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Abstract—In this work, we present an efficient secure multi-
party computation MPC protocol that provides strong security
guarantees in settings with a dishonest majority of participants
who may behave arbitrarily. Unlike the popular MPC implemen-
tation known as SPDZ [Crypto ’12], which only ensures security
with abort, our protocol achieves both complete identifiability and
robustness. With complete identifiability, honest parties can detect
and unanimously agree on the identity of any malicious party.
Robustness allows the protocol to continue with the computation
without requiring a restart, even when malicious behavior is
detected. Additionally, our approach addresses the performance
limitations observed in the protocol by Cunningham et al. [ICITS
’17], which, while achieving complete identifiability, is hindered
by the costly exponentiation operations required by the choice
of commitment scheme.

Our protocol is based on the approach by Rivinius et al. [S&P
’22], utilizing lattice-based commitment for better efficiency. We
achieves robustness with the help of a semi-honest trusted third
party. We benchmark our robust protocol, showing the efficient
recovery from parties’ malicious behavior.

Finally, we benchmark our protocol on a ML-as-a-service
scenario, wherein clients off-load the desired computation to the
servers, and verify the computation result. We benchmark on
linear ML inference, running on various datasets. While our
efficiency is slightly lower compared to SPDZ’s, we offer stronger
security properties that provide distinct advantages.

Index Terms—Multi-Party Computation, Robustness, Machine
Learning

I. INTRODUCTION

Outsourcing computation to cloud servers has become an
invaluable practice in today’s digital landscape. By off-loading
intensive computational tasks to remote data centers, clients
gain a cost-effective solution that eliminates the need for
significant investment in hardware and software infrastructure.
Instead, they can leverage the vast, on-demand computing
power of the cloud to scale resources as needed. This flexibility
not only reduces initial capital expenses but also enhances
operational efficiency, enabling organizations to focus on core
activities and innovation rather than managing complex IT
systems. In an age defined by data-driven decisions and
optimized resource use, cloud outsourcing is now essential for
businesses and individuals alike.

While outsourcing to the cloud offers numerous advantages,
it also introduces significant security challenges. Cloud-hosted

data and applications are susceptible to risks such as data
breaches, unauthorized access, and service outages. Clients
must depend on the cloud provider’s security protocols, which
may not always align with their unique requirements and
standards. Ensuring data privacy, regulatory compliance, and
control over sensitive information becomes more complex
when data resides on remote servers. In this work, we focus
on safeguarding client data privacy and ensuring the accuracy
of outsourced computations.

Secure multi-party computation (MPC) [1]–[4] is a powerful
tool for enhancing the security of outsourced cloud computing.
MPC enables multiple parties to jointly compute a function
over their inputs while preserving the privacy of those inputs,
ensuring data confidentiality within a cloud environment. This
approach allows clients to securely delegate computational
tasks to the cloud, protecting sensitive information from poten-
tial exposure, even if the cloud service provider is untrusted.
As a cryptographic technique, MPC is essential for mitigat-
ing the security risks associated with cloud outsourcing, by
utilizing multiple service providers. However, existing MPC
protocols have certain drawbacks—some lack efficiency, while
others fall short in providing robust security guarantees.

In this paper we are interested in guaranteeing security even
in the presence of a dishonest majority of service providers. In
such a setting — MPC with a dishonest majority — protocols
can be categorized into two main types:

Protocols with common security guarantees, exemplified
by efficient and widely deployed solutions like SPDZ [5].
These protocols offer security with abort, meaning that if
misbehavior by a party is detected, the protocol execution
is aborted. As a result, the computation may fail to
complete successfully.

Stronger security guarantees, such as robustness, which
guarantees that malicious parties cannot prevent the honest
parties from obtaining the output of the computation,
as well as (complete) identification of the misbehaving
parties. As shown in [6], the latter can be achieved at the
expense of efficiency, or by more sophisticated, lattice-
based cryptography methods [7].

https://arxiv.org/abs/2506.00518v1


A. Our Contributions

In this work we enhance the approach in [7] by introducing
an additional entity, namely, a semi-honest trusted third party
(STTP, which can be one of the clients) to achieve robustness
for a number of corruptions of up to n − 2 parties. (For the
reason for dissimilar thresholds — i.e., n−2 vs. n−1 — with
a trusted dealer, we can identify every malicious server and
open its share to the other servers. However, if we identify
n − 1 malicious servers and open their shares, it would lead
to the only remaining server being able to combine the n− 1
servers’ shares and its own share to recover the input, which
is a situation we wish to avoid; therefore, we “degrade” our
guarantees to security with abort)

In [7], a tradeoff is made between privacy and robustness.
With threshold t used to reconstruct shares, their protocol fails
to provide robustness if there are more than n − t malicious
parties, and fails to provide privacy if there are more than t
malicious parties. In contrast, our protocol achieves privacy
if there is at least one honest party, and achieves robustness
when there are less than n − 2 malicious parties. Moreover,
our protocol does not need to restart as malicious behavior
is detected, which we achieve by means of homomorphic
encryption.

We showcase the performance of our protocol by bench-
marking it on neural network Network-A [7]–[9], which
consists of a sequence of dense and square layers. In more
detail, a neuron in the dense layer includes a weighted sum of
all previous layers (or the input in case of the first layer),
and it captures how much influence of each value from
previous layers should be considered. On the other hand, the
square layer adds non-linearity to the output of the dense
layer; it provides features such as avoiding over-fitting and
capturing more relationships that cannot be explained by using
linear relations on the inputs. Further, we also benchmark
our protocol on a linear ML application, where we show that
accuracy is not lost, while achieving reasonable efficiency.

