arXiv:2506.00500v1 [cs.CR] 31 May 2025

Scaling DeFi with ZK Rollups:
Design, Deployment, and Evaluation of
a Real-Time Proof-of-Concept

Krzysztof M. Gogol, Szczepan Gurgul, Faizan Nehal Siddiqui, David Branes, Claudio J. Tessone
University of Zurich

Abstract—Ethereum’s scalability limitations pose significant
challenges for the adoption of decentralized applications (dApps).
Zero-Knowledge Rollups (ZK Rollups) present a promising
solution, bundling transactions off-chain and submitting validity
proofs on-chain to enhance throughput and efficiency. In this
work, we examine the technical underpinnings of ZK Rollups
and stress test their performance in real-world applications
in decentralized finance (DeFi). We set up a proof-of-concept
(PoC) consisting of ZK rollup and decentralized exchange, and
implement load balancer generating token swaps. Our results
show that the rollup can process up to 71 swap transactions per
second, compared to 12 general transaction by Ethereum. We
further analyze transaction finality trade-offs with related secu-
rity concerns, and discuss the future directions for integrating
ZK Rollups into Ethereum’s broader ecosystem.

Index Terms—ZK Rollup, Ethereum, Gas Per Second

I. INTRODUCTION

Ethereum, launched in 2015 by Vitalik Buterin [1], was the
first programmable blockchain, marking a significant evolution
from Bitcoin [2], the first blockchain, primarily designed for
peer-to-peer payments. Ethereum introduced the concept of
smart contracts - self-executing computer programs that run
on the blockchain [3] - paving the way for decentralized
applications (dApps). These dApps provide a transparent,
immutable environment for complex transaction processing
without intermediaries. Over the years, Ethereum has become
the backbone of the decentralized finance (DeFi) [4]-[6] with
more than 100 billion USD in assets locked in various DeFi
protocols [7].

However, Ethereum’s growing popularity has also led to
significant challenges. Ethereum’s limited throughput and high
transaction costs, particularly during periods of network con-
gestion, hinder the user experience and pose significant barri-
ers to mass adoption [8]. To address these limitations, Layer-2
(L2) scaling solutions have emerged as a viable method for
improving transaction scalability while preserving the security
and decentralization. Among L2 solutions, rollups - which
perform transactions off-chain and then record transaction
data on Ethereum - have become the dominant approach.
Rollups are categorized into two types: optimistic rollups and
ZK rollups based on the transaction validity mechanism they
apply.

This study focuses on ZK rollups, which utilize zero-
knowledge (ZK) proofs to verify transactions, offering en-
hanced scalability and security compared to their optimistic

counterparts [9]. ZK rollups aggregate multiple transactions
off-chain and submit a validity proof to Ethereum. This
ensures that all transactions adhere to network rules without
requiring individual on-chain execution, thereby reducing gas
costs and increasing transaction throughput. These improve-
ments make ZK Rollups essential for addressing Ethereum’s
scalability needs while maintaining its decentralized and
fast transaction finality [10]. Several implementations of ZK
rollups exist, including ZKsync by Matter Labs [11], zkEVM
by Polygon, and StarkNet by StarkWare. Among EVM-
compatible ZK Rollups, ZKsync leads in DeFi total value
locked (TVL) [7].

Rollups overall already attracted half of TVL that is cur-
rently locked in Ethereum (ca $70bn) [7], and the average daily
transaction per second (TPS) of rollups is 30 times higher than
Ethereum [12]. These metrics however, do not tell us much
about the complexity of the underlying transaction. Thus,
novel metrics - gas per second (GPS) - was introduced to
measure the actual processing capabilities of blockchains. The
average GPS of rollups is 55 times higher than Ethereum, on
average [13]. In this research, we perform the first stress tests
of rollup using swap transaction at decentralized exchange
(DEX) [14], instead of simile token transfers between wallets
to measure the maximum GPS that ZK rollups can achieve.

A. Related Work

This paper focuses specifically on a single category of
L2 solutions based on ZK proofs. For a comprehensive in-
troduction to various L2 architectures, we refer readers to
Thibault [9]. For a detailed exploration of optimistic rollups,
Armstrong [15] offers valuable insights.

Chaliasos [16] offer a comprehensive analysis of the secu-
rity implications and performance bottlenecks of zk-rollups,
with a focus on transaction finality and data availability
issues. Their study highlights the practical challenges and
technological advancements required to ensure robust security
and data integrity in zk-rollup implementations. This work
is essential for understanding the broader limitations and
potential improvements necessary to enhance the scalability
and resilience of L2 solutions.

Parallel to this, Gogol [17] investigates arbitrage dynamics
within Automated Market Makers (AMMs) on zk-rollups, con-
trasting the operational frameworks of centralized exchanges
(CEXs) and decentralized exchanges (DEXs). This research

https://arxiv.org/abs/2506.00500v1

is particularly relevant to our study, as it provides insights
into the economic behaviors and transaction efficiency on L2
solutions, which are critical for understanding the impact of
zk-rollups on market liquidity and trading strategies.

B. Contribution

This paper provides an analysis of ZK rollups, exploring
their architecture, evaluating their real-time performance, and
discussing applications in DeFi, and beyond. We set up a ZK
rollup utilizing the ZKsync framework and forked Uniswap,
a leading decentralized exchange (DEX) in (DeFi) [18].
Subsequently, we created liquidity pools comprising ERC-20
tokens and implemented a smart contract with a load balancer
designed to autonomously generate swap transactions.

« With this setup, we empirically measured the efficiency
and security of the rollup. Our results show that ZK
rollups can process up to 71 swap transactions per second,
compared to 12 general transaction by Ethereum.

o We examined trade-offs between scalability, decentraliza-
tion, and security.

« Finally, all code and modifications done to the Uniswap
code are made publicly available, allowing the repro-
ductability of research.

C. Paper Organization

The structure of this paper is organized as follows. Section II
introduces the essential information about rollups, Section III
presents the test architecture for a proof-of-concept, Sec-
tion IV simulated transactions and Section V - stress-testing
outcome. Subsequently, Section VII examines the results, and
Section VIII offers the conclusions.

