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ABSTRACT

Ashardware design complexity increases, hardware fuzzing emerges
as a promising tool for automating the verification process. How-
ever, a significant gap still exists before it can be applied in industry.
This paper aims to summarize the current progress of hardware
fuzzing from an industry-use perspective and propose solutions to
bridge the gap between hardware fuzzing and industrial verifica-
tion. First, we review recent hardware fuzzing methods and analyze
their compatibilities with industrial verification. We establish crite-
ria to assess whether a hardware fuzzing approach is compatible.
Second, we examine whether current verification tools can effi-
ciently support hardware fuzzing. We identify the bottlenecks in
hardware fuzzing performance caused by insufficient support from
the industrial environment. To overcome the bottlenecks, we pro-
pose a prototype, HwFuzzEnv, providing the necessary support
for hardware fuzzing. With this prototype, the previous hardware
fuzzing method can achieve a several hundred times speedup in
industrial settings. Our work could serve as a reference for EDA
companies, encouraging them to enhance their tools to support
hardware fuzzing efficiently in industrial verification.
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1 INTRODUCTION

The growing complexity of hardware designs becomes a significant
challenge for verification engineers. It is increasingly difficult for
them to identify potential vulnerabilities during the hardware devel-
opment process [2, 14]. Extensive effort is dedicated to creating test
cases of the design under test (DUT), which is crucial for achieving
DUT coverage closure and discovering bugs in corner cases.
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Figure 1: Our sub-questions about the current gap between hardware
fuzzing and industrial verification.

Hardware fuzzing has recently emerged as a promising technique
for reducing the substantial human effort required in hardware ver-
ification [2, 3, 6, 9, 10, 13-15, 17, 28]. This innovative approach
employs a gray-box test generation strategy, using coverage as
feedback to heuristically mutate previous high-quality inputs and
generate new stimuli. It has demonstrated a remarkable ability to
automatically complete test plans, achieving both code and func-
tional coverage closures [2, 14, 28]. Furthermore, fuzzing methods
have enabled researchers to uncover previously hidden vulnerabili-
ties [3, 10, 13], some even within industrial hardware designs [27].
There is significant potential to apply hardware fuzzing in real-
world industrial hardware development.

However, a key question remains: What is the current gap be-
tween hardware fuzzing and its practical application in industrial
verification? In this paper, we aim to address this topic by summa-
rizing and exploring two sub-questions, as illustrated in Figure 1.

e What types of hardware fuzzing methods are compatible
with industrial verification?

e What additional support is needed from the industrial verifi-
cation environment to facilitate hardware fuzzing?

For the first sub-question, we review recent influential research
on hardware fuzzing and find that many of these works are actually
not compatible with industrial verification. We analyze their com-
patibilities from three dimensions: simulation platform, coverage
metric, and mutation strategy, which will be detailed in Section 3.
In each dimension, we identify the most appropriate approach for
industry. Firstly, the framework should utilize industrial simulators
rather than acceleration platforms. Secondly, it should focus on
achieving traditional coverage metrics that align with real-world
test plans. Finally, it should eliminate the effort of creating design-
specific mutation strategies for each individual design.

After summarizing the first sub-question, we turn to the second:
Can current industrial hardware verification tools efficiently sup-
port hardware fuzzing? We select a hardware fuzzing work that
aligns with our proposed standards and conduct a quantitative anal-
ysis, which will be detailed in Section 4. Our findings indicate that
existing industrial verification tools are not adequately equipped
to support hardware fuzzing, resulting in significant inefficiencies.
In fact, over 90% of the performance loss is attributed to the lack of
necessary support from the industrial verification environment.
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We identify three key limitations in current industrial tools that
hinder the efficiency of hardware fuzzing in practical applications.
Firstly, existing industrial simulators lack support for efficient cover-
age collection. In fuzzing iterations, coverage is collected frequently
as feedback and an inefficient coverage interface wastes a large
portion of time. Secondly, industrial tools do not facilitate efficient
mutation operations. Current hardware fuzzing works mainly rely
on software fuzzers, which are time-consuming due to complex
mutation processes and high communication overheads. Thirdly,
industrial tools do not incorporate efficient parallel mechanisms
for hardware fuzzing, leaving significant room for optimization.