In ML-as-a-service scenarios, clients secret-share their in-
puts with the computation servers. Once the computation is
complete, the servers return the output to the client. Our
MPC protocol, is “batch-based,” in the sense that it achieves
amortized efficiency by running computations on collections
(batches) of input data; as such it is well-suited for ML-as-a-
service applications, where, in order to optimize hardware uti-
lization and reduce costs, the computation servers may prefer
processing client requests in batches rather than individually.
Since our MPC protocol operates over polynomial rings, batch
processing of multiple inputs is inherently enabled, as these
rings can be decomposed into multiple slots, with each slot
encoding an input (cf. [10]).

B. Related Work

Our work ensures public verifiability, complete identifiabil-
ity, and robustness in the presence of a dishonest majority.
Related works along the SPDZ line of work (e.g., [5], [9],
[11], [12]), improve the efficiency of the online computation
phase, while still only achieving security with abort.

Other related work, such as [13] also utilize a bulletin
board, enabling public verifiability. Third parties use the
information published on the bulletin board with the messages
opened during the computation to verify the correctness of the
computation.

Regarding security with identifiable abort, there are also
works that enable honest parties to detect malicious behav-
ior and identify the corresponding parties, such as [7]. The
protocol in [7], however, only provide robustness when there
is an honest majority; otherwise, privacy will be violated. In
contrast, by adding an STTP, our protocol provides robustness
even under a dishonest majority and enables honest parties to
recover shares held by the malicious party without having to
restart the protocol.

In addition, the presence of an STTP allows us to achieve
fairness even with a dishonest majority. Specifically, if a
malicious party refuses to open its secret share, the STTP and
an arbitrary honest party can pool their shares and reconstruct
it. Thus, a dishonest party cannot abort with an advantage. In
contrast, if in [7] there is a dishonest majority, those parties
can learn the secret share themselves and from that point on
refuse to participate in the protocol.

Similarly to [7], our approach applies to amortized settings,
where multiple requests are served in tandem. In addition to
providing better hardware utilization, the approach is a suitable
candidate for MPC-as-a-service, as argued above.

C. Organization of the Paper

The organization of the rest of the paper is as follows.
Section II describes the network and computational model and
lists the building blocks that are used by our construction,
including but not limited to lattice-based commitments, ho-
momorphic encryption, and distributed decryption. Our robust
and verifiable MPC protocol is presented in detail in Sec-
tion III, together with its security analysis. Section IV focuses
on experimental results: The benchmarking of Network A
appears in Section IV-A, while the benchmarking of linear
ML computations appears in Section IV-B.

II. PRELIMINARIES

A. System Model

As it is customary, we model protocol participants as proba-
bilistic polynomial-time Turing machines (ITMs) and consider
the client-server model of computation with an STTP. We
assume a point-to-point synchronous communication network,
a public-key infrastructure (PKI), and a bulletin board (for
simplicity, as it can be realized from the PKI). Table I
summarizes the notation used in our protocol descriptions.

B. Building Blocks

a) MPC.: In secure multi-party computation (MPC) [2], [3],
[14], n parties hold input x1, ..., xn respectively, aiming to
compute a given function f(x1, ..., xn) privately and correctly.
Below we list the basic security properties for MPC.

Privacy: The parties’ inputs remain private.
Security with abort: All honest parties agree on abort.
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TABLE I
SUMMARY OF NOTATION USED IN THE PAPER.

Symbols Definition.
C A set of clients {C1, ..., Cm}
S A set of servers {S1, ..., Sn}
STTP Semi-honest trusted third party
B Bulletin board (broadcast channel)
[x] Secret share of value x (e.g., a client’s input)
P Prover in ZK proof (e.g., Σ protocol)
V Verifier in ZK proof

Robustness: The protocol always outputs a correct result
regardless of the adversary A’s behavior (also called
guaranteed output delivery) (cf. [15], [16]).
Complete identifiability: When a corrupted party misbe-
haves, honest parties always identify and agree on the
identities of the misbehaving party

b) Commitments.: We define the commitment operation as
Comm(x, r), where committer commits to a message x where
r is the randomness used in the commitment (r also acts as part
of the decommitment in the opening phase). The interface for
the verification operation is given by V er(Comm, x, r), where
the verifier takes a commitment and checks if it is consistent
with the committed message x and the decommitment r. The
two basic properties of a commitment scheme are as follows
(c.f. [17]):

Hiding: Comm(x, r) leaks no non-trival info of x. An
adversary A breaks hiding iff with non-negl probability
1) Parameters params← Gen(1n) are generated.
2) The adversary A is given input params, and outputs a

pair of messages m0,m1 ∈ {0, 1}n.
3) A uniform b ∈ {0, 1} is chosen, and com ←

Com(mb, r) is computed.
4) The adversary A is given com and outputs a bit b′.
5) The output of the experiment is 1 if and only if b′ = b.
Binding: An adversary A cannot open Comm(x, r) to
x′, except with negligible probability. A breaks binding
iff with non-negl probability
1) Parameters params← Gen(1n) are generated.
2) A is given input params and outputs

(comm,m, r,m0, r0).
3) The output of the experiment is defined to be 1 if and

only if m ̸= m0 and
Comm(m, r) = comm = Comm(m0, r0).

In order to provide complete identifiability in our MPC
scheme, committed values need to be updated as the com-
putation proceeds. The opening server computes its share x to
x

′
and opens it to the receiving server. With the homomor-

phic property, the receiving server updates the commitment
Comm(x) to Comm(x

′
), then uses Comm(x

′
) to authenticate

x
′
. By the binding property of the commitment, the authenti-

cation succeeds if and only if x
′

is correct. As such, we will
require the commitment scheme to be linearly homomorphi-
cally updateable, satisfying the following properties:

Comm(x1, r1)+Comm(x2, r2) = Comm(x1+x2, r1+r2)

Comm(x1, r1) + c = Comm(x1 + c, r1)

Comm(x1, r1) ∗ c = Comm(cx1, cr1)

Further, for efficiency reasons, we will be employing lattice-
based commitments [7] , which satisfy our homomorphic
updates requirement. In addition, such commitments can (and
will) be used to authenticate messages, in particular during the
course of the computation server Si opens a message to other
servers S\Si; if Si cheats, its misbehavior is identified. With
the binding property, the cheating server can not be opened to
a different message without getting detected.