II. BACKGROUND: ZK ROLLUP

A blockchain is a decentralized network that maintains
a shared, immutable database. This system allows only the
addition of new transactions, disallowing any alterations or
deletions of existing ones. Transactions are organized into
blocks, and the sequence of these blocks is preserved and
verified using cryptographic hash functions and digital signa-
tures. There are two general approaches for scaling blockchain
solution. Layer-1 (L1) blockchain scaling involves develop-
ment of new blockchain, often new consensus mechanism [19],
sharding [20] and its own physical infrastructure. Layer-2 (L2)
blockchain scaling approach leverages the decentralization and
security of existing L1 blockchains, while conducting complex
calculations outside of L1 network [21], [22].

a) Layer-2 Blockchain: Layer-2 (L2) blockchains are
scaling solutions built on top of core L1 blockchains, such as
Ethereum. L2 solutions are intended to preserve the security
and decentralisation of the underlying network while address-
ing the intrinsic drawbacks of L1 blockchains, like high trans-
action fees, constrained throughput, and latency. L2 solutions
group several transactions together, offload transaction pro-
cessing off the L1 blockchain, and settle the outcomes on the
L1 chain on a regular basis. There are various ways by which

this is achieved, notable techniques are optimistic rollups, zk-
rollups, side-channels and plasma. Each of these techniques
utilize its own logical process to execute transactions off-chain,
batch them, and settle them on L1 in a secure and efficient way.
As a results, traffic on the main chain is drastically reduced
and far more transactions can be processed [21], [22].

b) Zero-Knowledge Proof: Zero-Knowledge Proofs
(ZKPs) is a cryptographic system that enables one party (the
prover) to demonstrate to another (the verifier) that a certain
assertion is true without disclosing any further information
beyond the statement’s veracity. The prover has a piece
of secret information (e.g., a private key or solution to a
computation) and wants to prove they possess it and the
verifier checks the proof provided by the prover to confirm
the claim’s validity without learning the secret information.

c) zk-SNARKs: zk-SNARKSs (Zero-Knowledge Succinct
Non-Interactive Arguments of Knowledge) are a subset of
zero-knowledge proofs, their unique properties (succinct-
ness and non-interactivity) make them particularly suited for
blockchain and decentralized systems. They enable highly
efficient and scalable applications without compromising on
privacy. The Succinct part makes sure that verification is
always done quickly as compared to computation. The second
important feature is Non—-Interactive, which limit the
back and forth interaction between the prover and verifier.
Interactive proving requires both parties to have interaction,
which limits its power. zk-SNARKSs are widely used in
privacy-focused and scalable blockchain technologies, such as
ZK rollups and privacy coins like Zcash.

d) ZK rollup: ZK rollup [23] is a L2 scaling solution
that batches transactions together on L2 and then utilizes zero-
knowledge proofs(ZKPs) to verify the batch on L1. It gener-
ates a zero-knowledge proof for each batch, which verifies the
validity of all transactions in the batch. This proof is sent to
a smart contract on L1 which validates the proof. ZK rollup
uses zk-SNARKSs as ZKP, as succinct proofs are small and
quick to verify which makes them more efficient. zk-SNARKSs
are also non-interaction so the prover and verifier don’t need
to communicate back and forth. The high-level architecture of
ZK rollup is presented in Figure 1 with the specially deployed
sequencers and prover. An externally owned address (EOA) is
a type of account that is controlled by a private key and is
used by individuals to send transactions, keep an accounting
of their account, and interact with smart contracts.

As presented in Figure 1 ZK rollup is composed of L2
components like sequencers and proves, where the sequencer
is responsible for processing and bundling transactions into
batches that are then submitted to the L1 blockchain [24].
The prover generates cryptographic proofs that prove the
correctness of these batches. On L1, there are smart contracts
deployed that serve as a foundation layer for managing and
executing the ZK rollup. The L1 smart contracts presented
in figure 1 ensure that the batches are recorded on L1 for
accountability. If the proof received is valid, the L1 state would
be updated accordingly. Forcing transactions by EOA allows
direct submission of a transaction to the L1 smart contract if

User's
L2 Transaction
User

Batch Of
L2 Transactions
m
Commit Batch Batch Proof

Rollup
Smart Contract

\
\
\
\
\

Layer-1 Blockchain
L Y/

Fig. 1. High-level architecture of ZK Rollups. A sequencer bundles and
executes transactions off-chain, while the prover generates cryptographic
proofs for on-chain verification. This structure enables scalable and trust-
minimized Layer 2 computation. [24]

the sequencer is unavailable or unresponsive.

e) Sequencer: Sequencers [25] are the most important
component in a L2 blockchains as they are responsible for
ordering the transactions on L2, batching them together,
executing them on L2 and finally submitting them to LI.
They also ensure that these transactions are included in the
blockchains in a timely and efficient manner. In essence, a
sequencer is responsible for ensuring that transactions on L2
are processed efficiently, maintaining the integrity and speed of
the L2 network. After batching and executing the transactions
they are also responsible for updating the L2 state. This
includes keeping track of account balances, smart contract
executions, and other state changes resulting from transactions.
Unlike L1, sequencers don’t get congested by transactions and
don’t face high gas like L1.

f) Prover: Prover is one of the two core components in
ZK rollups. Its purpose is to generate cryptographic proofs
for the transactions that have been processed off-chain, which
is then used for verifying those transactions on L1. In case
for ZKsync, the prover uses zero-knowledge proofs which is
known as zk-SNARK The sequencer in 12 batches the trans-
actions together and then processes them which significantly
reduces the processing cost. Prover then works by generating
a proof for each of these batches using zk-SNARKSs. This
generated proof is submitted to the L1 blockchain with a
transaction, which is then verified by a smart contract on L1.
Prover helps in ensuring that L2 blockchain is trustworthy and
secure along with it being scalable. Moreover, it also ensures
privacy as the proofs can be verified without revealing any
detail.

