 1}m

and computes Aj = Bj ⊕ D1
j . This hybrid is identical

to Hybrid0.
Hybrid2 : Same as Hybrid1 except that SZ chooses a

random PRF key k. This is statistically identical to
Hybrid1.

Hybrid3 : Same as Hybrid2 except that the protocol
aborts if there exist x ̸= y ∈ X1 ∪ · · · ∪ Xn such that
H1(x) = H1(y). This hybrid is identical to Hybrid2

except negligible probability because H1 is collision
resistant and then the aborting probability is negligible.

Hybrid4 : Same as Hybrid3 except that the protocol
aborts if there exist x ∈ Xn\I , for v = Fk(H1(x)), there
are fewer than d 1’s in Di

1[v[1]], . . . , D
i
w[v[w]] where

i ∈ [n− 1]. The choice of parameter m,w ensure that if
F is a random function and H1(x) is different for each
x ∈ X1 ∪ · · · ∪Xn, the probability of abort is negligible
by Lemma 1.

Hybrid5 : Same as Hybrid4 except that the output of P1

is replaced by F(X1, . . . , Xn) = I = X1 ∩ · · · ∩ Xn.
This hybrid changes the output of P1 iff there are
x ∈ X1, y ∈ Xn \ I , x ̸= y, such that v = Fk(H1(x)),
u = Fk(H1(y)), H2(A1[v[1]]|| . . . ||Aw[v[w]]) =
H2(C

n
1 [u[1]]|| . . . ||Cn

w[u[w]). Since
H2(C

n
1 [u[1]]|| . . . ||Cn

w[u[w]) is pseudorandom by
the t party d-Hamming correlation robustness of
H2, this hybrid is identical to Hybrid4 except for
a negligible probability for sufficiently large ℓ2 by
Lemma 2.

Hybrid6 : Same as Hybrid5 except that the protocol does
not abort. From the above discussion, it is evident that
the probability of a protocol abort is negligible.

Hybrid7 : Same as Hybrid6 except that for corrupted par-
ties {Pi}i∈Z , SZ samples the matrixes {Ci}i∈Z and runs
the OT simulator to simulate the view of an OT receiver
for Pi. This hybrid is computationally indistinguishable
from Hybrid6 by the security of OT protocol.

Proof 3 (P1 is corrupted). We construct a PPT simulator S1
as follows. S1 generate simulated views wiht P1’s input
set X1, the max input set size N (Here we can also input
the size nn of Pn’s input set, as in traditional MPSI, the
size of each party’s sets are not information requiring
protection and do not affect the correctness of our proof
or the security of the protocol) and the intersection
I = F(X1, . . . , Xn), and these simulated views are
computationally indistinguishable from the views of P1

in the real execution of the protocol. S1 computes the
matrix A and B honestly and run the OT simulator to
simulate the view of the OT sender for the corrupted
party P1. For each x ∈ I , it computes v = Fk(H1(x))
and the OPRF value ψ = H2(A1[v[1]]|| . . . ||Aw[v[w]]).
Let the set of OPRF values computed by x ∈ I be ΨI .
Subsequently it selects N − |I| random ℓ2-bit random
strings and let the set of these strings be ΨR. In Step
9, it send ΨI ∪ ΨR to P1 and finally outputs the P1’
simulated view. We prove S1(λ,X1,F(X1, . . . , Xn))

c≈

viewΠ
1 (X1, . . . , Xn) via a sequence of computationally

indistinguishable hybrid argument.
Hybrid0 : The view of P1 in the real protocol.
Hybrid1 : Same as Hybrid0 except that the protocol

aborts if there exist x ̸= y ∈ X1 ∪ · · · ∪ Xn such that
H1(x) = H1(y). This hybrid is identical to Hybrid0

except negligible probability because H1 is collision
resistant and then the aborting probability is negligible.

Hybrid2 : Same as Hybrid1 except that the proto-
col aborts if there exist x ∈ Xn \ I such that
for v = Fk(H1(x)), there are fewer than λ 1’s in
D1

1[v[1]], . . . , D
1
w[v[w]]. The choice of parameter m,w

ensure that if F is a random function and H1(x) is
different for each x ∈ X1 ∪ · · · ∪ Xn, the probability
of abort is negligible by Lemma 1.