With the homomorphic property, a server Si can update a
commitment locally to any layer of the computation circuit.
Thus, when another server intends to open its share, the server
Si holds the commitment at the same circuit layer as the
layer of opening. Further, due to the binding property, the
decommitment verification passes if and only if the opened
share is correct. Lattice-based commitments require only sim-
ple operations, such as multiplication and addition, whereas
discrete log-based commitments involve costly exponentiation.

c) Σ protocols.: This building block, proposed by Cramer
et al. [18], can be used to provide a ZK proof that both a
given encryption and a Pedersen commitment correspond to
the same value, say, x, without revealing x. We remark that
such functionality can be converted into a non-interactive form
using the Fiat-Shamir heuristic.
Σ-protocols can be realized based on lattices [19], [20].

Please refer to those papers of Σ protocol for lattice-based
signatures (with a similar approach for commitments) and
it achieves non-interactivity via the Fiat-Shamir heuristic
(cf. [19]). [7] shows that simulation proof can be constructed
by allowing the simulator to generate a “fake” ZK proof,
assuming a programmable random oracle (RO).

d) Homomorphic encryption.: To provide the robustness
property in our MPC scheme, we require encryption to be
homomorphic, so that the encryption can be updated along
with the computation of the circuit:

Enc(x1) + Enc(x2) = Enc(x1 + x2)

Enc(x1) + c = Enc(x1 + c)

Enc(x1) · c = Enc(cx1)

e) BGV encryption.: BGV encryption [21] is a fully ho-
momorphic encryption scheme We also utilize distributed
decryption from [7].

III. ROBUST AND VERIFIABLE MPC

In this section, we first describe the relevant ideal func-
tionalities and then describe how our protocol securely real-
izes these functionalities following the simulation paradigm
(cf. [22]).

A. Ideal Functionalities

The ideal functionality for MPC is depicted in Fig. 1.
Each party Pi (note that input parties may be different from
server Si ∈S) provides its input ini for circuit C, then

3



Functionality Ff
MPCINIT: On input (init, Cf , p) from all parties(where Cf

is a circuit with n inputs and one output computing f ,
consisting of addition and multiplication gates over Zp)
1. Store Cf and p

2. Wait for A to provide the set I of adversarially
controlled party indices

3. Store OUT := ⊥
INPUT: On input (input, Pi, ini), store (INPUT, Pi, ini)
EVAL: On input (eval) from all parties:
1. If not all input values have been provided, output

REJECT

2. Evaluate the circuit Cf on inputs (in1, ..., inn).
When the evaluation is completed, store the resulting
value as OUT

OUTPUT: On input (output) from all parties:
1. Send (output-result,OUT) to all parties Pi

Fig. 1. The ideal functionality for secure multi-party computation (MPC).

obtain output OUT = C(in0, in1, ..., inn−1). Figure 2 depicts
the ideal functionality for MPC with completely identifiable
abort MPC (Ff

CIDA-MPC); when malicious behavior is detected,
the functionality will abort and output the identity of the
misbehaving party.

Functionality Ff
CIDA-MPCINIT: Same as Ff

MPC.
In addition, receive and record the identity of trusted

client C. Set Lcheat := ∅

INPUT, EVAL: Same as Ff
MPC.

OUTPUT: On input (output) from all parties:
1. Send (output-result,OUT) to all adversarially con-

trolled parties Pi ∈ I.

2. Run ABORT, waiting for each adversarially con-
trolled party to send either (abort,ACCEPT) or
(abort,ABORT).

3. Send (output-result,OUT, Lcheat) to all parties,
where OUT may now be ⊥

ABORT : On input (abort, xi) from an adversarial server
Si

1. Lcheat := Lcheat ∪ Si

2. Set OUT := ⊥
Fig. 2. Ideal functionality for MPC with completely identifiable abort.

Combining the Ff
CIDA-MPC approach with a “trusted dealer”

robustness, can be achieved for a number of corruptions of
up to n − 2 parties. For the reason for dissimilar thresholds
(i.e., n − 2 vs. n − 1), please refer to I-A. The functionality
Ff

CIDA-RV-MPC for robustness with public verifiability at Fig. 3.

B. Protocol Description

At a high level, the protocol consists of an offline phase
and an online phase. In the offline phase, the client gener-
ates commitment and encryption parameters (including com-
mitment’s public parameters and encryption’s public/private

Functionality Ff
CIDA-RV-MPCINIT: Same as Ff

CIDA-MPC, additionally receive and record
the identity of trusted client T . Set Lcheat = ∅
INPUT: Same as Ff

CIDA-MPC

EVAL: Same as Ff
CIDA-MPC

OUTPUT: Same as Ff
CIDA-MPC

ABORT : On input (abort, xi) from an adversarial server
Si

1. Add Si to Lcheat

2. If |Lcheat| ≥ n− 1, set OUT = ⊥
AUDIT CESS: On input (audit-CESS) from
(audited-CESS), outputs (audited-CESS, Lcheat)

Fig. 3. Ideal functionality for robust MPC with completely identifiable abort
with public verifiability.

keys) and hands them to the STTPs. Next, the client and
STTP collaboratively generate input shares, along with the
corresponding commitments and homomorphic encryptions.
The objective is to ensure that the STTP does not possess all
the input shares and their associated encryptions, but instead
holds only the commitments to the input shares. After that,
shares, commitments, and encryptions are distributed to the
corresponding server. We call our protocol ΠRV-MPC, which is
split into two parts: offline and online.