To overcome the limitations listed above, we develop a prototype
hardware fuzzing environment called HwFuzzENv, with three sim-
ple but effective enhancements. HwFuzzENv incorporates essential
support for hardware fuzzing within the hardware verification
environment and associated tools. The experiments demonstrate
that our enhancements provide a significant speedup for previous
hardware fuzzing practices in industrial applications.

In summary, our main contributions are as follows:

e We assess the compatibilities of current hardware fuzzing
methods for industrial verification and summarize our crite-
ria that determine their suitabilities for industry use.

o We identify the limitations in industrial tools that do not sup-
port hardware fuzzing efficiently. To the best of our knowl-
edge, we are the first to address the lack of support for hard-
ware fuzzing in industrial verification environments.

o We develop a prototype industrial hardware fuzzing environ-
ment named HwFuzzENv!, which incorporates simple but
effective enhancements for each stage of hardware fuzzing,
including coverage collection, mutation, and simulation.

o We evaluate the efficiency and utility of HwFuzzEnv. With
the support of HwFuzzENv, RTLFuzzLAB [6] achieves a
speedup of up to 21.5X (on average 12.7X) with a single
thread, and up to 621X (on average 361X) with 64 threads.

2 BACKGROUND
2.1 Industrial Hardware Verification

In the industrial hardware development lifecycle [5, 19], engineers
use hardware description languages (HDLs) at the register-transfer
level (RTL) to describe microarchitectural modules. Electronic de-
sign automation (EDA) tools synthesize these RTL modules into
gate-level designs, which are then mapped to the transistor level
and eventually to physical layout for manufacturing.

During hardware development, writing HDL code at the RTL is
error-prone. As a result, an overwhelming 60% of a project’s total
effort is dedicated to verification [7]. Simulation-based verification
is a key technique in industrial hardware verification, which neces-
sitates writing input test cases and uses hardware simulators like
Synopsys VCS [25] or Siemens Questa [23] to compare the design’s
outputs with expected results. Hardware coverage is crucial in this
process, as it indicates how thoroughly the design has been tested.

When striving to achieve code and functional coverage closures,
random testing fails to reach numerous corner cases within a limited
time. Manual test case creation, while precise, is labor-intensive
and inefficient. As a result, the research community has sought to

The project is available at https:/github.com/magicYang1573/fast-hw-fuzz.
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Figure 2: Basic hardware fuzzing workflow.

automate this process through coverage-directed test generation
methods [12]. Among these, hardware fuzzing has emerged as a
particularly promising technique.

2.2 Hardware Fuzzing

Fuzzing, originally a concept derived from software testing, denotes
the process of testing with minimal or no internal knowledge during
the verification phase [18]. Among the various fuzzing techniques,
coverage-guided mutational fuzzing stands out for effectively iden-
tifying correctness bugs and security vulnerabilities [11, 29]. Re-
cently, researchers have tried to apply the concepts behind software
fuzzing to the hardware verification domain.

Figure 2 shows the basic workflow of hardware fuzzing. The
fuzzing process starts with a selection from the seed pool. The
seed undergoes mutation to generate new inputs, which are then
translated into DUT-compatible stimuli by a preprocessor. The HDL
simulator runs the simulation and collects coverage data as feed-
back. Inputs revealing new hardware states (i.e., new coverpoints)
are retained as seeds for future fuzzing iterations. This process
repeats until no new states emerge for a set number of iterations.
Throughout, assertions or golden-model cross-checkings ensure
the DUT’s correct behaviors. In the following section, we categorize
existing hardware fuzzing studies and evaluate their compatibilities
with the industrial hardware verification environment.