III. SYSTEM ARCHITECTURE AND DESIGN

In order to evaluate the ZK rollup applicability to DeFi we
set up a ZK rollup, deploy there test ERC-20 tokens and a

DeFi protocol - a decentralized exchange (DEX) that allows
to swap our test ERC-20 tokens for each other. Next, we stress
the system with automatically generated swaps.

A. ZKsync As ZK Rollup

There are various provides of ZK rollups - StarkNet, Poly-
gon zkEVM, ZKsync, but most of the ZK rollups are not
compatible with Ethereum Virtual Machine (EVM) [12]. As
vast majority DeFi protocols are developed in Solidity for
EVM and DeFi total value locked (TVL) resides in majority
on EVM-chains [7], we decided to set-up the EVM zk-rollup:
ZKsync, which currently has the highest TVL in DeFi among
zk roll-ups [7].

We use the elastic chain framework offered by MatterLabs,
one of the contibutors to ZKsync development. It is important
to undelrying that we do not fork ZKsync - a public zk-rollup,
but set up a new zk rollup (with new genesis block) using
the code base of ZKsync. The setup is configured, deployed
and running on top of the Ethereum L1 network, in our case
Sepolia testnet. The chain operates independently with its own
sequencer and prover.

B. Uniswap As DEX

In this setup, we have forked Uniswap V2, a widely-used de-
centralized exchange protocol, onto one of our ZKsync chain.
This involves replicating the Uniswap V2 smart contracts and
deploying them on our L2 to facilitate automated token trading
within our L2.

As ZK-sync is EVM-compatible, but not EVM-equivalent
chains, the successful deployment of Uniswap V2 on ZKsync
required adjustments to the original codebase, including So-
lidity version upgrades and integration adjustments. These
changes ensured compatibility with ZKsync while preserving
the core functionality of Uniswap. The deployment process,
from setting up the contracts to creating pairs and performing
swaps, highlights the adaptability of Uniswap V2 for L2
environments.

IV. EXPERIMENTAL SETUP

This section outlines the experimental framework used to
evaluate the performance of our ZK Rollup-based proof-of-
concept (PoC). We describe the infrastructure configuration,
transaction generation process, and data extraction pipeline
supporting the benchmarking of real-time decentralized ex-
changes.

A. Infrastructure Specifications

Our ZKsync-based prototype was deployed on a high-
performance GPU server tailored to meet the computational
demands of zk-rollup processing. The machine was equipped
with 16 CPU cores, 64 GB of RAM, a high-performance
virtual machine instance (HPCv3), an NVIDIA T4 GPU,
and 300 GB of HDD storage. This configuration ensures the
system can handle the intensive tasks associated with zero-
knowledge proof generation, transaction batching, and data
availability. This setup was selected based on the technical

requirements of ZKsync for optimal performance, ensuring
sufficient computational power and storage to handle the
demanding tasks of zk-rollup processing, transaction batching,
and cryptographic proof generation. The ZKsync nodes were
installed and configured to support the operation of our L2
chains as described below.

B. Transaction Generation Methodology

The primary goal of the stress-testing framework is to
benchmark the maximum achievable TPS on our custom
ZKsync deployment integrated with a Uniswap V2 fork.
To provide a more realistic performance evaluation, we
use swap transactions—which are computationally and gas-
intensive—rather than simple token transfers. The implemen-
tation is based on the public generator code by Bogatyy et
al. [26], with modifications available in our repository [27].

Our benchmark simulates 1-hop token swaps using
the swapExactTokensForTokens function from the
UniswapV2Router. Swap execution is synchronized by in-
troducing a delay, ensuring parallel transaction submission.
Transactions are sent from multiple IP addresses, configured
via iptables, to emulate distributed real-world traffic and
avoid overloading a single RPC endpoint. Communication is
handled via a WebSocket connection to the local ZKsync node
(port 3051), chosen for its lower latency and reduced overhead
compared to HTTP—both critical for high-throughput scenar-
ios.

To avoid overloading the system, we limited the number
of generator instances to five, with each instance tied to a
separate IP address. We observed that increasing beyond five
instances led to sequencer instability, sometimes even causing
it to fail. This confirms the sequencer as a potential single point
of failure in current rollup designs. As a result, five instances
were used consistently in our evaluation.

Table 1 presents the performance results across different
instance counts. While throughput initially scales with more
instances, performance plateaus and eventually declines as
system overhead grows, revealing the sequencer’s bottlenecks
under parallel load.

TABLE 1
PERFORMANCE OF THE ZK ROLLUP TRANSACTION GENERATOR. PEAK
TPS IS ACHIEVED WITH A SINGLE INSTANCE; THROUGHPUT DECLINES AS
SEQUENCER LOAD INCREASES, EXPOSING BOTTLENECKS IN PARALLEL

PROCESSING.
Instances run Transactions Time [s] TPS
1 200 1 200.00
2 400 2 200.00
3 600 7 85.71
4 800 13 61.54
5 1,000 14 71.43

To generate the transactions, we created 50 accounts derived
from a single mnemonic phrase. Each account was funded
with native tokens to cover gas fees. Prior to execution, all 50
addresses pre-approved token spending on the liquidity pool

to enable seamless swap execution. Each account performed
20 swaps, totaling 1,000 swap transactions.

All transactions were broadcasted concurrently from the
five generator instances. Transaction data, including hashes
and sender addresses, was logged during execution for post-
analysis. This coordinated submission guarantees that iden-
tical swap transactions from multiple accounts are injected
simultaneously into the network, creating a realistic high-load
scenario for evaluating system throughput and latency.

C. Data Logging and Parsing

After executing the swap transactions via the stress-testing
setup, all relevant data must be parsed from the blockchain
to compute throughput (TPS) and analyze transaction latency.
During the execution phase, each generator instance (mapped
to a distinct IP address) logs transaction data—such as sender
addresses and transaction hashes—into separate log files.
These logs are then merged into a single consolidated file to
enable unified analysis.

To extract on-chain information, a custom blockchain parser
processes the log data by issuing batch requests to retrieve
transaction metadata, including block timestamps, block num-
bers, block sizes, and the time of transaction submission.
Each transaction hash is mapped to the block in which it
was included. The resulting dataset—a list of swap transaction
hashes sorted by their send time—contains both the timestamp
of submission and the timestamp of inclusion, making it
possible to calculate precise latency metrics.