Hybrid3 : Same as Hybrid2 except that S1 run the OT
simulator to simulate the view of an OT sender for P1.
This hybrid is computationally indistinguishable from
Hybrid2 by the security of OT protocol.

Hybrid4 : Same as Hybrid3 except that for x ∈ Xn \ I ,
S1 replaces the OPRF value of x by ℓ2-bit random
string. This hybrid is computationally indistinguish-
able from Hybrid4 by the t party d-Hamming cor-
relation robustness. For each x ∈ Xn \ I , let v =
Fk(H1(x)), a = A1[v[1]]|| . . . ||Aw[v[w]] and bi =
Di

1[v[1]]|| . . . ||Di
w[v[w]] for i ∈ [n−1]. We can compute

that Cn
1 [v[1]]|| . . . ||Cn

w[v[w]] = a⊕ [b1 ·s2]⊕· · ·⊕ [bn−1 ·
sn]. Since ||bi||H ≥ d and si+1 is randomly sampled and
unknown to P1 for i ∈ [n − 1], the OPRF value of x
which is H2(C

n
1 [v[1]]|| . . . ||Cn

w[v[w]]) is pseudorandom
for P1 by the t party d-Hamming correlation robustness
of H2.

Hybrid5 : Same as Hybrid4 except that the protocol does
not abort. From the above discussion, it is evident that
the probability of a protocol abort is negligible. This
hybrid is P1’s view simulated by S1.

6. Experiments

6.1. Theoretical analysis

6.1.1. Choice of m,w. The parameter m,w in our pro-
tocol satisfy that if F is a random function and H1(x)
is different for each x ∈ X1 ∪ · · · ∪ Xn, then for x ∈
Xn \ I and v = Fk(H1(x)), there are at least λ 1’s in
D1

1[v[1]], . . . , D
1
w[v[w]] with all but negligible probability.

This is to ensure that in the final step of the protocol,
P1 cannot brute-force information beyond obtaining the
intersection from the OPRF values. In other words, the
OPRF values for any item in the Pn’s input set which is
not in the intersection I remain pseudorandom to P1. This
is achieved because of the correlation robustness property of
H2. We will determine the value of m (which is typically
N in this protocol) and then compute w as follows. The
column Di was initialized as 1m, then for each x ∈ X1,
P1 computes v = Fk(H1(x)) and sets Di[v[i]] = 0. Since
F is a random function and H1(x) is different for x ∈ X1,

TABLE 2. RUNNING TIME (IN MILLISECOND) OF THE MPSI PROTOCOLS IN LAN AND WAN SETTINGS.

Total running time for different parties(ms)
LAN (5000M, 0.2ms RTT) WAN (200M, 2ms RTT)Set size Protocol

4 6 8 10 12 14 15 4 6 8 10 12 14 15
KMPRT [3] 364 499 864 1140 1524 1986 2268 947 2153 4046 6629 9881 13788 16009

KMPRT(AUG) [3] 400 431 482 499 589 618 625 1592 2274 3092 3880 4679 5498 5949
NTY [11] 232 238 198 260 297 320 395 365 557 728 893 1114 1345 1434

212

Ours 363 374 394 466 457 465 728 366 417 493 595 660 796 673
KMPRT [3] 551 885 1435 1853 2488 3132 3602 1831 4537 8598 14061 20909 29186 33839

KMPRT(AUG) [3] 681 802 833 915 1037 1141 1219 3417 5197 6689 8488 10231 12072 12937
NTY [11] 229 294 323 339 414 427 516 599 1041 1355 1726 2122 2645 2754

213

Ours 395 453 428 527 538 524 585 439 575 669 790 886 991 1315
KMPRT [3] 996 1521 2326 3500 4525 5715 6327 3547 8641 16809 27696 41296 57663 66818