3 INDUSTRY-COMPATIBLE HARDWARE
FUZZING

The workflow of hardware fuzzing consists of three main parts:
a HDL simulation platform for correctness checking, a coverage
mechanism for feedback collecting, and a mutation engine for input
space exploring, as shown in Figure 2. Based on the different imple-
mentation strategies of each stage, we categorize existing fuzzing
research from three dimensions, as depicted in Figure 3. Each type
of methods is evaluated for its advantages and potential limitations
in the context of industrial verification.

3.1 Simulation Platform

In hardware fuzzing, a simulation platform is essential for observ-
ing hardware behaviors and collecting coverage metrics. Tradi-
tional hardware simulators, such as Synopsys VCS [25] and Siemens
Questa [23], often require significant time to run simulations, par-
ticularly when dealing with complex hardware designs.

To accelerate the fuzzing process, some studies use FPGA plat-
forms for hardware simulation [2, 10, 14]. This approach necessi-
tates substantial modifications to normal fuzzing operations. One
challenge is that FPGA implementations can only collect coverage
data at the netlist level, which is often incompatible with existing
industrial test plans. Besides, utilizing FPGAs efficiently poses tech-
nical difficulties for industrial verification engineers, particularly
in terms of the communication between the CPU-based fuzzer and
the FPGA-based simulator. Similar challenges also exist when using
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Figure 3: A taxonomy of hardware fuzzing studies with representative examples.

GPUs for simulation acceleration [15], making these acceleration
platforms less suitable for industrial hardware verification.

An alternative approach involves fuzzing hardware in the soft-
ware domain by translating hardware RTL designs into software
models using open-source tools like Verilator [1]. It allows for the
application of software fuzzers [28] to directly verify the RTL soft-
ware model. However, this method faces challenges in ensuring
the software model’s equivalence to the original hardware design,
which is unacceptable in industrial verification [8].

Therefore, in industrial hardware verification, using a standard
hardware simulator as the simulation platform is necessary, even
though it may not provide the fastest execution speed. Such simula-
tors offer mature support for coverage collection, making hardware
fuzzing compatible with existing industrial workflows.

3.2 Coverage Metric

Hardware fuzzing is primarily guided by coverage. Initially, netlist-
level coverage metrics are the focus of hardware fuzzing stud-
ies [2, 3, 10, 14]. For example, RFuzz [14] introduces muxiplexer
coverage, treating the select signal of each 2:1 multiplexer as a
distinct coverpoint. DiruzzRTL [10] employs register coverage by
using the states of CPU control registers as coverpoints.

However, industry engineers often show limited interest in these
novel coverage types, as they are not included in the test plans [8,
13]. They prefer verification methods and coverage metrics for RTL,
the same level at which hardware designs are written. Moreover,
translating these new coverage types into traditional metrics is
challenging. It is hard to determine whether a line of code has been
thoroughly tested based on multiplexer or register coverage alone.

To bridge this gap, some studies have developed hardware fuzzing
frameworks that align with traditional coverage metrics [13, 17].
This makes hardware fuzzing more compatible with industrial ver-
ification plans and also promotes the use of industrial hardware
simulators in hardware fuzzing workflows.

3.3 Mutation Strategy

Mutation strategy is crucial for efficient space exploration in hard-
ware fuzzing. By mutating high-quality seed inputs, newly gen-
erated test cases progressively uncover hardware behaviors. Typ-
ically, hardware designs necessitate valid stimuli that adhere to
specific protocols or standards, indicating that mutation engines
must produce diverse inputs while ensuring their compliance with
the design’s interface and functionality.

Some studies implement structured and grammar-aware muta-
tion strategies tailored to the input format [3, 10, 13]. For instance,
when fuzzing a CPU, the mutation process is customized for the spe-
cific instruction set architecture, generating valid CPU instruction
sequences. However, this approach is overcomplicated for verifi-
cation engineers, which requires considerations of the instruction
formats as well as the evolutionary algorithms. Given that devel-
oping such a complex mutation engine is not an ordinary skill for
industrial engineers, and considering the need of unique muta-
tion strategies for each design, it is impractical to apply structural
mutation-based fuzzing to industrial verification workflows.