This structured data enables the evaluation of both through-
put and inclusion delay over time. To support visualization, the
parsed data is loaded into a Pandas DataFrame and grouped
into 0.1-second intervals to smooth the signal. Timestamps
are normalized to seconds relative to the earliest transaction
for temporal alignment. The final plots depict two key lines:
transactions sent and transactions included, with time on the
x-axis and cumulative transaction count on the y-axis. These
visualizations form the basis for performance insights shown
in Figure 3.

V. PERFORMANCE EVALUATION

We evaluate the performance of our ZKsync-based Layer-2
system through a series of stress tests. We extract on-chain
swap transaction data to analyze system throughput, latency,
and block utilization.

A. Throughput Analysis

Transactions per second (TPS) is a common metric used to
quantify the throughput of blockchain systems. It measures
how many transactions a system can successfully process
within one second, offering a practical lens through which
to assess scalability and performance. In our setup, TPS is
calculated cumulatively over time using the following formula:

Total (swap) transactions processed
Cumulative TPS = (swap) p

Elapsed time (in seconds)

Unlike standard TPS benchmarks that often rely on simple
token transfers, our measurement is based on swap transactions

at DEX—complex, gas-intensive operations that more closely
reflect real-world DeFi usage, making our results more indica-
tive of practical throughput under realistic load conditions.

Cumulative TPS Over Time
Finally Achieved TPS: 71.43

00 —e— Cumulative TPS

Cumulative TPS

3 s
Elapsed Time (seconds)

Fig. 2. Cumulative (swap) transaction throughput. Peak TPS of 98.4 achieved
at 4 seconds, stabilizing at 71.43 TPS by end of test. Demonstrates the
experimental system’s sustained throughput under load.

As shown in Figure 2, the cumulative TPS of the system
steadily increases, peaking at 98.4 TPS around the 4-second
mark. Following this initial surge, it stabilizes, fluctuating
slightly before settling at 71.43 TPS by the end of the 14-
second test window. This final value serves as a reliable
estimate of the system’s sustained throughput capacity under
consistent load.

The results demonstrate the ZKsync system’s ability to
efficiently process a high volume of gas-intensive transac-
tions over time, validating its applicability to performance-
critical DeFi scenarios. The achieved cumulative TPS of 71.43,
significantly surpass Ethereum’s native estimated throughput
of 15 TPS, demonstrating that ZK rollups can effectively
scale Ethereum by handling higher transaction volumes while
preserving its foundational properties such as security and
decentralization.

Key Finding: TPS Metrics Vary Widely Between Sim-
ple Transfers and Gas-Intensive Swaps: Unlike conven-
tional throughput benchmarks that rely on lightweight to-
ken transfers, our evaluation uses swap transactions on
DEX—operations that are significantly more complex and gas-
intensive. This difference is critical, as it reflects more realistic
DeFi usage and provides a better indicator of how rollup
systems perform under genuine load conditions. For example,
ZK rollups such as ZKsync claim theoretical capacities of
up to 2,000 TPS, while optimistic rollups like Arbitrum have
reported reaching over 40,000 TPS in synthetic benchmarks.
However, these figures are often based on ideal conditions
using minimal transaction types that do not reflect actual on-
chain activity.

In contrast, our stress test floods the system exclusively with
swap transactions. As illustrated in Figure 2, our experimental
system peaks at 98.4 TPS within 4 seconds and stabilizes at
71.43 TPS by the end of the test. This outcome underscores the
platform’s ability to handle complex, computation-heavy DeFi
workloads, providing a grounded assessment of sustainable
throughput. These findings suggest that to accurately evalu-

ate Layer 2 scaling solutions, benchmarks must account for
transaction complexity—not just raw volume.

B. Latency and Finality

Transactions sent vs transactions included over time

1000 | == Transactions sent
—— Transactions included

800

600

400

Total number of transactions

200

Time (seconds)

Fig. 3. Transactions sent vs. included. Highlights latency during peak load
and eventual consistency. The system stabilizes within 15 seconds.

Figure 3 plots two lines: the red line represents transactions
sent by the generator, while the green line shows the inclusion
of those transactions into blocks over time. At the start of
the test, the generator sends an initial burst of approximately
600 swap transactions almost instantaneously. This sudden
influx temporarily overwhelms the sequencer, which pauses
new submissions while it processes the backlog and begins
forming batches.

Following this initial burst, a second wave of transactions
begins around the 3-second mark and continues steadily until
all are sent by 13 seconds. The lag between the red and green
lines reveals two key dynamics of zk-based rollups: transaction
latency and finality.

Latency: The delay between when a transaction is sent
and when it is included in a block reflects the system’s
responsiveness under load. In the first few seconds, latency is
high due to the sequencer catching up. However, by 7 seconds,
the gap between sent and included transactions narrows as
the system stabilizes and enters a steady state. Full inclusion
is completed by 15 seconds, meaning all transactions sent
have been successfully processed, though not yet finalized on
Ethereum.

Finality.: In rollup-based systems like ZKsync, we distin-
guish between two levels of finality: soft and hard. Soft finality
occurs when a transaction is included in an L2 block by the
sequencer. At this point, the transaction is visible and assumed
to be final under normal operating conditions—but it can still
be reversed if the batch is invalidated before being submitted
to L1. Hard finality is achieved only when the corresponding
batch, along with its validity proof, is successfully posted and
verified on Ethereum L1. This ensures that the transaction is
cryptographically secured and permanently immutable.

In our test, all transactions reached soft finality within 15
seconds, reflecting the system’s ability to maintain throughput
and responsiveness under load. Hard finality, however, depends
on the timing of the batch submission to L1, which occurs
asynchronously and is not captured directly in this plot.

Key Finding: Instant User Experience vs. Delayed Trust
Guarantees: This distinction is crucial: while L2 systems
provide near-instant user experience via soft finality, their trust
guarantees ultimately rely on the timely and correct execution
of batch submissions to Ethereum for hard finality.