KMPRT(AUG) [3] 1288 1434 1585 1742 1893 2088 2171 6194 9663 13252 16774 20298 23850 25753
NTY [11] 334 508 542 567 632 753 686 1086 1751 2541 3295 4055 4964 5388

214

Ours 475 548 559 600 594 632 969 646 868 988 1221 2160 2660 3339
KMPRT [3] 1735 3077 4600 6597 8806 10552 11882 6869 17035 33101 54600 81490 113746 131870

KMPRT(AUG) [3] 2645 2882 3259 3568 3730 4236 4273 13516 20494 26359 33339 40494 47818 51368
NTY [11] 593 819 919 960 1134 1157 1255 2103 3363 4935 6447 7997 9572 10398

215

Ours 635 663 701 764 1521 2058 2070 952 1330 1868 2164 3356 3362 4801
KMPRT [3] 3087 5982 9854 12995 16776 20642 23348 13788 34382 66066 108869 162357 226912 262982

KMPRT(AUG) [3] 5482 5929 6477 7285 7543 8235 8788 26920 38385 52767 66796 81011 95177 101991
NTY [11] 1083 1348 1620 1769 1936 2225 2308 3993 6700 9717 12777 15821 19019 20559

216

Ours 1003 1037 1070 3646 3435 3522 4242 1633 2409 4601 4259 6054 8599 9255
KMPRT [3] 6549 11218 17340 24655 32832 41030 44658 29658 75154 144507 238440 355742 496675 576085

KMPRT(AUG) [3] 10664 12934 13655 15498 17592 18354 19229 59653 85886 116037 147080 178280 209563 225231
NTY [11] 2133 2505 3041 3225 3798 4166 4474 8628 14166 20867 27532 34252 40943 44400

217

Ours 2814 3598 3672 4582 5293 5585 5465 6367 7335 8300 9809 12753 14148 14530
KMPRT [3] 12338 21912 35974 49526 63299 81296 91360 60064 148683 288943 476566 711234 992698 1152083

KMPRT(AUG) [3] 24767 26423 29833 32954 35867 39160 39499 119125 180798 232095 295276 356877 423846 452325
NTY [11] 4425 5161 5770 6540 7831 8930 9634 17246 28314 41741 54827 68289 81717 88472

218

Ours 3205 4133 4480 6136 6929 7902 8085 7503 12085 13582 18579 22203 24799 27074
KMPRT [3] 27061 42049 70068 98985 131225 164695 180946 122911 301132 578093 952718 1421702 1985126 2301667

KMPRT(AUG) [3] 50014 64313 65266 67896 75725 77460 86233 246857 361365 488146 618449 746404 849883 934572
NTY [11] 9056 10179 11537 13194 15445 17475 18861 34880 57035 83062 109812 136550 165247 176370

219

Ours 8476 8540 8653 8698 8692 9476 9970 12193 21440 23439 32219 39165 45423 48800
KMPRT [3] 63815 85631 140710 204628 256021 325696 - 247219 596205 1159041 1908268 2845787 3974837 -

KMPRT(AUG) [3] 122619 116997 140912 148125 157234 170809 182509 483092 733914 982592 1248201 1501481 1722380 1878569
NTY [11] 19177 21927 25099 30163 33463 36118 38696 71108 123544 167425 219416 276702 339043 371039

220

Ours 13109 13859 14170 15284 16755 16893 16753 27000 39202 50541 62909 75512 89505 95911

v is random and independent for x ∈ X1 which means
that the probability Pr[D1

i [j] = 1] is same for all j ∈ [m].
especially, Pr[D1

i [j] = 1] = (1− 1
m)n1 . Let p = (1− 1

m)n1 .
For any x ∈ Xn \ I , the probability that there are d 1’s in
D1

1[v[1]], . . . , D
1
w[v[w]] is(

w
d

)
pd(1− p)w−d,

since Pr[D1
i [v[i]] = 1] = p is independent for all i ∈ [w].

Then for x ∈ Xn \ I , the proper w that there are at least d
1’s with all but negligible probability can be computed by
the union bound:

N ·
d−1∑
k=0

(
w
k

)
pk(1− p)w−k ≤ negl(σ).