In the online phase, the servers are responsible for carrying
out the computation. If a malicious behavior is detected by
any of the servers, the server makes an accusation to STTP.
STTP uses the commitment to validate the accusation; if the
accusation is valid, STTP broadcasts the encryption’s secret
key of the accused server. Next, all the servers use the received
secret key to recover the malicious share held by the accused
server. We now turn to a more detailed specification of the
protocol.

a) Offline phase.: As previously noted, the offline protocol
is designed to allow the STTPs (In our settings, we have
multiple offline phase STTPs and one online phase STTP) to
compute the randomness utilized in the online phase, such as
Beaver triples. In this phase, random elements rs are generated
to be used in masking inputs and distributing input shares
accordingly.

To ensure that no single STTP can access the secret input,
the offline protocol employs homomorphic encryption and
distributed decryption schemes (see Section 2). This approach
simplifies security by leveraging the semi-honest assumption
for STTPs, as our setting does not require the additional
complexity presented in [7]. Here, we also assume that the
client remains honest, solely providing inputs and receiving
outputs without further involvement. The structure of the
offline phase is illustrated in Fig. 4.

Here’s an extension of C offloading the computation work
to STTPs. Suppose there are n servers (denote each server as
Si) and n STTPs (denote each STTP as STTPi). The goal is
to have each server Si hold share xi along with commitments
and homomorphic encryptions for all shares.
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Protocol Πoff
RV-MPC

Parties set up BGV parameters (similarly to the distributed
decryption protocol).
For each party Pi:
1) Sample Wi ← U(R

(I+3m)∗t
p ) and yi ← U(RI+3m

p )
2) Encrypt Wi and yi to get Enc(Wi) and Enc(yi), then

broadcast Enc(Wi) and Enc(yi)
3) Commit to yi with Rc(yi), gets Comm(yi) then broad-

casts Comm(yi)
4) Compute Enc(W ) = Enc(Wi)
5) For each Pj ∈ P :

a) Define encrypted share of v = W [, 0] as Enc([v]j) =∑t−1
l=0 j

lEnc(W )[·, l]
b) mj =Dist-Decrypt (Enc(yi)− Enc([v]j))

6) Construct ⟨vi⟩ = (yi − mi, Rc(yi),Comm(y1) −
m1, . . . ,Comm(yn)−mn)

7) Split ⟨v⟩i and Enc(v) in parts of size I, M, M, M to get
views and ciphertexts for r, a, b, d.

8) For the Beaver triples:
a) Compute Enc(c) with Enc(a) ∗ Enc(b) (using the

homomorphic property of encryption)
b) Compute ⟨c⟩i = ⟨d⟩i+Dist-Decrypt(Enc(c) −

Enc(d))
c) Each party Pi sends its share to STTPi

d) STTPs then sends shares of r, a, b, c to the client C.

Fig. 4. The protocol’s offline phase.

C sends the private homomorphic encryption keys to all
STTPs, then distributes share xi to STTPi. Each STTPi

computes the homomorphic encryptions and lattice-based
commitments of xi, broadcasts the lattice-based commitments,
sends the homomorphic encryptions to all the servers, and
delivers each share to the corresponding server. Note that each
STTPi only gets a single share xi, which is random with
respect to the real value x.

Another extension involves having the servers compute
the offline phase rather than the STTPs. In this scenario, it
is necessary to prevent servers from behaving maliciously
without getting identified. To address this, the client can
generate a secret and private key pair for each party. The client
then broadcasts the public key and sends each secret key to the
respective parties and the STTP. Once the secret and public
keys have been distributed, the parties can execute the offline
protocol as described in [7].

b) Online phase.: The online protocol comprises a set of
servers S carrying out a computation without leaking the
input to any of them. CESS stands for commitment-enhanced
secret sharing, and was introduced in [6]. Its objective is to
realize, in dishonest majority settings, completely identifiable
abort, meaning that all parties that misbehave are flagged
as malicious. In order to make a CESS-type protocol prac-
tical, Rivinius et al. [7] proposed a lattice-based commitment
scheme, which only takes approximately 20x time as MP-
SPDZ [5] when there are 2 servers, whereas the approach in

[6] using Pedersen commitment would be roughly 800x. The
protocol in [7] realizes the completely identifiable approach,
and combining [7] with STTP, robustness can be achieved for
a number of corruptions of up to n−2 parties. For the reason
for dissimilar thresholds (i.e., n− 2 vs. n− 1) please refer to
I-A The input secret sharing phase allows the client to secret
share its input and broadcasts the commitment and encryption
of all inputs to the computation parties.

The robust protocol’s precondition is as follows: For
each client input x, each server Si holds ([x]i, ri,
Comm(x1),. . . ,Comm(xn), Enc(x1),. . . , Enc(xn)). The semi-
trusted third party (STTP) holds all commitments. Addition-
ally, each Si holds the Beaver triples received from the offline
phase as well as the commitments of all Beaver triple shares.
We describe our protocol, which achieves robustness up to
n − 2 malicious parties in Fig. 5. Our protocol achieves a
stronger security property than protocols in [6], [7], which
only achieve a completely identifiable abort in a dishonest
majority setting.

Additionally, we describe the optimized commitment open-
ing protocol in [7] here.When opening a commitment, it is in-
tuitive to just decommit (directly send the committed message
and randomness that generates the commitment). However,
directly decommit will require the commitment scheme to be
equivocal to prove simulated secure [6].