C. Block Utilization

Block Utilization During Stress Test

100

—e— Block Utilization (%)
-~ Max Capacity

Block Utilization (%)

142 134 116 118 150 152 154
Block Number

Fig. 4. Block utilization during stress test. Early and late phases show
inefficiencies due to sequencer startup latency and batch finalization. Peak
efficiency achieved mid-test.

Figure 4 illustrates the block utilization rate throughout
the stress test, which reflects how efficiently each block’s
capacity was used. We define 100% utilization as 300 swap
transactions per block—an upper bound derived from the
optimized memory footprint of such transactions.

During the initial phase (blocks 142 to 144), utilization was
notably low. This corresponds to the transactions sent in the
first 1-2 seconds, as shown in Figure 3. The underutilization
here can be attributed to the sequencer’s initialization phase.
Although the sequencer was live prior to the test, it had been
idle and needed time to warm up, process the initial backlog,
and begin forming batches. These early blocks act as a cold
start buffer, and while they appear inefficient, they represent
necessary system bootstrapping overhead.

Following this, from block 145 onward, utilization quickly
rises and stabilizes near full capacity. This improvement
coincides with the sequencer processing a steady influx of
transactions (3-6 seconds into the test). However, at block
150, utilization sharply drops again—suggesting a shift in
sequencer priorities. At this point, the sequencer likely began
focusing on finalizing a batch and preparing its submission to
Ethereum L1, temporarily deprioritizing transaction inclusion.

A similar pattern appears after block 153, where utilization
drops further. By this stage, the backlog had largely been
cleared, and the number of new transactions diminished.
Additionally, the sequencer again likely prioritized finalization
and L1 submission, causing fewer transactions to be added to
blocks.

Key Finding: Trade-offs in Sequencer Behavior: These
observations highlight a key trade-off in ZK rollup systems:
the balance between throughput and timely batch finalization.
In our setup, the sequencer appears to switch roles too aggres-
sively—rapidly toggling between transaction processing and

batch finalization—which leads to suboptimal resource use.
Future designs may benefit from more adaptive scheduling
mechanisms that balance these tasks more smoothly, especially
under bursty load conditions.

VI. SEQUENCER AND BATCH PROCESSING BEHAVIOR

This section investigates the internal operation of our ZK
rollup under typical conditions. We analyze how batches are
formed, transactions are included, and delays arise in both
L1 and L2 components. By examining these detailed metrics,
we aim to better understand the performance bottlenecks and
sequencing logic of the system.

A. Layer-1 Batch Lifecycle

Understanding how L2 transactions progress is essential
for evaluating the end-to-end performance and reliability
of rollup-based systems like ZKsync. A sequencers creates
batches of L2 transactions that are later sent to the underlying
L1 blockchian.

Seal: Sealing a transaction refers to its finalization as part
of a batch on the Ethereum Layer 1 (L1) blockchain. It marks
the end of the transaction lifecycle, indicating that the batch
has been verified and is permanently recorded on-chain.

State Keeper: The state keeper is a core component respon-
sible for maintaining the L2 state. In ZK rollup systems such
as ZKsync, it manages state transitions based on transactions
aggregated and executed off-chain before being finalized on
L1.

Eth Sender: The eth_sender module handles the sub-
mission of finalized L2 batches to the L1 blockchain. It is
responsible for pushing proofs, commits, and execution data
to Ethereum.

Figure 5 presents a heatmap correlating L1 batch height with
two moderate transaction peaks. Batch stages—such as seal-
ing, proof submission, and execution—are mapped along the
timeline, while color intensity indicates transaction throughput
(TPS). In this observation window, TPS peaks at 8.6 and drops
toward zero at lower activity intervals, at which point the
distinctions between batch stages become less visible.

The overall batch height is relatively high due to prior
network activity, and this snapshot was chosen to examine how
batch stage transitions behave under varying transaction loads.
Specifically, it traces batch progression from sealing in the
state keeper to final execution by Sepolia validators. Notably,
the 11_mined_ExecuteBlocks event denotes the point at
which a batch is formally included in a mined L1 block.

Delays in the L1 proof stage
(11_mined_PublishProofBlocksOnChain) often
suggest issues with the prover infrastructure. In contrast,
delays in the commit phase (11_mined_CommitBlocks)
may indicate bottlenecks or malfunctions in the eth_sender
component.

Key Finding: L1 Batch Processing Sensitivity to System
Bottlenecks: The efficiency of L1 batch processing is highly
sensitive to network activity levels. Under moderate load, clear
distinctions between batch stages are visible, enabling better

14:14 14:16

14:18 14:20

Min: 0.00

Max: 8.60

Transactions per Second (TPS) Heatmap

L1 Batch Height Over Time

L1 Batch Height Stages

—— 11_mined_Commit8locks
11_mined_ExecuteBlocks

—— 11_mined_PublishProofBlocksOnchain

— sealed

1065

1060 4

1055

1050

L1 Batch Height

1045 4

1040 4

1035

1030 4

o SV
W RS

Fig. 5. L1 batch height and transaction activity. Shows the progression of batches from sealing to proof publication. Heatmap highlights the correlation

between transaction throughput and batch processing stages.

monitoring of system health. However, delays in L1 proof
and commit operations—often due to prover and submission
bottlenecks—highlight critical dependencies in the rollup ar-
chitecture that must be robustly managed for scalability.

For a more detailed batching metrics, see Appendix A.

VII. DISCUSSION

Our findings indicate that ZK rollups, particularly ZKsync,
offer substantial scalability benefits for DeFi applications, yet
they introduce nuanced design trade-offs that impact reliability,
performance, and operational complexity. This section contex-
tualizes our results, reflecting on the practical implications of
the implementation, the limitations observed during testing,
and the deeper structural considerations for protocol builders.