6.1.2. Choice of ℓ1 and ℓ2. The parameters ℓ1 and ℓ2 are
respectively the output lengths of hash functions H1 and H2.
We need to set ℓ1 = 2λ to guarantee collision resistance

against the birthday attack and set ℓ2 = σ + 2 log(N)
to guarantee that the probability of collision in the MPSI
protocol (Step 10) is negligible for a semi-honest model,
similarly as in [15], [16].

6.1.3. Complexity analysis. In our MPSI protocol, we rely
solely on lightweight cryptographic tools such at OT exten-
sion, hash functions, AES and bitwise operations. Without
loss of generality, we consider the upper bound on the input
set sizes of the parties as N 2 and set m = N as in [16]. For
the fixed m,N and security parameter λ, we can compute
w, ℓ2 using the method mentioned in Section 6.1.

We denote party P1 as the leader and party P2, . . . , Pn−1

as the assistant. P1 generates matrix A and B which cost lin-
ear complexity in N . Then P1 runs w OTs with P2 that cost
linear complexity in N . In this step, we significantly reduce

2. Typically, during testing, we assume that the size of the sets of all
participants is N . Participants with sets smaller than N can expand their
set sizes to N by adding random data.

4 6 8 10 12 14

Participants

0.5

1.0

1.5

2.0

Ex
ec

ut
io

n
Ti

m
e

(s
)

KMPRT
KMPRT(AUG)
NTY
Ours

(a) |S| = 212

4 6 8 10 12 14

Participants

1

2

3

4

5

6

Ex
ec

ut
io

n
Ti

m
e

(s
)

KMPRT
KMPRT(AUG)
NTY
Ours

(b) |S| = 214

4 6 8 10 12 14

Participants
0

5

10

15

20

Ex
ec

ut
io

n
Ti

m
e

(s
)

KMPRT
KMPRT(AUG)
NTY
Ours

(c) |S| = 216

4 6 8 10 12 14

Participants
0

20

40

60

80

Ex
ec

ut
io

n
Ti

m
e

(s
)

KMPRT
KMPRT(AUG)
NTY
Ours

(d) |S| = 218

4 6 8 10 12 14

Participants
0

50

100

150

200

250

300

Ex
ec

ut
io

n
Ti

m
e

(s
)

KMPRT
KMPRT(AUG)
NTY
Ours

(e) |S| = 220

Figure 10. Comparison of MPSI protocols under different data set sizes in LAN setting

4 6 8 10 12 14

Participants
0

2

4

6

8

10

12

14

16

Ex
ec

ut
io

n
Ti

m
e

(s
) KMPRT

KMPRT(AUG)
NTY
Ours

(a) |S| = 212

4 6 8 10 12 14

Participants
0

10

20

30

40

50

60

70

Ex
ec

ut
io

n
Ti

m
e

(s
) KMPRT

KMPRT(AUG)
NTY
Ours

(b) |S| = 214

4 6 8 10 12 14

Participants
0

50

100

150

200

250

Ex
ec

ut
io

n
Ti

m
e

(s
) KMPRT

KMPRT(AUG)
NTY
Ours

(c) |S| = 216

4 6 8 10 12 14

Participants
0

200

400

600

800

1000

1200

Ex
ec

ut
io

n
Ti

m
e

(s
) KMPRT

KMPRT(AUG)
NTY
Ours

(d) |S| = 218

4 6 8 10 12 14

Participants
0

500

1000

1500

2000

2500

3000

3500

4000

Ex
ec

ut
io

n
Ti

m
e

(s
) KMPRT

KMPRT(AUG)
NTY
Ours

(e) |S| = 220

Figure 11. Comparison of MPSI protocols under different data set sizes in WAN setting

communication and computational overhead by adopting the
random OT scheme illustrated in Figure 8. In the final
intersection calculation stage, P1 only needs to perform hash
functions and bitwise operation with a complexity of N .
For party P2, . . . , Pn−1, they first act as the OT receiver
and run OT to get the matrix Ci for i ∈ {2, . . . , n − 1}.
Then they generate matrix Di and run w OTs with Pi+1

and use random OT in Figure 9 to decrease communication
and computational overhead which cost linear complexity in
N . Pn finally compute the OPRF value by hash functions
and bitwise operation.