A more accessible and general solution is to use mature software
fuzzing tools [11, 29] as mutation engines [4, 6, 9, 14, 28]. This
approach requires an additional translation step to convert the gen-
erated inputs from software fuzzers into valid hardware stimuli. For
instance, AFL [29] generates input files in a binary format. To pro-
duce valid stimuli, a hardware fuzzing grammar is designed to map
the binary streams to specific hardware transactions. This allows
fuzzer to use the same mutation flow across different hardware
designs. Consequently, verification engineers only need to focus
on the mapping strategies, while mature software fuzzers provide
powerful heuristic exploration capabilities, rendering hardware
fuzzing a more user-friendly method for industrial verification.

In summary, we categorize existing hardware fuzzing studies
from three dimensions and analyze their suitabilities for integra-
tion into industrial hardware verification workflows. We outline
three criteria to help identify hardware fuzzing methods that are
compatible with existing industrial verification:

o Firstly, it should use industrial hardware simulators rather
than acceleration platforms with FPGAs or GPUs.

e Secondly, it should aim at achieving traditional coverage
metrics which are included in industrial test plans.

o Thirdly, it should use a grammar-agnostic mutation strategy
to avoid the need of design-specific structural mutations.

4 ANALYSIS OF INDUSTRIAL GAPS

In this section, we investigate whether existing industrial hardware
verification tools efficiently support hardware fuzzing. If not, what
additional support is needed? We use RTLFuzzLAB [6] as a case
study. This open-source framework meets our defined industrial
criteria well and implements two of the most influential hardware
fuzzing algorithms [14, 28] in recent years, offering representative
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Figure 4: Time distribution across hardware fuzzing stages.

and referential significance. Our analysis below evaluates its perfor-
mance from a time perspective, and we aim to identify the reasons
for any inefficiencies observed.

4.1 Time Distribution of Hardware Fuzzing

We evaluate the performance of the hardware fuzzing framework
on two designs of different scales: a TLI2C IP comprising several
thousand lines of code [24] and the Rocket Core with over 40,000
lines of code [22]. In hardware fuzzing, the initial seed is crucial, as
it affects the generation of new inputs, the simulation time for each
fuzzing iteration, and the overall frequency of fuzzing. Therefore,
we conduct our experiments with initial seeds of varying lengths.

As illustrated in Section 3, hardware fuzzing mainly consists of
three stages: coverage collection, mutation, and simulation, with
their time distribution shown in Figure 4. Counter-intuitively, the
coverage collection and mutation stages occupy a significant por-
tion of the total time, exceeding 90% when the initial seed length
is small. As the seed length increases, the simulation time grows,
while the proportion of time spent on coverage collection and muta-
tion remains over 50%. The results indicate that existing industrial
verification tools are not adequately equipped to support hardware
fuzzing, resulting in significant time inefficiencies.

4.2 Industrial Gaps for Hardware Fuzzing

Coverage Collection Inefficiency. Existing fuzzing works use Syn-
opsys VCS [25] or Verilator [1] to collect coverage information at
simulation runtime. VCS maintains a structured and hierarchical
coverage database for engineers to extract coverage reports [26],
while Verilator outputs coverage report in a text format, includ-
ing each coverpoint’s definition and hit count [1]. Both VCS and
Verilator only support a detailed and structured coverage collec-
tion mechanism, which is untailored and redundant for hardware
fuzzing. Specifically, this mechanism is designed for long-term
simulation, providing engineers with comprehensive reports for
analysis. In contrast, hardware fuzzing requires frequent coverage
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Figure 5: Overview of our fuzzing environment prototype.

updates in each iteration, which necessitates a more sketched and
efficient coverage interface provided by industrial simulators.