A. Deployment and Operational Feasibility

Deploying and managing a local ZKsync chain with a
forked Uniswap V2 exchange exposed the infrastructure de-
mands and limitations of current rollup technology. Although
our setup achieved a peak throughput of 71 TPS—well above
Ethereum L1’s 15-23 TPS—this required a high-performance
server environment (16-core CPU, 64 GB RAM, NVIDIA T4
GPU). Stress testing further revealed that running more than
five concurrent transaction generators caused sequencer insta-
bility, resulting in failed block production. This underscores a
critical operational fragility: even under controlled conditions,
rollup components such as the sequencer are susceptible to
overload, functioning effectively as single points of failure.

B. Sequencer Scheduling and Bottlenecks

Observability into the sequencer’s runtime behavior high-
lighted inefficient toggling between transaction ingestion and
batch finalization. In bursty conditions, the sequencer aggres-
sively switched roles, leading to underutilization of resources.
This behavior caused significant throughput degradation be-
yond a modest parallel load. Furthermore, we found that
miniblocks frequently included far fewer transactions than the
corresponding L1 batches. This gap illustrates the tension
between maintaining low latency for user experience and
optimizing batch size for L1 cost efficiency.

Key Finding: Trade-off in Sequencer Scheduling: Se-
quencer responsiveness comes at the cost of batching effi-
ciency. Systems prioritizing soft-finality latency often include
miniblocks with suboptimal size, reducing amortization of
fixed L1 submission costs.

C. Latency and Finality Guarantees

Our transaction inclusion analysis confirms that ZKsync can
offer a responsive L2 experience: over 50% of transactions
were included in miniblocks within 2.5 seconds. However, this
soft finality is not synonymous with settlement. The average
time to hard finality—i.e., when batches are verified and
finalized on L1—ranged from 10 to 20 minutes, depending
on network congestion and prover availability.

Key Finding: Latency Bifurcation: ZK rollups offer rapid
soft finality but delayed settlement. While suitable for most
DeFi use cases, this latency bifurcation should be accounted

for in systems with settlement-critical logic, such as liquida-
tions or cross-chain bridges.

D. LI Batch Sealing Insights

In-depth timing analysis of batch sealing stages re-
vealed that Merkle tree computation is the dominant bottle-
neck, accounting for up to 2.44 seconds per batch. Other
stages—like batch header insertion, log deduplication, or ini-
tial writes—completed in under 250 milliseconds. Despite this,
total sealing time appeared lower than the sum of all stages,
highlighting the role of parallelization.

Key Finding: Merkle Tree Updates as a Bottleneck: Merkle
tree updates dominate the L1 sealing process and constrain
scalability. Future optimizations in prover infrastructure and
cryptographic batching may be required to mitigate this bot-
tleneck.

E. Efficiency Disparities Between Miniblocks and LI Batches

Figure 7 highlighted that miniblocks typically contain over
3x fewer transactions than L1 batches. This gap arises because
miniblocks prioritize responsiveness and proof readiness over
throughput. While this behavior enhances user experience, it
results in suboptimal gas amortization.

Key Finding: Batching Trade-offs Reduce Efficiency:
Miniblocks enable fast execution but at the cost of batching
efficiency. Aligning miniblock size more closely with L1
batch capacity could improve cost-effectiveness in production
settings.

F. Code Migration and Compatibility Challenges

Forking and adapting Uniswap V2 to run on ZKsync, though
successful, required substantive engineering effort. Differences
in compiler versions (e.g., transition to Solidity 0.8.x), stricter
type handling, and error propagation models revealed non-
trivial incompatibilities. These challenges caution against as-
sumptions of seamless EVM compatibility in rollup environ-
ments.

Key Finding: EVM Compatibility is Nuanced: While
rollups aim for EVM equivalence, migration of complex
contracts reveals subtle but critical divergences. Protocol teams
should budget for code audits, formal verification, and behav-
ior validation during migration.

G. Summary: Practical Takeaways

Our implementation and stress testing of a live ZKsync
rollup instance connected to a forked Uniswap V2 exchange
revealed both the performance promise and architectural lim-
itations of current ZK rollup infrastructure. These takeaways
offer guidance for researchers, developers, and infrastructure
teams.

o Scalability: Our testbed achieved 71 TPS with gas-

intensive swaps—over 3 x higher than Ethereum L1.

o Latency: Over 50% of swaps were confirmed in under

2.5s, enabling near-instant UX.

o Sequencer Bottlenecks: Current designs are fragile un-

der load; stability mechanisms and decentralization are
urgent needs.

o Merkle Tree Performance: Tree updates are the primary
source of latency in L1 batch sealing.

« Efficiency Gap: L1 batches amortize costs better than
miniblocks, which remain underfilled.

e Code Porting Overhead: Rollup EVM compatibility
simplifies migration, but edge-case divergences demand
careful engineering.

o Operational Cost: Self-hosting a rollup node requires
significant computational resources, which may exclude
smaller teams or individual developers.

VIII. CONCLUSION

This paper presents the design and evaluation of a real-
time ZK rollup proof-of-concept based on ZKsync, integrated
with a forked Uniswap V2 exchange. Our empirical stress
tests demonstrated that the system can reach 71 TPS of
gas-intensive swap transactions with soft finality under 2.5
seconds, while supporting observability and security instru-
mentation in a fully local environment.

We identified centralization of the sequencer and prover
as primary constraints on scalability and fault tolerance,
proposing container-based replication as a practical solution.
Moreover, we detailed the risks and engineering challenges
associated with migrating DeFi protocols to rollups, especially
under partial EVM compatibility.

ZK rollups are a critical step forward in Ethereum’s scala-
bility roadmap. Yet realizing their full promise requires further
innovation in decentralization, fault tolerance, and developer
tooling. Our platform and results serve as a blueprint for
future research and production-grade deployments of high-
throughput DeFi applications on Layer 2.

REFERENCES

[1] V. Buterin, “Ethereum: A Next-Generation Smart Contract and Decen-
tralized Application Platform.” 2014.

[2] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” 2008.

[3] K. Gogol, C. Killer, M. Schlosser, T. Boeck, and B. Stiller, “SoK:
Decentralized Finance (DeFi) - Fundamentals, Taxonomy and Risks,”
arXiv preprint arXiv:2404.11281, 2023.