Our protocol is currently the only one under the semi-
honest model where the leader’s and assistant’s communica-
tion and computational complexities are equal. In traditional
protocols, the leader typically bears a significant burden of
communication and computation, which can impose consid-
erable bandwidth and computational pressure on the leader.
The main reason for this situation is that most existing pro-
tocols predominantly employ mesh and star topology, which
contribute to the imbalance in communication and compu-
tation workload, primarily borne by the leader. Kavousi et
al. in [12] proposed a protocol based on a star + wheel
structure. In their protocol, all parties communicate with the
leader once in the first step, followed by the protocol running
in a wheel-like structure. Our protocol is a simple ring
structure, where each participant communicates once with
its adjacent party. This allows our protocol’s communication
and computational complexity for the leader and assistant to
depend solely on the size of the input set, independent of
the number of parties.

In table 1, we compared the communication and com-

putational complexity of our protocol with several currently
efficient protocols [3], [8], [11], [12]. The criteria we se-
lected for comparison include two points: first, the protocol
needs to provide up to n− 1 collusion resistance similar to
our protocol, and second, the protocol needs to demonstrate
high operational efficiency.

6.2. Experimental analysis

6.2.1. Experimental setup. Our MPSI was implemented
based on libOTe (https://github.com/osu-crypto/libOTe) us-
ing C++-11. We compared our MPSI with the state-of-
the-art ones, i.e., the KMPRT protocol [3] and the NTY
protocol [11]. All protocols in comparison were run on
Ubuntu 22.04 servers with 2× Intel(R) Xeon(R) 2.10 GHz
CPU and 256GB RAM. The input length was set to be 128
bits, the statistical security parameter is κ = 40, and the
computational security parameter is λ = 128. All protocols
were tested in both the local area network (LAN) and
wide area network (WAN) settings, the LAN setting has
0.2 milliseconds round-trip latency and 5000 Mbps network
bandwidth, and the WAN setting has 2 milliseconds round-
trip latency and 200 Mbps network bandwidth. The dataset
sizes ranges from 212 to 220, the number of parties ranges
from 4 to 15.

6.2.2. Comparison on total running time. Table 2 shows
the total running time of the related protocols. It is evident
that as the dataset size expands, our MPSI protocol not
only maintains a shorter overall execution time compared
to other protocols but also increasingly outperforms them.

TABLE 3. RUNNING TIME (IN MILLISECOND) THE MPSI PROTOCOLS OVER LARGE DATA SETS

Set size Protocol
Total running time for different parties(ms)

LAN (5000M, 0.2 ms RTT) WAN (200M, 2 ms RTT)
|C| = 16 |C| = 17 |C| = 18 |C| = 19 |C| = 20 |C| = 16 |C| = 17 |C| = 18 |C| = 19 |C| = 20

220
NTY [11] 43076 46154 49192 50213 55077 383345 409400 434396 463339 492568

Ours 15094 15887 16185 15940 17154 101832 108228 113779 119942 125969

221
NTY [11] 91441 92183 99581 109904 107423 837114 902238 946369 998135 1069145

Ours 29694 33125 30514 29988 31427 200637 213479 228281 238873 253829

222
NTY [11] - - - - - - - - - -

Ours 64822 67968 66434 69497 67659 406194 430619 457885 485455 511640

223
NTY [11] - - - - - - - - - -

Ours 138428 137397 136229 138187 138208 809523 862368 916236 970604 1022665

224
NTY [11] - - - - - - - - - -

Ours 282774 281785 288982 281654 295784 1624301 1721287 1842714 1949102 2053595

TABLE 4. COMMUNICATION COST (IN MB) OF MPSI PROTOCOLS.