Mutation Inefficiency. Many hardware fuzzing studies use mature
software fuzzers like AFL [29] as their mutation engine [6, 14, 17,
28]. However, this can slow down the fuzzing process for two rea-
sons. Firstly, AFL requires inter-process communications with the
hardware simulation environment, which is time-consuming. Sec-
ondly, AFL utilizes complex mutation operations (e.g., bitflip, havoc,
trim, splice etc. ) to mutate structured software inputs in a grammar-
agnostic manner. Given the generally simpler nature of hardware
interface protocols and the potential of designing hardware fuzzing
grammars [28] to generate valid stimuli, these mutation operations
can be simplified. Considering these factors, there is a clear need of
an efficient mutation engine for hardware fuzzing, which is seam-
lessly integrated within the industrial simulation environment.

Serial Execution Inefficiency. As illustrated in 4.1, the simulation
stage only occupies a relatively small fraction of time in the fuzzing
process. Therefore, most previous methods are restricted to a single-
input fuzzing mechanism that runs one simulation thread at a
time, overlooking the potential advantages of batch simulation with
multiple threads. Hardware fuzzing is not strictly serial and can
benefit greatly from parallel execution. After the coverage collection
and mutation stages are supported and optimized, we re-examine
the entire hardware fuzzing process, trying to enable the simulation
environment to efficiently support hardware fuzzing parallelism
and fully exploit the capabilities of multi-core processors.

5 HARDWARE FUZZING ENVIRONMENT
PROTOTYPE

The analysis in Section 4 shows that current industrial environment
cannot adequately support hardware fuzzing, leading to significant
time inefficiencies. Therefore, focused on the three inefficiency
reasons above, we develop an industrial environment prototype,
HwFuzzENv, which enhances support for hardware fuzzing. Fig-
ure 5 illustrates the overview of our prototype. It introduces three
simple but effective enhancements. Firstly, a sketched coverage in-
terface is proposed for the hardware simulator to improve coverage
collection efficiency (O in Figure 5). Secondly, a simplified mutation
engine is developed within the hardware simulation environment
to support efficient mutation (@ in Figure 5). Lastly, a multi-thread
pipelined mechanism is proposed to support efficient parallelism
and speedup the whole fuzzing workflow (® in Figure 5).

5.1 Sketched Coverage Interface

Previous analysis reveals that the inefficiency of coverage collection
arises from industrial simulators’ lack of support for an efficient
coverage interface, which is essential for hardware fuzzing. Gen-
erally, hardware fuzzing engines require only a coverage vector
(i.e., a vector of coverpoints’ hit counts) as feedback for heuristic
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Figure 6: Simplified mutation engine in HwFuzzENv.

mutation [2, 10, 13, 14, 17, 28]. The specific locations and order of
coverpoints in the source code do not influence the performance
of fuzzing. To support efficient industrial hardware fuzzing, simu-
lators need an interface that can directly acquire such a coverage
vector instead of parsing comprehensive coverage reports during
fuzzing. Since we do not have access to the source code of com-
mercial simulators, we investigate the open-source Verilator [1] to
implement the sketched coverage interface in HwFuzzENv.
Verilator instruments coverage monitors in the abstract syntax
tree (AST) nodes generated from the hardware design. These moni-
tors trigger coverage counters when specific simulation conditions
are met. Each counter is then mapped to an element within a cov-
erage vector, incrementing the corresponding value continuously
throughout the runtime. We modify a few lines of source code in
Verilator to directly access this coverage vector. We have guaran-
teed that the coverage vector derived from our sketched coverage
interface is equivalent to the one obtained from the original cover-
age interface. The only difference lies in the order of the coverpoints
within the vector, which is unnecessary for hardware fuzzing.

5.2 Simplified Mutation Engine

According to analysis in Section 4, it is necessary to integrate a
lightweight mutation engine into the hardware simulation environ-
ment. This mutation engine should perform effective and efficient
mutation operations. Figure 6 illustrates the simplified mutation
engine for hardware fuzzing in HwFuzzENv.