[4] S. M. Werner, D. Perez, L. Gudgeon, A. Klages-Mundt, D. Harz, and
W. J. Knottenbelt, “Sok: Decentralized finance (defi),” 2022.

[5] F. Schir, “Decentralized finance: On blockchain- and smart contract-
based financial markets,” 2020. [Online]. Available: https://ssrn.com/
abstract=3571335orhttp://dx.doi.org/10.2139/ssrn.3571335

[6] R. Auer, B. Haslhofer, S. Kitzler, P. Saggese, and F. Victor, “The
technology of decentralized finance (defi),” 2023.

[7] DeFi Llama, “Total Value Locked All Chains,” 2024, accessed on
February 7, 2025. [Online]. Available: https://defillama.com/chains

[8] M. Bez, G. Fornari, and T. Vardanega, “The scalability challenge of
ethereum: An initial quantitative analysis,” 2019.

[9] L. T. Thibault, T. Sarry, and A. S. Hafid, “Blockchain Scaling Using
Rollups: A Comprehensive Survey,” 2022.

[10] B. Yee, D. Song, P. McCorry, and C. Buckland, “Shades of Finality and
Layer 2 Scaling,” 2022.

[11] ZKSync, “zksync era: Overview,” 2024.

[12] L2Beat, “Scaling Actitivy,” 2024, accessed on February 7, 2025.
[Online]. Available: https://12beat.com/scaling/activity

[13] ConduitXYZ, “Rollup Gas per Second (GPS),” 2024, accessed on
February 7, 2025. [Online]. Available: https://rollup.wtf/

[14] J. Xu, K. Paruch, S. Cousaert, and Y. Feng, “SoK: Decentralized
exchanges (DEX) with automated market maker (AMM) protocols,”
ACM Computing Surveys, vol. 55, no. 11, pp. 1-50, feb 2023. [Online].
Available: https://doi.org/10.1145%2F3570639

[15] M. Armstrong, “Ethereum, smart contracts and the optimistic roll-up,”
2021.

S. Chaliasos, I. Reif, A. Torralba-Agell, J. Ernstberger, A. Kattis, and
B. Livshits, “Analyzing and Benchmarking ZK-Rollups,” 6th Conference
on Advances in Financial Technologies (AFT 2024), 2024.

K. Gogol, J. Messias, D. Miori, C. Tessone, and B. Livshits, “Quan-
tifying arbitrage in automated market makers: An empirical study of
ethereum zk rollups,” 2024.

J. Xu, K. Paruch, S. Cousaert, and Y. Feng, “SoK: Decentralized
Exchanges (DEX) with Automated Market Maker (AMM) Protocols,”
2021.

B. Lashkari and P. Musilek, “A Comprehensive Review of Blockchain
Consensus Mechanisms,” IEEE Access, 2021.

G. Wang, Z. J. Shi, M. Nixon, and S. Han, “SoK: Sharding on
Blockchain,” in Proceedings of the 1st ACM Conference on Advances
in Financial Technologies, 2019.

C. Sguanci, R. Spatafora, and A. M. Vergani, “Layer 2 blockchain
scaling: a survey,” arXiv preprint arXiv:2107.10881, 2021.

A. Gangwal, H. R. Gangavalli, and A. Thirupathi, “A Survey of
Layer-Two Blockchain Protocols,” Journal of Network and Computer
Applications, Vol 209, 2022.

L. T. Thibault, T. Sarry, and A. S. Hafid, “Blockchain Scaling Using
Rollups: A Comprehensive Survey,” IEEE Access, 2022.

B. L. Stefanos Chaliasos, Denis Firsov, “Towards a formal foundation
for blockchain rollups,” arXiv preprint arXiv:2406.16219, 2024.
[Online]. Available: https://arxiv.org/abs/2406.16219

S. Motepalli, L. Freitas, and B. Livshits, “SoK: Decentralized Se-
quencers for Rollups,” arXiv preprint arXiv:2310.03616, 2023.
github.com/bogatyy. (2024) Rollup amm tps test: Transaction generator.
Online, accessed: 2024-10-25. [Online]. Available: https://github.com/
bogatyy/rollup-amm-tps-test/tree/main

T. generator. (2024) Generator of amm swaps. [Online]. Available:
https://gitlab.uzh.ch/szczepandominik.gurgul/amm-transactiongenerator

[16]
[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

APPENDIX
APPENDIX: DETAILED BATCH SEALING BREAKDOWN

This appendix provides a deeper view into the internal
execution stages involved in finalizing Layer-1 batches within
the ZK Rollup system. These figures complement the main
discussion in Section VI by offering stage-level granularity on
performance metrics.

A. Sequencer Latency

Figure 6 illustrates how long transactions spend in the
L2 mempool before being included in a miniblock. The
median latency is around 2.5 seconds. This metric excludes
other contributing factors to user-perceived delay such as gas
estimation and polling intervals. Polling time is the interval
during which a client or application checks the status of a
transaction in the network.

B. Miniblock vs. LI Batch Efficiency

Miniblock. A miniblock refers to a smaller set of transac-
tions that are batched together for processing before being
included in a larger block. In ZKsync, miniblocks optimize
transaction throughput by grouping multiple transactions, thus
reducing latency and increasing efficiency.

Figure 7 compares the number of transactions per miniblock
in the ZKsync sequencer with those per L1 batch. L1 batches
typically include significantly more transactions, as they are
optimized to maximize block space and throughput. In con-
trast, miniblocks in ZKsync tend to include fewer transactions,
reflecting their dual role: ensuring low-latency processing on
L2 and preparing transactions for computationally intensive

rollup and proof generation. This design highlights a key
trade-off in L2 scaling between responsiveness and batching
efficiency.

Key Finding: Miniblock Responsiveness vs. L1 Batching
Efficiency: L2 systems like ZKsync achieve faster respon-
siveness via smaller, more frequent miniblocks. However,
this comes at the cost of batching efficiency—L1 batches
consolidate over three times more transactions, maximizing
throughput and minimizing on-chain costs. This underscores
a fundamental trade-off between low latency and block space
optimization in rollup architectures.