The equivocation property enabled the simulator to open
to any message (e.g., open Comm(x) to x

′
, where x

′ ̸= x)
but led to larger parameters and worse efficiency. To get rid
of the necessity of equivocation properties of the commitment
scheme, [7] introduced a new commitment open protocol. The
sender makes a new commitment, committing to the same
message as the original commitment. Then the sender proves
in zero-knowledge that the new and original commitment
commit to the same message. The opening protocol in [7]
only requires a programmable RO instead of an equivocal
commitment. As a result, without the equivocation property,
the parameters of the commitment can be much smaller,
leading to improved efficiency. For more details, please refer
to [7].

C. Security Proof

In this section, we argue the security of protocol ΠRV-MPC.
Theorem 1: ΠRV-MPC realizes Ff

CIDA-RV-MPC in the
(FPKI,FCRS)-hybrid model.

In [5], the authors prove that ΠSPDZ realizes Ff
MPC; further,

in [6], it is proven that ΠCESS realizes Ff
CIDA-MPC. This

subsection aims to prove ΠRV-MPC realizes Ff
CIDA-RV-MPC. One

can observe that the additional feature ΠRV-MPC does compared
to ΠCESS is to provide public verifiability and robustly open
some malicious shares. For public verifiability, credited from
[6], since all exchanged messages are public, the simulation
is trivial. As for robustly open malicious share, the simulation
could be achieved by having the simulator choose the public
and private keys of all servers in S, then generate/open
the homomorphic encryptions. Given the indistinguishable
property of homomorphic encryption under different keys, one
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Protocol Πon
RV-MPC

Input secret sharing: Client C intends to distribute input
x. The simplest way is for C to generate randomness r
in the offline protocol and compute secret shares. Then
C chooses parameters for the homomorphic encryption,
computes the homomorphic encryptions and lattice-based
commitments, broadcasts the lattice-based commitments,
sends the homomorphic encryptions to all the servers,
sends each share to the corresponding server, and sends
the decryption keys of the homomorphic encryption to the
online STTP that monitors the online computation.
1. C creates a share x1j = x− r + r1j, and xk = rk

where rx =
∑

rxj and 1 ≤ j ≤ n, 2 ≤ k ≤ n (n
is the number of servers)

2. C computes and broadcasts Enc(skj , xj)

3. C computes and broadcasts Comm(xj)

4. C sends skj to the online STTP

Preconditions:
Let xj denote the share held by server Sj
All servers and the STTP hold Comm(xi), 1 ≤ i ≤ n.
All servers hold Enc(xi) and Enc(ri), 1 ≤ i ≤ n.

Online computation:
1. All servers update Enc(xi) and Enc(ri) as the com-

putation proceeds; denote the updated ciphertexts as
Enc(x

′
i),Enc(r

′
i).

2. When Sk is identified as malicious, STTP broad-
casts Sk’s decryption key. The other servers decrypt
Enc(x

′
k),Enc(r

′
k), and obtain and x′

k, r′k.

3. To recover the computation from failure, a desig-
nated server (e.g. S0), adds xk to its share (e.g.,
x′
1 = x1 + xk). Since xk is a now a constant, all

parties can locally update Comm(x1) and Enc(x1)
by the homomorphic property of the commitment
and encryption schemes.

4. All servers send all x′
k and r′k of the malicious server

to STTP. Denote by (x′
k, r′k) sent from server Si as

(x′
ki, r

′
ki).

5. STTP then checks if there exists an inconsistency
between all (x′

ki, r
′
ki). If there is no inconsistency,

accept x′
ki, r

′
ki), and update the commitment.

6. Else, do as follows:
1) Set M ← ∅

2) While (∃ (x
′
kj , r

′
kj)!= (x

′
ki, r

′
ki):

a) Check the specific (x
′
kj , r

′
kj) and (x

′
ki, r

′
ki)

a

b) Identify the malicious pair (x
′
km, r

′
km) with

the commitment.

c) Ignore the malicious pair (x
′
km, r

′
km) and

update M := M ∪m

d) Accepts (x
′
ki, r

′
ki) that remain honest, and

update the commitments.

3) For those m∈M, go back to step 3

aHappens at most n− 2 times, since each check eliminates at least
one party.

Fig. 5. Our robust and publicly verifiable MPC protocol (online phase).

can not distinguish the homomorphic encryptions generated by
the simulator from the homomorphic encryptions in the real
world.

Another difference is that our scheme is a client-to-server
mode (the client sends the inputs to the server), [5]–[7]
are in a pure server mode. To build a transformation from
pure server mode to client and server mode, we observe the
following: In the pure server mode, we have two types of
input secret sharing: malicious server input secret sharing
and honest server input secret sharing. In our case, we are
in the model where the client provides the input shares. As
we assume the client is always honest, we could view our
model in the same way as an honest server input secret sharing.

Proof sketch: Our proof is a combination of techniques used
in [5]–[7]. For the simulator to simulate, it initially provides
dummy input shares that add up to zero. After getting back
the output from the ideal function, the simulator adjusts the
output shares held by the honest parties to be consistent with
the output. For example, the simulator has output y

′
that is

computed using dummy input shares, and y that is returned
by the ideal function, the simulator picks one of the honest
parties and then adds y − y

′
to the share held by the selected

input party, so now the output will also be y instead of y
′

(c.f.
Appendix A.3 of [5]). For the homomorphic encryption, we
do not need to adjust it as discussed above. For opening the
commitments, as discussed in [7], [23], with a programable
random oracle, the simulator can fake a zero-knowledge proof
for the final open, which is indistinguishable from the real
protocol.

The simulator for ΠRV-MPC is shown in Fig. 6. □

IV. APPLICATIONS AND EXPERIMENTAL RESULTS

A. Network-A Benchmark

In this section we first benchmark Network-A [7]–[9] with
our protocol. For the environment, we have three computation
servers, where up to two can be malicious. In addition, we
set up an STTP party to provide robustness. We use the same
parameters for lattice cryptography primitives of [7], where
the parameter of computation security is 40 bits. Furthermore,
we calculate the size of the homomorphic encryption we used
with our robust approach by [24], we have BGV encryption
with 350 bits.