In the mutation flow, each chromosome is represented as a se-
quence of bytes, which allows us to define a parametric generator
similar to the one proposed by Zest [20]. The parametric gener-
ator is a function that takes a sequence of untyped parameters
and produces a structured input according to the hardware fuzzing
grammar. A byte serves as the basic unit of the parametric generator,
enhancing the granularity of mutation operations while reducing
the time required.

Selection: The selection process prioritizes individuals with higher
fitness from the input pool for future mutation. The fitness function
takes into account two primary factors. Firstly, it considers the
coverage rate achieved by the input, favoring those that achieve
more coverage. Secondly, it assesses whether the input is uniquely
responsible for reaching certain coverpoints. If a coverpoint can
only be covered by a specific input seed, the fitness of the seed is
multiplied by a favor factor, increasing its chance for selection.

Mutation: By carefully examining previous hardware fuzzing
works that use software fuzzer AFL [14, 16, 28] as mutation engine,
we find that all the interesting inputs are generated from its havoc
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Figure 7: Multi-thread pipelined mechanism in HwFuzzEnv.

and splice operation. Therefore, we only implement these two op-
erations in our simplified mutation engine. The havoc operation
randomly modifies byte values in the chromosome, and the splice
operation involves a crossover between two selected chromosomes.

5.3 Simulation Parallelization

The simulation workflow is an iterative process that includes the
following steps: i) getting input from mutation engine, ii) running
HDL simulation, and iii) updating seed corpus using new coverage.
After the industrial verification environment has been enhanced to
support efficient coverage collection and mutation, we can focus on
accelerating the simulation step within HwFuzzENv. To speed up
the simulation process, we implement batch simulations by running
multiple simulations concurrently across multiple threads. The
framework gets multiple inputs per iteration and dispatches them
to individual threads. Each thread operates a hardware simulator in
parallel, and the simulation time can be amortized thereby. Once all
threads complete the simulation tasks, their coverage information
is collected to update the seed corpus in the mutation engine.

The time costs associated with steps i) and iii) are relatively
minimal for a single thread. However, as the number of threads
increases, these costs escalate due to the multiplication of input
acquisitions and coverage updates. Specifically, the time consumed
by these two steps begins to approximate that of the simulation
stage. Given that these steps do not strictly demand serial process-
ing, we utilize a pipelined approach in HwFuzzENV to improve the
throughput of simulation and hardware fuzzing.

Figure 7 illustrates our multi-thread pipelined fuzzing mecha-
nism, in which different parts of three iterations run concurrently
at every timestamp. While each child thread is running simulation
for iteration k, the main thread simultaneously updateSeedCorpus
using the coverage of iteration k—1 and getInputs for iteration k+1.
Notably, the seed corpus for the getInputs function during iteration
k+1 does not include the updated information from iteration k (as
it is still in simulation). To transfer data as a pipeline, we utilize
a ping-pong buffer to store the inputs and coverage data. In this
manner, we optimize the utilization of multi-threading and speed
up hardware fuzzing further.

6 EXPERIMENTS AND RESULTS

We evaluate HWwFuzzENV based on the open-source hardware fuzzing
framework RTLFuzzLAB [6], which employs AFL [29] for mutation
and Verilator [1] for simulation. We collect the branch coverage
as fuzzing guidance in our experiments and the workflows are the
same for other code coverage or functional coverage. We compre-
hensively evaluate on a range of open-source RTL designs, includ-
ing TileLink Peripheral IPs [24], RISC-V Sodor Cores [21], and the
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Table 1: Benchmarks and characteristics.

Ruiyang Ma, Tianhao Wei, Jiaxi Zhang, Chun Yang, Jiangfang Yi, Guojie Luo

Table 2: Comparison on coverage collection and mutation efficiency
of RTLFuzzLAB with and without HwFuzzENV’s support.