Set size Protocol Communication cost (MB)
|C| = 4 |C| = 10 |C| = 15

212

KMPRT [3] 19.68 147.6 344.4
KMPRT(AUG) [3] 7.36 18.4 27.75

NTY [11] 7.36 18.4 27.75
Ours 1.6 5.20 8.24

216

KMPRT [3] 311.2 2334.1 5446.35
KMPRT(AUG) [3] 126.76 316.9 475.35

NTY [11] 126.76 316.9 475.35
Ours 21.53 79.52 126.4

220

KMPRT [3] 5608 42080 98205
KMPRT(AUG) [3] 2225.56 5563.9 8345.85

NTY [11] 2225.56 5563.9 8345.85
Ours 357.84 1253.42 2106.23

This improvement is primarily attributed to the substantial
reduction in communication overhead achieved by our MPSI
scheme as the dataset grows, as clearly demonstrated by
comparing experimental results in WAN and LAN environ-
ments. Fig. 10 and Fig. 11 further illustrates the comparative
trends of the MPSI protocol’s execution time as the number
of participants increases across various dataset sizes in the
LAN and WAN settings, respectively. It is evident that the
execution time of our MPSI protocol grows linearly at a
very slow pace. Particularly in WAN settings, our protocol
yields the best results compared to all others.

6.2.3. Comparison over large data sets. For data sets over
the size of 220, and for the number of participants, values
greater than or equal to 16. We only selected NTY [11]
and our own protocol for comparison. The NTY protocols
was unable to run due to insufficient memory when the data
volume exceeded 21. The experimental results are shown in
Table 3.

6.2.4. Comparison on communication overhead. Table 4
demonstrates that our scheme substantially reduces commu-
nication overhead. Specifically, with a dataset size of 220

and 15 participants, our protocol achieves a 97.8% reduction

compared to the KMPRT protocol and a 74.8% reduction
compared to the NTY protocol.

7. Conclusion

In this paper, we propose an efficient Multi-Party Private
Set Intersection (MPSI) protocol aimed at addressing the
bottlenecks in computational and communication overhead
in existing MPSI protocols. By constructing a new multi-
party sequential oblivious pseudorandom function (MP-
SOPRF), our protocol not only enhances computational effi-
ciency but also significantly reduces the communication cost
required for multi-party interactions. Our protocol is the first
MPSI protocol based solely on a ring topology. Experiment
results show that our MPSI achieves an approximate 2.87×
acceleration in total running time and achieves a 74.8%
reduction about communication, which is crucial for large-
scale data set applications.

References

[1] L. Lu and N. Ding, “Multi-party private set intersection in vertical fed-
erated learning,” in 2020 IEEE 19th International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom).
IEEE, 2020, pp. 707–714.

[2] A. Miyaji, K. Nakasho, and S. Nishida, “Privacy-preserving integration
of medical data: a practical multiparty private set intersection,” Journal
of medical systems, vol. 41, pp. 1–10, 2017.

[3] V. Kolesnikov, N. Matania, B. Pinkas, M. Rosulek, and N. Trieu,
“Practical multi-party private set intersection from symmetric-key tech-
niques,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, 2017, pp. 1257–1272.

[4] R. Inbar, E. Omri, and B. Pinkas, “Efficient scalable multiparty private
set-intersection via garbled bloom filters,” in International conference
on security and cryptography for networks. Springer, 2018, pp. 235–
252.

[5] J. Vos, M. Conti, and Z. Erkin, “Sok: Collusion-resistant multi-party
private set intersections in the semi-honest model,” Cryptology ePrint
Archive, 2023, unpublished.

[6] A. Bay, Z. Erkin, M. Alishahi, and J. Vos, “Multi-party private set inter-
section protocols for practical applications,” in 18th International Con-
ference on Security and Cryptography, SECRYPT 2021. SciTePress,
2021, pp. 515–522.

[7] A. Bay, Z. Erkin, J.-H. Hoepman, S. Samardjiska, and J. Vos, “Practical
multi-party private set intersection protocols,” IEEE Transactions on
Information Forensics and Security, vol. 17, pp. 1–15, 2021.

[8] J. Vos, M. Conti, and Z. Erkin, “Fast multi-party private set operations
in the star topology from secure ands and ors,” Cryptology ePrint
Archive, 2022, unpublished.