We ran our experiments on machines with 32GB RAM
and 16 vCPUs. Below is the benchmark of our computation
online run time (in seconds), compared to the SPDZ and [7]
protocols. We observe that, compares to SPDZ, the running
time of our protocol is about 65x (see table II).

TABLE II
COMPARISON OF EFFICIENCY OF DIFFERENT PROTOCOLS,

BENCHMARKING ON NETWORK-A. COLUMNS 2 AND 3 REPRESENT
AMORTIZED COMPUTATION TIMES.

SPDZ (LowGear) [7] Our protocol
≈ 0.0036s ≈ 0.135s ≈ 0.227s
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Simulator SRV-MPC

INIT: SRV-MPC provides a CRS, such that it knows the
lattice-based commitment parameters. The simulator then
chooses the public/private key of the homomorphic encryp-
tion used for robustness.
Then SΠRV-MPC distributes shares, commitments, and homo-
morphic encryptions to each server as below:
INPUT: For each input, SRV-MPC generates dummy shares
of 0, generates the commitments and homomorphic encryp-
tions, and then distributes them to each server.
EVAL: SRV-MPC evaluates circuit C gate by gate
OUTPUT: SRV-MPC gets the output from functionality
FRV-MPC
then the simulator SRV-MPC proceeds as follows:
1) If the Lcheat >= n− 2, the simulator aborts.
2) Else, modify the output share of one of the honest

servers to be consistent with the output out. (Suppose
the output from FRV-MPC is out, and with the dummy 0
share, we get out

′
, add out − out

′
to an output share

of one of the honest servers)
3) For the zero-knowledge proof for the final output, as

stated in [7], the simulator can fake a ZKP with the
programmable random oracle.

OPEN: The simulator is able to do so since it holds the
public and private keys for all homomorphic encryptions.
The simulator sends the decryption key to the servers
when it detects a server that is malicious. Furthermore,
the dishonest parties’ shares are distributed uniformly,
therefore, the open view between the real and ideal world
will be indistinguishable.
AUDIT : The simulator can do an audit since the
commitments can be opened to the public (with hiding
property, the commitment does not leak info about the
share).

Fig. 6. Simulator for ΠRV-MPC’s proof.

TABLE III
THE THREE COLUMNS FROM LEFT TO RIGHT INDICATE: TIME OF

RECOVERY FROM MALICIOUS SHARES, RECOVERY TIME PLUS REMAINING
COMPUTATION WITH TWO PARTIES, AND RUN TIME IF THREE PARTIES

BEHAVE HONESTLY (ALL IN AMORTIZED MEASUREMENT).

Recovery time
Recovery time +

remaining computation
with two parties

Our protocol
with 3 parties

≈ 0.096s ≈ 0.211s ≈ 0.227s

Furthermore, we also show that our protocol recovers
quickly when a malicious server is detected (see table III).
Since the malicious server will be eliminated from the com-
putation, the recovery time can be offset by having one less
server in the computation. In the experiment, we show the time
to recover the share from the malicious party, plus the time
the computation continues with the two remaining parties is
not much different compared to the three-party computation
when no malicious behavior is detected.

B. ML Inference Framework

In this subsection, we first present the design of a frame-
work for privacy-preserving machine learning (ML) inference,
employing MPC protocols under malicious-dishonest majority
security settings, followed by the evaluation of the lattice-
based MPC protocol proposed in our study.

C. Framework design.

Our framework enables secure inference using a pre-trained
linear model, while ensuring the confidentiality of both the
model and the inference input data. The overall framework
design is depicted in Figure 7.

Pre-trained 
Linear Model 
(Public Data)

𝑤, 𝑏

𝑥𝑖

ML Inference using MPC

Performs Linear 
Computation: 
𝑦 = 𝑤	 ∗ 𝑥 + 𝑏

Sends 
SS 

𝑤, 𝑥, 𝑏

Inference 
Data Points

STTP
𝑦

C1

C2

C3

Fig. 7. A Design of ML Inference Framework

The linear model is trained on publicly available data,
and model parameters comprising weights (w) and biases
(b), which are subsequently secret-shared among computa-
tion parties involved in MPC protocol. Similarly, inference
input data point(s) (xi) are transformed into secret shares
to safeguard user privacy. These secret shares are shared
and distributed among computational parties, ensuring that no
single computation party has access to the original data or
model parameters.

The client initiates the process by sending secret shares of
the data, which are to be processed, along with the secret
shares of the weights and biases to the MPC servers. These
servers perform linear computations, specifically computing
w·x+b, where w represents the weights, x represents the input
data, and b represents the bias. This computation is performed
on encrypted secret shares, ensuring the privacy of the data.

Once the MPC servers have completed the necessary com-
putations, the results are securely transmitted back to the client
in encrypted form. Upon receipt, the client decrypts these
results to proceed with further data processing specific to
the model used. This includes the application of activation
functions and thresholding to finalize the inference process.
For instances utilizing the Logistic Regression model, the
decrypted output is first processed through a logistic function
to map the computed values to probabilities, followed by a
thresholding step to categorize these probabilities into discrete
class labels.
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D. Framework evaluation.

In this section, we define the evaluation framework to eval-
uate the Lattice-based MPC protocol proposed in our study.
We describe the datasets, experiment settings, and metrics
for validating the correctness and efficiency of the proposed
MPC protocol in performing ML inferences. Additionally, we
compare the performance of our Lattice-based protocol with
MASCOT [25], MASCOT* 1, SPDZ2k [26], and LowGear
[27] MPC protocols, all evaluated under the Malicious Dis-
honest Majority security setting.

a) Description of the datasets: In this study, we assessed the
performance of the proposed MPC protocol on the Wisconsin
Breast Cancer dataset and a subset of the Iris flower dataset.