Time on Coverage (s)

Time on Mutation (s)

Source  Name Input Width | FIRRTL Lines | Cover Points
12C 165 2373 245
[24] PWM 163 2452 181
UART 164 2416 136
Sodor1Stage 35 3617 303
[21] Sodor3Stage 35 4020 314
Sodor5Stage 35 4088 341
[22] Rocket Core 239 43856 2378

RISC-V Rocket Core [22]. A detailed list of the benchmarks and
their characteristics is available in Table 1.

We conduct our experiments on a Ubuntu 20.04 system with
384GB RAM and two 3GHz Intel Xeon Gold-6248R CPUs, offering
438 physical cores (96 threads) in total.

6.1 Coverage Interface Comparison

In Section 5.1, we implement the sketched coverage interface in Ver-
ilator to support efficient coverage collection for hardware fuzzing.
A comparative experiment is conducted to evaluate the time ef-
ficiency of our sketched coverage interface against the original
coverage interface. The fuzzing process is iterated 10,000 times, and
the total time spent in coverage collection is shown in Table 2.

The results indicate that, by using the sketched coverage inter-
face of HwFuzzENv, the coverage collection process achieves a
several-hundred-fold speedup. According to the analysis in Sec-
tion 4.1, coverage collection is the most time-consuming stage in
hardware fuzzing. By implementing the sketched coverage inter-
face, we reduce its time consumption to a negligible amount.

6.2 Mutation Engine Comparison

In Section 5.2, we propose a simplified mutation engine in Hw-
FuzzENv. We conduct a comparative experiment to evaluate its
time efficiency against the AFL mutation engine. The fuzzing pro-
cess is iterated 10,000 times, and the total time spent in mutation
is presented in Table 2. The results indicate that our simplified
mutation engine achieves a speed dozens of times faster than AFL.

However, it is also crucial to investigate whether this reduction
in mutation operations adversely affects the quality of the gener-
ated inputs. We compare the number of fuzzing iterations required
to achieve K% branch coverage using our mutation engine and
AFL, starting with the same initial seeds. For different designs, the
value of K is different because the maximum coverage that can be
achieved is different. As demonstrated in Table 3, our simplified mu-
tation engine attains equivalent coverage with much fewer fuzzing
iterations. The results suggest that our mutation engine improves
not only its speed but also the quality of the generated inputs.

6.3 Fuzzing Speed Comparison

After evaluating the efficiency of the sketched coverage interface
and simplified mutation engine, we integrate these components
and evaluate their combined performance improvement for RTLFuz-
zLAB. In this subsection, we adopt a single-thread fuzzing workflow.
The experimental results are presented in Figure 8.

The results indicate that, with the support of HwFuzzENv, by
optimizing the coverage collection and mutation stage, RTLFuz-
zLAB improves the fuzzing speed by 6.2X-21.5X (on average 12.7x).
Remarkably, this substantial improvement is achieved with only a
single thread. In the following subsection, we extend our investiga-
tion to include multi-thread fuzzing experiments.

Benchmark Original Sketched Original ~ Simplified
2C 4161 0.09(462x) | 17.20 _ 0.37 (46x)
PWM 34.85  0.08 (435x) | 1673  0.41(40%)
UART 31.73 0.07 (453x) 16.88 0.35 (48X)
Sodor1Stage 51.53 0.05 (1030x) 17.86 0.30 (59X%)
Sodor3Stage 53.27 0.05 (1024x) 18.16 0.30 (60x)
Sodor5Stage | 55.82  0.05(1053x) | 18.06  0.31 (58x)
Rocket Core | 26273 0.26 (1010x) | 2143 0.81 (26X)

Table 3: Comparison on mutation quality of AFL’s mutation and

HwFuzzENV’s simplified mutation.