[9] N. Chandran, N. Dasgupta, D. Gupta, S. L. B. Obbattu, S. Sekar,
and A. Shah, “Efficient linear multiparty psi and extensions to cir-
cuit/quorum psi,” in Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security, 2021, pp. 1182–1204.

[10] G. Garimella, B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai, “Obliv-
ious key-value stores and amplification for private set intersection,”
in Advances in Cryptology–CRYPTO 2021: 41st Annual International
Cryptology Conference, CRYPTO 2021, Virtual Event, August 16–20,
2021, Proceedings, Part II 41. Springer, 2021, pp. 395–425.

[11] O. Nevo, N. Trieu, and A. Yanai, “Simple, fast malicious multiparty
private set intersection,” in Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, 2021, pp.
1151–1165.

[12] A. Kavousi, J. Mohajeri, and M. Salmasizadeh, “Efficient scalable
multi-party private set intersection using oblivious prf,” in Security
and Trust Management: 17th International Workshop, STM 2021,
Darmstadt, Germany, October 8, 2021, Proceedings 17. Springer,
2021, pp. 81–99.

[13] V. Kolesnikov, R. Kumaresan, M. Rosulek, and N. Trieu, “Efficient
batched oblivious prf with applications to private set intersection,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, 2016, pp. 818–829.

[14] C. Meadows, “A more efficient cryptographic matchmaking protocol
for use in the absence of a continuously available third party,” in 1986
IEEE Symposium on Security and Privacy. IEEE, 1986, pp. 134–134.

[15] B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai, “Spot-light:
lightweight private set intersection from sparse ot extension,” in
Advances in Cryptology–CRYPTO 2019: 39th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 18–22, 2019,
Proceedings, Part III 39. Springer, 2019, pp. 401–431.

[16] M. Chase and P. Miao, “Private set intersection in the internet setting
from lightweight oblivious prf,” in Advances in Cryptology–CRYPTO
2020: 40th Annual International Cryptology Conference, CRYPTO
2020, Santa Barbara, CA, USA, August 17–21, 2020, Proceedings,
Part III 40. Springer, 2020, pp. 34–63.

[17] P. Rindal and P. Schoppmann, “Vole-psi: fast oprf and circuit-psi
from vector-ole,” in Annual International Conference on the Theory
and Applications of Cryptographic Techniques. Springer, 2021, pp.
901–930.

[18] S. Raghuraman and P. Rindal, “Blazing fast psi from improved
okvs and subfield vole,” in Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, 2022, pp.
2505–2517.

[19] D. Bui and G. Couteau, “Private set intersection from pseudorandom
correlation generators.” IACR Cryptol. ePrint Arch., vol. 2022, p. 334,
2022, unpublished.

[20] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold, “Keyword
search and oblivious pseudorandom functions,” in Theory of Cryptog-
raphy: Second Theory of Cryptography Conference, TCC 2005, Cam-
bridge, MA, USA, February 10-12, 2005. Proceedings 2. Springer,
2005, pp. 303–324.

[21] L. Kissner and D. Song, “Privacy-preserving set operations,” in
Annual International Cryptology Conference. Springer, 2005, pp.
241–257.

[22] R. Li and C. Wu, “An unconditionally secure protocol for multi-party
set intersection,” in International Conference on Applied Cryptography
and Network Security. Springer, 2007, pp. 226–236.

[23] A. Patra, A. Choudhary, and C. P. Rangan, “Information theoretically
secure multi party set intersection re-visited,” in International Work-
shop on Selected Areas in Cryptography. Springer, 2009, pp. 71–91.

[24] ——, “Round efficient unconditionally secure mpc and multiparty
set intersection with optimal resilience,” in International Conference
on Cryptology in India. Springer, 2009, pp. 398–417.

[25] O. Ruan, Z. Wang, J. Mi, and M. Zhang, “New approach to set
representation and practical private set-intersection protocols,” IEEE
Access, vol. 7, pp. 64 897–64 906, 2019.