The Wisconsin Breast Cancer dataset, made available by
Wolberg et al. [28], is widely used in ML research and
includes features derived from digitized images of fine needle
aspirates (FNA) of breast masses. These masses are cate-
gorized into two classes: benign or malignant. The dataset
contains 569 instances, each with 30 attributes or features.
These gestures describe various metrics for the tumors: radius,
texture, perimeter, area, smoothness, compactness, concavity,
concave points, symmetry, and fractal dimension. This dataset
is frequently utilized in ML research making it a benchmark
for comparing the performance of various classification algo-
rithms for binary classification tasks.

The Iris flower dataset, introduced by Fischer [29], is a
classical dataset in ML research. It contains 150 samples,
distributed across three classes of Iris species: Iris-setosa,
Iris-versicolor, and Iris-virginica. Each instance is described
by four features: sepal length, sepal width, petal length, and
petal width. Due to its simplicity and balanced structure, the
dataset is commonly used for classification tasks, particularly
for exploring the performance of algorithms in multiclass
classification scenarios.

For our study, we focused on a subset of the Iris dataset,
considering only the Iris-setosa and Iris-versicolor classes to
formulate a binary classification task. From the 100 relevant
samples (50 samples per class), we used 30 samples from
each class for training and reserved 20 samples from each
class for testing. This setup ensured a balanced dataset for
training while providing an unseen test set for evaluating
the performance of the classification model. This selection of
balanced number of samples for the samples from each class
ensures that the classifier is trained on a balanced data set
from both classes, thereby avoiding bias for a particular class
and allowing robustness evaluation on unseen data.

b) Experiment settings: In this study, we conducted experi-
ments to evaluate the performance of a lattice-based MPC pro-
tocol, utilizing linear ML classifier, Logistic Regression. Our
experiments were performed on Amazon Web Services (AWS)
Cloud Virtual Machines (VMs) under two configurations: first,

1MASCOT* refers to the MASCOT protocol configured with multiple
MACs to enhance the security parameter, making it a multiple of the prime
length [9].

with all VMs situated within the same Cloud Service Provider
(CSP) to ensure uniform computational resources and network
conditions; second, with each computational party hosted on
different CSPs to simulate a distributed environment with
varying network conditions.

The Logistic Regression model was trained using the ‘ml‘
package available in MP-SPDZ. Following the training phase,
the weights and biases of these models are extracted for
evaluating lattice-based MPC protocol. More specifically, we
assess the ability of the MPC protocol to perform secure and
efficient computations.

c) Assessing computation correctness: To validate the cor-
rectness of computations performed by the lattice-based MPC
protocol, we used Accuracy as the evaluation metric, which
measures the proportion of correctly predicted instances out
of the total evaluated.

In our experiments, we compared the accuracy achieved
in centralized settings (evaluating plaintext data directly)
with that obtained using the MPC protocol. This comparison
confirmed the correctness of computations under MPC and
highlighted any potential efficiency losses due to its distributed
nature.

The accuracy achieved with the MPC protocol (88.33%
for the Wisconsin Breast Cancer dataset and 100% for the
Iris Flower dataset) matched the centralized settings. This
demonstrates that our protocol performs computations cor-
rectly, maintaining high precision comparable to traditional
centralized methods while ensuring secure computation.

d) Comparative analysis of MPC protocols: We conducted a
comparative analysis of MPC protocols, focusing on three key
metrics: inference times, size of data exchange, and number of
communication rounds. The detailed analysis for each metric
is presented below:
1) Inference Time: The inference time is defined as time

required to compute an output from a trained model under
an MPC setup. This performance metric is essential for
assessing the efficiency of MPC protocols as it influences
its scalability in privacy-preserving application.
All VMs hosted on same CSP: Our analysis of infer-
ence times for various Multi-Party Computation (MPC)
protocols across the Iris and Breast Cancer datasets reveals
no clear pattern in performance superiority except in the
case of Lattice-based protocol. The MACOT, MASCOT*
(mama), SPDZ2k, and LowGear protocols display closely
competitive inference times on both datasets.
For the Iris Dataset, the inference times are remarkably
close, with the fastest (MASCOT at 0.0026122 seconds)
and the slowest (MASCOT* at 0.0028984 seconds) among
them differing by less than 0.0003 seconds. A similar trend
is observable in the Breast Cancer Dataset, where the range
between the fastest (MASCOT at 0.00472605 seconds) and
the slowest among the traditional protocols (MASCOT* at
0.00506337 seconds) remains narrow.
Conversely, the Lattice-based protocol records the highest
inference time at 0.0771 seconds on Wisconsin Breast
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Cancer Dataset and 0.0143 seconds on Iris Flower Dataset.
While this may seem less performance-driven, the Lattice-
based protocol offers several advantages in malicious sce-
narios. Unlike other protocols, Lattice-based protocol is
designed to continue computations without restart even
if a malicious behavior is detected, thus maintaining the
integrity of the computation process without the need for
time-consuming restarts. This ensures operational conti-
nuity and is not available in other MPC protocols. Ad-
ditionally, Lattice incorporates mechanisms to identify and
handle cheaters effectively, ensuring that the computation
completes successfully. While other protocols cannot iden-
tify cheaters leading potentially to indefinite computation
loops. This robustness assurance that computations will
complete regardless of adversarial behavior within the
protocol participants provides a stronger argument for its
use.
All VMs on different CSPs: To simulate the scenario
where each computation party is located on different Cloud
Service Providers (CSPs), we utilized virtual machines
(VMs) on the same cloud service but deployed them in
different geographic locations. Specifically, we selected
three AWS regions: N. Virginia, N. California, and Ohio.
Each of the three computation parties was hosted in one
of these regions. This configuration emulates a multi-cloud
environment by introducing network variability and latency
similar to what would be experienced if the parties were
on different CSPs.
Our results on Iris dataset show that SPDZ2k achieved
lowest inference time at 0.36095 seconds. The other pro-
tocols—MASCOT, MASCOT*, and LowGear—exhibited
slightly higher inference times, ranging from 0.36145 to
0.36160 seconds. The minimal differences suggest that
these protocols have comparable computational overheads
in a distributed cloud environment with geographically
dispersed VMs. The lattice protocol only runs for 0.0176
seconds. This is an example of how amortizing many
instances leads to better utilization of hardware resources.
Lots of instances will fill the network buffer/blocks, there-
fore, when considering network latency, it does not suffer
so much. Furthermore, batching multiple instances also
makes it more computation-intensive, and suffers less when
considering network latency.
Similarly, for the Breast Cancer dataset, SPDZ2k demon-
strated the lowest inference time at approximately 0.41599
seconds. The inference times for MASCOT, MASCOT*,
and LowGear were slightly higher, between 0.41660 and
0.41675 seconds. This consistency across datasets rein-
forces the efficiency of SPDZ2k in handling distributed
computations over disparate geographic regions. The lattice
protocol only runs for 0.1107 seconds. This also shows
that the lattice protocol is more robust when introducing
network latency.