C. LI Batch Sealing Time

Commit L1 Batch. In the context of L2 systems, this
refers to the process of finalizing and recording a batch of
L2 transactions onto the Ethereum mainchain. It marks the
transition from soft to hard finality.

Fictive Miniblock. A fictive miniblock is a simulated con-
struct used internally for system operations such as testing, op-
timization, or performance tuning. Unlike regular miniblocks,
these are not broadcast to the blockchain but assist in preparing
the system for real transactions.

Filter Written Slots. This step filters and organizes the
transaction data prior to block inclusion, resolving conflicts
and ensuring data integrity before the write phase.

Insert Initial Writes. Represents the stage where preliminary
transaction data is written to internal databases, initiating the
batch formation process.

Insert L1 Batch Header. The process of appending a meta-
data header to a transaction batch, which prepares the data for
submission and commitment to the L1 blockchain.

Log Deduplication. A stage where duplicate log entries
are identified and removed, improving storage efficiency and
reducing unnecessary computation.

Set L1 Batch Number for Miniblocks. Assigns an L1 batch
identifier to each miniblock, ensuring correct alignment be-
tween L2 sequencing and L1 batch submission.

Waiting for Tree. This phase involves waiting for updates
to the Merkle tree, a core cryptographic structure ensuring the
integrity and verifiability of state transitions. This step is com-
putationally intensive and a common performance bottleneck.

Figure 8 illustrates the time spent in each L1 sealing
stage. Most components, such as batch header insertion, log
deduplication, and initial writes, complete in under 250 mil-
liseconds. In contrast, the “Waiting for Tree” phase dominates
the timeline with a peak delay of 2.44 seconds—making it the
primary bottleneck in the sealing process.

Notably, the total L1 batch sealing time may appear shorter
than the sum of individual stage durations. This discrepancy
arises due to parallel execution: many operations are pipelined
or overlap in time. Such concurrent processing is a hallmark
of optimized distributed systems and critical to maintaining
high throughput.

Key Finding: Merkle Tree Updates as a Bottleneck: While
most batch sealing stages complete in under 250ms, the
Merkle tree update stage introduces a significant delay—up

Sequencer Tx Inclusion wait time (10m aggregation)

—— Pod 50th percentile
—— Pod 90th percentile
Pod 95th percentile
175 Pod 99th percentile
15.0
125
Z 10,0
o
£
E
7.5
5.0
25
0.0
5 47 5 5 & v 5 4 v v & v
> i1 o) g ~ A 3! 1) g S P
heg < 0 b 7 < ¥ B2 B2

Fig. 6. Latency distribution between transaction receipt and miniblock inclusion. 50% of transactions are included within 2.5s, showing responsiveness of
sequencer in moderate load conditions.

Sequencer Txs Per Miniblock vs Txs Per L1 Batch

Average Txs Sequencer
Average Txs per Miniblock: 8.96 &}
50 Average Txs per L1 Batch: 31.18
40
30 4
2 |
= |
204 |
10)
04
T T T T T T T T T T T T
‘g g v v Ng N2 Sy M 47 v N N2
» b\ el) e V) b “) v
¥ ¥ > hed hed v v v v > v v
Time

Fig. 7. Transactions per miniblock vs. L1 batch. Illustrates efficiency gains through batching: L1 batches include over 3x more transactions than individual
miniblocks.

L1 Batch Seal Stages and Batch Seal Time

25 L1 Batch Seal Time
Seal Time (negative absolut value)

Stage Time (s)
5

Batch Stages
commit_|1_batch
fictive_miniblock
filter_written_slots
insert_initial_writes
insert_I1_batch_header
log_deduplication
mark_txs_as_executed_in_I1_batch
set_I1_batch_number_for_miniblocks
waiting_for_tree

Fig. 8. Processing time of L1 batch sealing stages. Highlights Merkle tree update as a performance bottleneck with a 2.44s delay. Other stages

within 250ms.

to 2.44s—making it the dominant performance bottleneck.
Optimizing this step is crucial for improving batch finalization
times and sustaining L2 throughput at scale.

D. Detailed Batch Sealing Breakdown

This section provides a deeper view into the internal exe-
cution stages involved in finalizing Layer-1 batches within the
ZK Rollup system.

Figure 9 illustrates the relative contribution of each sealing
stage to the overall processing time. It confirms the Merkle
tree update as the primary bottleneck, suggesting that further
performance gains could be achieved by optimizing this com-
putation or enabling concurrency in surrounding steps.

Figure 10 provides an absolute timing breakdown of indi-
vidual sealing components. This detailed view is useful for
implementers seeking to fine-tune specific components of the
prover pipeline and reveals the extent

complete

Percentage Area of L1 Batch Seal Stages Time

0.6

Percentage

Batch Stages
commit_|1_batch
fictive_miniblock
filter_written_slots
insert_initial_writes
insert_I1_batch_header
log_deduplication
mark_txs_as_executed_in_I1_batch
set_|1_batch_number_for_miniblocks
waiting_for_tree

14
kS

12:45 13:00 13:15 13:30 13:45 14:00 14:15
Time

Fig. 9. Percentage share of each stage in total L1 batch sealing time. Confirms the dominant contribution of Merkle tree computation and illustrates benefits
of parallelization.

L1 Batch Seal Stages and Batch Seal Time

020
L1 Batch Seal Time | Batch Stages
—— Seal Time (negative absolut value) —— commit_I1_batch
i ——— fictive_miniblock
—— filter_written_slots
0.15 —— insert_initial_writes
—— insert_I1_batch_header
—— log_deduplication
~—— mark_txs_as_executed_in_I1_batch
—— set_I1_batch_number_for_miniblocks
0.10 waiting_for tree
0.05
2 o000
£
v
&
bl
&
—0.05 4
=0.10 1
~0.15
=0.204
> > ~ 54 > g > g N & > N
» B o o Sy o) 0 B o i e
& ¥ R4 R R > ¥ R R ¥ ¥ ¥
Time

Fig. 10. Detailed breakdown of L1 sealing stage durations. Emphasizes stage-level granularity for optimization in future prover implementations.