[26] C. Dong, L. Chen, and Z. Wen, “When private set intersection meets
big data: an efficient and scalable protocol,” in Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security,
2013, pp. 789–800.

[27] A. Ben-Efraim, O. Nissenbaum, E. Omri, and A. Paskin-Cherniavsky,
“Psimple: Practical multiparty maliciously-secure private set inter-
section,” in Proceedings of the 2022 ACM on Asia Conference on
Computer and Communications Security, 2022, pp. 1098–1112.

[28] M. J. Freedman, K. Nissim, and B. Pinkas, “Efficient private matching
and set intersection,” in International conference on the theory and
applications of cryptographic techniques. Springer, 2004, pp. 1–19.

[29] S. Ghosh and M. Simkin, “The communication complexity of thresh-
old private set intersection,” in Annual International Cryptology Con-
ference. Springer, 2019, pp. 3–29.

[30] S. Badrinarayanan, P. Miao, S. Raghuraman, and P. Rindal, “Multi-
party threshold private set intersection with sublinear communica-
tion,” in IACR International Conference on Public-Key Cryptography.
Springer, 2021, pp. 349–379.

[31] F.-H. Liu, E. Zhang, and L. Qin, “Efficient multiparty probabilistic
threshold private set intersection,” in Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security, 2023,
pp. 2188–2201.

[32] P. Mohassel, P. Rindal, and M. Rosulek, “Fast database joins and
psi for secret shared data,” in Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, 2020, pp.
1271–1287.

[33] S. K. Debnath, P. Stǎnicǎ, N. Kundu, and T. Choudhury, “Secure and
efficient multiparty private set intersection cardinality.” Advances in
Mathematics of Communications, vol. 15, no. 2, 2021.

[34] E. Fenske, A. Mani, A. Johnson, and M. Sherr, “Accountable private
set cardinality for distributed measurement,” ACM Transactions on
Privacy and Security, vol. 25, no. 4, pp. 1–35, 2022.

[35] N. Trieu, A. Yanai, and J. Gao, “Multiparty private set intersection
cardinality and its applications.” IACR Cryptol. ePrint Arch., vol. 2022,
p. 735, 2022.

[36] Y. Yang, X. Dong, Z. Cao, J. Shen, R. Li, Y. Yang, and S. Dou,
“Empsi: Efficient multiparty private set intersection (with cardinality),”
Frontiers of Computer Science, vol. 18, no. 1, p. 181804, 2024.

[37] M. O. Rabin, “How to exchange secrets with oblivious transfer,”
Cryptology ePrint Archive, 2005, unpublished.

[38] M. Naor and B. Pinkas, “Efficient oblivious transfer protocols.” in
SODA, vol. 1, 2001, pp. 448–457.

[39] D. Beaver, “Efficient multiparty protocols using circuit random-
ization,” in Advances in Cryptology—CRYPTO’91: Proceedings 11.
Springer, 1992, pp. 420–432.

[40] E. Zhang, F.-H. Liu, Q. Lai, G. Jin, and Y. Li, “Efficient multi-party
private set intersection against malicious adversaries,” in Proceedings
of the 2019 ACM SIGSAC conference on cloud computing security
workshop, 2019, pp. 93–104.

[41] A. Abadi, S. Terzis, R. Metere, and C. Dong, “Efficient delegated pri-
vate set intersection on outsourced private datasets,” IEEE Transactions
on Dependable and Secure Computing, vol. 16, no. 4, pp. 608–624,
2017.

	Introduction
	Motivation
	Contribution

	Related work
	Preliminaries
	Notation
	Random oblivious transfer
	Hamming correlation robustness

	Multi-Point OPRF
	Security model
	Adversary model

	Construction
	Technical overview
	Construction of MP-SOPRF
	Construction of our MPSI protocol
	Correctness

	Security analysis
	Experiments
	Theoretical analysis
	Choice of m, w
	Choice of 1 and 2
	Complexity analysis

	Experimental analysis
	Experimental setup
	Comparison on total running time
	Comparison over large data sets
	Comparison on communication overhead

	Conclusion
	References