2) Data Exchange: The data exchange refers to the amount
of data that needs to be communicated or exchanged
between the computation parties during the execution of

the protocol. This could include sharing of secret-shares,
exchanging encrypted data, or transferring computed val-
ues.
For the Iris Flower Dataset, each party in the Lattice-based
protocol sends 0.223 MB of data per party, resulting in
global data exchange of just 0.669 MB. This significantly
contrasts with the other protocols, where the global data
sent ranges from 0.021928 to 0.022576 MB. Similarly, for
the Wisconsin Breast Cancer Dataset, each party in the
Lattice-based protocol sends 2.25 MB of data, resulting in
global data exchange of just 6.75 MB. For other MPC pro-
tocols, the global data exchange for MASCOT, MASCOT*,
and LowGear protocols is 0.309856 MB, and 0.31048 MB
for the the SPDZ2k protocol.

3) Number of Rounds: The ”number of rounds” refers to
the number of sequential communication steps required be-
tween the parties involved in the computation to complete
a given MPC protocol.
Our results show that MASCOT, MASCOT*(mama),
SPDZ2k, LowGear, and Lattice-based protocols shows
varying number of rounds distributed across three com-
putation parties. MASCOT, MASCOT*(mama), LowGear,
and spdz2k show consistent pattern where party 1 engages
in more communication rounds (21 rounds for Breast
Cancer Dataset, and 17 rounds for Iris Dataset) compared
to parties 2 and 3 (15 rounds for Breast Cancer Dataset,
and 13 rounds for Iris Dataset each). This higher number
of rounds for party 1 is because the party 1 is act as
coordination server as well which distributes the data to
other parties for computation and also accumulates the re-
sults from other parties once the computation is completed.
Lattice-based protocol requires significantly more rounds
(1860 rounds for the Wisconsin Breast Cancer Dataset and
200 rounds for Iris Flower Dataset for each party), but
this is offset by its unique ability to identify cheating,
ensuring that computations always complete successfully.
This property of Lattice-based protocol guaranteeing com-
pletion of the computation despite presence of malicious
behavior, makes is ideal choice for scenarios demanding
high security and reliability.

It is important to note that when we conducted the experi-
ments under both configurations—computation parties located
in the same region and those in different regions—the data ex-
change and number of rounds remained unchanged across all
protocols. This consistency is expected, as the protocols’ com-
munication patterns and computational steps are predefined
and independent of the physical locations of the computation
parties. The only metric that exhibited variation was the in-
ference time, which increased when computation parties were
located in different regions due to the added network latency
inherent in cross-regional communication. This observation
underscores that while the efficiency of the protocols in terms
of data exchanged and rounds required remains unaffected
by geographic distribution, the actual performance time is
influenced by the network conditions between the participating
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parties.

E. Discussion

The variations in performance observed among the different
MPC protocols in our study can be largely attributed to
their underlying cryptographic mechanisms and computational
models. While MASCOT, SPDZ2k and LowGear differ sig-
nificantly in their preprocessing approaches, it is important
to recognize that these protocols have an identical online
phase. This similarity allows for a streamlined analysis of
performance variations, as the primary differences originate
from their distinct preprocessing states.

LowGear introduces significant enhancements by optimiz-
ing the preprocessing phase with semi-homomorphic encryp-
tion (SHE), specifically the BGV scheme, which claims to
be faster than MASCOT in both LAN and WAN settings by
reducing communication and computational load [27]. These
improvements in the preprocessing phase enable the online
phase to operate more efficiently, leveraging the precomputed
data more effectively.

The choice between MASCOT, SPDZ2k, and LowGear
might involve a trade-off between preprocessing efficiency and
the potential benefits of a specific computational model during
the online phase. While MASCOT and LowGear typically
demonstrate better communication efficiency in preprocessing
compared to SPDZ2k, the latter could offer advantages in
certain online computations, particularly those involving com-
parisons or bitwise operations. This highlights how SPDZ2k’s
approach to modulo 2k computations, which aligns closely
with standard CPU architectures, might be particularly bene-
ficial for operations common in many practical applications.

The lattice-based protocol exhibits slightly lower efficiency
compared to SPDZ protocols under normal conditions. How-
ever, in scenarios involving network latency, it demonstrates
greater stability due to its amortized characteristics. We con-
clude that the amortized design of the lattice-based protocol
allows for better hardware resource utilization, making it more
robust across varying hardware and network environments.
Combined with its enhanced security properties, this suggests
that the lattice-based protocol holds certain advantages over
SPDZ protocols.
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