Benchmark Iterations for Achieving K% Coverage
AFL Mutation Simplified Mutation

12C (K=95) 13268 6663 (2.0X)
PWM (K=95) 69311 36757 (1.9X)
UART (K=80) 81291 50908 (1.6X)
Sodor1Stage (K=90) 104384 48301 (2.2X)
Sodor3Stage (K=90) 124100 48895 (2.5%)
Sodor5Stage (K=90) 127446 76110 (1.7X)
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Figure 8: Comparison on single-thread performance of RTLFuzzLAB
with and without HwFuzzENV’s support.

6.4 Multi-Thread Comparison

We develop a multi-thread pipelined mechanism in HwFuzzEnv
to speedup hardware fuzzing further in an industrial environment.
Since multi-thread techniques do not modify the original single-
thread hardware fuzzing flow, we confine our comparison to the
speed of hardware fuzzing (measured in the number of tested input
clock cycles per second) in the experiments. Table 4 illustrates the
speedups achieved by different multi-thread mechanisms (with or
without pipeline) in comparison to single-thread.

When the thread count is small, both the simple multi-thread
framework and the pipelined framework achieve a speedup roughly
equal to the number of threads utilized. However, as the thread
count increases, the speedup of the simple multi-thread mecha-
nism does not exhibit linear growth. In this case, the multi-thread
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Table 4: Speedups of different parallel mechanisms of HwFuzzENv.

DUT 12C Sodor1Stage | Rocket Core

Original 0.05%x 0.06x 0.16X

1 Thread 1.00% 1.00x 1.00x

4 Thread 3.26X 3.19% 3.57X
Pipelined 4 Thread | 3.44X% 3.34% 3.83X
16 Thread 9.90x 8.85X 11.24%
Pipelined 16 Thread | 12.99x 12.45X 14.60X
64 Thread 15.45% 8.94x 21.11%
Pipelined 64 Thread | 31.05x 25.79% 28.26%

pipelined framework demonstrates a noticeable advantage, espe-
cially for small designs like I2C or Sodor1Stage. As shown in Ta-
ble 4, the multi-thread pipelined fuzzing mechanism with 64 threads
achieves a speedup of up to 31.0X (on average 28.2X) compared
with the single-thread. When compared to RTLFuzzLAB without
HwFuzzENvV (i.e, Original), it achieves a fuzzing speed of up to 621x
(on average 361x) faster. These advancements significantly improve
the efficiency of hardware fuzzing for industrial verification.

7 DISCUSSION

As hardware designs scale up and human costs rise, hardware
fuzzing emerges as a promising technique for hardware verifica-
tion automation. This paper aims to advance the integration of
hardware fuzzing into industrial verification. Through our analysis
and prototype development, we gain a clearer understanding of the
current gap between hardware fuzzing and its practical application.
Currently, EDA tools lack sufficient support for hardware fuzzing
operations, which substantially limits the efficiency of hardware
fuzzing and obstructs its industrial application. For the coverage
collection stage, hardware simulators should incorporate a faster
mechanism akin to our sketched coverage interface. For the mu-
tation stage, a well-designed mutation engine integrated into the
testbench development environment is essential. Additionally, the
batch simulation of multiple stimuli is a highly desirable feature
for hardware simulators intending to support hardware fuzzing.
For hardware fuzzing to be truly applicable in future hardware
verification, the issues mentioned above must be overcome first.
Our research could serve as a case study, providing industrial EDA
companies with valuable insights to enhance their toolkits.

8 CONCLUSION

In this study, we explore the industrial applications of hardware
fuzzing. We begin by summarizing the standards of compatible
hardware fuzzing techniques for industrial verification. Then, we
analyze the current industrial environment to assess its ability
to support these fuzzing methods. Finally, we design a prototype
environment HwFuzzENv to facilitate hardware fuzzing. With this
environment, the previous hardware fuzzing method achieves a
substantial speedup of several hundred times. Our work provides
beneficial perspectives for EDA companies. By adding only a tiny
extra effort, EDA tools can efficiently support hardware fuzzing,
encouraging them to consider incorporating these features into
their upcoming verification toolkits.
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